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A B S T R A C T

Climate change is expected to severely affect cropping systems and food production in many parts of the world
unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools
for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the
share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some
studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has
not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged
ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we
developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition
and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with
respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the
recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation
options for rainfed winter wheat (Triticum aestivum L.) at Lleida (NE Spain) under perturbed conditions of
temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations
recommended in the previous study have a positive effect. However, we also showed that some options did not
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remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able
to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields,
even under severe climate perturbations. These include substituting spring wheat for winter wheat combined
with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the
latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although
this target could be attained for some adaptation options under moderate climate perturbations.
Recommendations derived from such robust results may provide crucial information for stakeholders seeking to
implement adaptation measures.

1. Introduction

In the absence of effective mitigation and adaptation, future climate
change is expected to have adverse effects on crop production in many
regions of the world, with the risk of severe impacts increasing with
continued warming after 2050 (Asseng et al., 2015; IPCC, 2014). For
cereals, some studies report future yield decreases in southern Europe
(Kovats et al., 2014). Adaptation will be crucial to reduce such negative
impacts, maintain or even enhance levels of crop production (Challinor
et al., 2014; Lobell, 2014). Crop models, by representing some of the
key interactions between crops, their environment and their manage-
ment (Rötter et al., 2011) can be useful tools for evaluating some of the
available options for field-level adaptation of crop production (Rötter
et al., 2015; Wallach et al., 2014).

The use of several different models in a multi-model ensemble
(MME) to quantify aspects of uncertainty in model simulations has been
a practice employed in climate modelling over several decades (see, e.g.
Knutti, 2010), but has only recently been adopted in agricultural as-
sessment (Asseng et al., 2015; Bassu et al., 2014; Li et al., 2015; Palosuo
et al., 2011; Wallach et al., 2016; Yin et al., 2017). Results from MMEs
have been reported as offering more robust information than from any
individual model member (Asseng et al., 2015; Iocola et al., 2017;
Martre et al., 2015; Palosuo et al., 2011; Rötter et al., 2012; Yin et al.,
2017).

MMEs have also been used to construct impact response surfaces
(IRSs) plotted from the result of sensitivity analyses (Fronzek et al.,
2018; Pirttioja et al., 2015). IRSs assess the response of an impact
variable to systematic perturbations of two explanatory variables (ty-
pically precipitation, P, and temperature, T). A further step has been to
plot the difference between impacts simulated with and without
adaptation in response to joined P and T changes as adaptation response
surfaces (ARSs; Ruiz-Ramos et al., 2018). These have been presented as
ensemble-averaged results, providing a measure of the potential effec-
tiveness of the adaptation. However, adaptation effectiveness can vary
considerably among models, so the average offers little information
about the confidence that might be attached to that result for making a
recommendation. Such a measure could be quite useful for guiding an
adaptation decision.

Let us consider the “outcome agreement” as a potential indicator for
characterizing this confidence (i.e. the level of consistency and agree-
ment between model outcomes; Stainforth et al., 2007). It can be de-
fined as a combination of two components: first, the degree of ensemble
consensus on a given hypothesis to be tested, and second, a measure-
ment of disagreement between ensemble members relative to the hy-
pothesis. In this context, by linking a recommendation to hypothesis
compliance, the measure of outcome agreement becomes an indicator
of confidence based on the available information. This is distinct from
uncertainty, which is often related to an estimate of the spread of that
information. However, uncertainty is still present and affects the levels
of outcome agreement.

In previous MME analyses, little attention has been paid to how an
ensemble is built (exceptions include Fronzek et al., 2018; Li et al.,
2015; Yin et al., 2017) and how this may have affected the ensemble
results. Previous studies have mostly analysed ensemble size to examine
convergence of outcomes and how this may have affected the results

from ensemble modelling. For instance, Martre et al. (2015) used a 27-
member wheat MME and tested the accuracy of results against ob-
servations for sub-ensembles of varying sizes, focusing on defining a
minimum ensemble size. They found that adding more than eight
members to a MME did not significantly improve accuracy of results. Li
et al. (2015) and Yin et al. (2017) used a MME to measure the un-
certainty of predicted current yield by comparing model means for
ensembles of all possible sizes and composition with observations.
Obviously, this approach cannot be used under future scenarios for
which there are no observations.

Even in the absence of observations with which to compare, some
estimates of future outcomes may also be evaluated qualitatively. For
instance, some outcomes may be excluded from further consideration
because they are judged implausible, based on the knowledge and ex-
perience of experts familiar with crop responses in different environ-
ments. Hence, by devising a set of plausibility criteria, it may be pos-
sible to define minimum requirements to be met by the members of a
MME. One such example is the AOCK (“according to our current
knowledge”) concept, which was introduced by Ruiz-Ramos et al.
(2018) in a study using simulation outputs from a 17-member wheat
MME to evaluate different adaptation options in Lleida (north-eastern
Spain). They defined a list of criteria for excluding members with re-
sults that appeared implausible based on our current knowledge. This
resulted in ensembles of different size and composition (depending on
which models were excluded) for each adaptation option considered.

Few previous crop modelling studies have analysed in detail how
the recommendations derived from MME simulations could be affected
by the ensemble composition and size (e.g. some aspects are analysed in
Rosenzweig et al., 2014). This is a major issue that limits the applic-
ability of results, especially when no observations are available to
evaluate the predictive skill of the MME-based results, as is the case for
yields under a perturbed climate. Furthermore, crop MMEs used so far
are largely “ensembles of opportunity” (Tebaldi and Knutti, 2007;
Wallach et al., 2016) – participating model runs are often determined
by volunteer contributions from crop modelling groups.

