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Polymorphism in the genomic region harboring the CLU gene (rs11136000) has been
associated with the risk for Alzheimer’s disease (AD). CLU C allele is assumed to
confer risk for AD and the allele T may have a protective effect. We investigated the
influence of the AD-associated CLU genotype on a common neurophysiological trait of
brain activity (resting-state alpha-rhythm activity) in non-demented adults and elucidated
whether this influence is modified over the course of aging. We examined quantitative
electroencephalography (EEG) in a cohort of non-demented individuals (age range 20–80)
divided into young (age range 20–50) and old (age range 51–80) cohorts and stratified
by CLU polymorphism. To rule out the effect of the apolipoprotein E (ApoE) genotype
on EEG characteristics, only subjects without the ApoE ε4 allele were included in the
study.The homozygous presence of the AD risk variant CLU CC in non-demented subjects
was associated with an increase of alpha3 absolute power. Moreover, the influence of
CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of
age. The study also showed age-dependent alterations of alpha topographic distribution
that occur independently of the CLU genotype. The increase of upper alpha power has
been associated with hippocampal atrophy in patients with mild cognitive impairment
(Moretti et al., 2012a). In our study, the CLU CC-dependent increase in upper alpha rhythm,
particularly enhanced in elderly non-demented individuals, may imply that the genotype is
related to preclinical dysregulation of hippocampal neurophysiology in aging and that this
factor may contribute to the pathogenesis of AD.
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INTRODUCTION
Alzheimer’s disease (AD) is the major cause of dementia in
the elderly. It is estimated that 35.6 million people world-
wide currently suffer from dementia, with the prevalence pro-
jected to increase to 65.7 million by 2030 and 115.4 million
by 2050. Two-thirds of these people will likely develop
AD (http://www.alz.co.uk/research/files/WorldAlzheimerReport-
ExecutiveSummary.pdf). The incidence and prevalence of AD
begins to rise as individuals reach the age of 65, so that by the
time they are in their 80s and 90s the risk of clinical dementia is
nearly 50%.

Alzheimer’s disease has a strong genetic basis with heritabil-
ity estimates of up to 80% (Gatz et al., 2006). Mutations in the
amyloid precursor protein gene (chr21), presenilin 1 (chr14), and
presenilin 2 (chr1) genes are causative factors for familial AD
(Goate et al., 1991; Levy-Lahad et al., 1995; Rogaev et al., 1995;
Sherrington et al., 1995). A common polymorphism in the
apolipoprotein E gene (ApoE), located on chromosome 19, has
been established as the most common genetic risk factor for AD
in Caucasian ethnic groups, including the Russian population

(Saunders et al., 1993; Schmechel et al., 1993; Farrer et al., 1997;
Rogaev, 1999).

Recent genome-wide association studies (GWAS) studies have
provided evidence that polymorphisms of the clusterin (CLU)
(chr8) and PICALM (chr11) genes are also associated with AD
risk (Harold et al., 2009; Lambert et al., 2009; Golenkina et al.,
2010). Carriers of the CLU rs1113600 C allele have 1.16 greater
odds of developing late-onset AD than carriers of the potentially
protective T allele. Although the AD-association with CLU poly-
morphism alone was not confirmed in some studied populations,
the putative epistatic interaction of the CLU genotype with APOE
ε4 in risk for AD has been demonstrated (Golenkina et al., 2010).
Approximately 36% of Caucasians carry two copies of the risk-
conferring allele (Bertram et al., 2007), which imply significance
of this gene for public health.

The CLU gene encodes glycoprotein clusterin, also known as
apolipoprotein J, which shares several properties with ApoE. Clus-
terin and ApoE both act as amyloid-β (Aβ) chaperones to alter Aβ

aggregation and/or clearance (Killick et al., 2012; Ling et al., 2012).
Clusterin and ApoE are involved in the transport of cholesterol
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and phospholipids, and modulate AD-related pathways such as
inflammation and apoptosis (Bettens et al., 2012; Ling et al., 2012).
Clusterin is upregulated during different physiological and patho-
logical states, such as senescence, type-2 diabetes mellitus, AD, and
in various neoplasms (Song et al., 2012; Tang et al., 2013).

