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Abstract
Background Aging is associated with declines in muscle mass, strength and quality, leading to physical impairments. An 
even protein distribution in daily meals has recently been proposed along with adequate total protein intake as important 
modulators of muscle mass. In addition, due to its short duration, high-intensity interval training (HIIT) has been highlighted 
as a promising intervention to prevent physical deterioration. However, the interaction between daily protein intake distribu-
tion and HIIT intervention in elderlies remain unknown.
Objective To investigate muscle adaptation following HIIT in older adults according to daily protein intake distribution.
Methods Thirty sedentary obese subjects who completed a 12-week elliptical HIIT program were matched [criteria: age 
(± 2 years), sex, BMI (± 2 kg/m2)] and divided a posteriori into 2 groups according to the amount of protein ingested at each 
meal: < 20 g in at least one meal (P20−, n = 15, 66.8 ± 3.7 years) and ≥ 20 g in each meal (P20+, n = 15, 68.1 ± 4.1 years). 
Body composition, functional capacity, muscle strength, muscle power, physical activity level, and nutritional intakes were 
measured pre- and post-intervention. A two way repeated ANOVA was used to determine the effect of the intervention (HIIT) 
and protein distribution (P20− vs P20+, p < 0.05).
Results No difference was observed at baseline between groups. Following the HIIT intervention, we observed a significant 
decrease in waist and hip circumferences and improvements in functional capacities in both P20− and P20 + group (p < 0.05). 
However, no protein distribution effect was observed.
Conclusion A 12-week HIIT program is achievable and efficient to improve functional capacities as well as body compo-
sition in obese older adults. However, consuming at least 20 g of proteins in every meal does not further enhance muscle 
performance in response to a 12-week HIIT intervention.
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Introduction

Aging is perceived as a condition contributing greatly to 
a deterioration of the quality of life [1]. One major health 
challenge in the aging population is to slow down the 
decline of muscle mass, strength and quality (i.e., muscle 
strength/muscle mass), to prevent functional impairments 
and disabilities leading to a gradual loss of autonomy 
[2–4].

Among the many etiological factors, several aspects 
of protein intake are thought to contribute to the decline 
in muscle mass, strength and quality during aging: daily 
amount, distribution over the day, per-meal amount and 
protein quality [5–7]. Firstly, the protein quality affects 
muscle synthetic response [8]. The quality of a protein 
is determined by assessing its essential amino acid com-
position, digestibility and bioavailability of amino acids 
[9]. More precisely, the quality of a meal is determined 
by its leucine content, with regard to the stimulation of 
muscle protein synthesis [10]. Based on the PROT-AGE 
study, at least 2.5 g of leucine per meal is recommended 
for healthy older adults [11]. Current literature suggests 
that, compared with animal proteins, the ingestion of 
plant proteins (e.g., in soy and wheat) results in a lower 
muscle protein synthesis and that animal protein intake 
might be of relevance for the maintenance of muscle mass 
[12]. A possible explanation is the relative lack of specific 
essential amino acids (i.e., low leucine content) in plant 
as opposed to animal-based proteins. Secondly, a reduced 
amount of daily protein intake plays a role in the onset 
of muscle mass, strength and quality decline with aging. 
Indeed, compared to younger adults, older adults usually 
eat less, including less protein [13]. At the same time, 
older adults need more dietary protein than do younger 
adults due to anabolic resistance [11]. The actual daily 
recommended allowance (RDA) advocates that 0.8 g  kg−1 
 day−1 for both men and women aged over 19 years is suf-
ficient to meet daily protein needs [14]. Thus, to help older 
people (> 65 years) to maintain or regain lean body mass 
and function, the PROT-AGE study group recommends 
average daily intake at least in the range of 1.0 to 1.2 g 
protein  kg−1  day−1 per day [11]. In the Health, Aging, 
and Body Composition study, which included 2066 men 
and women aged 70–79 years, participants in the high-
est quintile of protein intake (i.e., 1.2 g  kg−1  day−1) lost 
approximately 40% less total and appendicular lean mass 
compared to the group in the lowest quintile of protein 
intake (i.e., 0.8 g  kg−1  day−1) [15]. Nevertheless, a signifi-
cant proportion of older adults are consuming much lower 
levels of proteins than those recommended by the PROT-
AGE group [13]. Based on the accurate weighing food 
method, the average consumption of protein reported in 

