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Abstract

We study the link between the distribution of extreme operational losses and the eco-

nomic context, a fundamental task to compute adequate risk measures over time. In

particular, we allow for time-varying dependencies due to structural changes, thanks to

a newly-introduced smooth transition Generalized Pareto (GP) regression model. In

this model, the parameters of the GP distribution are related to explanatory variables

through regression functions, which depend themselves on a predictor of structural

changes. Relying on this model, we study the dependence of the monthly loss sever-

ity distribution at UniCredit, over the period 2005-2014. As indicator of structural

changes, we use the VIX, accounting for the general uncertainty on financial markets.

We show that both the goodness-of-fit far in the tail and Value-at-Risk estimates of

the total loss distribution obtained from such models are superior to a set of alter-

natives. We also show that in periods of high uncertainty, conditions favorable to a

lax monetary policy are synonym of an increased likelihood of extreme losses. Finally,

we discover evidence of a self-inhibition mechanism, where a high number of losses

in a recent past are indicative of less extreme losses in the future, probably due to

improved monitoring.
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1 Introduction

Early on, operational risk has been acknowledged as a major concern: a survey in 2003 by

the Basel Committee for Banking Supervision (BCBS) revealed that a large share - around

15% - of the total capital of banks was held against operational risks [De Fontenouvelle

et al., 2006]. Since then, this importance remained: an updated monitoring report of the

BCBS concluded that 17% of the Tier-I equity of the largest banks in the world, amounting

to $411bn, is dedicated to protection against operational events [Sands et al., 2018]. Hence,

because of its high consumption of capital, the proper modeling and understanding of

the operational loss phenomenon is a crucial economic challenge for banks. This paper

contributes to these two aspects, and provides a set of recommendations useful for the

decision making process of risk managers.

Recently, the operational risk literature1 gained interest in the dependence between

the severity distribution and economic factors [Cope et al., 2012, Chavez-Demoulin et al.,

2016, Hambuckers et al., 2018b,a]. Indeed, the economic context is expected to impact

the incentives and the allocation of resources inside banks, which in turn impact the

loss formation process. Therefore, studying the nature and the drivers of this dependence

structure is fundamental to design proper risk models. In particular, it allows to control for

time-inhomogeneity of the severity distribution and to improve distribution forecasts. In

addition, it proves helpful to meet two important requirements of the regulators: account-

ing for dependencies across event types (ET), as well as between severity and frequency

distributions. The former requirement is particularly relevant since banks are expected to

compute an aggregate risk measure over all ET [Chapelle et al., 2008, Shi et al., 2015].

On the other hand, the latter requirement proves useful to improve total loss distribution

estimations based on compound processes, as it is traditionally the case for operational

losses [Garrido et al., 2016].

A way to study this dependence consists in using extreme value analysis (EVA) and its

extension to generalized Pareto (GP) regression as in Chavez-Demoulin et al. [2016] and

Hambuckers et al. [2018a]. The extensive use of EVA in this area is due to two major facts:

on the one hand, the empirical distribution of these losses is particularly heavy-tailed. On

the other hand, practitioners are mostly interested in the probability of extreme losses

that can bankrupt the bank. Consequently, an extensive literature studies the operational

loss phenomenon relying on the Peak-over-Threshold (POT) approach (see e.g. Aue and

Kalkbrener [2006], Chapelle et al. [2008], Soprano et al. [2009], Chavez-Demoulin et al.

[2016]). In this approach, an extreme event is defined as a value that exceeds some high

threshold, and only the exceedances over this threshold are used for statistical inference

[Rootzen et al., 2018]. Thanks to a series of theoretical results, it can be shown that the

natural distribution for these exceedances is a GP distribution [Balkema and de Haan,

1974, Pickands, 1975, Davison and Smith, 1990]. In the context of operational losses, this

1Operational risk relates to operational losses, defined as ”direct or indirect losses resulting from in-

adequate or failed internal processes, people and systems or from external events” [Basel Committee on

Banking Supervision (BCBS), 2004].
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distribution is called the severity distribution whereas the number of exceedances follow

a frequency distribution. In the natural extension to the GP regression case, we assume

additionally that the distribution parameters depend on covariates through a structural

equation, in the spirit of the generalized additive model for location, scale and shape

(GAMLSS) of Rigby and Stasinopoulos [2005]. Hence, by the introduction of common

risk factors, we can easily create an implicit dependence structure across ET. In addition,

by using the number of claims as a risk factor itself, we allow for an indirect depen-

dence structure between the severity and the frequency distributions, meeting the second

requirement of the regulators.

Nevertheless, a major drawback of this technique is the implied assumption of a con-

stant dependence structure over time. In practice, one often observes fundamental events,

like financial crises, important political, managerial and regulatory decisions that alter

how the loss formation process is impacted by changing economic conditions. For instance,

Hambuckers et al. [2018b] found that the relationship between the severity distribution

and economic indicators is different before and after the financial crisis. Similarly, Power

[2005] notices that managers can actively improve controls of the business process after

loss events, thereby influencing the severity of future operational events.

To deal with this issue, Ang and Timmermann [2012] suggest using regime-switching

models. This approach has been successfully applied to model market volatility [Klaassen,

2002], interest rates [Pesaran et al., 2006] and the size of insurance claims [Guillou et al.,

2013]. In the specific context of operational losses, Hambuckers et al. [2018b] consider

a semiparametric regime-switching GP regression model. However, the regime-switching

framework suffers from three important limitations. First, the switching between regimes

relies on a Markovian hypothesis. Aside from being hardly true in practice, this hypothesis

does not tell us anything about the reasons of a structural change. Hence, both the analysis

and the communication of such a model are difficult. Secondly, it is difficult to consider

more than a few regimes, due to cumbersome estimation of these models. Third, the

whole framework implies abrupt changes of regression models from one period to another,

ignoring possible transitory states. From a risk management perspective, such models

have the undesirable effect to provide extremely volatile risk indicators.

In light of these considerations, the primary purpose of this paper is to provide an

adequate econometric set-up that solves the mentioned issues, and to unravel some of the

time-varying dependence structures underlying monthly operational loss data in a typical

bank.

In a first step, we introduce a novel framework for the study of extremes, that relaxes

the assumptions made on the transitions between regression models. To do so, we rely

on the concepts of smooth transition first introduced in Teräsvirta [1994]: the regression

equation of the distribution parameters is defined by a mixture of two limiting regression

models, with mixing weights depending on a time-varying covariate. The main advantage

of our specification is that, contrary to the regime-switching model, we allow for an infinity

of regimes while keeping a low number of parameters. It drastically enhances the flexibility
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of the estimation, whereas the usual two-state regime is included as a special case. In

addition, the conditional likelihood function is readily available, allowing us to avoid the

use of expectation-maximization algorithm or forward recursion, procedures that suffer

from computational constraints [Langrock et al., 2017]. An important difference with

switching regime models, though, is the need for explicitly defining the factors driving

the transitions. However, whereas it exposes us to a potential misspecification of the

model, it enhances the interpretation of the results. Whereas state decoding of regime-

switching models must be interpreted ex post, smooth transition models allow to formulate

ex ante an hypothesis about the switching process, which can be used for interpretation.

In particular, we can disentangle the loss formation process between a baseline process

i.e. a structural component linking determinants to the loss severity distribution, and

an amplification mechanism that exacerbates or smoothes the effect of changes in the

determinants.

In the following, we refer to this new severity distribution model as ST-GPD (for

smooth transition GP distribution). The concept of smooth transition has been previ-

ously applied, among others, to the study of gross domestic product (GDP) growth rate

[Florackis et al., 2014], stocks comovements [Chelley-Steeley et al., 2013] and exchange

rate market [Kilian and Taylor, 2003], but never for the study of extremes. Since this is

the first time that this model is presented, and that smooth transition models have been

found particularly hard to estimate [Chan and MacAleer, 2002, 2003, Chan and Theo-

harakis, 2011], we detail a number of useful tools to reduce numerical instabilities. In

addition, we propose a likelihood-ratio test to test the correct specification of ST-GPD

against simpler alternatives, tackling identification issues under the null hypothesis. In a

simulation study, we show that the combination of these tools allows for a good and stable

estimation of the considered smooth transition models.

In a second step, we conduct an empirical study of the monthly time-varying depen-

dence structure between economic factors and the severity distribution of extreme opera-

tional losses. To do so, we study a sample of extreme operational losses from the Italian

bank UniCredit2, recorded over the period 2005M1 - 2014M6 and across three event types

(execution, delivery and process management; client, product and business practices; ex-

ternal frauds). Whereas previous literature studied yearly or quarterly periods of time to

match regulators’ horizon, we focus here on a monthly horizon to detect structural change

relevant at the level of a financial institution. As explanatory variables, we use a set of

macro, financial and firm-specific variables. In particular, we introduce a dependence with

the past number of operational losses, relaxing the usual assumption of full independence

between severity and frequency processes. Whereas other variables can be seen more as

control variables, the past number of losses is seen here as the core of the baseline process,

and as a proxy for the efficiency of internal controls. As an indicator of structural changes

in the transition function, we use the (log) Volatility Index (VIX), drawing on previous

2Some of these data have been used, e.g. in Hambuckers et al. [2018b] and Hambuckers et al. [2018a],

but considering only quarterly dependencies.
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findings that highlight the forward-looking ability of this index. This specification allows

us to specify the uncertainty on the financial market as the channel through which changes

in internal controls affect differently the severity over time. Thus, our analysis focuses on

the three following aspects: relevance of the proposed smooth transition structure with

respect to simpler alternatives, magnitude and direction of the effect of past counts (as a

proxy of internal controls) on the severity, and history of this dependence over time.