In order to identify early preclinical markers for AD, it is vital
to find specific genotype–phenotype characteristics in individuals
with hereditary risk for AD at different stages of the pathological
process, including the preclinical period. Such biomarkers can be
helpful for estimating the effect of potential therapies for prevent-
ing or delaying onset of neurodegenerative diseases (Illarioshkin
et al., 2004; Feigin et al., 2007; Masdeu et al., 2012; Suslina, 2012).
At present, there is still a mismatch between the known genetic
factors of AD, and the biomarkers reflecting the development of
the pathological process.

Electroencephalography (EEG) patterns are considered to be
valuable as an endophenotype – a more basic biological trait that
more directly reflects the influence of the genome (Gottesman and
Gould, 2003). The heritability of EEG patterns has been shown to
be in the range 70–90% (van Beijsterveldt et al., 1996). Multiple
genes may modulate the alpha phenotype. Recent studies indicated
that the catechol-O-methyl transferase (COMP) genotype and the
gene encoding gamma-aminobutyric acid B (GABAB) receptor
both influence alpha voltage (Enoch et al., 2003; Winterer et al.,
2003; Bodenmann et al., 2009).

Testing the association of the AD risk alleles with EEG endophe-
notypes can help understand where in the brain, in which stage,
and during what type of information processing the genetic variant
has a role.

Quantitative EEG (qEEG) has been shown to be a reliable
diagnostic tool in dementia research (Stam et al., 2003; Jeong,
2004; Babiloni et al., 2006b, 2011a, 2014; Dauwels et al., 2010;
Moretti et al., 2012a). Slowing of EEG in AD is a uniform find-
ing. Patients with mild AD are characterized by higher delta and
theta, and lower alpha and beta power than normal elderly sub-
jects (Huang et al., 2000; Lizio et al., 2011). In patients with mild
cognitive impairment (MCI), which is considered to be a pro-
dromic stage of AD, EEG parameters have presented magnitudes
intermediate between those observed in normal subjects and in
AD patients (Babiloni et al., 2006b). Longitudinal studies have
revealed qEEG-based predictors of future decline in patients with
MCI and even in normal elderly subjects (Prichep et al., 2006; Van
der Hiele et al., 2008; Babiloni et al., 2011b).

Alterations of alpha rhythm in particular were found to be
related to AD development. In a resting-state condition, poste-
rior alpha rhythms showed a power decrement in patients with
MCI as compared with healthy elderly subjects (Huang et al., 2000;
Jelic et al., 2000; Koenig et al., 2005; Babiloni et al., 2006b, 2014).
It has been reported that, in contrast to the decrease of alpha1
(6.9–8.9 Hz) and alpha2 (8.9–10.9 Hz) relative power, the alpha3
(10.9–12.9 Hz) relative power increased in patients with MCI
(Moretti et al., 2007, 2011, 2012a,b).

Recent studies have demonstrated the association between the
AD genetic risk variant ApoE ε4 and EEG in patients with AD,
MCI, and healthy subjects (Jelic et al., 1997; Lehtovirta et al.,
2000; Babiloni et al., 2006b; Ponomareva et al., 2008, 2012; Lee
et al., 2012). It was shown that AD patients carrying the ApoE

ε4 genotype have lower alpha power and lower alpha coher-
ence as compared to non-carriers (Jelic et al., 1997; Lehtovirta
et al., 2000; Ponomareva et al., 2008). Similarly, alpha1 and alpha2
sources in occipital, temporal and limbic areas as examined by
LORETA was demonstrated to have lower amplitude in AD and
MCI patients with ApoE ε4 genotype compared with those non-
carrying ApoE ε4 (Babiloni et al., 2006b). The authors suggested
that these neurophysiological abnormalities might reflect greater
impairment of the cholinergic basal forebrain, hippocampal, and
thalamocortical networks. In young healthy women, Lee et al.
(2012) noticed a consistent trend across the brain, in which
ApoE ε4 carriers possessed lower regional power at the alpha
band.

The effect of CLU polymorphism on EEG characteristics has
not been previously investigated, although several morphofunc-
tional alterations associated with the CLU gene risk variant were
recently identified. Young healthy carriers of CLU C allele demon-
strated lower white matter integrity in multiple brain regions,
including several which are known to degenerate in AD (Braskie
et al., 2011). Elderly cognitively normal carriers of the CLU risk
allele showed significant dose-dependent longitudinal increases
in resting-state regional cerebral blood flow (rCBF) in the brain
regions intrinsic to memory processes, and faster rates of decline
in verbal memory performance scores (Thambisetty et al., 2013).
EEG activity and alpha rhythm in particular are closely related to
the rCBF (Jann et al., 2010).