To address this, the objective of this paper is to assess the effect of
ensemble size and composition on the ensemble outcome agreement,
and therefore on the confidence of the derived recommendations from
MME results. By supplementing a recommendation for an adaptation
option with an estimate of its confidence, the usefulness of the in-
formation for stakeholders may be much enhanced. Therefore, the
specific objectives of this study are: 1) to develop an index for assessing
outcome agreement of MME results, and 2) to illustrate an application
of the index by analysing the confidence of MME-derived adaptation
recommendations reported by Ruiz-Ramos et al. (2018).

2. Material and methods

2.1. Study case

The adaptation study performed by Ruiz-Ramos et al. (2018) was
used as a study case to illustrate the method of development and ap-
plication of the proposed index. Details about the study site, experi-
mental and climate data, calibration process, sensitivity analysis, si-
mulated adaptation options and ensemble building can be found there;
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only a general overview is provided in this section.
The study site was Lleida, located in the northeast of Spain, within

the “Mediterranean South” environmental zone depicted in Metzger
et al. (2005). A 17-member crop model ensemble was used in this study,
comprising 14 crop models and 17 independent simulation sets (see
Table S1, supplementary material). Two modeller groups used CERES-
wheat and three of them used WOFOST, but given the different
methods used to calibrate and set up each model, they were considered
as independent ensemble members, following Pirttioja et al. (2015), as
the differences between differently calibrated CERES/WOFOST mem-
bers were similar to those between other crop models.

Models were calibrated for winter wheat (Triticum aestivum L. cv.
Soissons) using observed phenological (flowering and maturity) dates
and biomass and yield data from field experiments conducted in the
study area during the 2003–2004 and 2005–2006 growing seasons
(Abeledo et al., 2008; Cartelle et al., 2006). An atmospheric carbon
dioxide concentration of 360 ppm was assumed. The calibration per-
formance of all models was categorised as “good” following evaluation
criteria reported by Jamieson et al. (1991). Two soil profiles – shallow
and deep – representing actual conditions were selected (Fig. 1b in
Ruiz-Ramos et al., 2018), with different depth, texture and water
holding capacity (126mm vs. 290mm in the shallow and deep soils,
respectively).

Daily maximum and minimum air temperature, precipitation, solar
radiation, humidity and wind speed observations for the period
1981–2010 from the AEMET station at Lleida were selected as baseline
input data for the model simulations. Daily T and P data were then
perturbed to perform a sensitivity analysis, using a “change factor”
approach with a seasonal weighting based on the ensemble mean pat-
tern of projected seasonal change from Harris et al. (2010), whilst
preserving annual mean change intervals (Fronzek et al., 2010). T was
modified between −1 °C and +7 °C at 1 °C intervals, and P from -40%
to +30% at 10% intervals, resulting in 72 perturbation combinations
that covered the spread of projections for Spain by mid-century for the
SRES A1B emission scenario (Harris et al., 2010). Relative humidity
was assumed to remain unchanged from the baseline, requiring ad-
justments to vapour pressure and dew point for those models using
these as inputs. Two levels of [CO2] representing two 20-year time
slices for periods centred on 2030 and 2050 according to SRES A1B
projections (IPCC, 2000) were considered (447 ppm and 522 ppm, re-
spectively). Other variables were kept at baseline levels.

The study adopted a total of 23 adaptation options (each comprising
one or more simulated action) that were found to have a positive re-
sponse (i.e. yield increases when adaptation is simulated relative to an
unadapted simulation) out of the 54 options tested. Selected adaptation
options comprised changes in vernalisation requirements, adopting

cultivars with shorter and longer phenological phases, advancing the
sowing date by 15 days, and applying supplementary irrigation (40mm
during flowering). Full irrigation was also included to provide a re-
ference for the optimal productive potential. MME outcomes from all
possible P and T perturbation combinations for both 447 ppm and
522 ppm [CO2] and for both shallow and deep soils were adopted. See
Ruiz-Ramos et al. (2018) for a full description of the adaptation options
and how these were simulated.

2.2. Response surface analysis

An impact response surface (IRS) consists of a plotted surface that
depicts the response of a studied variable (e.g. crop yield) to changes in
two explanatory variables (e.g. P and T). An adaptation response sur-
face (ARS) plots the difference between yield responses with and
without adaptation being considered, usually as a percentage change.
This metric is defined as the “adaptation value”. It measures the effect
of adaptation under a given combination of perturbation of T, P and
[CO2] compared to no adaptation under the same perturbations. A
second metric, labelled “recovery value”, is the relative difference be-
tween the yield response including an adaptation option and the
baseline yield response (i.e. for an unperturbed simulation, 360 ppm of
[CO2] and unadapted management). The “recovery value”measures the
ability of an adaptation option to maintain the yields of the baseline
simulation under unperturbed conditions.

In Ruiz-Ramos et al. (2018), the ensemble median of every pertur-
bation combination was used to construct IRS and ARS surfaces, which
were subsequently analysed to compare adaptation performance and
make recommendations. This study analyses the underlying data that
were used to construct the surfaces to provide additional information
regarding the confidence of the recommendations.