Using a battery of econometric tests, we show that the ST-GPD specification signif-

icantly improves the fit of the severity distribution over time with respect to simple GP

regression models. Especially, it consistently provides better density estimates in the tail

of the distribution. Lastly, the ST-GPD is shown to provide risk indicators for the total

loss distribution with better properties, especially in terms of coverage probabilities far in

the tail.

We discuss the economic significance of our results and show major changes in the rela-

tionship between the severity distribution and the economic context. We show that during

time periods of high financial uncertainty, the severity distribution is characterized by a

self-inhibition effect, suggesting that months with a high number of losses are predictive

of future months with low severity losses. Such an effect can be explained by a tightening

of control procedures following operational events in a stressed financial context for the

firm. At the contrary, periods of low uncertainty exhibit no self-inhibition effects, and

only the macro-financial context seems to influence the severity. In addition, our findings

suggest that in a high uncertainty context, situations associated with laxer monetary poli-

cies leads to a higher risk of large losses. On the other side, in low uncertainty situations,

the likelihood of extreme losses will positively depend on financial instability i.e. liquidity

effects and transaction sizes implied by economic growth.

Our contribution can be summarized by the following points:

• We provide a detailed econometric approach to study time-varying dependencies in

the context of extreme regression models.

• We show that ST models provide better fits to our data than non-ST models. In

particular, our approach provides better estimates of risk indicators like quantiles

far in the tail for the total loss distribution.

• We find that in times of low uncertainty, transaction sizes and financial instability

plays an important role whereas in the high uncertainty regime, situations charac-

terized by laxer monetary policies and low financing costs are synonym of a higher

likelihood of large losses.

The structure of the paper is as follows: In Section 2, we provide the various models

and estimation procedures used for analysing the severity distributions. In Section 3, we

study the finite sample properties of the proposed methodology in a realistic Monte Carlo

simulation. Then, in Section 4, we present the data and discuss in Section 5 the results

of our empirical study, discussing the economic interpretation and the policy implications

for risk management. We conclude in Section 6.
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2 Models, estimation methods and testing procedures

In this section, we detail the set of econometric procedures used to study the time-varying

dependence structure of extremes. We define first the model, before discussing estimation,

inference and testing issues.

2.1 Severity model in a non-stationary context

The focus here is on defining a regression model for the severity distribution of extreme

losses, i.e. losses Zt,i larger than a threshold τ 3. The index i goes from 1 to nt, nt being

the observed number of losses in period t larger than τ . We denote by n = {nt}t=1,...,T the

time series of observed counts up to T . We also define the exceedances as Yt,i = Zt,i − τ .

Relying on extreme value theory (EVT) and the POT approach, the natural distribution

of Yt,i is the GPD. Its cumulative distribution function (cdf) is given by

GPD(y; γ, σ) =

 1−
(

1 + γ
y

σ

)−1/γ
, γ 6= 0

1− e−y/σ, γ = 0
(1)

with y ≥ 0 (we follow the same notation as in Hambuckers et al. [2018a]). γ ∈ R and σ > 0

are the shape and scale parameters, respectively. For γ < 0, then 0 < y < −σ/γ and y

is bounded. In the case of γ = 0, we observe an exponential decay. For γ ∈ (0, 1), it can

be shown that Y has a finite first moment [Chavez-Demoulin et al., 2016]. This is often

a desirable property from a methodological perspective (e.g. for moment-based inference)

as well as for applications involving the computation of a conditional expectation. We

restrict our attention to the case where γ > 0 (i.e. the heavy-tail case).

This GPD approximation stems from fundamental results in extreme value analysis,

known under the names Gnedenko and Pickands-Balkema-De Haan theorems [Gnedenko,

1943, Balkema and de Haan, 1974, Pickands, 1975]. The GPD approximation holds when

the cdf of Z, F (z), is of the type

F (z) = (z)−1/γG(z), (2)

for some measurable, slowly varying function G : (0,∞)→ (0,∞) so that

lim
z→∞

G(ωz)

G(z)
= 1, (3)

for ω > 0. This condition, known as the regular variation property, implies that the

tail of the loss distribution decays at a power rate of Z and that the GPD is the limit-

ing distribution of the exceedances [see, e.g. Embrechts et al., 1997, Davison and Smith,

1990, for theoretical details]. In practice, it is assumed that the severity distribution of

the exceedances above a high threshold is effectively GPD and the regression analysis is

performed on Yt,i [Chavez-Demoulin et al., 2016, Hambuckers et al., 2018b,a].

3The index t refers to the time, whereas the index i refers to the ith loss larger than τ during a given

period.
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Here, we apply the POT method in a non-stationary context: we assume that the

severity distribution of the exceedances, conditional on the chosen threshold, is GPD with

γ and σ following a smooth transition regression model. This model implies that both

distribution parameters are a combination of two limiting regression models. Thus, for

the ith exceedance taking place over the time period ]t− 1, t], we assume that

Yt,i ∼ GPD(Yt,i; γ(xγt,i, st), σ(xσt,i, st)), (4)

with Yt,i ≥ 0, γ(xγt,i, st) > 0, σ(xσt,i, st) > 0, and where xσt,i, xσt,i and st are the vector

of economic covariates for the shape parameter, the scale parameter and the transition

variable, respectively. γ(xγt,i, st) and σ(xσt,i, st) are the shape and scale parameters for the

severity distribution of the ith exceedance in period t. Following the idea of Teräsvirta

[1994] and van Dijk et al. [2007], we characterize the shape and scale parameters by the

following smooth transition structure:

φ(st) =
1

1 + exp{−g(st − c)}
, (5)

γ(xγt,i, st) = φ(st)h
(

(xγt,i)
Tβββγ1

)
+ (1− φ(st))h

(
(xγt,i)

Tβββγ2

)
, (6)

σ(xσt,i, st) = φ(st)h
(
(xσt,i)

Tβββσ1
)

+ (1− φ(st))h
(
(xσt,i)

Tβββσ2
)
, (7)

where φ(·) ∈ (0, 1) is the logistic weight function, g > 0 is the dispersion parameter, c the

location parameter, whereas βββ
(θ)
r , with θ ∈ {γ, σ} and r = 1, 2 are the vectors of regression

parameters in the different limiting states. h(·) is a suitable response function ensuring

the strict positivity of the distribution parameters (e.g. the exponential function). For st

continuous, we have an infinity of regimes. To ease the notation, the explicit references to

xσt,i, x
σ
t,i and st are omitted in the following such that γ(xγt,i, st) and σ(xσt,i, st) are replaced

by γt,i and σt,i in the rest of the paper. An important specification of the present model

is the assumption of a unique transition function, driving both γ and σ. This has the

advantage that c and g appear in the two structural equations, potentially leading to an

easier estimation of these parameters. Lastly, notice that we apply the transition function

on h(xTβββ) and not on xTβββ. This structure facilitates the interpretation of the model,

allowing us to see the terms h(xTβββ) as the value of the distribution parameter in the

limiting regimes.

2.2 Estimation procedure

For our severity model, the log-likelihood function is given by

L(y; Θ,x, s, τττ ,n) =
T∑
t=1

nt∑
i=1

log(gpd(yt,i; γt,i, σt,i)), (8)

where gpd denotes the probability density function (pdf) of the GPD, Θ is the set of all

parameters of the model; y the vector of all losses, x a design matrix of all observed covari-

ates, s the vector of transition variables, τ the threshold parameter and n the observed
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frequency process. Notice that (8) relies on the contemporaneous conditional indepen-

dence between frequency and severity, implying that nt⊥yt,i given the covariates. This

assumption allows splitting the full likelihood into a severity part and a frequency part,

and to study the two processes separately [Chavez-Demoulin et al., 2016]. However, it

does not prevent nt−1 6⊥⊥ yt,i. Therefore, in x, we can include nt−1. An estimator Θ̂ of the

regression parameters is obtained by maximizing equation (8) with respect to Θ:

Θ̂ = arg max
Θ
{L(y; Θ,x, s, τ,n)}. (9)

This maximization is notoriously difficult to conduct and sensitive to starting values,

see the discussions in Chan and MacAleer [2002], Chan and MacAleer [2003] and Chan and

Theoharakis [2011]. Several papers (e.g. Dungey et al. [2015]) use grid-search or two-step

maximizations. Here, we resort to two different procedures to improve numerical stability.

Firstly, following Chan and Theoharakis [2011], we re-parametrize the transition function

in terms of (ḡ, c), where ḡ = 1/
√
g, g > 0. This alternative specification has the advantage

to make the likelihood function less flat in the dimensions of the transition parameters.

This is particularly needed in the present context of GPD data, since the GPD is also

known to exhibit a flat likelihood function. Equation (5) is now given by

φ(st) =
1

1 + exp{− 1

(ḡ)2
(st − c)}

. (10)

Secondly, following Silvennoinen and Teräsvirta [2009], we set boundary conditions

on the location parameters of the transition function. For the location parameter c, we

impose that it cannot fall far from the range of values observed for st. Our additional

constraint can be expressed as

c ∈ (1.025 min(s), .975 max(s)).

Notice also that the positivity constraint on ḡ is explicitly taken into account as a bound

constraint.

Solutions of the maximization problems are obtained via numerical procedures based

on the fmincon function of MATLAB with the trust-region algorithm. Since this

is the first time that a ST-GP regression model is proposed, in Section 3 we perform a

simulation study to assess the reliability of the estimation method. We show that, with

our procedure, we estimate well the different coefficients and there is no need to resort to

two-step procedures4.