The purpose of this study was to examine the possible effects of
the CLU genotype on resting-state alpha activity in non-demented
adults and to estimate whether this effect is modified over the
course of aging.

We tested the hypothesis that healthy adult carriers of the AD
risk variant CLU C (homozygous CLU CC genotype) would show
age-dependent alpha-rhythm alterations relative to carriers of the
protective T allele (heterozygous CLU CT and homozygous CLU
TT genotypes).

MATERIALS AND METHODS
PARTICIPANTS
The enrolled cohort included 87 non-demented individuals (33
men and 54 women, age range 20–80 years). All subjects were
of Russian origin from Moscow and the Moscow region. Par-
ticipants underwent a neurological examination and cognitive
screening. The recruited subjects were free of dementia and
other medical, psychiatric, and neurological conditions. Exclu-
sion criteria included a personal history of mental illness, signs
of clinical depression or anxiety, physical brain injury, neuro-
logical disorder, or other medical condition (e.g., hypertension,
diabetes, cardiac disease, and thyroid disease), and a per-
sonal history of drug or alcohol addiction. The Spielberger
state-trait anxiety inventory (Spielberger, 1983) and Hamil-
ton rating scale for depression (Hamilton, 1960) were used
to examine anxiety and depression. Subjects were evaluated
with the mini-mental state examination (MMSE) and Clini-
cal Dementia Rating (CDR) scale (Hughes et al., 1982). Only
subjects with MMSE scores of 28 and more and CDR scale
0 cases were included in the study. All subjects were right-
handed.
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Informed written consent was obtained from all participants.
The experimental protocol of this study was approved by the local
Ethics Committee.

ApoE genotyping was performed on all participants, and to
exclude the effect of the ApoE genotype on EEG characteristics,
only subjects without the ApoE ε4 allele were included in the study.

All subjects were divided into subgroups according to CLU
(CLU CC and CLUCT&TT) polymorphism. The homozygous
CLU CC group included subjects with two C alleles of CLU, and
the CLU CT&TT group consisted of subjects with heterozygous
CLU CT or homozygous CLU TT genotypes. The participants
with CLU CC as well as with CLU CT&TT genotypes were also
divided into cohorts of those younger and older than 50 years of
age.

EEG RECORDING
All recordings were obtained in the afternoon at 3–4 pm. During
the experiments, the subjects sat comfortably in a chair. They were
asked to close their eyes and to relax during the recording. The
technician watched the subject’s vigilance state continuously by
monitoring the EEG and observing the subject.

The registration and evaluation of EEG has been carried out in
accordance with the International Pharmaco-EEG Society (IPEG)
guidelines (Versavel et al., 1995; Jobert et al., 2012). EEGs were
recorded during resting with eyes closed on a Nihon Kohden 4217
G EEG using a time constant of 0.3 s. The 16 Ag/AgCl electrodes
were placed according to the international 10–20 system at O2, O1,
P4, P3, C4, C3, F4, F3, Fp2, Fp1, T6, T5, T4, T3, F8, and F7 posi-
tions. Linked ears served as the reference. Electrode impedance did
not exceed 10 k�. During the recording, 180 s of EEG in resting
conditions were simultaneously sampled at 256 Hz and stored on
a computer for further analysis off-line. The records were digitally
filtered with a band-pass filter of 1.0–45.0 Hz prior to analy-
sis. Periods of artifact were eliminated from subsequent analysis.
Identification and removal of artifacts (ocular, cardiac, muscular,
sweating and respiratory, electrode movements) were performed
by two expert electroencephalographists (P.N.V., M.D.D.) in accor-
dance with criteria thoroughly described elsewhere (Moretti et al.,
2003; Tatum et al., 2011; Jobert et al., 2012).

DATA ANALYSIS
Thirty-six to forty artifact-free 4-s epochs of resting EEG were
processed by fast Fourier transform. Absolute power for the
frequencies of interest: alpha1 (7.5–8.99), alpha2 (9.00–10.99),
alpha3 (11–12.99), and for the regions of interest (ROI): occipital
(O2, O1), frontal 1 (F4, F3), frontal 2 (Fp2, Fp1), temporal 1 (T6,
T5), and temporal 2 (T4, T3) were calculated.