2.3. Exploring possible ensembles

The method presented here involves testing the hypothesis that an
adaptation option is effective (adaptation value higher than an user-
defined threshold), though it could be generalised to test other hy-
potheses. It comprises several steps: 1) computing the ensemble median
of adaptation and recovery values for all P and T perturbations and
combinations of ensemble members for all ensemble sizes and compo-
sitions, 2) calculating an index to measure the agreement between the
ensemble outcomes for each individual adaptation option and for every
P and T perturbation, and 3) interpreting the index to assess the con-
fidence of recommendations and derive conclusions. One feature sought
for the index was to make use of two metrics that are conventionally
used to report ensemble results: the average or aggregated response

Fig. 1. Adaptation responses (% change in yield) fol-
lowing a switch from a winter to a spring cultivar for a
specific perturbation within the adaptation response
surface (T change of +2 °C and a P change of +30%).
Adaptation values are shown for different ensemble
sizes up to the maximum number of available model
outputs for this adaptation option (11). Ensemble size
of 1 shows results from individual ensemble members
indicated by different symbols and colours. Each grey
circle represents the median of the 30-year averaged
results for all combinations of ensemble composition
and size. Ensemble size 11 shows the median of the 30-
year period (1980–2010) averaged results used in Ruiz-
Ramos et al. (2018).
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(e.g. mean or median) and the minimum ensemble size required to
produce a given outcome. In this way, the index might conceivably be
compared to earlier studies that use MME outputs.

2.3.1. Processing of ensemble combinations
Ensemble composition is defined here as the specific combination of

models contained in the ensemble, while ensemble size is the number of
models comprising a specific combination. The aggregation method for
the MME outputs consists of an algorithm used to obtain a single value
that will represent the whole MME. Regardless of whether the ag-
gregation method is a simple one (e.g. using mean or median) or a
complex one (e.g. using weights), the index proposed here can be cal-
culated in the same way. In this study, the chosen aggregation method
was the median, so ensemble medians of adaptation and recovery va-
lues for all T and P perturbation combinations were computed for every

possible ensemble composition and size. An example for one P and T
perturbation and an adaptation option that involves switching from a
winter to spring wheat cultivar (an adaptation for which 11 model
outputs were available) is depicted in Fig. 1.

The maximum ensemble size in the study case is 17, which is the
total number of models in the ensemble. So, for all 17 models, the
maximum number of different combinations of ensemble composition
and size (i.e. subsets of the full ensemble) is expressed by:

∑ =
=

C 131071
i

i
1

17

17,

where C i17, represents the binomial coefficient indicating the number of
combinations of 17 elements taken from i in i.

Fig. 2. Examples of hypothetical multi-model ensemble (MME) outcomes (vertical axis) for different ensemble sizes (horizontal axis). Size 1 indicates outcome from
individual members (crosses). Medians of all combinations of MME for each size are shown as open circles. Panels show: at top, values and class of Ensemble Outcome
Agreement (EOA), minimum ensemble size for which all permutations fulfil the hypothesis (ES) and adjustment parameter (AF), and at bottom-left, the proportion of
members giving positive values and the interquartile range (IQR) of the full MME. The hypothesis tested was that the MME median is greater than 0. See Table 1 for
interpreting EOA classes. The arrow depicts the minimum ensemble size (ES) for which every possible ensemble composition result is larger than 0.
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2.3.2. Index of ensemble outcome agreement (EOA)
Let us define a hypothesis (H) that the value to be tested (e.g.

adaptation or recovery value) should be greater than a given threshold
(e.g. > 0% for the simplest case implying a yield increase relative to
the yield of the unadapted or baseline simulation). The index of
Ensemble Outcome Agreement (EOA) for a given perturbation combi-
nation of T and P, using a specific aggregation method (e.g. median or
mean), is a measure of confidence that the ensemble outcome fulfils the
hypothesis (i.e. that H is true) according to the available information (in
this case, the available crop simulations for a particular adaptation
option).

Once the hypothesis is established and the aggregation method
chosen, the EOA is calculated using Eq. 1:

=
−

−

−
+

+

EOA
1

1

ES AF
N

N

1
1

1 (1)

where N is the maximum ensemble size, dependent on the available
models for the selected adaptation option to be tested (e.g. N=11 in
Fig. 1); ES is the minimum ensemble size for which all ensemble
combinations fulfil H (e.g. ES=4 in Fig. 1). If no sub-ensemble fulfils
the condition, then EOA=0. AF is an adjustment factor within the
interval [0,1] (see below, Eq. 2). Note that N is not always the total
number of models of the ensemble (17 in this study) because not all
crop models simulated all adaptations options.

The EOA has a value within the interval [0,1] and it deviates from
zero only when the available information indicates that it is more likely
than not that H is fulfilled. So, if the selected aggregated metric does not
fulfil H, then the EOA will be 0, regardless of whether individual
members show a positive response. For instance, suppose there are four
values, two of them fulfilling H and the other two not, with both pairs
of values at identical distances either side of the threshold value. In that
case, based on the available information, we cannot tell if it is more
likely that H is fulfilled or not, and the assigned EOA value will be 0,
even though two values fulfilled H.

Fig. 2 illustrates some hypothetical MME outcomes and their asso-
ciated EOA metrics. EOA is 0 when there is no ensemble size for which
H is fulfilled by all combinations of ensemble members; hence ES is
undefined (e.g. Fig. 2a). EOA is 1 if every possible ensemble fulfils H
(e.g. Fig. 2b). EOA is greater than 0 when H is fulfilled for at least the
largest ensemble size (e.g. Fig. 2c). The closer EOA is to 1, the greater
the outcome agreement and the confidence about H being fulfilled.