Regarding inference on the regression coefficients, we assume that asymptotic nor-

mality of (9) holds, and we use the inverse of the variance-covariance matrix of the log-

likelihood as asymptotic covariance matrix5. Due to the use of the fmincon option,

4Notice that here we work with the likelihood of the observed exceedances, given a threshold structure.

Thus, to include the uncertainty related to threshold estimation, one would have to resort to more complex

bootstrap procedures. We choose here to neglect this additional uncertainty. This problematic is a long-

standing question in EVT, that we let for further researches.
5See Chan and MacAleer [2002] for a formal proof in the case of STAR-GARCH models.
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the returned Hessian is not the one of the log-likelihood function, but of the Lagrangian.

Therefore, to obtain an approximation of the Hessian of the log-likelihood function, we

perform one additional step with the help of the fminunc function: we start from our

constrained estimate, and run one iteration of the trust-region algorithm. Then, the

Hessian is obtained from finite-difference procedures. Coverage properties of this approach

are examined in the simulation study. Overall, Wald-type tests show excellent sizes and

satisfactory powers. Notice that the asymptotic normality is likely to hold only if the

model is well identified, i.e. if βββ1 = (βββγ1 ,βββ
σ
1 ) 6= (βββγ2 ,βββ

σ
2 ) = βββ2. Thus, a first step would

be to test for a correct specification of the time-varying structure. This testing issue is

discussed in the Section 2.3.

2.3 Testing for a time-varying structure

The use of smooth transition models inevitably raises questions about the correct specifi-

cation of an additional time structure. Early on, Lukkonen et al. [1988], Teräsvirta [1994]

and van Dijk et al. [2007] discussed testing for linearity against alternative ST models. This

task is drastically complicated by the presence of unidentified nuisance parameters under

the null hypothesis of no ST specification. Indeed, for our model, notice that equations

(6) and (7) can be rewritten as

γ(xγt,i, st) = h
(

(xγt,i)
Tβββγ2

)
+ φ(st)

(
h
(

(xγt,i)
Tβββγ1

)
− h

(
(xγt,i)

Tβββγ2

))
, (11)

σ(xσt,i, st) = h
(
(xσt,i)

Tβββσ2
)

+ φ(st)
(
h
(
(xσt,i)

Tβββσ1
)
− h

(
(xσt,i)

Tβββσ2
))
. (12)

Under the null of no ST, H0: βββγ1 = βββγ2 and βββσ1 = βββσ2 , making the second terms of the right

hand sides equal to zero. Consequently, parameters of φ (i.e. c and ḡ) are unidentified

under the null hypothesis, and distributions of test statistics like the likelihood ratio

(LR) are likely non-standard. One way to circumvent this issue consists in testing an

auxiliary regression model, based on a Taylor expansion of φ that avoids unidentification

[van Dijk et al., 2007]. However, the performance of this test heavily depends on the

quality of that approximation, which might be very bad for a steep transition function.

In addition, whereas simplifications arise for restricted models being linearly additive, it

is unclear how the Taylor rest affects the random part of our model. Finally, in case of

semiparametric extensions, the distribution of the test statistic in the auxiliary procedure

is unknown. Thus, we prefer using simulation-based methods, as advocated in Hansen

[1999] and Becker et al. [2004]. To do so, we consider a LR-type test, where our test

statistic is given by

LR(Θ̂H0 , Θ̂) = −2(L(y; Θ̂H0 ,x, τττ ,n)− L(y; Θ̂,x, s, τττ ,n)), (13)

with L(y; Θ̂H0 ,x, τττ ,n) being the log-likelihood function of the null GP-regression model

with maximum likelihood estimate Θ̂H0 . It is obtained by fitting a GP-regression model

where

γ(xγt,i) = h
(

(xγt,i)
TβββγH0

)
, (14)

σ(xσt,i) = h
(
(xσt,i)

TβββσH0

)
. (15)
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The distribution of (13) under H0 is obtained by means of a classical parametric bootstrap

procedure, described by the following steps:

I. Using Θ̂H0 , x and n, simulate a time series of exceedances y∗(b) under H0.

II. Estimate the vectors of parameters Θ̂∗,H0

(b) and Θ̂∗(b) from the null and the ST models,

respectively.

III. Compute LR(Θ̂∗,H0

(b) , Θ̂∗(b)), a bootstrap realization of the likelihood-ratio.

IV. Repeat for b = 1, . . . , B, e.g. 500 times.

The rejection region at level α is defined by
[
q∗1−α,+ inf

)
, where q∗1−α is the empirical 1−α

quantile of LR(Θ̂∗,H0

(b) , Θ̂∗(b)).

Among others, Andrews and Plöberger [1994], Becker et al. [2004] and Lee et al. [2011]

advocate that, instead of (13), one should consider a statistic of the type sup
gi,ci

LR(g′i, ci),

using grids of values for g′i and ci. However, this approach is computationally costly in

a bootstrap procedure. In our simulation study in Section 3, we show that this is not

necessary since our test exhibits an adequate size. We also show that a χ2 approximation

with corrected degrees of freedom is actually pretty good, and can be a viable alternative

to more time-consuming procedures.

Eventually, notice that our model’s definition allows easily to test for the absence of

ST structure in one of the two distribution parameters. Indeed, since we assume that ḡ

and c take the same values in (14) and (15), these parameters stay identified under the

null for a less restrictive null hypothesis. In this situation, classical likelihood ratio theory

applies.

3 Simulation study

Since ST-GPD models have not been considered previously in the literature, we investigate

the finite-sample properties of the proposed procedures. We generate data following the

model defined by equations (4) to (7). To study the properties of estimator (9) in a

realistic context, we pay attention to specify predictors with distributions similar to those

encountered in our empirical analysis, i.e. count data, time series and collinearity. Thus,

we choose the following data generating processes for the covariates:

xσti = xγti = xti = xt,

xt1 ∼ Poiss(λt),

λt = exp(1.3 + .2xλt ) + .5
∑
i:ti<t

b(t− ti; 10),

xtj = .1 + .65xt−1 j + etj , j = 2, . . . , p
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
et2
...

etp

 iid∼ MN(0,ΣΣΣ),

st = αst−1 + est , e
s
t
iid∼ N(0, 1).

λt is driven by a self-exciting process, as in Porter and White [2012]. b(·; 10) is the stan-

dardized geometric distribution with decay rate r = 10. ΣΣΣ is a variance-covariance matrix

with one on the diagonal elements and .5 otherwise. We consider nt ∈ {10, 20, 30, 50} fixed

for a given simulation, and T ∈ {50, 100, 150, 200}. We choose α ∈ {.7, .8, .9}, such that

the transition variable exhibits highly persistent time-dependencies like the VIX. Further-

more, we set p = 3, c = 0 and ḡ ∈ {.4, .5, .7} to assess the effect of the transition speed on

the estimation. The different values for the regression coefficients βββγ1 , βββγ2 , βββσ1 and βββσ2 are

displayed in Table 1, second column. For each set of parameters, we generate N = 200

samples.

Table 1 provides mean estimates of the regression coefficients (for clarity, only a subset

of the simulation set-ups are presented, see supplementary material for more details).

We focus on simulations with T = 100 and T = 150, time series lengths in line with

our application. We see that all parameters are well estimated, even when nt is small.

When nt or T increases, though, we see a decrease in the variability of the estimation.

Regarding the transition parameters known to be difficult to estimate, we observe very

good estimations, close to the true parameters. Figure 1 displays the root mean squared

error (RMSE) for ḡ and c, across all samples, respectively. For both parameters, we

observe a decrease in RMSE with an increase in T and nt. A similar effect is observed

when the degree of persistence for st decreases (i.e. when α decreases). Regarding the

Wald-type test proposed in Section 2, we observe an excellent size of the test (Figure 2,

panel (a)). Focusing on the 5% test level, we see that on average across all parameters and

the 200 simulations, the type-I error is always close to the test level6. This result indicates

that, beyond good point estimates, we obtain good density estimates of the regression

coefficients. Regarding the power of the test, we observe satisfactory rejection levels of

the null of a zero coefficient (Figure 2, panel (b)). The average proportions of rejections

vary between 25% and 75%.

Lastly, we shortly investigate the size of the likelihood-ratio test proposed in Section

2.3. The bootstrap method is particularly time-consuming to study in a simulation set-up,

therefore we use the warp-speed method proposed by Giacomini et al. [2013] to shorten the

computing time. For our approach, it consists in resampling B′ = 1 sample of bootstrap

data for each Monte Carlo sample, and to compute q∗1−α from N = B samples. It allows us

to easily investigate cases with p = 4 and p = 5. We set N = 1, 000. We simulate samples

following a classical GP-regression model, with its parameters given by βββγ1 and βββσ1 . We

6As pointed out by Teräsvirta [1994], we might sometimes obtain negative estimates of the asymptotic

standard deviations preventing us from computing a test statistic, due to numerical approximations. Here,

on average across simulations, it concerns only 0.17% of the samples.
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use the same assumptions regarding the predictors. For st, we set α = .8. We focus on

the case nt = 20 and T = 100. We compare the size of this test with the sizes of tests

based on χ2 distributions. Under the null, the true model has 2× p parameters, whereas

the ST model has 2×2×p+ 2 parameters. Therefore, under correct identification of both

models, the test statistics (13) would follow a χ2
2×p+2 distribution under H0. We also look

at the size obtained from a χ2 distribution with either 2×p or 2×p+4 degrees of freedom.