These alpha band frequencies were chosen by averaging those
used in previous relevant EEG studies on aging, genetic influences,
and dementia (Babiloni et al., 2006a,b; Bodenmann et al., 2009;
Moretti et al., 2012a,b). This allowed better comparison of our
results with the previous literature on aging and genetics, but it
did not account for individual alpha frequencies peak (Klimesch,
1999).

Log transformations of the absolute power of the various band-
widths in each derivation were calculated in order to compensate
for data skewness, as recommended by John et al. (1980).

GENETIC ANALYSIS
Genomic DNA was isolated from peripheral venous blood by
the standard phenol–chloroform extraction methodology, or by
using a Qiagen kit for DNA isolation. Genotyping was performed
by polymerase chain reaction (PCR) and followed by restriction
fragment length polymorphism (RFLP) analysis. Amplification
was performed according to the manufacturer’s instructions
using both the Tercyc DNA amplifier (DNA technology, Russia)
and the GeneAmp PCR System 9700 Thermal Cycler (Applied
Biosystems).

To genotype the APOE gene locus, the following oligonucleo-
tide primers were used: 5′_CGGCTGGGCGCG_GACATGGAGGA
and 5′_TCGCGGGCCCCGGC_CTGGTACAC. The PCR proto-
col was as follows: preliminary denaturation at 95◦C for 4 min;
5 cycles: 95◦C for 45 s, 54◦C for 25 s, and 72◦C for 30 s; and 30
cycles: 95◦C for 5 s, 58◦C for 15 s, and 72◦C for 5 s; the last stage
was performed at 72◦C for 3 min. PCR products were then cleaved
by HhaI or BstHHI (SibEnzyme, Russia) and restriction products
were analyzed in 7.5% polyacrylamide gel.

The rs11136000 polymorphism in CLU gene was tested with the
following oligonucleotide primers: 5′_CTTTGTAATGATGTACC
ATCTACCC and 5′_AGGCTGCAGACTCCCTGAAT. The PCR
protocol was as follows: preliminary denaturation at 95◦C for
1 min and 35 cycles: 94◦C for 30 s, 57◦C for 30 s, and 72◦C
for 1 min. The last stage was performed at 72◦C. The 645 bp
PCR products were then cleaved by AcsI restriction endonuclease
(SibEnzyme, Russia) and restriction fragments were analyzed in
2% agarose gel.

STATISTICS
Differences in demographic scores between the groups (CLU CC
young, CLU CT&TT young, CLU CC old, CLU CT&TT old)
were tested using analysis of variance (ANOVA) for continuous
variables (age, education), and the Mann–Whitney U test for
categorical variables (sex).

Electroencephalography parameters from each group were
tested for the normal distribution by the Wilk–Shapiro test, and
in no cases were the data skewed. The significance of the differ-
ences between the log-transformed EEG parameters was estimated
using repeated measures of ANOVA in the general linear model
(GLM) separately for alpha1, alpha2, and alpha3 bands, with
Genotype (CLU CC vs CLU CT&TT) and Age cohort (old vs.
young) as between-subjects factors, and ROI: occipital (O2, O1),
frontal 1 (F4, F3), frontal 2 (Fp2, Fp1), temporal 1 (T6, T5),
temporal 2 (T4, T3), and hemisphere (right, left) as a within-
subject factor. Post hoc comparisons for between-subject effects
and within-subject effects were analyzed using the Duncan test,
and the level of significance was set to P < 0.05 for post hoc
comparisons.

RESULTS
Table 1 shows the demographic information for the participants.
There were no differences in age and sex between the CLU CC and
CLU CT&TTsubgroups in either the young or the old subgroups
and in the whole sample (P > 0.05). There were no significant
differences in sex between the young and the old subgroups with
the same CLU genotype.
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Table 1 | Demographic characteristics of participants.

Young cohort Age range: 20–50 Old cohort Age range: 51–80 All participants Age range: 20–80

CLU CC CLU CT&TT CLU CC CLU CT&TT CLU CC CLU CT&TT

N 17 24 15 31 32 55

Age, years 28.4 ± 1.7 32.7 ± 2.0 64.1 ±2.4 62.6 ± 1.3 45.1 ± 3.5 49.6 ± 2.3

Sex (men/women) 9/8 9/15 5/10 10/21 14/18 19/36

Education, years 14.9 ± 0.2 14.7 ± 0.1 15.1 ± 0.1 14.9 ± 0.2 15.0 ± 0.1 14.8 ± 0.1

Data are presented as means and standard errors.