nursing home residents was 0.88 ± 0.25 g  kg−1  day−1 [16]. 
Therefore, high dietary protein intake has been proposed 
as an important factor to maintain physical performance 
in older adults [17]. Moreover, an even protein distribu-
tion in daily meals along with an appropriate amount of 
protein intake in each meal has been recently suggested 
to increase muscle mass [18]. Moore et al. (2009) showed 
that 20 g of protein was the minimum amount needed per 
meal to maximally stimulate muscle protein synthesis in 
older adults [19]. Thus, it has been recently shown that 
an even protein intake distribution across meals has more 
benefits the following 24 h on muscle protein synthesis 
and lean mass loss compared to a skewed protein distri-
bution [20]. The positive influence of protein distribution 
on muscle protein synthesis has been highlighted among 
community-dwelling seniors aged 75 years or older (frail 
or robust) [21], malnourished or at-risk patients in reha-
bilitation units [22] and in healthy adults [23].

In addition, exercise strategies have been largely linked 
to improvements in muscle mass, strength and quality 
[24]. In this sense, it has been shown that aerobic train-
ing (i.e., Recreational exercise habits such as walking, 
swimming,…) are as beneficial as resistance trainings 
for maintaining muscle quality and mitigate functional 
capacities decline among older adults aged over 60 years 
[25]. Because older adults report lack of time for physical 
activity, high-intensity interval training (HIIT) has been 
highlighted as a promising aerobic intervention in elderly 
population due to its short duration. More importantly, 
it has been observed that HIIT improved body composi-
tion (total or appendicular fat and lean masses), muscle 
function (muscle mass and power), aerobic capacities 
 (VO2max) or reduced cardiometabolic risk factors (waist 
circumference, waist–hip circumference ratio, diastolic 
blood pressure and fasting glucose levels) in older adults 
[26–33]. Finally, HIIT elicited similar or higher enjoyment 
and adherence levels than moderate-intensity continuous 
training [34, 35].

However, a paucity of interventional studies exists that 
critically assess whether within-day protein intake distribu-
tion influence muscle adaption following exercise training. 
In this sense, our group recently suggested that the initial 
amount of protein could influence the muscle adaptation 
(i.e., gains in muscle strength and quality) following an exer-
cise training in older adults [36, 37]. Up to now, the effec-
tiveness of resistance training to improve body composition 
or muscle function (muscle strength, anabolic response, 
functional outcomes) [24], in combination with or without 
dietary energy restriction, was not shown to be influenced 
by the within-day distribution of proteins, when day-to-day 
protein consumption is adequate [38, 39]. However, despite 
the well-known benefits of HIIT on muscle function, the 
influence between daily protein intake distribution and 
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muscle adaptation following HIIT intervention in the elderly 
remains unknown.

Therefore, the present study aimed to investigate muscle 
adaptation following a HIIT according to baseline daily pro-
tein intake distributions in older adults.

Methods

Study design and population

This study is a posteriori study design. Subjects were 
recruited from the community via social communication 
(flyers and meetings in community centers) in the Great 
Montreal area. To be included in this study, subjects had to 
meet the following criteria: (1) aged 60 years and over, (2) 
inactive for at least 6 months (< 2 h/week of structured exer-
cise), (3) obese [fat mass (FM): men > 25%, women > 35%; 
[40]], (4) a stable weight (± 2 kg) over the past 6 months, 
(5) no orthopedic limitations, (6) no counter-indication 
to practice physical activity (Physical Activity Readiness 
Questionnaire), (7) absence of menstruation for the past 
12 months for women, (8) no smoker and, (9) no excessive 
alcohol consumers (≥ 2 drinks/day). Subjects with diagnosed 
(untreated) neurological, cardiovascular, lung diseases or 
cognitive disorders were also excluded.

Based on their protein intake, participants were a pos-
teriori divided in 2 groups according to Moore’s cut-point 
(20 g of protein per meal [19]): (1) P20− [n = 15 (men: n = 7/
women: n = 8)]: subjects who consume < 20 g of protein in at 
least one meal; (2) P20+ [n = 15 (men: n = 7/women: n = 8)]: 
subjects who consume ≥ 20 g of protein in each meal. The 
participants included in each group were matched accord-
ing to sex, age (± 2years) and BMI (± 2 kg/m2) and have 
completed a 12-week of HIIT intervention.

The calculation of our statistical power was performed 
a posteriori using G Power Software. Considering the t test 
family (Wilcoxon and Mann Whitney tests for two groups) 
and α = 0.05, sample size group 1 = 15; group 2 = 15, Effect 
size = 1.0 for normally distributed data. In these conditions, 
a statistical power ~ 0.70 was obtained.

All procedures were approved by the Ethics Commit-
tee of the Université du Québec à Montréal (UQAM). All 
participants provided informed written consent after having 
received information on nature, goal, procedures and risks 
associated with the study.