There can be large differences in the EOA depending on the value of
ES (e.g. compare Fig. 2c and d). Even if around half of the possible sub-
ensemble medians are above the threshold used to define H, as in
Fig. 2c, the index is close to 0 because the other half are below the
threshold. For the same ES, the index can be different depending on the
spread among the ensembles for smaller sizes up to ES-1 (e.g. compare
Fig. 2e and f). For that reason, we have introduced AF (Eq. 2), which is
an adjustment factor for distinguishing situations with the same ES but
with different outcome agreement due to different ensemble spread
regarding the threshold. AF is estimated by calculating the agreement-
disagreement ratio of combinations of ensemble members, for ensemble
sizes lower than ES, regarding H (defined by the threshold and the

result of member combinations), and it is calculated as follows:

=
⎛

⎝
⎜⎜

−
⎛

⎝
⎜⎜

−
∑

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟

=
−AF ESmax 1 1 , 0

i
ES my

mn1
1 i

i (2)

where myi is the mean absolute distance to the threshold of every value
fulfilling the hypothesis for ensemble size i (if no value is found then myi
is 0); mni is the mean absolute distance to the threshold of every value
not fulfilling the hypothesis for ensemble size i (if no value for mni is
found then the my mni i ratio will be the maximum one found for other
ensemble sizes).

The more (less) demanding the threshold, the lower (higher) will be
the expected number of ensemble subsets fulfilling H (ensemble med-
ians and individual members shown in Figs. 1 and 2), the closer to 0 (1)
will be AF, and the lower (higher) the resulting value of EOA.

It is important to note that the EOA is not the probability of H being
true; rather it assigns values close to 0 to situations with a very low
level of outcome agreement, and values close to 1 to situations with
high outcome agreement according to the available ensemble members.
A low EOA value indicates a lack of reasonable agreement of the models
regarding the fulfilment of H, but it does not necessary imply a greater
spread among models. For instance, the ensemble members may pre-
sent values that are clustered around the threshold (small spread) but
with some members above and others below (low agreement).
Furthermore, the low EOA value itself cannot be used for explaining the
reasons for not fulfilling H; rather it may hint at outcomes that may be
candidates for a more in-depth analysis to try to understand if the low
values are due to the spread of results, to the selected threshold, or
both.

EOA values are classified according to an intuitive interpretation
system in Table 1 (fixing the adjustment factor, AF, at 0 to facilitate
understanding). EOA intervals were defined seeking simple relation-
ships between values of ES and N. EOA classes were chosen based in
part on language used for confidence characterisation in the IPCC un-
certainty guidance document (Mastrandrea et al., 2010).

Other simpler indices, such as the proportion of all members ful-
filling the hypothesis, may lead to an overestimation of the outcome
agreement value (see “% of members with positive value” in Fig. 2c).
Measures of spread, such as the interquartile range, together with the
proportion of members fulfilling the hypothesis and with the final
averaged values are not able to discriminate situations with a different
EOA class (Figs. 2e vs. f).

The EOA was computed for every possible perturbation of T and P
considered in Ruiz-Ramos et al. (2018). EOA results were examined
either by analysing many adaptation options at once, to identify
adaptation options with the highest outcome agreement, and by fo-
cusing on one particular adaptation option using response surfaces. The
latter facilitate identification of those T and P perturbations (i.e. the
regions of the response surface) for which the ensemble members agree
more on their response to a given adaptation. In addition, for illus-
trative purposes, an individual perturbation combination (i.e. “grid
box” on the plot) was selected to demonstrate the analysis of underlying
data that was carried out across all perturbation combinations. R code
for EOA computation is available as supplementary material.

Table 1
EOA classes and ranges of values with interpretations of some EOA values (for AF=0).

EOA range EOA
class

EOA value
(with AF=0)

Interpretation ES

[0, 0.25) Low 0 The aggregated ensemble value does not fulfil the hypothesis. No ES is found. n/a
[0.25, 0.5) Medium 0.25 The minimum size for which all combinations fulfil H is three-quarters of the available members plus one (3/4)N+1
[0.5, 0.75) High 0.5 The minimum size for which all combinations fulfil H is half of the available members plus one (N/2)+1
[0.75, 1) Very high 0.75 The minimum size for which all combinations fulfil H is a quarter of the available members plus one (N/4)+1
1 Maximum 1 All available members fulfil the hypothesis 1

EOA: ensemble outcome agreement; AF: adjustment factor; ES: minimum ensemble size for which all permutations fulfil the hypothesis H; N: ensemble size.
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3. Results

In this section, adaptation, recovery and their respective EOA values
are analysed in depth for the most unfavourable conditions of the

simulated data set (i.e. 447 ppm of atmospheric [CO2] and shallow
soil). Results for contrasting conditions (552 ppm of atmospheric [CO2]
and deep soil) can be found in supplementary material (Figs. S1 to S3).

