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ABSTRACT 

Background and objective: Knowing whether a subject is conscious or not is a current challenge 

with a deep potential clinical impact. Recent theoretical considerations suggest that 

consciousness is linked to the complexity of distributed interactions within the corticothalamic 

system. The fractal dimension (FD) is a quantitative parameter that has been extensively used to 

analyse the complexity of structural and functional patterns of the human brain. In this study we 

investigate FD to assess whether it can discriminate between consciousness and different states 

of unconsciousness in healthy individuals. 

Methods: We study 69 high-density electroencephalogram (hd-EEG) measurements after 

transcranial magnetic stimulation (TMS) in 18 healthy subjects progressing from wakefulness to 

non-rapid eye movement (NREM) sleep and sedation induced by different anaesthetic agents 

(xenon and propofol). We quantify the integration of thalamocortical networks by calculating 

the FD of a spatiotemporal voxelization obtained from the locations of all sources that are 

significantly activated by the perturbation (4DFD). Moreover, we study the temporal evolution 

of the evoked spatial distributions and compute a measure of the differentiation of the response 
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by means of the Higuchi FD (HFD). Finally, a Fractal Dimension Index (FDI) of perturbational 

complexity is computed as the product of both quantities: integration FD (4DFD) and 

differentiation FD (HFD). 

Results: We found that FDI is significantly lower in sleep and sedation when compared to 

wakefulness and provides an almost perfect intra-subject discrimination between conscious and 

unconscious states. Conclusions: These results support the combination of FD measures of 

cortical integration and cortical differentiation as a novel paradigm of tracking complex 

spatiotemporal dynamics in the brain that could provide further insights into the link between 

complexity and the brain’s capacity to sustain consciousness. 

  

1. Introduction 

Determining the level of consciousness is a challenging task with many clinical applications [1,2]. 

A number of methods have been proposed for a non-invasive assessment of the level of 

consciousness, mainly from electroencephalogram (EEG) signal analysis [3-6]. These methods 

are especially useful in patients where clinical tests such as the Coma Recovery Scale-Revised 

(CRS-R) [7] may fail in detecting consciousness due to patient’s lack of ability to respond to a 

sensory stimulus. Some of these methods are focused on the spectral analysis of the resting EEGs 

[8], other methods have been developed to capture the connectivity patterns of multiple EEG 

sites [9], and there are also methods based on the analysis of the event-related potentials (ERP) 

from simple stimuli that change their trace depending on the conscious stage of the participant 

[10]. When combined, these measures can synergize to allow an automatic classification of 

patients’ state of consciousness [5,6]. Although these methodological tools can achieve a good 

level of discrimination, most of them need further refinement and a clear theoretical 

background. One promising approach is to explore the informational or complexity content of 

the EEG signals during conscious/unconscious states [11]. As examples, detrended fluctuation 

analysis, entropies and complexity estimators for monitoring depth of anaesthesia have been 

explored [12-14]. One noteworthy recent approach is the development of a perturbational 

complexity index (PCI) in the clinical assessment of brain-injured, unresponsive patients 

[15,16]. This indicator is theoretically based on the Integrated Information Theory (IIT) of 

consciousness [17,18]. IIT argues that the brain should be able to sustain consciousness to the 

extent that it can enter several different states (differentiation) as a causal integrated whole 

(integration). PCI was designed to capture this balance between differentiation and causal 

integration. In short, the index quantifies the algorithmic complexity (differentiation) of the 

spatiotemporal propagation of EEG activity after transcranial magnetic stimulation (causal 

integration). Although PCI has been shown to be highly reliable to assess conscious states at a 

single patient level [16], efforts have been made to increase its classification accuracy [2] and a 

complete understanding of the link between PCI and theoretical measures of complexity in the 

brain is still lacking. 

In the present study we further explore the perturbational approach introduced in [15], using 

the fractal dimension (FD) as the reference measure in order to obtain a complexity estimation. 

FD is a measure of the complexity of a set and so, in particular, of a data set obtained from the 

internal dynamics on such a complex system as the brain [19]. Indeed, FD is a quantitative 
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parameter that is extensively used to analyse medical signals in fields such as neuroimaging, 

bone texture, mammography and electrocardiogram/electroencephalogram-based diagnosis, 

among others [20]. Metrics of FD are able to characterize the complexity of a wide range of 

signals of interest by assessing how a fractal structure occupies their geometrical target space 

[21]. The versatility of FD analysis applied to EEG has enabled the development of a remarkable 

number of applications in several diseases such as epilepsy [22], sleeping disorders [23] and 

Alzheimer’s disease [24]. 

From a theoretical point of view, when we define a dynamical system on a physical substrate (in 

our case, dynamics on a complex system describing a network in the brain), the natural object to 

describe its asymptotic behaviour is the global attractor, which seems to be behind some 

functionality properties of the brain [25-27]. A global attractor can be characterized as a new 

complex network, determining all the asymptotic dynamics of a system [28,29]. By its 

informational nature they have been defined as Informational Structures [30], allowing for a 

continuous and dynamical approach to the integrated information in IIT. Note that attractors are 

commonly described as fractal sets [31], their fractal dimension being just an index of their 

complexity, usually associated to chaotic dynamics. Thus, phenomenological measures of 

fractality from real data should be related to the complexity of informational structures, which 

we hope are in the base of a theoretical approach to the description of conscious states (see 

Section 4). 

There exists little previous work studying the fractal structure of the brain activity present in the 

different levels of consciousness. To the best of our knowledge, the first study on FD and 

consciousness was presented by Nan et al. in [32]. They analysed the FD, computed as the 

correlation dimension [33], of the EEG signals measured in three different moments during the 

realization of a task in the conscious state. They found that FD of EEG may quickly respond to the 

changes in mental states. Solhjoo et al. compared mental task classification in hypnosis and 

normal states through FD of EEG signal [34]. In this study, Higuchi FD (HFD) [35] performed 

very well and better than Petrosian FD [36] in classifying the mental tasks. HFD of EEG was also 

tested as a measure of depth of anaesthesia and sedation in [12]. An interesting conclusion of 

this study is that the EEG window length processed has an influence on the results, with window 

lengths needed of at least 20s in order to obtain reliable results. More recently, Ibáñez et al. [37] 

proposed the use of FD to characterize the complexity of the EEG signal associated with 

internally and externally generated conscious experiences. Ibáñez et al.’s study is also based on 

the HFD of the EEG signals and they showed that non-linear EEG complexity expressed by means 

of HFD can be a reliable measure of the neural correlates of consciousness. However, none of 

these previous studies have addressed the problem of how to use FD to discriminate between 

consciousness and unconsciousness. 