Intervention

The HIIT was performed three times per week in non-
consecutive days during 12 weeks and was supervised 
by trained health professionals (i.e., kinesiologist). The 
sessions were realized on an elliptical device to reduce 

lower extremity joint impact [28]. The intensity of each 
cycle was based on the percentage of maximal heart rate 
(MHR) and/or perceived exertion (Borg scale) [41]. The 
MHR was determined using the validated equation of 
Karvonen [((220 − age) − HR rest) × % HR target] + HR 
rest [42]. More specifically, the 30 min exercise session 
consisted of a 5 min warm-up at a low intensity (50–60% 
MHR and/or a 6 score between 8 and 12 on the Borg 
scale); a 20-min HIIT of multiples 30-sec sprints at a high-
intensity (80–85% MHR or Borg’ scale > 17) alternating 
with sprints of 90 s at a moderate-intensity (65% MHR or 
Borg’scale score 13–16); and a 5-min cool-down (50–60% 
MHR and/or a Borg’ scale score 8–12). To ensure that 
MHR was always above 80% during high-intensity inter-
vals, speed and resistance of the elliptical device were 
continuously adjusted throughout the training session. Par-
ticipants needed to complete 80% or more of their training 
sessions to be included in the analysis [28].

Measurements

Assesments took place at the Département des Sciences 
de l’activité physique of the Université du Québec à Mon-
tréal. Body composition, muscle strength, muscle quality, 
functional capacities and energy balance were evaluated at 
baseline and at the end of the training protocol.

Body composition

Body weight and height were determined using an elec-
tronic scale (Omron HBF-500CAN) and a stadiometer 
(Seca), from which body mass index [BMI = body mass 
(kg)/height  (m2)] was calculated. Waist circumference 
(WC) and hip circumference (HC) were measured to the 
nearest 0.1 cm.

Total fat mass [FM (%)], android fat mass (%) and leg fat 
mass (%), total lean body mass [LBM (kg)], appendicular 
lean mass [App LM (km/m2)] were determined by Dual-
energy X-ray absorptiometry (DXA) using a Lunar Prod-
igy whole-body scanner (GE Medical Systems, Madison, 
WI, USA) in conjunction with Encore 2002 software. The 
instrument automatically alters scan depth depending on 
the thickness of the subject, as estimated from age, height, 
and weight. All scans were performed while the subjects 
were wearing light indoor clothing and no removable metal 
objects. The typical scan time was 5 min, depending on 
height. The radiation exposure per whole-body scan is esti-
mated to be 2 µSv, which is lower than the daily background 
level. The precision of soft tissue analysis established by 
repeat measurements of humans on 4 successive days, has 
been reported as 1% for FFM and 2% for FM [43, 44].
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Functional capacities

Mobility and aerobic capacities were evaluate using the 
6-min walking tests (6MWT). Participants were asked to 
walk as much as possible for 6 min. Every minute of the 
test, volunteers received the same standardized encourage-
ment according to the American College of Chest Physi-
cians recommendations for the 6-min walking test [31]. 
Participants were allowed to interrupt and return to exer-
cising as well as to reduce or increase speed according to 
perceived effort [45]. The distance, in meters, was recorded 
and used as an indicator of mobility capacity. In addition, 
aerobic capacity (estimated  VO2max in mL·kg−1·min−1) 
was estimated based on the total distance realized during 
6 min and according to the following validated equation: 
70.161 + [0.023 × distance (m)] – [0.276 × body weight 
(kg)] – [6.79 × sex (men = 0, women = 1]) – [0.193 × HR 
(pulse/min)] – [0.191 × age (years)] [46].

The validated 4-m walking test [4MWT] which is the 
most commonly used test to evaluate physical performance 
[47, 48] was performed at usual self-pace and fast speed. 
The time (in seconds) needed to cover the entire distance 
was recorded [37].

Walking speed was estimated using the “Timed Up & 
Go” test (in s). This test consists of a complete task of 
standing from a chair, walking a 3-m distance and sit-
ting down again [49] was performed in comfortable and 
self-paced and in fast-paced walking speed. A duration 
above 30 s indicates limited mobility and an increased risk 
of falling whereas a duration of less than 20 s indicates 
appropriate mobility with the subject being likely to be 
independent in activities of daily living [50].

Lower-body function was measured using the chair 
stand test. The subjects were asked to stand up from a sit-
ting position and to sit down 10 times as fast as possible, 
with arms folded across their chest [51] and the time (in 
seconds) to realize the task was recorded.

