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Abstract. This paper focuses on potential errors when assessing the human toxicity of corn farming in
Wallonia, Belgium. The USEtox method is applied to the farming of 1 hectare of corn. Local data are used for
farming data and GaBi datasets for background data. Field emissions due to farming are calculated by the most
prevailing models. The results in human toxicity, cancer effect, underline the large contribution of chromium
(Cr) emissions. But when characterizing fertilizer composition, only the total chromium is measured and
therefore unspecified chromium is used as emissions. However, it is known that chromium in the natural
environment is mostly the non-toxic form Cr (III), which would greatly decrease the impact as the
characterization factor for unspecified chromium is, in USEtox, the average of Cr (III) and the toxic form Cr
(VI). The impact for human toxicity, non-cancer effect is mostly related to zinc emissions even if zinc is relatively
harmless. The impact of pesticides is negligible in both cases. These results show that caution must be taken
when examining/interpreting toxicity categories.
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Résumé. Impact des métaux lourds sur la toxicité humaine en analyse du cycle de vie : le cas du
maïs enWallonie. L’objectif de cet article est de mettre en évidence les erreurs potentielles lorsque la toxicité
humaine de la production de maïs wallon est étudiée. La méthode USEtox a été appliquée à la culture d’un
hectare de maïs. Des données locales ont été utilisées concernant la culture alors que des jeux de données issus de
GaBi ont été utilisés pour les données d’arrière-plan. Les émissions aux champs liées à la culture ont été calculées
en utilisant les modèles recommandés actuellement. Les résultats dans la catégorie toxicité humaine, effet
cancérogène, mettent en évidence la contribution très importante des émissions de chrome. Cependant, lorsque
les compositions des engrais sont mesurées, seul le chrome total est dosé, sans spéciation. C’est pourquoi ses
émissions sont renseignées comme émissions de chrome non spécifié. Néanmoins, dans l’environnement naturel,
le chrome est principalement présent sous sa forme non-toxique, le chrome (III), ce qui pourrait fortement
réduire l’impact puisque, dans USEtox, le facteur de caractérisation du chrome non-spécifié est égale à la
moyenne du facteur de caractérisation du Cr (III), très peu toxique, et du Cr (VI), très toxique. Pour ce qui est de
la catégorie toxicité humaine, effet non-cancérogène, l’impact est principalement lié aux émissions de zinc alors
que le zinc est très peu dangereux pour la santé humaine. Dans les deux cas, la contribution des pesticides est
négligeable. Ces résultats montrent qu’une prudence particulière est de mise lors de l’interprétation des résultats
liés aux catégories toxicités.
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1 Introduction

In this work, we want to emphasize the limitations that we
observed when using databases or inventories and
methodologies as black boxes. Sources of errors and
misinterpretation are illustrated in the particular case of
assessing the toxicity of heavy metals using the USEtox
methodology [1,2] during the production of corn. Indeed,
corn is an important cereal with many applications in the
feed and food industries (e.g. starch production). To
properly evaluate the environmental impact of its
applications, for example in the growing context of bio-
based products (such as in starch-based products), a better
understanding of the impact of its production is needed,
using Life Cycle Analysis (LCA). Any error made in the
evaluation of the agricultural step could have a large
impact on subsequent results obtained at the final product
stage.

Contrary to REACH1, that is based on risk assessment,
LCA evaluates potential environmental impacts associated
with products. This leads to differences in estimation of
toxicity. In the LCA field, studies have been performed and
highlight the high uncertainties related to toxicity
categories. For example, in their article, Pizzol et al. [3]
examine the human health impact with nine different LCA
methodologies, looking especially at the impact of metals.
In their study, they consider 14metals and compare their
impact using different methodologies. The first conclusion
is that the criteria used by LCAmethodologies to include or
not a specific metal in a toxicity category are unclear.
Moreover, their analysis shows that the significance of each
metal greatly varies with the chosen method. The USEtox
model seems especially dissimilar in its results from any of
the other models. With some case studies about waste
management systems, the contribution of metals in human
toxicity in USEtox is underlined. Other case studies have
been published about the evaluation of toxicity, especially
using USEtox [4,5]. For example, the study of Roos and
Peters [5] focuses on textiles, but the contribution of metals
is not investigated. The present study is the first one that
focuses on human toxicity in the specific context of an
agricultural product. In addition, there are many more
studies assessing ecotoxicity but this is out of the scope of
this work.

2 Materials and methods

2.1 The USEtox methodology

USEtox has been developed by the UNEP/SETAC Life
Cycle Initiative for characterizing ecotoxicological and
human impacts of chemicals. This is also the method
recommended by the ILCD (International Reference Life
Cycle Data System from the Joint Research Centre of the
European Commission) to evaluate the toxicological
1 Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH). REACH is a regulation of the European
Union that aims to improve human health and environment
protection by reducing the risks of chemicals.
impact in an LCA [1–3,6]. Nevertheless, the method is
classified as “Level III or interim” (recommended, but to be
applied with caution) and this case study will show an
example as to why. The method is available in most LCA
software, for example in GaBi 7 [7] which was used in this
work. The USEtox method also allows the user to define its
own characterization factors for substances not yet
included, and as illustrated by Roos and Peters [5] this
could greatly affect the results. Nevertheless, in this study
we only use the factors provided in the original method.
The latest version of USEtox provides characterization
factors labelled either interim or recommended. Interim
characterization factors have higher uncertainties and
should be used with caution. All the metals, for example,
have interim characterization factors.