In this paper we study the fractal structure of the brain activity in several consciousness states 

in a novel way. Specifically, we compute the 4D FD of the brain’s early reaction (within the first 

130 ms) to the direct TMS-induced cortical perturbation and use the HFD to measure the 

variability of the complexity of that reaction over time. By combining 4DFD (integration) and 

HFD (differentiation) we introduce the FDI, a novel empirical measure of brain complexity in 

response to a direct cortical perturbation. We tested FDI on a data set of TMS-evoked potentials 
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recorded from healthy subjects during wakefulness, non-rapid eye movement (NREM) sleep, 

and different levels of sedation induced by the anaesthetics xenon and propofol. 

 

2. Methods 

2.1. SUBJECTS 

We included 69 TMS/EEG measurements in 18 healthy subjects in this study. This data set was 

recorded in previously-published studies. Specifically, the data on sleep (subjects 1 to 6) were 

derived from studies by Massimini et al. [38,39], and the data from xenon anaesthesia (subjects 

7 to 12) and propofol sedation (subjects 13 to 18) were derived from a study by Casali et al. 

[15]. 

 

2.2. TMS/EEG ACQUISITION 

The technical details of the procedures for the acquisition of the data set were described in prior 

publications [15,38,39]. In this section those procedures are briefly described. 

 

2.2.1. WAKEFULNESS AND SLEEP (SUBJECTS 1-6) 

TMS/EEG data was collected in six healthy subjects (subjects 1¬6, six males, age ranging from 

24 to 34). The first TMS-EEG session was acquired while the subjects were alert and relaxed, 

with their eyes open. Stimuli resulted in an electric field at the cortical target (Brodmann area 6, 

BA6) of about 90 V/m. A second TMS-EEG session was recorded, with the same stimulation 

intensity, after subjects entered a consolidated period of NREM sleep stage 3. In four of the six 

subjects (subjects 3 to 6), a third session was also recorded in which TMS was delivered at 

higher intensity (160 V/m) to the midline sensorimotor cortex (BA4). 

 

2.2.2. WAKEFULNESS AND ANAESTHESIA (SUBJECTS 7-18) 

Six healthy volunteers (two males, four females; age ranging 18 to 28) were administered xenon 

anaesthesia (subjects 7-12). The first TMS-EEG session was recorded during wakefulness with 

stimuli targeted over the right motor cortex (BA4) at an intensity of about 100 V/m while 

subjects were lying on a bed with their eyes open. During a 40-min period, xenon was 

introduced progressively. Subjects received between 24 and 32 l of xenon in total [15]. 

Stimulations with the same parameters as for wakefulness were then performed during loss of 

consciousness (level 1 of the Modified Observer’s Assessment of Alertness and Sedation, MOAAS, 

ranging from 5, Awake to 1, Unresponsive). 

Finally, another six healthy volunteers (three males, three females; age ranging from 20 to 27) 

were administered propofol anaesthesia (subjects 13-18). TMS-EEG measurements were 

performed first during wakefulness while subjects were lying on a bed with their eyes open and 
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then during an intermediate level of sedation (levels 2 to 3 of the MOAAS) followed by 

anaesthesia with loss of consciousness (level 1 of the MOAAS). Across these conditions, TMS was 

targeted over the motor (BA4), premotor (BA6), parietal (BA7) and occipital (BA19) areas at an 

intensity of about 110 V/m. Propofol anesthesia was obtained with a computer- controlled 

intravenous infusion of propofol to obtain constant effect-site concentrations (Alaris TIVA; 

CareFusion). The propofol plasma and effect-site concentrations were estimated with a three- 

compartment pharmacokinetic model [15]. 

 

2.3. EXTRACTING THE DETERMINISTIC PATTERNS OF CORTICAL ACTIVATION 

As described in [38,40], TMS-evoked potentials were recorded with a 60-channel TMS-

compatible EEG amplifier, and stimuli were delivered by means of a Focal Bipulse 8-Coil, driven 

by a Mobile Stimulator Unit and combined with a magnetic resonance- guided navigation system 

that employs a 3D infrared tracking position sensor unit to map the positions of TMS coil and 

subject’s head within the reference space of individual structural magnetic resonance imaging 

(MRI). The reproducibility of the stimulation coordinates across sessions was guaranteed by a 

virtual aiming device that indicated in real-time any deviation from the desired target greater 

than 3 mm. Then the primary electromagnetic sources of scalp EEG activity were localized by 

performing source modelling as detailed in previous analyses of TMS/EEG [40]. First, conductive 

head volume was modelled according to the 3-spheres BERG method [41,42] as implemented in 

the Brainstorm software package (http://neuroimage.usc.edu/brainstorm). These three 

concentric spheres represented the best-fitting spheres of inner skull, outer skull and scalp 

compartments extracted from individual MRIs. The solution space was constrained to the 

cerebral cortex that was modelled as a three-dimensional grid of 3004 fixed dipoles oriented 

normally to cortical surface. This model was adapted to the anatomy of each subject using the 

Statistical Parametric Mapping (SPM) software package (https://www.fil.ion.ucl.ac.uk/spm). 

Finally, the inverse problem of determining the distribution of electrical sources in the brain was 

solved by the Weighted Minimum Norm constraint applied to an empirical Bayesian approach 

[43-45] as implemented in SPM. 

After source modelling, the deterministic responses of the brain were estimated by applying a 

statistical procedure to TMS-evoked cortical currents based on a nonparametric bootstrap 

procedure [15]. A binary spatiotemporal distribution of significant sources SS(x,t) was then 

calculated, where SS(x,t) = 1 for significant sources x and time samples t; and SS(x,t) = 0 

otherwise. Fig. 1 outlines this binarization process. 

 

2.4. FRACTAL DIMENSION INDEX COMPUTATION 

After performing the binarization process to extract the matrix of significant sources, SS(x,t), 

which describes the spatiotemporal pattern of activation caused by the TMS perturbation, the 

next step consisted of computing a Fractal Dimension Index (FDI) based on the complexity of the 

sources’ spatiotemporal distributions. 

The fractal dimension (FD) of an ideal fractal set S ∈ R d can be calculated by means of the box-

counting method as follows [21]:  
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          (1) 

where Nr is the number of boxes of size rd that are required to completely cover the fractal set S. 

However, when that set is not an ideal fractal then the FD value is obtained as the linear 

regression of log(Nr) against log (1/r) for several values of r. 