The ability of weight shifting in the forward and upward 
directions was estimated using the alternate-step test. Par-
ticipants were placed facing toward a 20-cm height step 
and instructed to touch the top of it with the right and left 
foot, alternately, as fast as possible during a 20-s period 
[52, 53]. The number of step counts was recorded for 
analysis.

Balance was assessed using the validated unipodal bal-
ance test. During this test with participants standing on 
both legs and alternately standing on the right and left leg 
with eyes opened and arms by the side of the trunk. The 
time was recorded in seconds from the moment one foot 
was lifted from the floor to when it touched the ground, the 
stance leg moved, or until 60 s had elapsed [54].

Muscle function

Maximum voluntary upper limb muscle strength (ULMS) 
was measured with a hand dynamometer with adjustable 
grip (Lafayette Instrument) [55]. This method has been 
shown to be reliable. Participants were standing upright with 
the arm along the side of the body with the elbow extended 
and the palm of the hand facing the thigh. Participants were 
advised to squeeze as hard as possible the hand dynamom-
eter for up to 4 s. Three measurements for each hand, alter-
nately, were performed and the maximal score of each was 
recorded. Upper limb muscle strength was expressed in 
absolute (ULMS; kg) and relative (ULMSr: divided by body 
weight (BW; kg/kg)) values [56].

Maximal isometric lower limb muscle strength was 
assessed using a strain gauge system attached to a chair 
(Primus RS Chair, BTE) upon which participants were 
seated with the knee and hip joint angles set at 135° and 
90°, respectively. The knee angle was set to 135°, compared 
to the typical 90°, to diminish the maximal joint torque that 
could be generated [57, 58], particularly in light of generally 
more fragile bones in the elderly [59]. The tested leg was 
fixed to the lever arm at the level of the lateral malleoli on 
an analog strain gauge to measure strength. The highest of 
three maximum voluntary contractions was recorded [60]. 
Lower limb muscle strength was expressed in absolute terms 
(N) and relative to body weight (divided by body weight 
(kg/kg)).

Upper and lower limb muscle quality were calculated 
using the maximal grip strength (kg) divided by arm lean 
mass (kg; DXA) and the maximal knee extensor strength (in 
kg) divided by leg lean mass (kg; DXA), respectively [61], 
both indices known to be related with functional impair-
ments [60, 62].

Lower limb muscle power was measured using the Not-
tingham Leg Extensor Power rig with the subject in a sit-
ting position [63]. Participants were asked to push the pedal 
down as hard and fast as possible, accelerating a flywheel 
attached to an A-D converter [64]. Power was recorded 
for each push until a plateau/decrease was observed. This 
assessment has been demonstrated to be safe, sensitive and 
reliable in older adults.

Muscle composition

Peripheral Quantitative Computed Tomography (pQCT) 
scan of the right leg was obtained using the Stratec 
XCT3000 (STRATEC Medizintechnik GmbH, Pforzheim, 
Germany, Division of Orthometrix; White Plains, NY, USA) 
at the 33% distance of the femur, starting from the lateral 
epicondyle up to the lateral trochanter. The total length was 
entered into the software as well as other scanning param-
eters, such as voxel size (0.5 mm) and speed (10 mm/s). 
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All pQCT scans were done by trained operators for pQCT 
data acquisition following guidelines provided by Bone 
Diagnostics, Inc. (Fort Atkinson, WI). Image quality was 
visually assessed following data acquisition by a second 
evaluator who analyzed the data. The visual inspection rat-
ing scale classified all images as a rate up to 3, according 
to a previously reported visual scale of movement artefact 
[65]. For image analysis, the freely-available source code 
for the pQCT density distribution plugin for BoneJ (Ver-
sion 1.3.11) was used [66]. BoneJ’s soft-tissue analysis uses 
a 7 × 7 median filter to reduce noise. Soft tissue and bone 
area and density were defined according to the tissue thresh-
olds selected. Muscular, bone, intramuscular adipose tissue 
(IMAT) and subcutaneous adipose tissue thresholds were 
defined based on parameters of a previous study [67] and 
results were all provided automatically in the BoneJ analysis 
output. For calf muscle area, density, and subcutaneous fat 
area precision errors ranges are reported to be between 2.1 
and 3.7%, 0.7 and 1.9%, and 2.4 and 6.4%, respectively and 
for IMAT area, the less accurate measure, varying from 3 
to 42% [67].