INFLUENCE OF AGING ON TOPOGRAPHIC DISTRIBUTION AND
FREQUENCY OF ALPHA ACTIVITY IN HEALTHY ADULTS
The ANOVA revealed a significant effect of ROI on alpha1,
alpha2, and alpha3 absolute power (for alpha1, F[4,332] = 111.97,
P = 0.0000; for alpha2, F([4,332] = 195.96, P = 0.0000; for alpha3,
F[4,332] = 178.36, P = 0.0000). Post hoc comparisons showed that
in the entire sample, which included young and old cohorts, abso-
lute power was higher in occipital than in frontal and temporal
regions in the alpha1, alpha2, and alpha3 bands (P < 0.0001).
Moreover, the power of all alpha bands was higher in frontal as
compared to temporal areas (P < 0.0001).

There was no significant statistical Age × ROI interaction effect
on alpha1 power (Figure 1A), but such an effect was observed on
alpha2 and alpha3 bands (F[4,332] = 6.33, P = 0.00006 for alpha2;
F[4,332] = 15.30, P = 0.00000 for alpha3). In the old cohort,
the differences in alpha2 power between the ROI were reduced.
Whereas in the young cohort, alpha2 power was higher in frontal
Fp than in temporal posterior Tp areas (post hoc comparisons
P = 0.002), in the old cohort the differences in these areas were
not significant (P = 0.11). The differences between frontal Fp and
temporal posterior Tp areas were significantly smaller in the old
than in the young cohort (P = 0.02; Figure 1B).

Similarly, in the old cohort, the differences in alpha3 power
between ROI were reduced as compared to the young cohort. In the
young cohort, alpha3 power was higher in temporal posterior than
in temporal areas (P = 0.02); in the old cohort these differences
were not significant (P = 0.1), and age-related changes of these
regional differences were also not significant. Alpha3 power was
lower in the occipital ROI in the old cohort as compared to the
young (P < 0.01; Figure 1C).

A significant interaction effect between the factors Age and
Bands was observed (F[2,166] = 4.51, P = 0.01). In the young
subjects, alpha2 power was significantly higher than alpha1 and
alpha3 power (P = 0.00001), while in the old subjects the alpha1
power tended to increase and the differences between alpha1 and
alpha2 power were not significant (Figure 2).

STATISTICAL ANALYSIS OF CLU EFFECT ON ALPHA ACTIVITY
The results of ANOVA showed that the main effect of CLU Geno-
type was significant on alpha3 (F[1,83] = 5.57, P = 0.021), but not
on alpha1 (F[1,83] = 2.10, P = 0.15) or alpha2 (F[1,83] = 2.81,
P = 0.10) absolute power. Post hoc comparison revealed that in the
entire sample, which included old and young cohorts, alpha3 abso-
lute power in the subjects with homozygous CLU CC genotype was

significantly higher than in the subjects with heterozygous CLU CT
and homozygous CLU TT (CLU CT&TT) genotypes (P = 0.017).
Moreover, post hoc comparison showed that, in the old cohorts,
alpha3 power was significantly higher in the CLU CC than in the
CLU CT&TT carriers (P = 0.016), while in the young cohorts the
differences in alpha3 power between the CLU CC and CLU CT&TT
carriers did not reach a significant level (Figure 3C). There were
no significant differences in alpha1 and alpha2 power between the
young CLU CC and CLU CT&TT carriers (Figures 3A,B). In the
old cohorts, alpha1 power was higher in the CLU CC than in the
CLU CT&TT carriers (P = 0.04), while the differences of alpha2
power in the old CLU CC and CLU CT&TT carriers were not
significant (P = 0.1; Figures 3A,B).

Topographic analysis demonstrated that the most pronounced
differences between the homozygous CLU CC and CLU CT&TT
carriers were observed in alpha3 power in the old cohorts. In the
young cohorts, there were no significant differences in any ROI
in alpha1, alpha2, and alpha3 power between CLU CC and CLU
CT&TT carriers (Figures 4A–C). In the old cohort the differ-
ences between CLU CC and CLU CT&TT carriers were significant
for alpha1 power in occipital (P = 0.02) and temporal poste-
rior areas (P = 0.02), for alpha3 power – in frontal (P = 0.04),
frontal poles (P = 0.03), and temporal posterior (P = 0.02) areas
(Figures 4A,C).