EOA values for those adaptation options simulated in Ruiz-Ramos

Fig. 3. Ensemble outcome agreement
(EOA) concerning a positive adaptation
response (upper panels) and a positive re-
covery response (lower panels) for the most
promising adaptation options from Ruiz-
Ramos et al. (2018), assuming shallow soil
and [CO2] of 447 ppm for different tem-
perature (T, ºC) and precipitation (P, %)
perturbations. Rows of panels: winter
wheat (top two) and spring wheat (bottom
two), each for rainfed (upper) and 40mm
of supplementary irrigation applied at an-
thesis (lower). Columns of panels from left
to right are paired by growing duration
(10% shorter, standard and 10% longer),
each pair alternating between early (DOY,
287) and standard sowing dates (DOY,
302). Grey-shaded areas of each subplot
indicate the T and P perturbations for
which the adaptation option was re-
commended in Ruiz-Ramos et al. (2018) (P
increases not considered). Codes for 23
adaptation options and the unadapted op-
tion are described in Table S2 and shown in
panel headers with the number of ensemble
members used in parentheses. EOA classes
are described in Table 1. Black open circles
highlight the cases analysed in Fig. 4.
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et al. (2018) that showed some adaptation and/or recovery potential
(23 out of 54 options) are shown in Fig. 3. Both single and combined
adaptation options were considered.

3.1. Adaptation response

The highest values of EOA across the perturbation ranges were
found for winter wheat applying supplementary irrigation (combined
adaptation ww-si). The classification into different EOA classes for ww-
si was found to depend on the duration of the growing cycle; longer
duration cultivars (cv2) showed low and medium EOA, while values of
EOA for the shorter duration cultivars (cv1) ranged from low to very
high. Standard duration cultivars (cv0) were the best choice to obtain
the maximum EOA value (1) for every perturbation (Fig. 3).

Adaptation options using spring wheat (sw) showed very high EOA
values for standard duration cultivars (cv0) and standard or early
sowings for the majority of the analysed perturbations (medium-high
EOA level for severe warming). If supplementary irrigation is applied
(sw-si) confidence in the results using EOA is very high or greater for
almost every perturbation when using standard and long duration
cultivars, and standard and earlier sowing dates (Fig. 3).

Values of EOA that were very high (close to 1) or maximum

(EOA=1) were found in every tested perturbation for the following
four combinations of adaptation options (when not indicated, cultivar
type, cycle length and sowing are standard options): supplementary
irrigation (ww-si-302-cv0), supplementary irrigation and early sowing
(ww-si-287-cv0), spring wheat with supplementary irrigation (sw-si-
302-cv0) and spring wheat with supplementary irrigation, longer cul-
tivar and early sowing (sw-si-287-cv2).

Adaptation EOA values were similar for the two analysed [CO2]
levels. In general, the adaptation EOA value was greater for shallow soil
than for deep soil (see Figs. S1 to S3 in supplementary material) as more
models agreed in detecting more intense water stress in the shallow soil
than in the deep one.

3.2. Recovery response

For adaptation options without irrigation and P decreases, high EOA
values were found for spring wheat, mostly combined with early sowing
and standard cultivar (sw-r-287-cv0), with some examples for winter
wheat with early sowing. When P decreases are combined with T in-
creases of 2 °C or greater, no adaptation option showed high EOA levels
when irrigation is not available. Most EOA values classified as at least
high were found for P increases. As expected, EOA values for the same

Fig. 4. Multi-model ensemble responses and resultant values of ensemble outcome agreement (EOA) for a single (illustrative) perturbation combination, T+2 °C/P-
10% for a shallow soil and [CO2] of 447 ppm. Options: a) and b) supplementary irrigation (si), c) and d) rainfed spring wheat (sw), e) and f) spring wheat with
supplementary irrigation (sw-si), a), c) and e) for early (day-of-the-year 287) and b), d) and f) standard (302) sowing dates. For all cases, a standard cultivar (cv0) was
simulated. Ensemble size of 1 shows 30-year averaged results from individual ensemble members indicated by different symbols and colours. Grey circles represent
the medians of different sub-ensembles. The hypothesis tested was that the adaptation response is greater than 0%. See Table 1 for interpreting EOA classes. An arrow
shows the minimum ensemble size for which every possible ensemble composition result is larger than the adaptation threshold (0% in this example). Codes for
adaptation options are described in Table S2. The adaptation options for the considered perturbation analysed here are highlighted in Fig. 3 by black open circles.
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adaptation option were enhanced as P increased.
For adaptation options with supplementary irrigation, standard (si-

302) or early sowings (si-287) showed high EOA levels for P decreases
and up to 3 °C of warming. Highest EOA values were found for the
standard and longer cultivars mostly up to T increases of 4 °C. The
combination of spring wheat, longer cultivar and early sowing (sw-si-
287-cv2) offered the highest values across the range of T changes out of
all options, with high EOA values even for a T increase of 6 °C and
severe P decreases (Fig. 3).

EOA values for recovery response showed some increase with higher
[CO2], especially with decreases in precipitation. The EOA values for
recovery response were more sensitive to changes in CO2 levels and soil
type than EOA for adaptation response (see Figs. S1 to S3 in supple-
mentary material).