Energy balance

The number of steps and the METS were used to estimate 
participants level of physical activity using a validated tri-
axial accelerometer  (SenseWear® Mini Armband) as previ-
ously described by Brazeau et al. [68],Colbert et al. [69]. 
Participants had to wear the device in the left arm all the 
time during 7 consecutive days, except when taking a shower 
or swimming. Each participant had to wear the device at 
least 85% of time to be included in the study.

As previously described and validated in the elderly pop-
ulation, dietary intake was assessed using the 3-day food 
record method (two weekdays and one weekend day) [51]. 
Participants were asked not to change their dietary habits 
during the intervention period. Analyzes of total energy 
intake as well as protein, lipids or carbohydrates and amino 
acids (total, essential [EAA] and non-essential [NEAA]) 
intake in average and during each meal (breakfast, lunch, 
dinner and snacks) were performed using the software 
 Nutrific© according to the standardized Canadian Food file 
(CNF2015).

Statistical analysis

Data distribution was tested with the Kolmogorov test. 
Quantitative variables were expressed by mean ± standard 
deviation (SD). Qualitative variables were expressed in 
percentage. An independent parametric t test was used to 
identify between-group baseline differences. A paired t test 
was used to assess the effect of HIIT intervention within 
group. A repeated-measure general linear model analysis 

(2*2 ANOVA) was used to estimate time and time*group 
effects (i.e., to compare pre- and post- intervention (HIIT) 
in P20− and P20 + groups). All calculations were performed 
using SPSS 25.0 program (Chicago, IL, USA) and Statistica 
10 software. p ≤ 0.05 was considered statistically significant.

Results

Population

A total of 30 obese older adults completed the HIIT (> 80% 
of all sessions) and were divided a posteriori in two matched 
groups: P20− (n = 15: women (8)/men (7), 66.8 ± 3.7 years) 
and P20+ (n = 15: women (8)/men (7), 68.1 ± 4.1 years). 
Main characteristics of the population at baseline (pre) 
and after 12 weeks of intervention (post) are presented in 
Table 2. Baseline characteristics of the subjects (body com-
position, muscle composition, functional capacities) were 
comparable between the 2 groups (p ≥ 0.05).

The effects of HIIT intervention according to time effects, 
within group effect and group*time effect, on body composi-
tion, functional capacities, muscle composition and energy 
balance, are described below (Tables 1, 2, 3; Fig. 1).

Body composition

We only observed a significant decrease in waist and hip 
circumferences in both P20− (p = 0.001; p = 0.001 respec-
tively) and P20+ (p < 0.001; p < 0.001 respectively) groups, 
following the HIIT intervention. However, the waist/hip 
ratio was not modified by intervention. We also found a 
significant time (HIIT) effect on waist (p < 0.001) and hip 
(p < 0.001) circumferences. However, no group*time effect 
is observed in body composition parameters.

Functional capacities & Muscle function

Concerning functional capacities, we observed signifi-
cant improvements (p-values ranged between < 0.001 and 
0.05) for TUGn, TUGf, n-4MWT, f-4MWT, Balance, 
chair test, step test, ULMS, rULMS, muscle power, 6MWT 
and estimated  VO2max following the HIIT intervention in 
P20− group (Table 2; Fig. 1). Almost the same observations 
were made in the P20+ group excepted for balance, ULMS, 
rULMS which are not improved following the HIIT inter-
vention. A significant time (HIIT) effect was observed for 
TUGn, TUGf, f-4MWT, chair test, step test, muscle power, 
6MWT, and estimated  VO2max. Nevertheless, no significant 
group × time effect on functional capacities was shown 
(Table 2).
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Muscle composition

As shown in Table 2, the intervention (HIIT) did not induce 
a significant time or within group change on muscle compo-
sition parameters. Furthermore, no time × group effect was 
highlighted on muscle composition.

Energy balance (intake and expenditure)

No difference was observed between groups at baseline on 
energy expenditure parameters (number of steps or METs). 
Furthermore, the intervention (HIIT) did not induce a sig-
nificant time or within group change on energy expenditure 
(Table 3). Finally, no time × group effect was find.

Nutritional profile and protein intake during each daily 
meal in each group are shown in Table 3. Total energy 
intake, carbohydrates intake and lipids intake are similar 
between groups at baseline. Regarding protein intake, both 
group have similar amount of protein (total or total/kgBW), 
amino acid (total, non-essential or essential) and ingested in 
average 1.2 g/KGBW. More specifically and by design, we 
observed a significant difference between group at baseline 
regarding the amount of protein ingested during the break-
fast meal. Moreover, as shown in Table 3, the intervention 

(HIIT) did not induce a significant time or within group 
change on nutritional except for diner protein intake, which 
increased during the intervention (pre vs. post, p = 0.048) in 
the P20+ group only. However, no time × group effect was 
observed on nutritional profile or protein intake (quantity 
or distribution).