A significant CLU × ROI interaction effect on the alpha1 power
in the entire sample was observed (F[4,332] = 3.43, P = 0.009).
In the CLU CC carriers alpha1 power was higher in occipital than
in frontal areas (P < 0.0001) and in temporal posterior than in
temporal areas (P = 0.001), while in the subjects with CLU CT&TT
genotypes the differences in alpha1 power between occipital and
frontal areas were smaller (P = 0.01), the differences between
the temporal posterior and temporal areas were not significant
(P = 0.3). There was a tendency toward higher alpha1 power in
all ROI in the subjects with CLU CC genotype as compared to the
subjects with CLU CT&TT genotype.

DISCUSSION
The main findings of this study show that the CLU genotype exerts
a significant effect on alpha absolute power in the resting-state
EEG of healthy adults. The homozygous presence of the AD risk
variant CLU CC in non-demented subjects was associated with
an increase of alpha3 and to a lesser, though significant, extent
of alpha1 power in the subjects older than 50 years of age. CLU
genotype-related differences were also found in the topographic
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FIGURE 1 | Absolute power (mean and SE) of alpha1 (A), alpha2 (B),

and alpha3 (C) bands in the young and old cohorts, for occipital (O),

frontal (F), frontal poles (Fp), temporal posterior (Tp), and temporal (T)

areas. Black asterisks (*) indicate a P < 0.01 significant difference in
absolute spectral power between two cohorts in the same region of
interest (ROI). The arrows labeled with green (for the young cohort) and
purple (for the old cohort) asterisks compare different ROI in the same
cohort. The ROI at the start of the arrow has either (+) P < 0.05 or (*)
P < 0.01 significant differences in absolute spectral power compared the
ROIs at the ends of the arrow.

FIGURE 2 | Alpha1, alpha2, and alpha3 absolute power (mean and SE)

in the healthy young and old cohorts. *P ≤ 0.01, significant differences
between the alpha bands in the young (green) and old (purple) cohorts.

distribution of alpha1 activity: in the subjects with homozygous
CLU CC genotype, alpha1 power was higher in occipital than
in frontal regions, while in the subjects with heterozygous CLU
CT and homozygous CLU TT (CLU CT&TT) genotypes the dif-
ferences in alpha1 power between occipital and frontal regions
were not significant. The present study also showed age-related
alterations of the topographic distribution of alpha2 and alpha3
activities, and an age-related increase in power of alpha1 relative
to alpha2, all of which occurred in the subjects with CLU CC as
well as with CLU CT&TT genotypes.

Alpha rhythm reflects the activity of dominant oscillatory neu-
ral networks in resting adults and represents a basic functional
feature of the working brain (Klimesch, 2012). Alpha oscillations
have been associated with essential cognitive functions, such as
memory, intelligence quotient, internal attention (Cooper et al.,
2006; Klimesch, 2012), and inhibitory control of motor programs
(Pfurtscheller et al., 2000; Başar, 2012).

Inhibitory processes underlie alpha synchronization (Klimesch,
2012). During the awake resting condition, the voltage of the
alpha rhythms is inversely correlated with the cortical activation.
Alpha rhythm is modulated by thalamocortical and corticocorti-
cal interactions playing role in the transmission of sensorimotor
information between subcortical and cortical pathways, and the
retrieval of semantic information from cortical regions (Steriade
and Llinás, 1988; Brunia, 1999; Pfurtscheller and Lopes da Silva,
1999).

According to prior research in this area, alpha rhythm is not a
unitary phenomenon. Upper alpha (11–13 Hz) is more involved in
cortical processes related to the semantic memory and low alpha
(8–11 Hz) is more involved in attentional demands (Klimesch,
1999). Different neural networks have been suggested as generat-
ing low alpha and high alpha frequency bands. The modulation
of the low alpha was proposed to be related to the corticosub-
cortical mechanisms, such as corticothalamic, corticostriatal, and
corticobasal, while the upper alpha band is affected to a greater
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FIGURE 3 |The average absolute power of alpha1 (A), alpha2 (B), and alpha3 (C) bands (mean and SE) in young and old subjects with CLU CC and

CLU CT &TT genotypes. Triangle indicates significant differences between the CLU CC and CLU CT &TT carriers P < 0.05.

extent by the hippocampus and other corticocortical interactions
(Moretti et al., 2012a,b).