3.3. EOA analysis example for a grid box

An example cell (T+2 °C/P-10%) was selected to illustrate the
analysis made for every perturbation. EOA values are broken down into
their constituent elements in Fig. 4 (cases analysed in Fig.4 are high-
lighted in Fig. 3 with a black open circles). Every member of the en-
semble (of 12) showed a positive adaptation response to supplementary
irrigation (si) for earlier and standard sowing dates (Fig. 4a and b, re-
spectively). A switch to spring wheat (sw) produced a negative adap-
tation response in only one ensemble member under rainfed conditions,
with very high EOA values for early (Fig. 4c) and standard (Fig.4d)
sowing dates, the latter showing adaptation values with a fairly low
spread, converging on +15% as the MME size increased. Adding sup-
plementary irrigation (sw-si) widened the spread towards higher posi-
tive adaptation responses but did not much affect the lower end, with

Fig. 5. Response surfaces with respect to changes in annual mean temperature and precipitation for the ensemble median adaptation response (left column) and
ensemble outcome agreement (EOA) for adaptation responses greater than 0% (centre column) and greater than 10% (right column). Adaptation options shown are
a)-c) supplementary irrigation (si); d)-f) substitution from winter to spring wheat (sw) and g)-i) spring wheat with supplementary irrigation (sw-si). Simulations were
for shallow soil and [CO2] of 447 ppm. See Table 1 for interpreting EOA classes. Codes for adaptation options are described in Table S2.
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still one ensemble member producing a negative response. EOA values
remained at a very high level (Fig. 4e and f).

The variation of ensemble average adaptation responses and their
respective EOA values across different climates can be portrayed using
response surfaces. Median adaptation responses are shown for three
adaptation options as adaptation response surfaces (ARS) in Fig. 5 (left
hand plots), including one rainfed option. The confidence in these
changes is represented in Fig. 5 using EOA surfaces for two hypotheses
of adaptation responses: exceeding thresholds of 0% (i.e. increased
yields compared to the unadapted simulation) and 10% (i.e. > 10%
yield increase). Plots for the supplementary irrigation (ww-si) adapta-
tion option show positive adaptation response (Fig. 5a) with maximum
EOA for the 0% threshold and for every perturbation combination
(Fig. 5b). Isolines are predominantly horizontal for the 10% threshold
(Fig. 5c) indicating that the outcome agreement for that threshold was
mainly linked to precipitation change: the greater the decline in P, the
higher the EOA value. As would be expected, EOA values decrease as
the adaptation response threshold increases – in other words, con-
fidence in fulfilling the hypothesis H declines as H becomes more de-
manding to achieve (e.g. compare Fig. 5e with Fig. 5f). EOA values
were high or very high in almost every perturbation combination when
using the spring wheat (sw) adaptation option with threshold 0% even
under rainfed conditions (Fig. 5e), and at least medium for the 10%
threshold for severe drying and warming (Fig. 5f). If supplementary
irrigation is used with spring wheat (sw-si), EOA was very high for both
thresholds (Figs. 5h and i). The patterns of variation in EOA values
differed from those of the ARS. For instance, for large increases in P,
median responses to the spring wheat (sw) adaptation option showed
increases from 10% to 30% with higher T (Fig. 5d), but EOA values
show a weak increase and then a stronger decline across the same cli-
mate perturbations for the 0% threshold (Fig. 5e).

4. Discussion

4.1. The need for alternative metrics describing multi-model ensemble
outcomes

In recent years, the crop model ensemble approach has been used in
many studies, in general obtaining the MME outcome by averaging the
individual member results using the mean (e.g. Iocola et al., 2017;
Palosuo et al., 2011; Rötter et al., 2012; Yin et al., 2017) or the median
(e.g. Asseng et al., 2015; Bassu et al., 2014; Martre et al., 2015; Pirttioja
et al., 2015). In our study the median was selected as it present ad-
vantages for small ensemble sizes or for ensembles where a single
model member that is clearly biased has a disproportionate influence on
the mean (e.g. as shown by Rötter et al., 2012 and Wallach et al., 2018).
However, the influence of switching from median to mean in our results
was also analysed, resulting in a low impact on the EOA values (an
example is given in supplementary material Fig. S4), in agreement with
Martre et al. (2015) where mean and median displayed a similar be-
haviour.

In terms of size, some MME studies have attempted to analyse the
minimum number of models required to obtain reliable results (Bassu
et al., 2014; Maiorano et al., 2017; Martre et al., 2015). Maiorano et al.
(2017) demonstrated that the suggested minimum ensemble size (ca. 10
models) proposed in Martre et al. (2015) could be reduced if the quality
of crop models could be improved, suggesting that a given ensemble
size might not guarantee high quality in the results. A logical con-
sequence would be that if a new ensemble of models not previously
tested were to be constructed, reliance on the criterion of minimum
ensemble size would seem to be at best uncertain and possibly mis-
leading, implying that further analysis of the MME composition would
be required (see, e.g. Knutti, 2010).

This study demonstrates that the final averaged result can vary
widely depending on the composition and size of the MME and we
would argue that using an aggregate summary value representing the

full ensemble is not sufficient for representing the diversity of in-
formation offered by MME results. Alternative metrics like the EOA
index proposed here are required to complement the existing MME
averages.

The EOA index provides insight beyond the expected averaged yield
response, judging the level of agreement of MME results in relation to a
hypothesis concerning the yield response of interest. Among the para-
meters of the EOA index, ES is the one that most affects its value.
Nevertheless, an adjustment factor AF is also required to distinguish
situations with the same ES value but where different EOA values
should be assigned due to internal differences in ensemble behaviour.
The adjustment factor AF also produces an EOA index that is con-
tinuous, whereas the use of the ES parameter alone would have resulted
in a discrete index with the number of possible values depending on the
number of ensemble members.