Discussion

The present study shows that HIIT training in obese older 
adults induces a decrease in waist and hip circumfer-
ences and improve functional capacities in both P20− and 
P20+ groups. Our results, therefore, strengthen the avail-
able literature showing that HIIT effectively improves over-
all muscle function and functional capacities in non-obese 
older adults [30, 70]. Our results are also consistent with a 
recent meta-analysis suggesting that HIIT is an effective way 
to improve  VO2max and cardiometabolic risk factors (i.e., 
waist circumference) in adults [29]. Although the positive 
effects of HIIT on muscle adaptation in the elderly appear 
established, this is the first study investigating these effects 
according to daily protein intake distribution. Our results 
highlight that ingesting initially at least 20 g of proteins 

Table 1  Effect of intervention on physical characteristics and body composition

Data are presented as means ± SD
A general linear model repeated measures was conducted to estimate the time and the group × time effects
BW body weight, BMI body mass index, WC waist circumference, HC hip circumference, LM lean mass, FM fat mass
P ≤ 0.05: significant
a Baseline significant differences between PROT 20 + and PROT 20-groups measured using independent-sample t test
*Within differences between pre- and post-intervention estimated using paired t test

Variables P20− group (n = 15) P20 + group (n = 15) 2*2 ANOVA

Pre Post within-group 
effect (p value)

Pre Post within-group 
effect (p value)

Time 
effect (p 
value)

Time × group 
effect (p value)

General characteristics
Age (years) 66.8 ± 3.7 68.1 ± 4.1
Sex (W ; %) 8 (53%) 8 (53%)
Body composition
BW (kg) 76.8 ± 13.2 75.9 ± 13.7 0.21 80.5 ± 7.2 81.1 ± 7.3 0.32 0.75 0.11
BMI (kg/m2) 27.2 ± 3.3 26.9 ± 3.4 0.22 29.0 ± 2.4 29.1 ± 2.5 0.47 0.61 0.15
WC (cm) 100 ± 11 97 ± 12 0.001 105 ± 6 102 ± 7 < 0.001 < 0.001 0.79
HC (cm) 105 ± 8 101 ± 9 0.001 107 ± 7 103 ± 6 < 0.001 < 0.001 0.71
WC/HC 0.96 ± 0.2 0.96 ± 0.1 0.45 0.98 ± 0.2 0.98 ± 0.1 0.85 0.61 0.39
Total LM (kg) 45.3 ± 9.4 45.6 ± 9.1 0.35 48.1 ± 7.2 48.7 ± 8.1 0.11 0.07 0.63
App LM (kg) 21.5 ± 5.1 21.6 ± 4.9 0.59 23.3 ± 4.0 23.5 ± 4.3 0.25 0.24 0.73
Total FM (%) 36.9 ± 8.1 36.0 ± 7.9 0.20 36.7 ± 6.6 36.6 ± 7.9 0.76 0.23 0.43
Android FM (%) 46.2 ± 10.9 45.2 ± 10.8 0.32 47.3 ± 5.7 46.9 ± 7.4 0.55 0.24 0.63
Abdominal FM (%) 40.2 ± 10.4 39.2 ± 10.8 0.30 41.5 ± 5.0 41.4 ± 6.7 0.81 0.32 0.62
Leg FM (%) 35.2 ± 10.3 34.4 ± 9.7 0.066 33.8 ± 9.8 33.7 ± 10.8 0.82 0.18 0.32
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each meals does not further enhance muscle adaptation in 
response to HIIT intervention in obese older adults eating at 
least protein RDA. The present findings are at variance with 
other results [71] suggesting that a good protein distribution 
improves functionality, which in turn would be facilitated 
by combining adequate protein intake with resistance train-
ing. However, it recognized that many older people cannot 
or will not undertake such resistance training [65]. It was 
therefore interesting to study the effect protein combining 
with another training modality (e.g., HIIT) on muscle adap-
tation in older people. There is growing evidence suggest-
ing that higher exercise intensities, even in a shorter period 
of time (HIIT), have an advantage over moderate-intensity 
training for maximizing improvements in functional abili-
ties and body composition among the elderly [31–33]. Thus, 

we decided to focus on this training modality in the present 
study. Our group also shown divergent results in a previous 
work showing that protein intake above 1.2 g  kg−1  day−1 
is associated with higher muscle improvements following 
mixed power training in healthy older men [37]. The diver-
gent results with this previous study could be explained by 
the different modality training (mixed-power training vs. 
HIIT) and the selection criteria of the population (health 
older men vs. obese men and women). The lack of signifi-
cant results in our study could also be explained by the fact 
that the P20− group still consume a high quantity of protein 
during lunch and dinner. In a recent randomized controlled 
trial [39], no differences in lean body mass, strength and 
functional capacities of older adults was observed after an 
8-week of dietary intervention based on protein pattern 