We started from the point cloud described by the 3D localizations associated to the significant 

sources at each time sample (see Fig. 2.A-C). We then computed the 3DFD of each point cloud by 

using the box-counting method [46] (d = 3 in Eq. (1)). A grid of 256 x 256x 256 voxels was 

defined covering each point cloud (see Fig. 2.D, box size r = 256) and it was successively divided 

by 2 until reaching a size of 1 x 1 x 1 voxels (Fig. 2.D, box size r = 1). Those voxels in each grid 

that contain any point of the point cloud define a voxelization for that point cloud, and the 

number of voxels, Nr, in each voxelization of size r corresponds to the box-counting of the point 

cloud. Then the 3DFD value is calculated as the slope of the linear piece of the regression line for 

the log-log plot of Nr vs. 1/r (see Fig. 2.D). In this study, that linear piece corresponds to box 

sizes ranging from r = 16 to r = 128 (correlation: n = 3105, mean = 0.995, standard deviation = 

0.009; see red line in Fig. 2.D). The whole process for calculating the 3DFD values was computed 

in MATLAB R2013a as described in [47]. 

In order to obtain a fractal measure of spatiotemporal integration in the thalamocortical 

networks that are engaged by the perturbation we extended the same algorithm previously 

described for the 3D case and included time as a fourth dimension, resulting in a 4DFD value of 

the significant sources spatial distributions (d = 4 in Eq. (1)). The units of the voxels in the 

fourth dimension correspond to the time samples. In this way, a 4D voxel of size r x r x r x r 

belongs to the 4D voxelization of size r if any of the r 3D voxels of size r x r x r contains at least 

one point belonging to one of the point clouds defined at those r time samples. Fig. 3 shows the 

log-log plot and the 4DFD obtained from the locations of the significant sources in the first 130 

ms for a subject awake. As in the case of 3DFD computations, the linear piece of the log-log plot 

whose slope determines the 4DFD value corresponds to box sizes ranging from r = 16 to r = 128 

(correlation: n = 69, mean = 0.996, standard deviation = 0.003; see red line in Fig. 3). 

 

 

Furthermore, in order to obtain a fractal measure of the differentiation of the TMS-evoked 

response, we applied the Higuchi method (HFD) to the signals described by the 3DFD time-

series (Fig. 4). Higuchi’s algorithm calculates FD as follows [35]: 

From a given signal s = {r(1), s(2), ..., s(N)}, k curves sm
k   are constructed as: 

 (2) 

where m and k are integers and they indicate the initial time and the time interval, respectively. 

The length Lm(k) of each curve smk is calculated as: 
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                  (3) 

The length of the curve for time interval k, L(k), is calculated as the average of the m curves 

Lm(k) for m = 1, ..., k. If L(k) α k—D, then the signal s is fractal-like with the dimension D. 

 

Sources Activity 

 

Fig. 1. (A) Sources activity before and after TMS for a subject awake. (B) 3D representation of absolute values of 

significant sources at eight different time samples. (C) 3D representation of significant sources at those eight time 

samples after binarization. 
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Fig. 2. (A) Significant source activity at the time sample 40 ms after TMS for a subject awake. (B) Binarized sources at 

that time. (C) Point cloud defined by binarized sources. (D) Log-log plot of number of boxes (Nr) vs. 1/r for 

voxelizations of the point cloud with box sizes ranging from r = 1 to r = 256. 3DFD value (2.20) is computed as the 

slope of the linear regression considering the range of sizes from r = 16 to r = 128 (correlation = 0.99). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

HFD values of the signals s = 3DFD(t) were computed in MATLAB R2013a using the software 

written by Selvam and Nadu [48]. Higuchi’s algorithm needs a manual-set parameter, kmax, in 

order to establish the maximum size of the intervals to consider for approximating the signal. To 

choose the appropriate value of kmax, we computed the HFD values for the range of kmax from 

1 to the number of time samples/2 and plotted them against kmax. The value of kmax at which 

the HFD value plateaus must be selected [49,50]. In the present study most of the subject’s data 

presented that plateau at a value of kmax = 9, so this value was chosen. Fig. 4 shows the HFD 

values of the 3DFD curves for the three different states of subject 4. 

Fig. 4 also shows an important issue regarding the time pe¬riod used in the fractal analysis. 

Xenon and propofol sessions of subjects 7 and 16, respectively, present segments in the 3DFD 

curve with a constant value of 0. Moreover, for the case of some propofol sessions in subject 16, 

those 0-valued segments in the 3DFD curve start and even continue till the end of the curve. This 

fact occurs because in those time periods no source is significantly activated and therefore the 

3DFD value equals 0. It is relevant to minimize the effect of those segments on the HFD 

computations since a curve with large 0-valued segments would lose its fractal features and 

therefore its HFD value would also lose its meaning. In this sense, our strategy consisted of 

calculating the average time in sleeping sessions where large 0-valued segments start, and 

restricting the 4DFD and HFD computations to this time period for all sessions. As shown 

previously (Figs. 3 and 4) the average time was established at 130 ms. 
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Fig. 3. Log-log plot of number of boxes (Nr) vs. 1/r for 4D voxelizations of the point clouds in the first 130 ms with 

box sizes ranging from r = 1 to r=256 for a subject who is awake. 4DFD value (2.66) is computed as the slope of the 

linear regression considering the range of sizes from r = 16 to r = 128 (correlation = 0.99). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

Finally, by using the fractal analysis based on 4DFD and HFD we define FDI as follows: let SS(x,t) 

be the matrix with the binary values (1 or 0) for the sources x at the time samples t for the first 

130 ms; let 4DFD be the 4D FD value for the 4D matrix defined by the point clouds made up of 

3D locations of sources x with SS(x,t) = 1 for all time samples t (the fourth dimension); let 3 

DFD(t ) be the vector with the 3DFD values for the point clouds defined by locations of sources x 

at each time sample t with SS(x,t) = 1; and let HFD be the Higuchi Fractal Dimension value of 

3DFD(r). Then we define the Fractal Dimension Index (FDI) of SS(x,t) as the product 4DFD*HFD, 

which combines, in a single number, the complexity of the temporally integrated spatial 

distributions (4DFD) and the variability of these distributions (HFD) after the perturbation As 

an example, for the case of subject 4 in Fig. 4, we obtained the following FDI values: Awake state: 

4DFD = 2.71, HFD = 1.60, FDI = 4.35; Asleep 90 state: 4DFD = 2.27, HFD = 1.50, FDI = 3.43; 

Asleep 160 state: 4DFD = 2.70, HFD = 1.36, FDI = 3.68. 