Table 2 displays the obtained sizes. The classical LR test is strongly oversized, leading us

to reject wrongly the null too frequently. At the contrary, our BS test exhibits rejection

frequencies closer to the expected nominal levels (5% and 10%). Similarly, if we use a χ2

distribution with corrected degrees of freedom, using 2 × p + 4 instead of 2 × p + 2, we

obtain excellent sizes. Figure 3 illustrates these results, showing the various distributions

against the true empirical distribution of (13), for p = 5. We see that both the bootstrap

and the χ2
2×p+4 match pretty well the true distribution.

Thus, our simulation study highlights the correctness of our procedure in terms of

estimation, uncertainty quantification and testing.

Table 1: Average estimated regression coefficients, across the 200 simulations and the differents specifica-

tions of α. In parentheses, average standard deviation of the estimates, accross simulations’ specifications.

T=100 T=150

Param. Truth nt 10 20 30 50 nt 10 20 30 50

ḡ .4 .399 .398 .4 .4 .398 .4 .399 .399

( 0.03 ) ( 0.02 ) ( 0.02 ) ( 0.01 ) ( 0.03 ) ( 0.02 ) ( 0.02 ) ( 0.01 )

c 0 .001 .001 .001 .001 .003 .00 -.001 0.001

( 0.06 ) ( 0.04 ) ( 0.03 ) ( 0.03 ) ( 0.04 ) ( 0.03 ) ( 0.03 ) ( 0.02 )

β
γ
10 -1.5 -1.58 -1.68 -1.54 -1.54 -1.58 -1.55 -1.52 -1.52

( 0.73 ) ( 1.72 ) ( 0.34 ) ( 0.52 ) ( 0.49 ) ( 0.34 ) ( 0.29 ) ( 0.2 )

β
γ
11 .04 .02 .046 .038 .041 .036 .04 .038 .04

( 0.13 ) ( 0.12 ) ( 0.04 ) ( 0.05 ) ( 0.06 ) ( 0.04 ) ( 0.03 ) ( 0.02 )

β
γ
12 .2 .207 .174 .196 .205 .207 .196 .202 .197

( 0.3 ) ( 0.42 ) ( 0.12 ) ( 0.14 ) ( 0.16 ) ( 0.12 ) ( 0.1 ) ( 0.07 )

β
γ
13 -.1 -.095 -.069 -.102 -.114 -.099 -.097 -.099 -.098

( 0.3 ) ( 0.56 ) ( 0.13 ) ( 0.18 ) ( 0.16 ) ( 0.11 ) ( 0.09 ) ( 0.07 )

β
γ
20 -1.3 -3.82 -1.48 -1.41 -1.33 -1.449 -1.412 -1.34 -1.335

( 22.07 ) ( 1.49 ) ( 0.51 ) ( 0.35 ) ( 0.83 ) ( 0.46 ) ( 0.39 ) ( 0.28 )

β
γ
21 -.04 -.093 -.048 -.0437 -.044 -.054 -.041 -.043 -.04

( 1.42 ) ( 0.12 ) ( 0.08 ) ( 0.05 ) ( 0.14 ) ( 0.06 ) ( 0.05 ) ( 0.04 )

β
γ
22 -.1 -.563 -.105 -.108 -.105 -0.11 -.098 -.099 -.098

( 4.86 ) ( 0.48 ) ( 0.19 ) ( 0.14 ) ( 0.28 ) ( 0.17 ) ( 0.14 ) ( 0.1 )

β
γ
23 .1 .814 .108 .12 .092 .079 .102 .1 .098

( 6.92 ) ( 0.26 ) ( 0.26 ) ( 0.14 ) ( 0.25 ) ( 0.18 ) ( 0.13 ) ( 0.1 )

βσ10 4 4.001 4.004 4.006 4.003 4.007 4.0050 4.005 4.001

( 0.21 ) ( 0.14 ) ( 0.1 ) ( 0.1 ) ( 0.15 ) ( 0.11 ) ( 0.09 ) ( 0.07 )

βσ11 .02 .021 .021 .02 .02 .021 .02 .02 .02

( 0.02 ) ( 0.02 ) ( 0.01 ) ( 0.01 ) ( 0.02 ) ( 0.01 ) ( 0.01 ) ( 0.01 )

βσ12 .16 .164 .159 .161 .161 .164 .162 .161 .16

( 0.07 ) ( 0.05 ) ( 0.04 ) ( 0.03 ) ( 0.05 ) ( 0.04 ) ( 0.03 ) ( 0.02 )

βσ13 -.05 -.054 -.048 -.048 -.05 -.054 -.049 -.051 -.051

( 0.07 ) ( 0.05 ) ( 0.04 ) ( 0.03 ) ( 0.05 ) ( 0.03 ) ( 0.03 ) ( 0.02 )

βσ20 1.5 1.509 1.507 1.509 1.506 1.514 1.521 1.498 1.502

( 0.25 ) ( 0.18 ) ( 0.15 ) ( 0.12 ) ( 0.19 ) ( 0.13 ) ( 0.11 ) ( 0.09 )

βσ21 -.035 -.036 -.035 -.036 -.035 -.036 -.037 -.035 -.035

( 0.03 ) ( 0.03 ) ( 0.02 ) ( 0.01 ) ( 0.02 ) ( 0.02 ) ( 0.01 ) ( 0.01 )

βσ22 -.11 -.113 -.111 -.109 -.11 -.114 -.113 -.113 -.112

( 0.09 ) ( 0.07 ) ( 0.06 ) ( 0.04 ) ( 0.07 ) ( 0.05 ) ( 0.04 ) ( 0.03 )

βσ23 .1 .107 .102 .096 .1 .107 .101 .1 .101

( 0.09 ) ( 0.06 ) ( 0.06 ) ( 0.05 ) ( 0.07 ) ( 0.05 ) ( 0.04 ) ( 0.03 )
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Figure 1: (a) RMSE for parameter ḡ and (b) RMSE for parameter c, for different values of ḡ and α.

X-axis: length T of the time series. Shade of grey: number of observations nt per time period (from 10

(black) to 50 (white)).
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Figure 2: Average power of 5% Wald tests, across the 18 parameters under (a) the null of the regression

coefficients taking their true values and (b) the null of the regression coefficients being equal to 0. Red

solid: test level. Shade of grey: number of observations nt per time period (from 10 (black) to 50

(white)).
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Table 2: Sizes of the LR test given by eq. (13), with various methods to compute the rejection region.

BS refers to the bootstrap procedures, assessed through the warp-speed approach. Sizes are obtained

from N = 1, 000 Monte Carlo samples.

Test level 5% 10%

# cov. BS χ2
2×p χ2

2×p+2 χ2
2×p+4 BS χ2

2×p χ2
2×p+2 χ2

2×p+4

p = 3 4.7% 18.3% 8.1% 3.5% 8.8% 29.8% 16.7% 7.8%

p = 4 5.5% 18.4% 9.4% 4.7% 10.9% 29.3% 17.6% 9.4%

p = 5 6.5% 16.4% 9.9% 5.6% 10.7% 26.6% 16.2% 10.1%

Figure 3: Comparison between the empirical distribution of the likelihood-ratio (dark grey), the warp-

speed bootstrap distribution (light grey), χ2
2×p (dashed dotted), χ2

2×p+ (solid) and χ2
2×p+4 (dashed)

distributions.

4 Data

In this section, we present the characteristics of the studied operational loss data, as well

as the explanatory variables used for our regression analysis.

4.1 Operational loss data at UniCredit

Operational loss data have been provided by UniCredit risk department. Losses have been

recorded over the period 2005M1 - 2014M6 and across three event types (execution, de-

livery and process management - EDPM; client, product and business practices - CPBP;

external frauds - EFRAUD). Initially, our database consists in 13,209, 16,138 and 6,391

losses, respectively. Loss amounts have been adjusted for inflation using the Italian con-

sumer price index. For anonymity reasons, losses have been multiplied by an unknown
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factor.

To select extreme losses, we set our selection threshold τ as the empirical quantile at

level 75% for a given ET7. Eventually, we conduct our analysis on the 25% largest losses,

leading to final samples of size 3, 288, 4, 019, and 1, 585, and a total sample of size 8, 892.

The selected extreme losses are displayed in Figure 4. In Section 5, we conduct a joint

analysis, accounting for potential ET-specific dependence structures.
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Figure 4: Excess losses, over time, for the three different event type. From left to right: EFRAUD,

EDPM and CPBP.

The large dispersion of the losses makes it hard to have an intuitive look at these data.

This issue highlights the need to account for these extremes to assess the dependence

structure. Nevertheless, it is possible to distinguish several periods where losses appear

particularly large. For EFRAUD, 2007 and 2009-2010 seem more concerned. For EDPM,

we observe an increase in the dispersion starting in 2007, with a peak in 2009, before a

decrease the next years. Lastly, for CPBP, we observe several peaks: in 2007, 2009, as well

as between mid-2010 and 2012. Overall, it seems clear that the losses have heterogeneous

distributions over time.

The observed counts of the extremes are depicted in Figure 5, panel (a) to (d). Overall,

we observe a progressive decrease of the number of monthly losses over time, as well as

a clear seasonal pattern, probably due to reporting. See, e.g., Chernobai and Yildrim

[2008] and Chernobai et al. [2011] for a discussion on this phenomenon. The largest share

belongs to the CPBP event type. We also observe a clear positive correlation between the

number of losses in each event type, suggesting that common factors are driving the loss

process. It emphasizes the needs (and the usefulness) of a joint modeling of the data.

7Extensive discussion on threshold selection for this dataset can be found in Hambuckers et al. [2018a],

who used ET-specific quantiles at level 75%. Due to the complexity of the phenomenon investigated, we

believe that 75% offers a good balance between a large sample size and correct specification of extremes.