Table 2  Effect of intervention on functional capacities, muscle function and composition

Data are presented as means ± SD
P ≤ 0.05: significant
a Baseline significant differences between PROT 20 + and PROT 20-groups measured using independent-sample t test
*Within differences between pre- and post-intervention estimated using paired t test. A general linear model repeated measures was conducted to 
estimate the time and the group × time effects
BW body weight, LM lean mass, TUG  timed up and go, 6MWT 6 min walking test, 4MWT 4-m walking test, UMQ upper muscle quality, LMQ 
lower muscle quality, ULMS upper limbs muscle strength, LLMS lower limbs muscle strength

Variables P20− group (n = 15) P20 + group (n = 15) 2*2 ANOVA

Pre Post within-group 
effect (p 
value)

Pre Post within-group 
effect (p 
value)

Time 
effect (p 
value)

Time*group 
effect (p value)

Functional capacities
Balance (×/60) 26.0 ± 17.9 42.2 ± 20.5 0.004 33.7 ± 18.9 39.8 ± 20.7 0.32 0.006 0.19
TUGn (s) 9.98 ± 1.26 9.04 ± 1.86 0.006 9.64 ± 0.93 8.55 ± 0.91 0.001 < 0.001 0.69
TUGf (s) 7.31 ± 1.01 6.46 ± 1.68 0.003 6.99 ± 0.55 6.15 ± 0.68 0.002 < 0.001 0.99
6 MWT (m) 556 ± 91 659 ± 120 < 0.001 582 ± 82 648 ± 72 0.001 < 0.001 0.18
Estimated  VO2max (ml/min/

kg)
17.7 ± 2.1 20.1 ± 2.8 < 0.001 18.3 ± 1.9 19.9 ± 1.6 0.001 < 0.001 0.18

n-4 MWT (s) 2.95 ± 0.35 2.70 ± 0.50 0.05 2.95 ± 0.26 2.71 ± 0.32 0.004 0.001 0.95
f-4MWT (s) 2.06 ± 0.37 1.88 ± 0.37 0.022 2.07 ± 0.28 1.86 ± 0.23 0.002 < 0.001 0.87
Chair test (s) 19.9 ± 5.4 16.3 ± 4.8 0.001 18.1 ± 3.5 14.4 ± 3.1 < 0.001 < 0.001 0.86
Step test (n) 30.9 ± 5.4 34.1 ± 5.7 0.013 29.1 ± 3.6 34.1 ± 5.1 < 0.001 < 0.001 0.21
Muscle function
ULMS (kg) 32.3 ± 9.7 33.2 ± 10.1 0.025 33.1 ± 8.4 33.8 ± 7.4 0.42 0.083 0.77
rULMS (kg/kgBW) 0.42 ± 0.09 0.44 ± 0.09 0.025 0.41 ± 0.09 0.42 ± 0.09 0.51 0.059 0.41
UMQ (kg/kgLM) 3.14 ± 0.46 3.23 ± 0.39 0.31 3.03 ± 0.49 3.07 ± 0.51 0.64 0.29 0.73
LLMS (N) 324 ± 99 322 ± 105 0.89 354 ± 98 387 ± 89 0.062 0.16 0.11
rLLMS (kg/kgBW) 4.24 ± 1.29 4.33 ± 1.45 0.62 4.39 ± 1.01 4.76 ± 0.81 0.11 0.11 0.32
LMQ (N/kgLM) 10.3 ± 2.6 10.1 ± 2.9 0.76 10.1 ± 2.2 10.9 ± 1.5 0.12 0.28 0.14
Muscle Power (W) 153 ± 77 179 ± 81 0.012 171 ± 45 208 ± 52 < 0.001 < 0.001 0.31
Muscle composition
Muscle area  (cm2) 100.4 ± 25.9 95.7 ± 23.9 0.35 99.3 ± 18.1 102.1 ± 21.9 0.44 0.77 0.27
Total fat area  (cm2) 69.9 ± 31.8 66.8 ± 29.8 0.24 91.2 ± 45.0 89.1 ± 39.9 0.51 0.20 0.81
Total subcutaneous fat area 

 (cm2)
65.4 ± 32.3 61.8 ± 29.8 0.14 85.2 ± 45.1 85.4 ± 41.0 0.94 0.38 0.32
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(i.e., even distribution vs. uneven distribution). However, 
these results are difficult to compare with ours since the 
protein intake distribution pattern was studied without 
any exercise intervention, in non-obese and younger pop-
ulation (58.1 ± 2.4 and 60.3 ± 2.4 years vs. 66.8 ± 3.7 and 
68.1 ± 4.1 years) and the study was shorter (8 vs. 12 weeks).