2.5. STATISTICAL ANALYSIS 

The effects of the subject’s conditions and stimulation parameters on FDI values were estimated 

using a linear mixed model [51]. Due to unbalanced data design, in order to obtain a bias-free 

estimation for variance components the model parameters were estimated by means of the 

Restricted Maximum Likelihood (ReML) method [52]. Null hypotheses were tested with type III 

F statistics and rejected if p < 0.05. FDI values were initially modelled including fixed factors 

associated with stimulation site, stimulation intensity, and a binary classifier of the subject’s 

conditions (wake-fulness/loss of consciousness). The model also included a random factor 

associated with the intercept for each subject in order to deal with the unbalanced repeated 

measures and a random subject-specific effect of loss of consciousness. This additional random 

factor allows the variance of FDI during wakefulness to differ from that during loss of 

consciousness. Because no significant effects of the stimulation parameters were observed, the 

model was restricted to the random factors and a single categorical fixed factor with one level 
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for each conscious state. Then statistical differences between groups in FDI values were 

assessed using an analysis of variance (ANOVA), and a post-hoc Bonferroni test at a significance 

level α = 0.05 was performed in order to correct the p-values for multiple comparisons and 

identify which of the pair of groups are significantly different from each other [53]. 

 

 

  

Fig. 4. 3DFD evolution from t=8 ms to t = 130 ms after TMS for three subjects in different states: awake, asleep with a 

TMS of 90 V/m, asleep with a TMS of 160 V/m, xenon sedated and propofol sedated. Higuchi FD values are also shown 

for the curves described by the 3DFD evolutions of the three states of subject 4. Subject 16 shows four different 

sessions in an awake state and another four different sessions with propofol sedation.  

 

The performance of FDI as a classifier was assessed using a receiver operating characteristic 

(ROC) curve analysis. In this ROC analysis, the proportion of true positive rate (i.e., sensitivity) 

was plotted against the proportion of false positive rate (i.e., 1- specificity) at different levels of 

cumulative FDI values [54]. Then, the area under ROC curve (AUC) was computed as an effective 

measure of the FDI classifier accuracy in ROC curve analysis [55]. ROC analysis was also used to 

define the optimal cut-off values in order to discriminate between consciousness and 

unconsciousness based on the FDI value [56]. To determine this optimal cut-off value 

objectively, we calculated the ROC curve point at which average misclassification costs were 

minimized by moving a straight line with slope  
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 from the upper left corner of the Cost(N|P) 

ROC plot to the bottom right corner, until it intersected the ROC curve [57], where Cost(N|P) is 

the cost of misclassifying a positive class as a negative class, Cost(P|N) is the cost of 

misclassifying a negative class as a positive class, with P = number of true positives + number of 

false negatives and N = number of true negatives + number of false positives being the total 

instance counts in the positive and negative class, respectively. 

All analyses were performed using statistical functions within MATLAB R2013a (The 

MathWorks Inc., Natick, MA, US). 

 

3. Results 

Isolated results for 4DFD and HFD are shown in Figs. 5 and 6, respectively. Both measures 

present, in general, lower values when subjects were sleeping or sedated. 

Fig. 7 shows the FDI values computed for the 69 TMS/EEG. In general, FDI values for 

measurements in wakefulness are higher than in NREM sleep, and during general anaesthesia 

with xenon and propofol. The ROC curve analysis described below resulted in an FDI value of 

3.73 as the optimal cut-off to discriminate between consciousness and unconsciousness for this 

data set. In addition, for each subject FDI values in wakefulness are always higher than FDI 

values in unconsciousness, except for the case of a certain measurement on subject 5. 

We tested the effects of stimulation site [superior occipital gyrus (BA19), superior parietal gyrus 

(BA7), rostral portion of the premotor cortex (BA6), and midline sensorimotor cortex (BA4)] 

and intensity (induced field on the cortical surface: 90 V/m, 100 V/m, and 110 V/m) on FDI. 

When included as fixed factors in a linear mixed model, stimulation sites and stimulation 

intensities did not have significant effects on FDI values (F = 0.58, p = 0.67 for sites and F = 

0.87, p = 0.43 for intensities). 

After comparing the FDI scores of sessions grouped by conscious state (see Table 1), we found 

that unconscious groups display significant reductions (F=38.43, p = 2.09x10-14) in their FDI 

values regarding the conscious group (see Fig. 8). The values of T and p for group comparison 

after Bonferroni’s multiple comparisons correction in Fig. 8 are: T = 6.00, p = 2.89x10-7 (awake 

- asleep), T = 6.35, p = 6.94x10-8 (awake - xenon), and T = 9.46, p = 2.27 x10-13 (awake - 

propofol). No significant differences were found between pairs of unconscious groups in FDI. 

The performance as a classifier of FDI through ROC curve analysis is shown in Fig. 9. In this 

analysis an AUC of 0.966 was obtained, positioning FDI as a very good classifier. The optimal cut-

off value to discriminate between consciousness and unconsciousness based on FDI was set at 

3.73 (dotted line in Fig. 7 and red circle in Fig. 9). 
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Fig. 5. 4DFD for measurements in the data set, where 4DFD is the 4D FD value for the 4D matrix defined by the point 

clouds made up of locations of significant sources for all times samples from 8 ms to 130 ms. 

 

Fig. 6. HFD values for the curves described by the 3DFD values of the point clouds determined by locations of 

significant sources at time samples from 8 ms to 130 ms for measurements in the data set. 
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Fig. 7. Fractal Dimension Index for measurements in the data set computed as 4DFD*HFD, where 4DFD is the 4D FD 

value for the 4D matrix defined by the point clouds made up of locations of significant sources for time samples from 8 

ms to 130 ms, and HFD is the Higuchi FD value for the curve described by the 3DFD values of the point clouds 

determined by locations of significant sources at each time sample from 8 ms to 130 ms. The dotted line at FDI = 3.73 

establishes the optimal cut-off value to discriminate between consciousness and unconsciousness according to ROC 

curve analysis (see Fig. 9). 

 

Table 1 

FDI values (mean ± standard deviation) of grouped sessions. 