Recent study has shown an increase of the upper alpha power
in patients with MCI and AD, when compared to normal elderly
subjects (Moretti et al., 2012a,b). The increase in alpha3/alpha2
ratio in frontal and temporoparietal areas was associated with hip-
pocampal atrophy in MCI (Moretti et al., 2007). The increase of
alpha3/alpha2 ratio in subjects with MCI was suggested to reflect
impairment of the anterior attentive mechanisms in subjects with
MCI, in spite of the absence of overt clinical deficit (Moretti et al.,
2012a,b). This increase was hypothesized to be due to a removal
of excitatory, synaptic cholinergic inputs in intracortical networks,
which would produce a decrease in synaptic efficacy and functional
disconnection of cortical circuits (Steriade, 2006).

Healthy carriers of AD risk variant CLU CC, especially old
subjects with this genotype, may have similar, though less pro-
nounced, alterations underlying the increase of upper alpha activ-
ity to those found in MCI subjects. These alterations may include
the dysregulation of excitatory synaptic inputs, especially cholin-
ergic ones, in hippocampus and frontal intracortical networks. In
the old CLU CC carriers we also found an increase in alpha1 power,
though less pronounced, than in alpha3 power. These finding sug-
gest that in the old CLU CC carriers the dysregulation may affect
other mechanisms, such as corticothalamic, corticostriatal, and
corticobasal ones, involved in low alpha generation (Moretti et al.,
2012a,b).

Even normal aging is accompanied by a gradual loss of
cholinergic function caused by dendritic, synaptic, and axonal
degeneration as well as a decrease in trophic support. As a con-
sequence, impairments in intracellular signaling and cytoskeletal
transport may mediate cholinergic cell atrophy, finally leading to
the known age-related functional decline in the brain, includ-
ing aging-associated cognitive impairments (Schliebs and Arendt,
2011).

In line with previous studies, our results also demonstrated that
in all individuals, independently of CLU genotype, aging is accom-
panied by changes in spectral power and topographic distribution
of alpha activity (Tsuno et al., 2002; Babiloni et al., 2006a; Chiang
et al., 2011). We found the decrease of alpha3 power in occipital
areas, the reduction of the differences of alpha2 and alpha3 activ-
ity between posterior and anterior areas (anteriorization of alpha)
and the trend toward the decrease of alpha2 power and increase of
alpha1 power in the old cohort as compared to the young. It has
been demonstrated that posterior cortical alpha rhythms decreases
in magnitude during physiological aging (Babiloni et al., 2006a).
A slowing of the alpha frequency peak in normal adults during
physiological aging has also been reported (Klimesch, 1999). The
anteriorization of alpha activity in elderly subjects was found to be
related to a decreased level of vigilance (Tsuno et al., 2002). It was
suggested that the anteriorization of alpha activity is related to the
alterations in activation of posterior and anterior default mode
networks (DMNs) and that these changes might be susceptible
to dopaminergic influences (Knyazev, 2012). Chronic excessive
neuronal activity during a resting-state condition in DMN can
lead to Aβ deposition (Bero et al., 2011; de Haan et al., 2012).
On the other hand, elevated level of Aβ elicits epileptiform activ-
ity, probably by enhancing synchrony among the glutamatergic
synapses (Palop and Mucke, 2009). The brain regions of the DMN
were shown to be preferentially vulnerable to neurodegenerative
processes (Vlassenko et al., 2010; Hsiao et al., 2013).

The effect of aging on EEG is modulated by genetic factors
(Babiloni et al., 2006b; Ponomareva et al., 2012). Several lines of
evidence imply that the effect of CLU genotype on brain func-
tion may be observed before the onset of cognitive impairment.
The CLU risk variant rs11136000 was found to be associated with
reduced integrity of broad white matter regions, as observed with
diffusion tensor imaging in young healthy adults (Braskie et al.,
2011). fMRI study showed aberrant activation in the frontal and
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FIGURE 4 |Topographic distribution of alpha1 (A), alpha2 (B), and

alpha3 (C) absolute power (mean and SE) in young and old carriers of

CLU CC and CLU CT &TT genotypes in occipital O, frontal F, frontal

poles Fp, temporal posteriorTp, and temporalT areas. Triangle indicates
significant differences between the CLU CC and CLU CT &TT carriers
P < 0.05.

posterior cingulate cortex and the hippocampus during working
memory performance in healthy young individuals carrying CLU
AD risk genotype (Lancaster et al., 2011).