Additional analyses with a 90% threshold are available in the supplementary material.
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Figure 5: Number of losses in the different event types. Graph (a) gives the sum of the losses over time,

on a monthly basis: grey for EFRAUD, blue for EDP and red for CPBP. Graphs (b) to (d) plot the

number of the losses of one event type against those of another one.

4.2 Economic determinants and transition variable

To each extreme loss, we associate a set of economic determinants registered the previous

month8. Relying on previous finding in Chernobai et al. [2011], Cope et al. [2012] and

Hambuckers et al. [2018a], we use the following variables: the VIX, the St. Louis Fed

financial stress index (FSI), the economic policy uncertainty indices (EPU) of Baker et al.

[2016] for the European Union (EU) and Italy, EU and Italian industrial production growth

rates, the Italian yield spread on 10-year government bond w.r.t. German yield, as well

as the past number of extreme losses. Due to data availability and a desire to limit the

complexity of our model, we restrict our attention to this small set of predictors. In

particular, the use of aggregate indices allows us to indirectly pre-select and control for a

large number of macroeconomic factors at a small cost in terms of parameters. Indeed, the

8Using lagged value of the predictors allows us to minimize reverse causality and endogeneity issues, as

well as providing an obvious framework for prediction.
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FSI is constructed from the principal component of 18 weekly data series: seven interest

rate series, six yield spreads as well as five other macroeconomic indicators (like the VIX),

and measures the degree of financial stress in the markets. On the other hand, EPU

is based on newspaper coverage frequency of specific words9, and proxies movements in

policy-related economic uncertainty [Baker et al., 2016]. Here, the focus is on the dynamic

of the dependence structure, especially with the past number of losses, rather than on the

explicit identification of relevant predictors.

A series of theoretical justifications have been advanced to explain the apparent link

between these predictors and loss severity. Regarding macroeconomic factors (i.e. indus-

trial production growth ), they are indicative of the size of transactions: in good economic

times, transactions are larger, increasing the likelihood of large losses [Hambuckers et al.,

2018a, Cope et al., 2012]. Booming economic conditions may also create incentives to

commit larger frauds, and to increase the size of fine and compensation claims in court

settlements [Povel et al., 2007]. On the other end, financial stability and economic uncer-

tainty (as measured by FSI, EPU and spreads) might impact the loss formation process,

through its effect on the price of financial products: when volatility or instability of finan-

cial market are high, the likelihood of a market crash increases. Consequently, system’s

failures or people’s mistakes causing timing issues are rapidly costly. In addition, high

uncertainty and high risk aversion usually lead to a looser monetary policy, as measured

by real interest rates [Bekaert et al., 2013]. This policy has been shown to incentivize

banks to adopt more risky investment strategy, making costly operational mistakes more

likely [Delis and Kouretas, 2011, Boubaker et al., 2017]. Therefore, we use the FSI and

EPU to capture these effects. Italian spreads allow controlling for the general financial

context in Italy.

Regarding the use of the past number of extreme losses, this feature is particularly

important to establish the total operational risk capital with models based on compound

processes [Chapelle et al., 2008, Brechmann et al., 2014]. Moreover, if a relationship

exists between the number of past claims and future loss amounts, it would provide risk

managers with readily available indicators, allowing them to take risk mitigation action.

One possible reason for the existence of this relationship is suggested in Chernobai et al.

[2011], who report that most operational losses can be traced back to a breakdown of

internal controls. Hence, if the number of losses is indicative of the quality of internal

controls, it might also convey some information about loss sizes implied by a given control

level. This point is also highlighted in Wang and Hsu [2013], who noticed that a failed

control environment is a major contributing factor to significant operational losses. The

inclusion of this variable as an important component in the baseline part of our model

allows to investigate this hypothesis. In particular, we face two possible situations: either

a self-excitation effect, where operational events are indicative of future larger losses; or a

self-inhibition effect, indicating a decrease in extreme losses. The former case is indicative

9E.g. for the US, the index reflects the frequency of articles in 10 leading U.S. newspapers that contain

the following terms like economic, uncertain, deficit, Federal Reserve, etc.
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of a persistent situation of breakdowns in internal controls. At the contrary, the latter

refers to situations where the failure of internal controls are corrected, such that future loss

sizes are mitigated. Whereas the relationship between severity and frequency processes

has been extensively studied for insurance data [Frees and Valdez, 2008, Shi et al., 2015,

Frees and Valdez, 2016], it is mostly overlooked in the operational risk literature. To the

best of our knowledge, the present study is the first one to investigate this dependency in

an extreme regression context. Notice that here we decompose past numbers of extreme

losses into the contributions of the different ET: to a loss in t belonging to e.g. EFRAUD,

we associate as predictor the number of EFRAUD losses registered over period t− 1.

For the transition variable, we use lagged end-of-month level of the Chicago Board

Options Exchange Market Volatility Index (CBOE VIX). VIX can be seen as “the risk-

neutral expected stock market variance for the US S&P500 contract and is computed

from a panel of options prices” [Bekaert and Hoerova, 2014]. In a number of studies,

VIX has been shown to convey predictive power of future structural changes. Among

others, Bekaert et al. [2013] and Bekaert and Hoerova [2014] show that high values of the

VIX are indicative for future financial instability and laxer monetary policy. In Adrian

and Shin [2010], the authors argue that, due to managerial constraints, periods of times

characterized by high values of the VIX are associated with a decrease in risk appetite

of financial intermediaries. Variation in the VIX seems also to have an effect on market

liquidity, thus capturing changes in market structure [Chung and Chuwonganant, 2014].

Hence, VIX seems to be a good indicator of future changes in expectations and risk

aversion of market participants. These two factors have necessarily an important impact

on the loss formation process. Indeed, such changes in expectations imply a modification

in the response of economic agents to economic changes; whereas a change in risk aversion

implies a modified response to economic incentives. Consequently, the use of the VIX

in our transition function, as the driver of the time-varying dependence, should allow to

capture these structural changes in the sense that they modulate the strength between

baseline factors (like internal controls) and the severity distribution. By doing so, we

specify an explicit channel i.e. changes in risk aversion, uncertainty and expectation, that

explain the time-varying dependence. Additionally, the use of the VIX in the transition

function can be seen as introducing nonlinear interaction effects between VIX and other

predictors, but with a limited number of parameters. To limit numerical instabilities

that could be caused by abrupt changes in the raw VIX data, we apply first a logarithm

transformation. It leads to distribution parameters being functions of the log-implied

volatility, as in Christensen and Prabhala [1998].

An alternative transition variable could be the FSI, as it is also indicative of financial

stress. However, as explained in Kliesen and Smith [2010], FSI “can be thought of as

coincident indexes rather than as leading indexes - that is, they are designed to measure

developments as they occur”. Therefore, even though FSI can possess some forward-

looking properties (after all, one of the series used in its construction is the VIX), we

prefer using the VIX, since numerous empirical studies documented its predictive ability
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(see references from the previous paragraph). From a practical perspective, unreported

results obtained with the FSI were particularly unstable as well, leading us to focus our

analysis on a transition model based on the VIX.

Time series of the explanatory variables are given in Figure 6. With these variables,

we capture both the high uncertainty around the Great Recession (characterized by high

values of the VIX and a drop in industrial growth), as well as the sovereign debt crisis

(characterized by a high EPU and increasing yield spreads). EPU and growth rates for

the EU and Italy are highly correlated. Thus, to assess the robustness of our results to

issues related to the near-singularity of the predictors’ matrix, we consider also models

with either only EU or Italy-related variables.
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Figure 6: Measures of uncertainty on the financial markets and of the economic context (first row):

(a) VIX, (b) FSI and (c) EPU for EU (solid) and Italy (dashed). Second row: (d) Growth rate of the

industrial production (monthly basis, solid: EU, dashed: Italy) and (e) 10-year government bond yield

for Germany (solid) and Italy (dashed). In the regression analysis, we use the difference between the

time series.

5 Results

In this section, we apply the proposed model to UniCredit operational losses, using the

predictors described in the previous section. The vectors of predictors for the most complex

model are given in Table 3. For γ, we restrict the predictors to the ET, whereas we include

all economic variables in the structural equation of σ. The model is estimated jointly for

the pooled losses from the different event types.
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Table 3: Summary of the explanatory variables used in the most complex model, referred as ’Full’ in

the latter. cst refers to a global constant term, EFRAUDt,i and CPBPt,i are binary variables indicating

if the ith loss at time t belongs to EFRAUD (resp. CPBP) event types, nETt−1 is the number of losses

taking place at time t − 1 for the event type of the ith loss at time t. The product between nETt−1 and

the ET variables are ET-specific effects of past counts. EPUEUt−1, EPUITt−1, ∆indprodEUt−1, ∆indprodITt−1,

∆yieldt−1 and FSIt−1 are the EPU for EU and Italy, the growth rate of the monthly industrial production

for the same geographical regions, the yield difference of 10-year government bonds between Italy and

Germany and the FSI index, respectively.