Group FDI (mean ± std) 

Awake 4.08 ± 0.36 
Asleep 3.10 ± 0.50 

Xenon 2.81 ± 0.63 

Propofol 2.87 ± 0.49 
 

 

  

Fig. 8. Boxplot with differences between groups in FDI = 4DFD*HFD. P-values cor-respond to an ANOVA analysis (F = 

38.43, p = 2.09x10-14) with post-hoc Bonferroni multiple comparison test. Only p-values below 0.05 are displayed. 
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Fig. 9. Receiver operating characteristic (ROC) curve analysis evaluating the performance of classification based on 

Fractal Dimension Index. The area under ROC curve (AUC) is 0.966. The optimal cut-off value for Fractal Dimension 

Index is 3.73 (red circle in Figure). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

4. Discussion 

Recent advances in non-invasive brain imaging have resulted in the proposal of several EEG 

measures as potential neurophysiological markers of the level of consciousness [3,5,6]. In 

particular, the spatiotemporal complexity of brain signals as calculated by PCI has so far 

achieved the best accuracy in detecting consciousness in healthy subjects and brain injured 

patients [15,16]. Our approach in this paper has been to study the fractal structure of the brain 

activity and its evolution over time through the FD parameter. Like PCI, we use the brain 

response to TMS, a non-sensory stimulus. It allows the assessment in patients where standard 

clinical tests such as CRS-R may fail in detecting consciousness due to patient’s inability to 

respond to a sensory input. Previous studies have analysed the FD of EEG recordings related to 

consciousness, but always considering the FD of spontaneous EEG. Here, inspired by PCI, we 

propose a novel method based on analysing the FD of spatiotemporal patterns or cortical 

activations evoked by TMS. 

The FDI is calculated by combining two aspects of the complexity of the brain response to TMS: 

complexity as a ratio of the change in detail of the spatiotemporal cortical activation to the 

change of scale (4DFD); and complexity as the variability of the spatial activations over time 

(HFD). It supposes a measure of the complexity level of the flow of structures evolving after 

TMS. The 4DFD is sensitive to the dispersion of cortical activation caused by the perturbation, 

while the HFD of the 3DFD curve captures the complexity of the states the system goes through 

as it evolves in time. FDI is basically an experimental measure that provides in a single number 

how the complexity of a dynamical system evolves over time. 

Complexity measured with 4DFD is, in general, greater when subjects are awake, especially for 

the intra-subject case (Fig. 5). This result is consistent with the idea that one expects a more 

complex distribution of the neuronal activation in a conscious brain. But considering only the 

4DFD value fails in two situations: 1) 4DFD values in NREM sleep under high stimulation 

intensity (asleep 160 in Fig. 5) are very close to or even higher than the 4DFD values in 

wakefulness; 2) Inter-subject analysis of 4DFD does not allow to clearly discriminate between 

conscious and unconscious states. 

On the other hand, HFD values of sleeping subjects are, in general, lower than HFD when they 

are awake (see Fig. 6), meaning that the evolution over time of the complexity of the distribution 

of the brain activity is more complex when subjects are conscious. HFD estimates the complexity 

of the curve and therefore provides a measure of how complex the 3DFD evolution over time is, 

and as we stated above it reflects the informational cortical richness at the time of the TMS 

pulse. As in the case of 4DFD, the inter-subject analysis of HFD cannot discriminate between 

conscious and unconscious states. 

Nevertheless, the problems cited above are overcome by combining 4DFD and HFD in FDI: 1) 

FDI values of sessions in unconscious state with different stimulus intensity are clearly 
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separated from the corresponding sessions in conscious state (see subjects 3 to 6 in Fig. 7) with 

only one exception; 2) FDI performs very well as a classifier (Figs. 7-9) with an optimal cut-off 

value of FDI = 3.73 separating consciousness from unconsciousness with very few exceptions. 

Moreover, FDI results were similar when subjects were sleeping or sedated through the 

anaesthetics xenon and propofol, which have different mechanisms of action. This fact suggests 

that the fractal analysis of brain activity after TMS summarized in FDI captures a neural 

correlate of the level of consciousness in healthy individuals that is general and reliable. The 

characteristics of the corticothalamic system that FDI estimates are both the structural 

complexity and its variability. They are sensitive to the fractal structure of the brain’s response 

to a magnetic perturbation. Since FDI assesses the early response generated through 

deterministic interactions within the thalamocortical system to TMS, the resulting measured 

complexity is minimally affected by random processes (noise or muscle activity) present when 

longer periods of time are evaluated [12]. 

Roughly speaking, we can say that brain activity in consciousness presents both a structure and 

an evolution over time more complex than in unconsciousness. Both pieces of information are 

related to the IIT theory of consciousness. Accordingly to IIT, consciousness requires a critical 

balance between integration and differentiation of the thalamocortical networks. Such 

integrated systems with a large repertoire of informational structures generated by their parts 

are expected to respond to TMS with widespread patterns of activity and a large variety of 

different states. In this perspective, FDI would be related to those theoretical measures of brain 

complexity that explicitly aim at quantifying the conjoint presence of functional integration and 

functional differentiation in neural systems, although we have to note that FDI does not aim to 

validate IIT, neither assuming its specific axioms and postulates. 

An increasing literature in Theoretical Neuroscience is developing global modelling for whole 

brain dynamics (see, among others, [26,27,58]. When a dynamical system is settled on a physical 

substrate described as a complex network, the global attractor always defines a new complex 

structure, of informational nature, leading to a global transformation of the phase space into an 

Informational Field [30]. What is now important to note is that the flow of these informational 

structures and fields is expected to be an evolution of fractal networks, due to both the 

complexity of the physical substrate and the nonlinearities needed in the modelization process. 

These (possibly fractal) structures govern the complexity of the real data coming from 

experiments. This is why it is so crucial, from a theoretical point of view, to obtain indicators 

related to fractality of the data, as we have done in this study through FDI. In other words, what 

we expect is that conscious states should be discriminated by a categorization of their associated 

informational structures and informational fields, with the FDI being a key measure for this aim. 

The main hypothesis underlying FDI is that consciousness depends on the ability of many 

functionally specialized modules of the thalamocortical system to interact rapidly and 

effectively. We certainly have strong evidence supporting this hypothesis [15,16,38,59]. We 

assume that this approach is still in its infancy, and we are now searching for experimental 

evidence of the discrimination of these states of consciousness, and for a proper description of 

informational structures from real time series data. 

Ahead of PCI, the power of FDI as a classifier was very good but did not reach a completely 

disjoint separation between wakefulness and unconsciousness. The main limitation of FDI 
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compared to PCI is not being able to handle time periods where there is no significant response. 