Recently the robust changes in rCBF in cognitively normal
old individuals carrying the C-allele of the rs11136000 SNP were
revealed (Thambisetty et al., 2013). These changes consisted of sig-
nificant longitudinal increases in rCBF in the hippocampus and
anterior cingulated cortex. The authors suggested that the effect
of CLU CC genotype may be related to the deposition of beta
amyloid, and that affected regions are vulnerable to disruption by
deposition of beta amyloid, even in the non-demented elderly.

The effect of CLU genotype on resting EEG in healthy subjects
was not similar to the effect of ApoE genotype found in prior
studies (Babiloni et al., 2006b; Lee et al., 2012). The differences are
in line with the differing influence of CLU and ApoE genotype
on resting rCBF in normal aging (Thambisetty et al., 2013). The
authors reported longitudinal increase during aging of resting-
state rCBF in the hippocampus and anterior cingulate cortex in the
CLU CC carriers and the decrease in resting rCBF in the frontal,
parietal, and temporal cortices and its increases in the insular
cortex in the old ApoE ε4 carriers.

Alpha rhythm slowing was found to occur in aging, and the
alpha1 band of the young group might have some functional dif-
ferences from the alpha1 band in the old subjects (Chiang et al.,
2011). This is a potential limitation of our study. However, as
CLU genotype-related differences were found in the age-adjusted
groups, this possible confounding factor could not affect the results
concerning the influence of CLU genotype on alpha power.

CONCLUSION
Our results show that the presence of the homozygous CLU
CC, AD risk variant, is associated with increased absolute power
of alpha3 activity and changes in topographical distribution of
alpha1 activity and that this effect is more pronounced in the sub-
jects older than 50 years of age. The increased synchronization of
upper alpha activity may be related to the alterations in cholinergic
hippocampal and cortical networks. The effect of CLU genotype
on alpha activity can be superimposed to the other EEG alterations
that occur across physiological aging.

ACKNOWLEDGMENTS
Research was supported by Grants from the Government of the
Russian Federation (No 14.B25.31.0033), RFBR No 11-04-01896-
a, and in part by the Ministry of Education and Science of the
Russian Federation (Contract No 8053), RFBR (11-04-02106-a),
Rosbiolab and NIH/NIA AG029360. We also thank Chikunov A.
V. for support.

REFERENCES
Babiloni, C., Binetti, G., Cassarino, A., Dal Forno, G., Del Percio, C., Ferreri, F.,

et al. (2006a). Sources of cortical rhythms in adults during physiological aging: a
multicentric EEG study. Hum. Brain Mapp. 27, 162–172. doi: 10.1002/hbm.20175

Babiloni, C., Benussi, L., Binetti, G., Cassetta, E., Dal Forno, G., Del Percio, C., et al.
(2006b). Apolipoprotein E and alpha brain rhythms in mild cognitive impair-
ment: a multicentric electroencephalogram study. Ann. Neurol. 59, 323–334. doi:
10.1002/ana.20724

Babiloni, C., Del Percio, C., Lizio, R., Marzano, N., Infarinato, F., Soricelli,
A., et al. (2014). Cortical sources of resting state electroencephalographic
alpha rhythms deteriorate across time in subjects with amnesic mild cognitive

Frontiers in Aging Neuroscience www.frontiersin.org December 2013 | Volume 5 | Article 86 | 7

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


“fnagi-05-00086” — 2013/12/12 — 15:43 — page 8 — #8

Ponomareva et al. CLU effect on EEG in normal aging

impairment. Neurobiol. Aging 35, 130–142. doi: 10.1016/j.neurobiolaging.2013.
06.019

Babiloni, C., Vecchio, F., Lizio, R., Ferri, R., Rodriguez, G., Marzano, N.,
et al. (2011a). Resting state cortical rhythms in mild cognitive impairment
and Alzheimer’s disease: electroencephalographic evidence. J. Alzheimers Dis.
26(Suppl. 3), 201–214. doi: 10.3233/JAD-2011-0051

Babiloni, C., Lizio, R., Carducci, F., Vecchio, F., Redolfi, A., Marino, S.,
et al. (2011b). Resting state cortical electroencephalographic rhythms and
white matter vascular lesions in subjects with Alzheimer’s disease: an Ital-
ian multicenter study. J. Alzheimers Dis. 26, 331–346. doi: 10.3233/JAD-2011-
101710
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