Variable Content

st log(VIXt−1)

xσt,i cst,EFRAUDt,i, CPBPt,i

nETt−1, n
ET
t−1 × EFRAUDt,i, n

ET
t−1 × CPBPt,i

EPUEU
t−1,EPUIT

t−1,∆indprodEUt−1

∆indprodITt−1,FSIt−1,∆yieldt−1

xγt,i cst,EFRAUDt,i,CPBPt,i

5.1 ST models are superior

We investigate the fit provided by subgroups of predictors (EU variables only, Italian

variables only, ET variables only and no covariates), with the idea to identify the best

model among a set of alternatives that include both ST and non-ST models. In a first

step, we look at three criterion: AIC, BIC and censored likelihood score (CLS) in the idea

of Diks et al. [2011]. This last criterion is particularly useful to assess the goodness-of-fit

of extreme observations, avoiding both selection bias and outcome conditioning (see, e.g.

the discussions in Lerch et al. [2017] and Gneiting and Ranjan [2011]). The CLS for a

giving censoring threshold α is given by [Diks et al., 2011]

CLSα = −
T∑
t=1

nt∑
i=1

{
1(yt,i > κ(α)) log(gpd(yt,i; γ̂t,i, σ̂t,i)))

+ 1(yt,i ≤ κ(α)) log(GPD(κ(α); γ̂t,i, σ̂t,i)))
}
,

(16)

where γ̂t,i and σ̂t,i are estimated parameters for observation yt,i. We choose κ(α) as the

empirical α-quantile of y for various values of α, giving special weights to extremely large

observations [Hambuckers et al., 2018a]. Additionally, to control for potential in-sample

overfitting, we consider a cross-validated version of (16), where we replace γ̂t,i and σ̂t,i by
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their corresponding cross-validated estimators10. This criterion is denoted CLSCVα .

Looking first at AIC (Table 4), we see that the ST models fit best the data. The best

model appears to be the one with EU variables only (i.e. excluding Italian growth rate

and EPU). However, penalizing more for the number of parameter through the use of the

BIC, we see that the models without ST effects are preferred. Nevertheless, what matter

most in the present application is the goodness-of-fit of extreme observations. Indeed,

such observations are the one driving mostly the distribution of the total loss, and for

which it is critical to have a good estimation of the distribution to ensure a proper risk

assessment. Using the cross-validated CLS with α ranging between .5 and .99 (Figure 7),

conclusions are unequivocal: ST models are preferred for every censoring level, whereas

proportional differences of the CLS between the best ST model (model ’Full’) and non-

ST models increase with the threshold. Such a result indicates that extremes are way

better modelled via the ST approach, rather than with traditional GP regression models,

highlighting the importance of the non-stationary component. In Table 4, for clarity, we

only report the difference in CLS for α = .9, expressed as a percentage of the CLS for

the ST model ’Full’. As robustness checks, we repeat these operations using ET-specific

quantiles for the censoring thresholds in equation (16) (Figure 12 in Appendix B). We

arrive at the same conclusion.

To test for a significant difference in (in-sample) CLS between the various models, we

use the stepwise superior predictive ability (SPA) bootstrap test of Hsu et al. [2010] on

the individual censored scores. As benchmark, we use the best non-ST model (i.e. non-ST

’Full’). With this testing procedure, we identify sequentially models with a performance

significantly better than the benchmark (Table 5). We find the ST models ’Full’, ’EU’ and

’Italy’ to be significantly better than all non-ST models at the 5% test level. Repeating the

same test using this time the ST models ’EU’, ’Italy’ or ’Full’ as benchmarks, respectively,

we conclude that no model can beat ST ’Full’. Moreover, ST ’Full’ and ST ’EU’ are

found to be significantly better than ST ’Italy’. These results hold for various values of α

between .5 and .95 (see Appendix B for the complete results).

Then, we apply the likelihood ratio test described in Section 2.3 to test for a signif-

icant ST effect. It leads us to reject the linearity hypothesis in all cases (Table 6). We

conclude from this exercise that the smooth transition component is an important feature

of the data. Regarding the various subsets of covariates considered, we see that the ST

models ’Full’ and ’EU’ provide significantly better fits in term of CLS than all the other

specifications tested.

10We use 10-fold cross-validation: we randomly split the sample into 10 subgroups. Then, we remove

one subgroup at a time, fit the models on the remaining 9 groups, and compute the CLS statistic on the

omitted group. The final cross-validated CLS is the sum of the CLS on the 10 groups.
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Table 4: AIC, BIC and cross-validated censored likelihood score (CLS) of Diks et al. [2011] for various

submodels, with a smooth transition (ST) component (upper panel) or a simple GP regression structure

(lower panel). Cst refers to a model without explanatory variables, beside the VIX in the ST case.

ET only refers to a model with only the ET as explanatory variables. Italy refers to a model without

∆indprodEUt−1 and EPUEUt−1, whereas EU refers to a model without EPUITt−1 and EPUITt−1. Full refers to

the model with the variables given by Table 3.

ST Model Full EU Italy ET only Cst

AIC 46,449.93 46,445.17 46,460.92 46,465.48 46,890.46

BIC 46,676.90 46,643.77 46,659.52 46,564.78 46,933.02

∆CLS.9 0% 0.04% 0.10% 0.19% 1.09%

∆CLSCV.9 0% 0.06% 0.18% 0.27% 0.83%

No ST Full EU Italy ET only Cst

AIC 46.491.48 46,487.87 46,494.12 46,487.01 46,917.34

BIC 46,597.87 46,580.08 46,586.33 46,529.56 46,931.53

∆CLS.9 .39% .39% .43% .46% 1.36%

∆CLSCV.9 .25% .24% .27% .29% 1.04%
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Figure 7: Differential in cross-validated CLS, as a percentage of CLSCVα for the ST model ’Full’. Positive

differences imply a less favorable fit for the alternative model. Solid (resp. dashed): ST (resp. non-ST)

models. +: ’ET only’; ∗: ’Italy’, ◦: ’EU’, O: ’Full’. Red: ST model ’Full’. Models ’Cst’ have been

ommited for readability.
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Table 5: P-values of the stepwise SPA test of Hsu et al. [2010]. We test the null that no alternative

model is better, in term of mean censored score, than a benchmark model. Only the p-values for the

models having a better score are reported. We perform this test with various benchmarks: non-ST Full,

ST Italy and ST EU. We use B = 2, 000 resamples and the same MATLAB implementaton as Hsu et al.

[2010]

ST models

Benchmark α Full EU Italy ET only

non-ST Full .5 .006 .008 .023 .210

.75 .006 .010 .024 .100

.90 .026 .036 .067 .097

.95 .028 .036 .102 .127

.99 .065 .068 .086 .088

ST Italy .5 0.012 .097 - -

.75 0.012 .188 - -

.90 0.005 .099 - -

.95 < .001 .001 - -

.99 0.126 .152 - -

ST EU .5 0.101 - - -

.75 0.004 - - -

.90 0.01 - - -

.95 0.131 - - -

.99 0.812 - - -

Table 6: P-value of the likelihood ratio tests. Left panel: the null model (on the horizontal line) is a

ST model, and is tested against an alternative ST model (first colum). Right panel: the null model is

a classical GP regression model, and is tested against an alternative ST model. For these tests, due to

the unidentification issue under H0 discussed in Section 2.3, rejection regions are corrected accordingly.

H0: ST models H0: non-ST models

H1/H0 EU Italy ET only Cst Full EU Italy ET only Cst

Full .52 < .01 < .01 < .01 < .01 < .01 < .01 < .01 < .01

EU - - < .01 < .01 - < .01 - < .01 < .01

Italy - - .003 < .01 - - < .01 < .01 < .01

ET only - - - < .01 - - - < .01 < .01

Another important question consists in knowing if the ST model provides better Value-

at-Risk (VaR) i.e. quantile estimate, of the total loss distribution11. To assess the various

severity models on a ground independent from a frequency model, we compute quantile

11The quantile at level α of Y , Qα, is defined such that P(Y ≤ Qα) = α.
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estimates conditional on knowing the exact number of losses taking place over each time

period. That is, for each model and time period, we simulate 1 million samples of losses

using fixed covariates and fixed count data. Then, we compute the simulated total loss

and retrieve the empirical quantile at various levels (95%, 97.5% and 99%) 12. Estimated

VaR at level .975 for various models are plotted over the total loss in Figure 8. The

performance of each model is assessed via the multivariate unconditional coverage test

proposed in Colletaz et al. [2013]. In this approach, we test jointly for the correctness of

the number of exceptions and super exceptions. An exception is defined as a time period

where the total loss is larger than the estimated VaR. This procedure accounts not only

for the number of VaR exceedances for a level of interest α1, but also for their magnitudes,

by computing simultaneously a VaR at level α2, with α2 > α1. More formally, we test the

following null hypothesis:

H0 : E(It(α1)) = α and E(It(α2)) = α2, (17)

where It(α1) is an indicator function taking value 1 if the total loss at time t is larger than

the VaR at level α1 (It(α2) is similarly defined). Defining N(α) =
T∑
t=1

It(α) as the number

of exception for level α, we test (17) relying on the likelihood ratio test statistic given by

LRMUC(α1, α2) = −2 log
[
α
T−N(α1)
1 (α2 − α1)N(α1)−N(α2)(1− α2)N(α2)

]
+ 2 log

[(
N0

T

)N0
(
N1

T

)N1
(
N(2)

T

)N(α2)
]
,

(18)

with N0 = T − N(α1) and N1 = N(α1) − N(α2). The finite sample distribution of (18)

is obtained via simulations for T = 113, using the procedure proposed in Section 2.3 of

Colletaz et al. [2013] 13. Table 7 shows the results of the LRMUC test obtained from

the observed number of exceptions and super exceptions for all models and various VaR

levels (see Appendix B, Table 10 for a detailed presentation of the number of exceptions).

Non-ST models lead to larger numbers of rejections, at all levels, compared to ST models.

In particular, we reject the correct specification of all non-ST models at level .99, whereas

this is not the case for the VaR of all ST models. Except for α1 = .95 and α2 = .975, the

correct specification of the ST model ’Full’ and ’EU’ is never rejected at the 5% test level.

Remark that the ST model ’ET only’ seems to perform quite well in this exercise, too.