A high EOA value occurs in situations where most members fulfil
the hypothesis. Importantly, a large averaged adaptation response does
not necessarily imply a large index value. In this sense, when seeking a
more robust outcome it would be preferable to obtain a low adaptation
response with high EOA rather than a high adaptation response with
low EOA. The latter can occur when the averaged response is positive
and large, yet not all ensemble members suggest that the hypothesis is
fulfilled. This situation can appear when the ensemble spread is large.
Moreover, for a given positive adaptation response, higher EOA values
were found for a threshold of 0% than for 10% (and results not shown
for a threshold of 20% confirm this). This implies that models agree
more in adaptation sign (positive or negative) than in adaptation value
(specific % of change when the adaptation is applied) as was previously
suggested by Ruiz-Ramos and Minguez (2010).

The EOA index provides information that is potentially useful for
decision making, as it relates to a hypothesis that could be defined by
stakeholders. Other simpler indices, such as the ratio of ensemble
members fulfilling the hypothesis, or measures of spread such as the
interquartile range (IQR) or coefficient of variation (e.g. Pirttioja et al.,
2015) do not effectively provide information on confidence of the hy-
pothesis made based on the ensemble. Those indices can be challenging
to interpret for stakeholders, because 1) IQR does not relate to a critical
threshold and 2) they still need to be interpreted together with the
ensemble average. EOA has the advantage that it combines information
of the ensemble average and ensemble spread in relation to a critical
threshold into a single index. Use of the EOA index (rather than just the
final averaged ensemble result based on means or medians) could be of
great relevance for informing adaptation assessment because the in-
terpretation of results and derived recommendations can be affected
dramatically.

4.2. Evaluating the EOA index in appraising adaptation options for wheat in
north-east Spain

The utility of the EOA index has been tested here using MME
adaptation responses reported for wheat yields in north-east Spain by
Ruiz-Ramos et al. (2018). Many more adaptation options were found to
produce positive responses (enhanced yields) with high EOA values
across a range of climates than were able to return yields to their
baseline levels (recovery response), for which only a few adaptation
options under a limited number of perturbations showed a high EOA
level. Thus, our study indicates that the feasibility of obtaining a po-
sitive yield response does not exclusively rely on water availability for
supplementary irrigation, in contrast to yield recovery, for which there
are high EOA values only for options including supplementary irriga-
tion.

More specifically, rainfed wheat based adaptation options could be
problematic because the EOA value for a positive adaptation response
to winter cultivars was zero for almost every climate perturbation ex-
cept moderate wetting. The bright side is that for every perturbation it
was possible to find at least one option with positive adaptation
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response and a high EOA value when switching to spring wheat (even
without supplementary irrigation). These results and their index values
are consistent with the findings of Moriondo et al. (2010), who con-
cluded that high yields for southern Europe are expected for spring
wheat with an early sowing date, if a long cycle cultivar is used or if
supplementary irrigation is applied. In contrast, recovery would be
possible with high confidence only for spring wheat under no warming
or moderate warming and for slight drying and moderate wetting, or if
supplementary irrigation is applied.

In the case of positive adaptation responses, it is notable that EOA
values are often higher across a range of climate perturbations for
standard maturity cultivars and for spring wheat. Possible explanations
of this result include: 1) with standard cycle duration cultivars a
shortening cycle, while limiting the grain filling period, also con-
currently reduces exposure to water stress, hence minimising overall
yield losses, and 2) spring cultivars have no risk of failure due to un-
fulfilled vernalisation requirements. Other features of EOA outcomes
are less straightforward to interpret. For example, low EOA index va-
lues were frequently found for simulations in which crops were sub-
jected to stress conditions. It would be necessary to decompose the EOA
values for each combination of change producing stress in order to
ascertain if they result from a large model spread (perhaps due to dif-
ferences in the model algorithms representing processes of stress re-
sponse), or to the nature of the threshold value used to define a positive
adaptation response, or to a combination of these.

By assigning an EOA value to every adaptation option, those that
are otherwise promising in terms of adaptation response but show low
confidence (i.e. low values of EOA) can be discarded. Revisiting the
recommendations of Ruiz-Ramos et al. (2018) (who only considered P
decreases, see grey-shaded area in Fig. 3) in light of the EOA index
generally resulted in narrowing the range for which the adaptation
options were effective, more than a dramatic change of the re-
commended options. As concerning sowing dates, EOA analysis sup-
ports the recommendations done in Ruiz-Ramos et al. (2018) for
adaptation, while for recovery the main difference was a lower con-
fidence reported by EOA for many cases. For adaptation response, re-
commendations for standard and longer cultivars were confirmed with
very high or maximum confidence, while the confidence level was
variable for high perturbations for rainfed spring wheat. For recovery
response, results were not modified for winter wheat, but the pertur-
bation range for which spring wheat-based options were effective was
smaller than previously estimated. For both adaptation and recovery
response, confidence level for shorter cultivars of both winter and
spring wheat was lower than for the other cultivars, including some
adaptation options previously recommended that now should be ex-
cluded (e.g. sw-si-287-cv1 and sw-si-302-cv1, previously recommended
for recovery for shallow soil, see Fig. 3 and Fig. S2). As a consequence,
the revised recommendations would be to focus on early and standard
sowing dates combined with standard and longer cultivars for meeting
both adaptation and recovery targets under moderate perturbations
with very high confidence, while there would be chances of achieving
only adaptation benefit (impact reduction) with these options for severe
perturbations. When the aim would be just to adapt, short spring cul-
tivars could also be used with high confidence. The study demonstrates
how omitting this analysis would result at least in a number of mis-
leading recommendations under certain perturbations.