4DFD measures the fractal dimension of the point clouds defined by the locations of sources that 

are significantly activated by TMS, and thus needs a large enough number of those locations to 

be computed. This number of significant sources decreases drastically by about 130 ms after the 

TMS for the case of sleep sessions, hence the analysis was restricted to this early component of 

the TMS response. This situation implies discarding complex activations that are present in 

wakefulness after this time period. Taking into account that FD is a quite robust measure in the 

presence of noise [60], future studies could consider using less restrictive binarization 

procedures in order to allow reliable fractal analyses to be performed over larger periods of 

time. 

On the other hand, FDI appears to have certain advantages with respect to PCI. The first one is 

that FDI gives more information than PCI does: FDI is constructed as a product between an 

integration FD (4DFD) and a differentiation FD (HFD). So FDI provides not only the complete 

picture but also the different aspects of spatiotemporal complexity, while PCI needs other 

measures, such as Significant Current Density and Significant Current Scattering to better 

characterize responses [40,59]. Moreover, FDI could be calculated by regions of interest in the 

brain. Similar computation can certainly be performed with PCI, but since PCI is based on 

algorithmic complexity the relation between the whole and its parts would be difficult to infer. 

Instead, FDI could be adapted to evaluate contributions from different areas of the brain to the 

overall spatiotemporal complexity. This could be particularly relevant to study conditions such 

as strokes and a minimally conscious state, in which patients may have portions of the cortex 

that are normal and other areas that are damaged. 

Previous studies [15,16] showed that the complexity of large- scale spatiotemporal patterns of 

cortical activation in response to the TMS is robust across subjects and independent on 

stimulated area and stimulation intensity. In agreement with those findings, our FDI results did 

not present significant differences between stimulation sites or intensities either. To the extent 

that FDI quantifies this large-scale complexity, it should be largely insensitive to the stimulated 

area and cortical architecture. Nevertheless, future studies employing a larger number of 

subjects in different conditions are needed to test this hypothesis and to increase the statistical 

power of the analyses. 

Further studies are also needed to analyse how FDI performs in conditions where loss of 

consciousness is present such as brain- injured patients who have emerged from coma and 

subjects who are behaviourally unresponsive yet conscious. 

 

5. Conclusions 

Our results suggest that the fractal dimension of brain activations evoked by TMS may be a 

sensitive method for characterizing consciousness states in healthy individuals without 

requiring the subjects to perform any sensory, motor, or cognitive tasks. In this regard, FDI 

appears to be a theoretically-rooted and promising tool for obtaining a deeper understanding of 

the relationship between consciousness and brain complexity. 

 



Published in : Computer Methods and Programs in Biomedicine (2019), n°175, pp. 129-
137 
DOI: 10.1016/j.cmpb.2019.04.017 
Status : Postprint (Author’s version)  

 

 

 

Acknowledgments 

This work has been partially supported by the Spanish Government and the European Union 

(via ERDF funds) through the research project MTM2014-61312-EXP. A.G.C. was supported by 

São Paulo Research Foundation, grant 2016/08263-9. 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

[1] S. Dehaene, J.-P. Changeux, Experimental and theoretical approaches to conscious processing, 

Neuron 70 (2011) 200-227, doi:10.1016/j.neuron.2011.03.018. 

[2] O. Bodart, O. Gosseries, S. Wannez, A. Thibaut, J. Annen, M. Boly, M. Rosanova, A.G. Casali, S. 

Casarotto, G. Tononi, M. Massimini, S. Laureys, Measures of metabolism and complexity in the brain of 

patients with disorders of consciousness, NeuroImage Clin. 14 (2017) 354-362, 

doi:10.1016/j.nicl.2017.02.002. 

[3] C. Koch, M. Massimini, M. Boly, G. Tononi, Neural correlates of consciousness: progress and 

problems, Nat. Rev. Neurosci. 17 (2016) 307-321, doi:10.1038/nrn. 2016.61. 

[4] A.K. Seth, Z. Dienes, A. Cleeremans, M. Overgaard, L. Pessoa, Measuring consciousness: relating 

behavioural and neurophysiological approaches, Trends Cogn. Sci. 12 (2008) 314-321, 

doi:10.1016/j.tics.2008.04.008. 

[5] J.D. Sitt, J.R. King, I. El Karoui, B. Rohaut, F. Faugeras, A. Gramfort, L. Cohen, M. Sigman, S. Dehaene, L. 

Naccache, Large scale screening of neural signatures of consciousness in patients in a vegetative or 

minimally conscious state, Brain 137 (2014) 2258-2270, doi:10.1093/brain/awu141. 

[6] D.A. Engemann, F. Raimondo, J.R. King, B. Rohaut, G. Louppe, F. Faugeras, J. Annen, H. Cassol, O. 

Gosseries, D. Fernandez-Slezak, S. Laureys, L. Naccache, S. Dehaene, J.D. Sitt, Robust EEG-based cross-site 

and cross-protocol classification of states of consciousness, Brain 141 (2018) 3179-3192, 

doi:10.1093/brain/ awy251. 

[7] J.T. Giacino, K. Kalmar, J. Whyte, The JFK Coma Recovery Scale-Revised: measurement 

characteristics and diagnostic utility, Arch. Phys. Med. Rehabil. 85 (2004) 2020-2029, 

doi:10.1016/J.APMR.2004.02.033. 

[8] A.M. Goldfine, J.D. Victor, M.M. Conte, J.C. Bardin, N.D. Schiff, Determination of awareness in patients 

with severe brain injury using EEG power spectral analysis, Clin. Neurophysiol. 122 (2011) 2157-2168, 

doi:10.1016/j.clinph.2011.03.022. 

[9] G. Untergehrer, D. Jordan, E.F. Kochs, R. Ilg, G. Schneider, Fronto-parietal connectivity is a non-static 

phenomenon with characteristic changes during un-consciousness, PLoS One 9 (2014), 

doi:10.1371/journal.pone.0087498. 

[10] S. Beukema, L.E. Gonzalez-Lara, P. Finoia, E. Kamau, J. Allanson, S. Chennu, R.M. Gibson, J.D. Pickard, 

A.M. Owen, D. Cruse, A hierarchy of event-related potential markers of auditory processing in disorders of 

consciousness, NeuroImage Clin. 12 (2016) 359-371, doi:10.1016/j.nicl.2016.08.003. 

[11] A. Thul, J. Lechinger, J. Donis, G. Michitsch, G. Pichler, E.F. Kochs, D. Jordan, 



Published in : Computer Methods and Programs in Biomedicine (2019), n°175, pp. 129-
137 
DOI: 10.1016/j.cmpb.2019.04.017 
Status : Postprint (Author’s version)  

 

 

 

R. Ilg, M. Schabus, EEG entropy measures indicate decrease of cortical information processing in 

disorders of consciousness, Clin. Neurophysiol. 127 (2016) 1419-1427, doi:10.1016/j.clinph.2015.07.039. 