However, it comes at the price of larger fluctuations in the VaR estimates far in the tail,

which is costly and unpractical for banks. For example, the computation of the ratio of

mean, median, standard error and maximum value of the VaR at level α = .99 between the

ST models ’Full’ and ’ET only’ reveals that the former is more parsimonious: the mean

and median VaR are 10% and 15% smaller, the variance is reduced by 12% whereas the

12Notice that some results exist to retrieve analytically the distribution of the sum of heavy-tail random

variables, but only in the i.i.d. case, see e.g. Kratz [2014].
13In this procedure, we simulate 1,000,000 time series of length T = 113 from a U(0,1) distribution, and

compute how many times the r.v. are larger than α1 and α2. Then, the distribution of (18) is obtained

from the empirical distribution.
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maximum VaR is shrunk by 24%14. Hence, the ST model ’Full’ seems more appropriate,

for a bank to infer its operational risk capital reserves. Figure 8 displays the total loss and

the VaR at level .975 for the ST models ’Full’ and ’ET only’, as well as the non-ST model

’Full’. It illustrates that the alternatives to the ST model ’Full’ imply either excessively

large or too small VaR, leading to a costly insurance mechanism or unwanted exceptions.

Table 7: Results of the multiple LR test of Colletaz et al. [2013], using various values for α1 and α2. In

parenthes, p-values obtained from a simulation procedure with 106 samples of length T = 113.

Multivariate unconditional coverage test

ST models non-ST models

(α1, α2) Full EU Italy ET only Cst Full EU Italy ET only Cst

(.95, .975) 4.54 4.54 9.05 1.9 4.543 6.10 7.12 6.10 6.10 7.12

(.039) (.039) (.003) (.314) (.042) (.016) (.009) (.016) (.016) (.009)

(.95, .99) 2.89 2.89 4.25 2.29 3.63 5.94 5.94 5.94 5.94 5.94

(.101) (.101) (.056) (.156) (.086) (.019) (.019) (.019) (.019) (0.019)

(.975, .99) 0.88 0.88 0.27 0.84 6.75 2.21 2.47 2.21 2.21 6.57

(.168) (.168) (.457) (.233) (.009) (.116) (.069) (.116) (.116) (.011)

(.975, .995) 0.30 0.30 1.17 0.45 4.51 1.40 0.50 2.45 2.45 6.67

(.301) (.301) (.16) (.301) (.033) (.123) (.236) (.08) (.08) (.007)

(.99, .995) 0.55 0.55 0.55 0.06 0.02 2.49 2.49 2.49 2.49 2.49

(.235) (.235) (.235) (.533) (.900) (.024) (.024) (.024) (.024) (.024)

14Comparing the ST model ’Full’ with its non-ST counterpart, we find that the median VaR at level .99

is 15.5% smaller for the ST model.
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Figure 8: Comparison between various VaR estimates at level .975 and the total loss distribution (black

bar chart). Solid: ST model ’Full’. Dashed: ST model ’ET only’. Dashed-dotted: non-ST model ’Full’.

5.2 Economic determinants of operational risks severity

In light of these various performance indicators, we continue our analysis by discussing the

estimated coefficients obtained with the ST model ’Full’. Estimates and associated con-

fidence intervals are displayed in Table 9. We find coefficients significantly different from

zero in both limiting regimes. We also test for differences in regression coefficients across

limiting regimes, and found significant differences (Table 9 in Appendix B). Remember

that the distribution parameters are given by (equations (11) and (12)):

γ(xγt,i, st) = h
(

(xγt,i)
Tβββγ2

)
+ φ(st)

(
h
(

(xγt,i)
Tβββγ1

)
− h

(
(xγt,i)

Tβββγ2

))
,

σ(xσt,i, st) = h
(
(xσt,i)

Tβββσ2
)

+ φ(st)
(
h
(
(xσt,i)

Tβββσ1
)
− h

(
(xσt,i)

Tβββσ2
))
.

Thus, βσ2 and βγ2 summarize the complete dependence structure in period of low un-

certainty, i.e. when the VIX is below 20. Indeed, as shown on Figure 9, panel (b), the

transition function φ is around zero for VIX values up to that threshold. Similarly, for

values of the VIX around 30 and above, φ is equal to one and (βσ2 , β
γ
2 ) govern the de-

pendence. Figure 9, panel (a) shows that low uncertainty periods cover roughly the time

frames 2005M1-2007M7 and 2012M7-2014M6. The main high uncertainty periods are

roughly 2007M8-2008M4, 2008M10-2010M2 and 2011M8-2012M1.

In the low uncertainty period, σ is rather constant: we find few effects of the covariates,

with the notable exception of the FSI and the industrial production growth rate. The

positive signs of the regression coefficients are consistent with previous studies [Cope

et al., 2012, Hambuckers et al., 2018b] suggesting that an increase in economic activity,

via a mechanic increase in the size of the transactions, leads to bigger operational losses

27



and more extreme losses. Similarly, a high level of financial stress can be related to an

increase in liquidity issues, which in turn increase the likelihood of extreme losses. Past

counts seem to not have any effect on the severity distribution either in these conditions.

Looking at differences across ET, CPBP has the highest ET-specific constant, followed

by EFRAUD then EDPM. Regarding γ, we observe discrepancies across ET as well, with

EDPM having the heaviest tail, followed by CPBP then EFRAUD. CPBP is thus found

to be a riskier ET than EFRAUD, a result in line with Cope et al. [2012]

Now, looking at the high uncertainty regime, we observe important changes: first, the

value for γ increases for every ET, indicating a higher likelihood of extreme losses, ceteris

paribus, in a highly uncertain context. This is consistent with previous findings in Cher-

nobai and Yildrim [2008], Cope et al. [2012], Hambuckers et al. [2018b] and Hambuckers

et al. [2018a] that connect high uncertainty with laxer monetary policies followed by more

risky investments [Bekaert et al., 2013, Boubaker et al., 2017, Delis and Kouretas, 2011].

Another explanation is the impact of unexpected price variations of derivatives on losses

stemming from delivery, pricing, selling issues or IT system crashes.

Second, nETt−1 exhibits a significant and negative effect. We observe some discrepancies

across ET as well, probably due to scaling differences in the number of losses. Overall, it

suggests a self-inhibiting mechanism, where recent events lower the likelihood of extreme

losses. This effect might be due to the reviews of internal processes, reinforced controls and

various adjustments in the monitoring procedures that usally follow operational events.

Whereas regular monitoring of the processes and corrective actions of control systems are

a reality in practice, they are rarely included in statistical analyses due to a lack of useful

data. Our study suggests that such an effect might exist, and should be accounted for. Of

course, the direction of the effect here is probably specific to UniCredit, and it is likely that

we would observe other mechanisms (self-excitation or self-inhibition) in another financial

institution. However, this result highlights that one can use the proposed approach to

detect and test for the resilience of internal controls following operational events. This

result is also to be put in perspective with findings in Chernobai et al. [2011] and Wang

and Hsu [2013] regarding the impact of internal controls on the frequency process. Even

if we indirectly test for the same effect on the severity distribution via the use of past

counts, it indicates that the use of internal control weakness indicators, G-index and so

forth can prove useful to model the severity distribution.

Third, we observe negative and significant effects of ∆indprodEUt−1, FSIt−1 and ∆yieldt−1.

For ∆indprodEUt−1, we conjecture that a recession combined with a high level of uncertainty

might also lead to laxer monetary policies, incentivizing banks to take more risky invest-

ments for which operational mistakes are more costly. The observed effect can also be

related to the counter-cyclicality of insurance frauds found in Dionne and Wang [2013],

where the severity of external fraud losses is higher in recession times. Here, however,

we can distinguish between periods of high or low uncertainty. Regarding FSIt−1, in a

situation of high uncertainty, an increase in financial instability could be responsible for a

shift in risk preferences, pushing towards less risky investment. This phenomenon comes
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as a counterbalance of the effect of ∆indprodEUt−1. Then, for ∆yieldt−1, a decrease in yield

means either an increase in Germany’s yield or a decrease in Italian’s yield larger than the

opposite side of the spread. Hence, a decrease in spread can be associated to relatively

cheaper financing conditions from an Italian point of view. This phenomenon can be re-

lated as well with an incentivizing context for riskier investments. For example, Bruno and

Shin [2015] find evidence of monetary policy spillovers due to cross-border capital flows,

and highlight that a decrease in funding costs will affect decisions by the banks regarding

how much exposures to take on, leading to greater risks. A similar effect is suggested in

Angeloni et al. [2015]. UniCredit being a large European bank active in various countries,

we can expect it to be quite sensitive to this channel. Lastly, EPUEU
t−1 seems positively

related with the likelihood of large losses, indicating that anticipated economic instability

correlates positively with extreme losses.

Between these two limiting regimes, the transition component φ allows capturing inter-

mediate situations, where uncertainty modulates the effect of the covariates. Especially,

it gradually increases γ along an increase in uncertainty. From a theoretical perspective,

it also allows the mixing of the different channels (market volatility and transaction sizes

versus laxer monetary policy and self-inhibition) to depict a more subtle situation than

would have been inferred from non-ST models. Regarding the link with past losses, Figure

10 displays the time-varying effect of a change in nETt−1 on σ, as a function of the VIX15.

We can deduce from these graphs regions where σ is more sensitive to changes in nETt−1 i.e.

when the VIX is high.

Figure 11 shows the estimated γ and σ over time for the different ET. We display the

quantile at level 90% as a measure of the risk (bottom row). As highlighted previously, we

observe a higher likelihood of extremes during the financial crisis (end of 2008) and the

debt crises (2011 and 2012).