An important caveat to attach to all of the above conclusions con-
cerning the potential effectiveness of adaptation measures relates to the
use of fixed adjustments (e.g. in sowing dates or in the timing and
amount of irrigation) that are applied in conjunction with 30-year
means to derive values of EOA. In reality, adjustments in these man-
agement practices already take place annually at the present-day, ac-
cording to seasonal conditions. Applying fixed changes to all years may
lead to maladaptation in individual years, unless weather effects in
those years are also accounted for (though simulations for the baseline
climate are also affected by the same lack of dynamic response to the

weather). Whether such maladaptation effects would be accentuated
with changes in climate is a matter of conjecture. Simulating such dy-
namic management responses in conjunction with the fixed adjust-
ments of the type simulated in this study is a modelling requiring the
application of weather-based rules that are valid not only in present-day
conditions but also across the range of perturbations tested in the IRS
and ARS analyses. In the absence of explicit modelling of these effects,
the safest way to minimise maladaptation when interpreting our results
could be to select adaptation options that have high EOA values for a
wide range of perturbations, in an attempt to cover as broad a range of
inter-annual variability as possible.

4.3. On the use and wider applicability of the EOA index

Finally, it should be noted that the EOA index is intended to eval-
uate the level of agreement between MME outcomes with respect to a
given hypothesis. However, it cannot be used to evaluate differences in
the quality of specific ensemble members, nor to detect inter-
dependencies among models. Although in principle a low spread would
be expected between models that are related, in our study discrepancies
between outcomes from the same models operated by different mod-
elling groups could be greater than those between unrelated models (a
finding consistent with Confalonieri et al., 2016). Moreover, the index
is also affected by other factors, such as the threshold defined for ful-
filling a given hypothesis. Therefore, to ensure the best possible quality
of an ensemble, careful pre-selection of models is suggested, based on a
diversity of models that reflect the most representative range of model
structure and parameterizations possible (Katzav et al., 2012).

Also, EOA index is not intended to be used to rank adaptation op-
tions or to identify a “best” option based on numerical EOA values. This
is because every adaptation option has been calculated using a different
ensemble, and ensemble size and composition affect the results (as we
demonstrated in this paper). Besides, EOA values are affected by the
choice of the full ensemble. Hence comparisons between their EOA
values should be interpreted more carefully. Instead, assessment based
on EOA classes could provide this kind of evaluation. Also, EOA cal-
culated for a set of adaptation options provides important information
on the relative confidence in their ability to provide adaptation and
recovery.

In this study the hypothesis H was defined that the value to be tested
should be greater than a given threshold. Minor modifications of the
algorithm would be needed to calculate the EOA for responses below a
threshold. Another way of assessing ensemble results is to calculate the
maximum threshold that obtains a given EOA value. For instance, by
setting the EOA index to a high value, it would be possible to identify
those positive responses that are estimated with high confidence.

For hypotheses defined using a threshold, another possible mod-
ification would be to adopt a double-sided index, providing values in
the range [-1, 1], behaving as reported in the examples above for the
[0,1] interval (being 0 if the aggregated value matches the threshold),
and behaving similarly but with opposite sign if a complementary hy-
pothesis is assumed.

It would also be possible to develop another metric based on the AF
parameter (see Eq. 2). AF is a component of the EOA index, but if it
were computed independently for each ensemble size, using the final
aggregated value of the full ensemble as a threshold (e.g. median of the
adaptation responses), the resulting metric could offer an indicator of
spread depicting the internal behaviour of the ensemble for different
ensemble sizes and compositions.

Although the EOA index has been developed to work with results
from an ensemble of crop simulation models, this approach can be used
in other contexts. For instance, it can be used to analyse results of other
mechanistic models, not just crop models, or in other situations where
observational data are not available with which to compare results (e.g.
testing crops not previously grown at a location or ideotypes not yet
developed), or to analyse different values of the same magnitude
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obtained from several measurements or data sources. The approach
developed here could be especially useful for data with a wide dis-
tribution.

Calculation of the index for a given ensemble is computationally
feasible with a reasonable investment of time and resources, at least for
the maximum ensemble size considered in this study. For larger en-
semble sizes, the index could be calculated using sampling techniques
when an exhaustive analysis is not possible (e.g. models with perturbed
parameters, see Iizumi et al., 2014; Tao et al., 2017).

5. Conclusions

Crop model ensemble size and composition affect the final re-
commendations concerning adaptation responses to climate change
impacts. The ensemble outcome agreement (EOA) index helps to dis-
criminate the recommendations that can be derived from multi-model
ensemble outcomes by evaluating their level of confidence. Confidence
levels vary depending on the initial set of ensemble members, the
adaptation considered, the climate change perturbations assumed, the
threshold response fixed for the recommendation and the method of
aggregating the results.

Our analysis has demonstrated that effective adaptation of wheat in
a Mediterranean environment is feasible with high confidence even for
moderate and severe climate perturbations. Spring wheat and supple-
mentary irrigation based options have results with the highest con-
fidence, especially in combination with options that maintain or in-
crease the length of the crop duration. Adaptation enabling
maintenance of current yields is also found to be feasible with high
confidence under moderate drying and warming for some options in-
volving supplemental irrigation.

The methodology and index defined in this study can be applied
effectively to assess confidence levels not only for other multi-model
ensembles, but in other contexts too (e.g. climate models, perturbed
model parameter experiments, assessing different data sources of the
same observations). Providing recommendations to stakeholders that
are supported with metrics such as the EOA index should enable them
to assess and strengthen their confidence in the potential effectiveness
of different adaptation options.
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