[12] R. Ferenets, T. Lipping, A. Anier, V. Jântti, S. Melto, S. Hovilehto, Comparison of entropy and 

complexity measures for the assessment of depth of sedation, IEEE Trans. Biomed. Eng. 53 (2006) 1067-

1077, doi:10.1109/TBME.2006.873543. 

[13] M. Jospin, P. Caminal, E.W. Jensen, H. Litvan, M. Vallverdu, M.M.R.F. Struys, H.E.M. Vereecke, D.T. 

Kaplan, Detrended fluctuation analysis of EEG as a measure of depth of anesthesia, IEEE Trans. Biomed. 

Eng. 54 (2007) 840-846, doi:10.1109/TBME.2007.893453. 

[14] M. Schartner, A. Seth, Q. Noirhomme, M. Boly, M.A. Bruno, S. Laureys, A. Barrett, Complexity of 

multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia, PLoS One 10 

(2015), doi:10.1371/journal. pone.0133532. 

[15] A.G. Casali, O. Gosseries, M. Rosanova, M. Boly, S. Sarasso, K.R. Casali, 

S. Casarotto, M.-A. Bruno, S. Laureys, G. Tononi, M. Massimini, A theoreti¬cally based index of 

consciousness independent of sensory processing and behavior, Sci. Transl. Med. 5 (2013) 198ra105-

198ra105, doi:10.1126/scitranslmed. 3006294. 

[16] S. Casarotto, M. Rosanova, O. Gosseries, M. Boly, M. Massimini, S. Sarasso, Exploring the 

neurophysiological correlates of loss and recovery of consciousness: perturbational complexity, in: M.M. 

Monti, W.G. Sannita (Eds.), Brain Funct. Responsiveness Disord. Conscious, Springer International 

Publishing, Cham, 2016, pp. 93-104, doi:10.1007/978-3-319-21425-2_8. 

[17] M. Oizumi, L. Albantakis, G. Tononi, From the phenomenology to the mechanisms of consciousness: 

integrated information theory 3.0, PLoS Comput. Biol. 10 (2014), doi:10.1371/journal.pcbi.1003588. 

[18] G. Tononi, Consciousness as integrated information: a provisional manifesto, Biol. Bull. 215 (2008) 

216-242 doi:215/3/216 [pii]. 

[19] G. Werner, Fractals in the nervous system: conceptual implications for theoretical neuroscience, 

Front. Physiol. (1 JUL) (2010), doi:10.3389/fphys.2010.00015. 

[20] R. Lopes, N. Betrouni, Fractal and multifractal analysis: a review, Med. Image Anal. 13 (2009) 634-

649, doi:10.1016/j.media.2009.05.003. 

[21] B.B. Mandelbrot, The fractal geometry of nature, 1983. doi:10.1119/1.13295. 

[22] X. Li, J. Polygiannakis, P. Kapiris, A. Peratzakis, K. Eftaxias, X. Yao, Fractal spectral analysis of pre-

epileptic seizures in terms of criticality, J. Neural Eng. 2 (2005) 11-16, doi:10.1088/1741-2560/2/2/002. 

[23] E. Pereda, A. Gamundi, R. Rial, J. Gonzalez, Non-linear behaviour of human EEG: fractal exponent 

versus correlation dimension in awake and sleep stages, Neurosci. Lett. 250 (1998) 91-94, 

doi:10.1016/S0304-3940(98)00435-2. 

[24] M.J. Woyshville, J.R. Calabrese, Quantification of occipital EEG changes in Alzheimer’s disease 

utilizing a new metric: the fractal dimension, Biol. Psychiatry 35 (1994) 381-387, doi:10.1016/0006-

3223(94)90004-3. 

[25] N. Brunel, X.J. Wang, Effects of neuromodulation in a cortical network model of object working 

memory dominated by recurrent inhibition, J. Comput. Neurosci. 11 (2001) 63-85, 

doi:10.1023/A:1011204814320. 

[26] G. Deco, V.K. Jirsa, Ongoing cortical activity at rest: criticality, multistability, and ghost attractors, J. 

Neurosci. 32 (2012) 3366-3375, doi:10.1523/JNEUROSCI. 2523-11.2012. 



Published in : Computer Methods and Programs in Biomedicine (2019), n°175, pp. 129-
137 
DOI: 10.1016/j.cmpb.2019.04.017 
Status : Postprint (Author’s version)  

 

 

 

[27] J. Cabral, M.L. Kringelbach, G. Deco, Exploring the network dynamics underlying brain activity 

during rest, Prog. Neurobiol. 114 (2014) 102-131, doi:10.1016/ j.pneurobio.2013.12.005. 

[28] G. Guerrero, J.A. Langa, A. Suarez, Attracting Complex Networks, in: Lect. Notes Econ. Math. Syst., 

683, 2016, pp. 309-327, doi:10.1007/978-3-319-40803-3_12. 

[29] G. Guerrero, J.A. Langa, A. Suarez, Architecture of attractor determines dynamics on mutualistic 

complex networks, Nonlinear Anal. Real World Appl. 34 (2017) 17-40, 

doi:10.1016/j.nonrwa.2016.07.009. 

[30] FJ. Esteban, J. Galadî, J.A. Langa, J.R. Portillo, Soler-Toscano, Informational Structures: a dynamical 

system approach for Integrated Information, PLoS Comput. Biol. 14 (2018) 1-33. 

[31] M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems, and an introduction 

to chaos, 2013. doi:10.1016/C2009-0-61160-0. 

[32] X. Nan, X. Jinghua, The fractal dimension of eeg as a physical measure of conscious human brain 

activities, Bull. Math. Biol. 50 (1988) 559-565, doi:10.1016/ S0092-8240(88)80009-0. 

[33] P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. A. 97 (1983) 227-230, 

doi:10.1016/0375-9601(83)90753-3. 

[34] S. Solhjoo, A.M. Nasrabadi, M.R.H. Golpayegani, EEG-based mental task classification in hypnotized 

and normal subjects, in: 2005 IEEE Eng. Med. Biol. 27th Annu. Conf., 2005, pp. 2041-2043, 

doi:10.1109/IEMBS.2005.1616858. 

[35] T. Higuchi, Approach to an irregular time series on the basis of the fractal theory, Phys. D Nonlinear 

Phenom. 31 (1988) 277-283, doi:10.1016/0167-2789(88) 90081-4. 