An age-associated anabolic resistance to protein contain-
ing meals may be a potential explanation to the absence of 
significant results [72, 73]. To limit the effect of this possible 
anabolic resistance, we based on the cut-off of 20 g of pro-
tein per meal as proposed previously to maximally stimulate 
muscle protein synthesis in older adults [19]. Another study 
also suggests that the optimal protein dose for maximal mus-
cle protein synthesis in older adults is 0.40 g  kg−1 per meal 
[23] and we were above this threshold in our experimental 
study.

Despite the innovative nature of the present study, includ-
ing a wide range of measures using validated techniques, 
it has some limitations. First of all, because of the size of 
the sample, it is possible that the lack of beneficial effect of 
an even distribution of protein intake might just reflects a 
type II error. Always because of the small sample size, sex-
specific analyzes could not be performed even if Dulac et al. 
showed significant effect of protein associated with exercise 

in elderly men [37]. However, according to our calculation, 
our sample allows to have a statistical power of 70%. Also 
note that a similar n is used in other studies with a similar 
design [74]. Then, since protein distribution was not in the 
initial design but studied a posteriori, randomized controlled 
trials (such as even and non even groups with or without 
RDA) will be needed to confirm our results. Nevertheless, 
it is worth noting that a wide range of assessments using 
validated techniques were used in the present study.

Conclusion

A 12-week HIIT program improves functional capacities as 
well as body composition in obese older adults. However, if 
obese older adults are following recommended dietary pro-
tein allowances, eating 20 g of proteins in each meal does not 
further improve muscle adaptation in response to the HIIT 
intervention. Altogether, these findings indicate that HIIT is 
a practical, feasible and efficient training modality, indepen-
dently of meal protein distribution, and that clinicians should 
be aware of it and recommend it to their patients that are at 
risks of muscle performance and mobility decline.

Table 3  Effect of intervention on energy balance

Data are presented as means ± SD
P ≤ 0.05: significant
a Baseline significant differences between PROT 20+ and PROT 20− groups measured using independent-sample t test
*Within differences between pre- and post-intervention estimated using paired t test. A general linear model repeated measures was conducted to 
estimate the time and the group × time effects
BW body weight, EAA essential amino acid, NEAA non-essential amino acid

Variables P20− group (n = 15) P20+ group (n = 15) 2*2 ANOVA

Pre Post within-group 
effect (p 
value)

Pre Post within-group 
effect (p 
value)

Time 
effect (p 
value)

Time × group 
effect (p value)

Energy balance
Number of steps (n/d) 6538 ± 3371 6030 ± 1930 0.62 7317 ± 2851 7340 ± 2940 0.98 0.72 0.69
Mets average 1.17 ± 0.17 1.19 ± 0.19 0.64 1.20 ± 0.10 1.17 ± 0.11 0.17 0.77 0.25
Proteins intake (g/d) 87.2 ± 18.0 79.2 ± 26.7 0.42 98.4 ± 20.2 94.9 ± 19.9 0.54 0.29 0.67
Proteins intake (g/

kgBW/d)
1.17 ± 0.20 1.11 ± 0.43 0.64 1.22 ± 0.24 1.17 ± 0.25 0.50 0.44 0.91

Breakfast protein intake 
(g)

14.2 ± 4.9 a 15.2 ± 6.1 0.69 24.0 ± 6.7a 20.2 ± 7.8 0.10 0.47 0.47

Lunch protein intake (g) 24.1 ± 14.9 21.1 ± 12.1 0.57 29.9 ± 8.7 26.9 ± 6.8 0.67 0.28 0.98
Diner protein intake (g) 38.5 ± 18.1 36.1 ± 20.7 0.72 33.8 ± 11.2 39.9 ± 12.0 0.048 0.58 0.21
Total EAA (g) 26.6 ± 7.1 23.9 ± 11.3 0.49 29.2 ± 6.6 25.2 ± 6.7 0.075 0.11 0.76
Total NEAA (g) 24.7 ± 6.9 20.8 ± 9.2 0.28 26.4 ± 6.3 23.1 ± 6.4 0.072 0.054 0.90
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