AN ACOUSTIC ODYSSEY:

CHARACTERISATION OF THE VOCAL FISH COMMUNITY INHABITING NEPTUNE SEAGRASS MEADOWS ACROSS THE MEDITERRANEAN SEA

Marta Bolgan¹, Lucia Di Iorio², Thanos Dailianis³, Ignacio Catalan⁴, Pierre Lejeune⁵

& Eric Parmentier¹

¹ MORFONCT, ULiège, Belgium ² CHORUS Institute, France ³ HCMR, Greece ⁴ IMEDEA, Spain ⁵STARESO, France

Fish Passive Acoustic Monitoring in the Mediterranean Sea

Brown meagre

Parmentier et al. (2014). Aquaculture, 432, 204-211. Parmentier & Fine (2016). Springer.

forced-response model

Superfast sonic muscles

Muscle Swimbladder twitch reverberation

Cusk-eel

Swimbladder

rebound mechanism

Sexual dimorphisms Ontogenetic variations

Rocker bone displacement Lateral movements of the swimbladder plate

Scorpionfish

The chordophones

Lacking swimbladder High variability within and between species in number and length of tendons (i.e. strings)

Bolgan-Soulard et al (2019). JEXBIO 222(11), jeb196931.

Vocal community

Aggregation of species that produce sounds by using internal or external soundproducing tools and which interact acoustically in a specific habitat (Farina & James, 2016).

Fish acoustic communication has rarely been studied at community level

Only one study on fish vocal communities in the Mediterranean Sea (rocky reefs)

Desiderà et al. (2019). MEPS 608, 183-197

Acoustic niche hypothesis (ANH)

Individuals in acoustic communities compete for

the use of the sound resource for communication (niche competition)

ACOUSTIC NICHE HYPOTHESIS (Krause, 1993)

To avoid interference, fish species sharing the same acoustic space have co-evolved to **exploit different frequency bands**

Frequency partition

Ruppé et al. (2015). Proceedings of the National Academy of Sciences, 112(19). doi.org/10.1073/pnas.1424667112

Characterisation of the vocal fish community inhabiting *Posidonia oceanica* meadows

AIMS

 Characterise the vocal fish community of the pivotal Mediterranean environment of *Posidonia oceanica* meadows across the Mediterranean basin
Is there any temporal or spectral partition of fish vocalizations? Testing ANH (Acoustic Niche Hypothesis)

Simultaneous Static Acoustic Monitoring (SAM)

Mallorca, Palma Bay Marine Reserve

Corsica, STARESO

Crete, Seafloor observatory

Simultaneous Static Acoustic Monitoring (SAM)

- Synchronised recordings
- Similar environmental conditions (habitat, depth)
- One month of data during the peak of fish vocal season (July)

Characterisation of the vocal fish community

Manual scrolling (5 days per site)

Abundance evaluated on a categorical scale,

i.e. abundance score

ranging from 0=absence to 4=chorus

Diversity evaluated as number of sound types, i.e. acoustic richness

Sound types have been categorised on the basis of a dichotomous framework

see Desiderà et al. (2019). MEPS 608, 183-197

Sound types have been categorised on the basis of a dichotomous framework

Most common fish sounds in *P. oceanica* at -20 m

Kwa abundance

p<0.001

Vocal fish community of *P. oceanica* meadow: main findings

- Day-time: boat noise, decreasing West to East, only some rare Scorpaena's Kwa
- Night time: dominated in abundance by the Scorpaena's Kwa (decreasing West to East)
- Acoustic diversity increases West to East
- The spectral acoustic space exploited by fish is larger in Crete (i.e. site with highest acoustic diversity)
- We observe some degree of temporal and spectral partition overlap.
- ☆ Acoustic niche as a hypervolume → consider more axis (e.g. tempo, rhythms etc)

FURTHER STUDIES ARE NEEDED