[36] R. Esteller, G. Vachtsevanos, J. Echauz, B. Litt, A Comparison of waveform fractal dimension 

algorithms, IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48 (2001) 177-183, doi:10.1109/81.904882. 

[37] A.J. Ibânez-Molina, S. Iglesias-Parro, Fractal characterization of internally and externally generated 

conscious experiences, Brain Cogn. 87 (2014) 69-75, doi:10.1016/j.bandc.2014.03.002. 

[38] M. Massimini, F. Ferrarelli, R. Huber, S.K. Esser, H. Singh, G. Tononi, Breakdown of cortical effective 

connectivity during sleep, Science 309 (2005) 2228-2232 (80-.)., doi:10.1126/science.1117256. 

[39] M. Massimini, F. Ferrarelli, M.J. Murphy, R. Huber, B.A. Riedner, S. Casarotto, G. Tononi, Cortical 

reactivity and effective connectivity during REM sleep in humans REM sleep in humans, Cogn. Neurosci. 1 

(2010) 176-183, doi:10.1080/ 17588921003731578. 

[40] A.G. Casali, S. Casarotto, M. Rosanova, M. Mariotti, M. Massimini, General indices to characterize the 

electrical response of the cerebral cortex to TMS, Neuroimage 49 (2010) 1459-1468, 

doi:10.1016/j.neuroimage.2009.09.026. 

[41] P. Berg, M. Scherg, A fast method for forward computation of multiple-shell spherical head models, 

Electroencephalogr. Clin. Neurophysiol. 90 (1994) 58¬64, doi:10.1016/0013-4694(94)90113-9. 

[42] Z. Zhang, A fast method to compute surface potentials generated by dipoles within multilayer 

anisotropic spheres, Phys. Med. Biol. 40 (1995) 335-349, doi:10.1088/0031-9155/40/3/001. 

[43] K. Friston, R. Henson, C. Phillips, J. Mattout, Bayesian estimation of evoked and induced responses, 

Hum. Brain Mapp. 27 (2006) 722-735, doi:10.1002/hbm. 20214. 

[44] J. Mattout, C. Phillips, W.D. Penny, M.D. Rugg, K.J. Friston, MEG source localization under multiple 

constraints: an extended Bayesian framework, Neuroimage 30 (2006) 753-767, 

doi:10.1016/j.neuroimage.2005.10.037. 



Published in : Computer Methods and Programs in Biomedicine (2019), n°175, pp. 129-
137 
DOI: 10.1016/j.cmpb.2019.04.017 
Status : Postprint (Author’s version)  

 

 

 

[45] C. Phillips, J. Mattout, M.D. Rugg, P. Maquet, K.J. Friston, An empirical Bayesian solution to the 

source reconstruction problem in EEG, Neuroimage 24 (2005) 997-1011, 

doi:10.1016/j.neuroimage.2004.10.030. 

[46] J. Ruiz de Miras, J. Navas, P. Villoslada, F.J. Esteban, UJA-3DFD, A program to compute the 3D fractal 

dimension from MRI data, Comput. Methods Programs Biomed. (2011) 104, 

doi:10.1016/j.cmpb.2010.08.015. 

[47] J. Ruiz de Miras, Fractal analysis in MATLAB: a tutorial for neuroscientists, in: A. Di Ieva (Ed.), 

Fractal Geom. Brain, Springer New York, New York, NY, 2016, pp. 523-532., doi:10.1007/978-1-4939-

3995-4_33. 

[48] S. Selvam, T. Nadu, Complete Higuchi Fractal Dimension Algorithm, (2013). 

https://www.mathworks.com/matlabcentral/fileexchange/ 30119- complete- higuchi- fractal- 

dimension- algorithm. 

[49] T.L.A. Doyle, Discriminating between elderly and young using a fractal dimension analysis of centre 

of pressure, Int. J. Med. Sci. 11 (2004), doi:10.7150/ijms. 

1.11. 

[50] C. Gômez, A. Mediavilla, R. Hornero, D. Abâsolo, A. Fernândez, Use of the Higuchi’s fractal dimension 

for the analysis of MEG recordings from Alzheimer’s disease patients, Med. Eng. Phys. 31 (2009) 306-313, 

doi:10.1016/ j.medengphy.2008.06.010. 

[51] R.a McLean, W.L. Sanders, W.W. Stroup, A unified approach to mixed linear models, Am. Stat. 45 

(1991) 54-64, doi:10.2307/2685241. 

[52] R.I. Jennrich, M.D. Schluchter, Unbalanced repeated-measures models with structured covariance 

matrices, Biometrics 42 (1986) 805-820, doi:10.2307/ 2530695. 

[53] O.J. Dunn, Multiple comparisons among means, J. Am. Stat. Assoc. 56 (1961) 52, 

doi:10.2307/2282330. 

[54] D.M. Green, J.A. Swets, Signal detection theory and psychophysics, 1966. 

[55] J.A. Hanley, B.J. McNeil, The meaning and use of the area under a receiver op¬erating characteristic 

(ROC) curve, Radiology 143 (1982) 29-36, doi:10.1148/ radiology.143.1.7063747. 

[56] N.J. Perkins, E.F. Schisterman, The inconsistency of “optimal” cutpoints obtained using two criteria 

based on the receiver operating characteristic curve, Am. J. Epidemiol. 163 (2006) 670-675, 

doi:10.1093/aje/kwj063. 

[57] R. Bettinger, Cost-sensitive classifier selection using the ROC convex hull method, in: A. Braverman 

(Ed.), Comput. Sci. Stat., Interface Foundation of North America, 2003, pp. 142-153. 

[58] G. Deco, G. Tononi, M. Boly, M.L. Kringelbach, Rethinking segregation and integration: contributions 

of whole-brain modelling, Nat. Rev. Neurosci. 16 (2015) 430-439, doi:10.1038/nrn3963. 

[59] F. Ferrarelli, M. Massimini, S. Sarasso, A. Casali, B.A. Riedner, G. Angelini, G. Tononi, R.A. Pearce, 

Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness, Proc. Natl. 

Acad. Sci. 107 (2010) 2681-2686, doi:10.1073/pnas.0913008107. 

[60] G.E. Polychronaki, P.Y. Ktonas, S. Gatzonis, A. Siatouni, P.A. Asvestas, H. Tsekou, D. Sakas, K.S. Nikita, 

Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection, J. Neural Eng. 

7 (2010) 046007, doi:10. 1088/1741-2560/7/4/046007. 