15We display the marginal change, conditional on all the other covariates taking a value equal to their

historical medians.
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Table 8: Estimated regression coefficient obtained from the ST model ’Full’. In parentheses, estimated

standard errors of the estimates. * (resp. ** and ***) denotes coefficients found significantly different

from zero at the 5% (resp. 1%) test level.

Variable βσ1 βσ2 βγ1 βγ2 ḡ c

log(VIXt−1) - - - - 0.17 3.12

- - - - (.15) (.04)

Cst 1.19∗∗∗ .38∗∗ 0.13∗∗∗ 0.01 - -

(.34) (.16) (.06) (.05) - -

EFRAUDt,i -.88∗ .11 -0.50∗∗∗ -0.75∗∗∗ - -

(.47) (.16) (.14) (.11) - -

CPBPt,i .02 .57∗∗∗ -0.20∗∗ -0.42∗∗∗ - -

(.40) (.14) (.09) (.07) - -

nETt−1 -2.18∗∗∗ .01 - - - -

(.65) (.19) - - - -

nETt−1 × EFRAUD 1.63∗ -.01 - - - -

(.87) (.23) - - - -

nETt−1 × CPBP 1.29 ∗ .28 - - - -

(.73) (.21) - - - -

EPUEU
t−1 .83∗∗ .22 - - - -

(.42) (.29) - - - -

EPUIT
t−1 .81 -.02 - - - -

(.51) (.23) - - - -

∆indprodEUt−1 -11.23∗∗∗ 4.91∗ - - - -

(3.79) (2.68) - - - -

∆indprodITt−1 1.73 .26 - - - -

(2.51) (1.96) - - - -

FSIt−1 -.53∗∗∗ .50∗ - - - -

(.19) (.27) - - - -

∆yieldt−1 -24.22∗∗∗ 3.66 - - - -

(6.99) (4.15) - - - -
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Figure 9: Value of the transition function φ (a) over time and (b) as a function of the VIX (right panel).

Dashed lines denote 50% asymptotic confidence intervals.
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Figure 10: Response surface of parameter σt,i as a function of past count (nETt−1) and lagged value of the

VIX, for EFRAUD, EDPM and CPBP.
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Figure 11: From top to bottom: estimates of γ, σ and the 90% quantile, respectively. Thick line: esti-

mated parameters over time. Thin line: 99% confidence intervals obtained from the posterior simulation

procedure of Wood [2006], for a fixed transition function.

6 Conclusion

In this paper, we focus on the issue of connecting the severity distribution of operational

losses with the uncertainty on the financial markets and the economic context of a financial

institution. In particular, we are interested in the link between past number of losses (i.e.

the frequency process) and the severity, with the idea that it proxies the intensity of

internal controls.

Acknowledging the potential time-varying effect of changes in economic context due

to changes in uncertainty level, we introduce a smooth transition generalized Pareto (ST-

GPD) regression approach. This model has the advantage to account for a high probability

of extremes and to allow for changing effects of explanatory variables, over time, via a

transition function driven by an uncertainty measure. We highlight in a simulation study

the good properties of the proposed estimation and testing procedures.

Then, we conduct an empirical study of the dynamics driving operational losses severity

at UniCredit. As our transition variable, we use the VIX. We discover that smooth

transition structures are highly relevant to improve the goodness-of-fit of extremes. In

addition, we suggest that two different mechanisms are at work: in low uncertainty periods,

the severity is mostly driven by economic growth and financial instability. On the other

end, in high uncertainty periods, we observe a strong inhibition effects suggesting that

monitoring and supervision processes at UniCredit following operational events mitigate

the likelihood of extremes in subsequent periods. In addition, we find situations synonym
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of laxer monetary policies and financing conditions to significantly increase the risk of

extreme losses.

Our findings have several policy implications from a risk management perspective: first,

the time-varying dependence structure needs to be accounted for, to provide adequate risk

estimates for the total loss distribution. Neglecting this effect can lead to too many VaR

breaches or too much capital to be reserved. Second, measures of internal control seri-

ousness provide useful indications for the future likelihood of extreme operational events.

Therefore, including such indicators in an early-warning system would presumably allow a

finer management of risk levels. In particular, evidence of self-inhibition mechanism could

ensure counter-cyclical capital requirement, since it accounts for the reduction of risks that

follows operational events. Lastly, a general uncertainty measure like the VIX seems to

convey some information regarding the strength of the connection between financial fac-

tors and the severity of operational events. Thus, a regular re-assessment of operational

risks along changes in this uncertainty seems to be needed for proper measurements and

monitoring.
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D.W.K Andrews and W. Plöberger. Optimal tests when a nuisance parameter is present

only under the alternative. Econometrica, 62(6):1382–1414, 1994.

A. Ang and A. Timmermann. Regime changes and financial markets. Annual Review of

Financial Economics, 4(1):313–337, 2012.

I. Angeloni, E. Faia, and M.L. Duca. Monetary policy and risk taking. Journal of Economic

Dynamics and Control, 52(C):285 – 307, 2015.

F. Aue and M. Kalkbrener. LDA at work: Deutsche Banks approach to quantifying

operational risk. Journal of Operational Risk, 1(4):49–93, 2006.

S.R. Baker, N. Bloom, and S.J. Davis. Measuring economic policy uncertainty. The

Quarterly Journal of Economics, 131(4):1593–1636, 2016.

A. Balkema and L. de Haan. Residual life time at great age. The Annals of Probability, 2

(5):792–804, 1974.

Basel Committee on Banking Supervision (BCBS). Basel II: international convergence

of capital measurement and capital standards. A revised framework. Technical report,

Bank of International Settlements, Basel, Switzerland, 2004.

R. Becker, W. Enders, and S. Hurn. A general test for time dependence in parameters.

Journal of Applied Econometrics, 19(7):899–906, 2004.

33



G. Bekaert and M. Hoerova. The VIX, the variance premium and stock market volatility.

Journal of Econometrics, 183(2):181–192, 2014.

G. Bekaert, M. Hoerova, and Duca M.L. Risk, uncertainty and monetary policy. Journal

of Monetary Economics, 60(7):771–788, 2013.

S. Boubaker, D. Gounopoulos, D.C. Nguyen, and N. Paltalidis. Assessing the effects of

unconventional monetary policy and low interest rates on pension fund risk incentives.

Journal of Banking & Finance, 77:35–52, 2017.

E. Brechmann, C. Czado, and S. Paterlini. Flexible dependence modeling of operational

risk losses and its impact on total capital requirements. Journal of Banking & Finance,

40:271 – 285, 2014.

V. Bruno and H.S. Shin. Capital flows and the risk-taking channel of monetary policy.

Journal of Monetary Economics, 71:119–132, 2015.

F. Chan and M. MacAleer. Maximum likelihood estimation of STAR and STARGARCH

models: theory and Monte Carlo evidence. Journal of Applied Econometrics, 17(5):

509–534, 2002.

F. Chan and M. MacAleer. Estimating smooth transition autoregressive models with

GARCH errors in the presence of extreme observations and outliers. Applied Financial

Economics, 13(8):581–592, 2003.

F. Chan and B. Theoharakis. Estimating m-regimes STAR-GARCH model using QMLE

with parameter transformation. Mathematics and Computers in Simulation, 81(7):1385–

1396, 2011.
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A Extensions

B Additional results

In this appendix, we provide additional results, highlighting the robustness of our findings

to the specification of the different tests. First, we use an ET-specific quantile to compute

the CLS statistics (Figure 12). The ranking stays unchanged, and we observe the same

increase of the gap between non-ST and ST models when the censoring threshold increases.

Then, Table 9 displays the results of the test for significant differences across limiting

regression models, whereas in Table 10 we provide the number of VaR breaches suffered

with the various models.
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Figure 12: κ(α) is computed here as an ET-specific quantile of order α. Differential in CLS (given by

equation (16)), as a percentage of the CLS for the ST model ’Full’. Positive differences imply a less

favorable fit for the alternative model. Solid (resp. dashed): ST (resp. non-ST) models. +: ’ET only’;

∗: ’Italy’, ◦: ’EU’, O: ’Full’. Red: ST model ’Full’.
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Table 9: Wald test of a significant difference between regression coefficients of the different limiting

regimes. We report the observed difference and correspponding estimated standard errors. *, ** and

*** indicate rejections of the null of no differences at the 10%, 5% and 1% test levels, respectively.

Variable ∆βσ ∆βγ

Cst 0.81∗∗∗ 0.123

(0.39) (0.07)

EFRAUDt,i -0.991∗∗ 0.254

(.5) (0.18)

CPBPt,i -0.554 0.224∗

(.43) (.12)

nETt−1 -2.188∗∗∗ -

(.7) -

nETt−1 × EFRAUD 1.644∗ -

(.91) -

nETt−1 × CPBP 1.008 -

(.78) -

EPUEUt−1 0.605 -

(.51) -

EPUITt−1 0.826 -

(.56) -

∆indprodEUt−1 -16.145∗∗∗ -

(4.71) -

∆indprodITt−1 1.472 -

(3.36) -

FSIt−1 -1.035∗∗∗ -

(.32) -

∆yieldt−1 -27.878∗∗∗ -

(8.31) -

Table 10: Number of exceptions, i.e. number of time periods where the historical total loss is larger than

the estimated quantile at level α.

Number of exceptions

ST models non-ST models

α Full EU Italy ET only Cst Full EU Italy ET only Cst

.9 18 18 18 18 19 17 16 16 16 18

.95 10 10 11 9 10 12 12 12 12 12

.975 3 3 2 4 7 5 4 5 5 8

.99 2 2 2 1 1 3 3 3 3 3

.995 1 1 1 0 0 1 1 2 2 2

.999 0 0 0 0 0 0 0 0 0 0
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