2.2 Case study: Corn production in Wallonia

The studied system is the production of corn in Wallonia
(South of Belgium). The primary data are taken from Van
Stappen et al. [8]. The functional unit is 1 hectare of corn
crop in Wallonia, and the LCI data are based on actual
agricultural practices recorded in farms’ accounting data.
The field emissions from the application of inputs were
assessedbyemissionmodels asrecommendedbyNemecek [9],
and the emission of trace metals were calculated using the
SALCA-Schwermetall Swiss model developed by Freier-
muth [10] and adapted to local conditions using the trace
metal content of mineral and organic fertilizers provided
by Piazzalunga et al. [11]. Pesticides were assumed to end
up entirely in the agricultural soil. The system has been
modelled in GaBi 7 [7] using GaBi datasets [12]. Belgian
datasets have been preferred when available, and if not,
European datasets have been used, and if no European
dataset is available, then German ones have been used.
More details about the system are available in Van
Stappen et al. [8].

3 Results

3.1 Human toxicity, cancer effect: The case of
chromium

The human toxicity, cancer effect impact of farming
1 hectare of corn in Wallonia is 3.59E-04CTUh (compara-
tive toxic unit for humans, the de facto unit for measuring
human toxicity impacts), mostly due to chromium
emissions in freshwater and in soil from the organic and
mineral fertilizers, as illustrated in Figure 1. All chromium
emissions are classified in chromium unspecified emissions
due to the sole dosage of total chromium during the
fertilizer analysis. However, chromium is present as
Cr (+III) or Cr (+VI) and, depending on its oxidation
level, its toxicological impact is completely different.
Indeed, there is no impact for Cr (+III) but a tremendous
one for Cr (+VI). In USEtox, the characterization factor
for unspecified chromium is the average of the two,
therefore is high [1]. Depending on the actual ratio of both
forms of chromium, the impact could be wildly different.
Cr (+VI) is a powerful oxidant and is therefore very
reactive. In the presence of organic components, Cr (+VI)



Fig. 1. Impact on human toxicity, cancer effects, of the farming of 1 hectare of corn in Wallonia: Influence of the speciation of
chromium.

Fig. 1. Impact sur la toxicité humain, effet cancérogène de la culture d’un hectare de maïs en Wallonie : influence de la spéciation du
chrome.
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will quickly react and be reduced to Cr (+III). It is
therefore realistic to assume that all the chromium from
organic fertilizers is Cr (+III). Moreover, in mineral
fertilizers, chromium mostly comes from the rocks used in
their production, such as dolomite or phosphate rock. As
chromium exists as Cr (+III) in the natural environment,
the chromium in mineral fertilizers should also be Cr (+III)
[11,13,14]. The speciation of chromium in fertilizers has
been studied and always shows a very small portion of
Cr (+VI), generally below 2% [15]. Finally, the report of
Piazzalunga et al. [11] that provides the organic fertilizer
composition clearly underlines that these compositions
fulfill the European standards on fertilizer composition.

We tested the case where 95% of the chromium
emissions from fertilizers is Cr (+III), and with this change,
the impact in the aforementioned category is divided by 7.
Even so, the Cr (+VI) emissions in agricultural soil and
freshwater still have the largest impact contribution (62%),
as illustrated in Figure 1. The other main contributors are
other heavy metals emissions to agricultural soil, mainly
nickel (12%) and mercury (10%).

It is also interesting to note that the emissions of
phytosanitary products in the soil contribute to less than
1% of the total impact on human toxicity. However, the
total amount of phytosanitary products used, in mass, is
larger than the amount of metal emissions in soil, water and
air. This is because some of the phytosanitary products do
not have characterization factors. Considering around
2.2 kg of pesticides (all included) are applied by hectare,
only 1.2 kg is characterized in USEtox. The impact of the
other pesticides is not taken into account. Moreover, most
of them only have characterization factor in human
toxicity non-cancer effect, such as glyphosate, even though
it is classified as probably carcinogenic for humans by the
World Health Organization [16]. Finally, the characteriza-
tion factors of the pesticides and other phytosanitary
products are small compared to that of metals for emissions
in agricultural soil. In this study; atrazine is the one with
the larger characterization factor (1.3� 10�6 CTUh/kg),
but is still smaller than all the metals included in this
category.

3.2 Human toxicity, non-cancer effect: The case of
zinc

The human toxicity, non-cancer effects of farming
1 hectare of corn in Wallonia is 0.0231CTUh. It is mostly
related to zinc emissions in soil, as underlined in Figure 2.
In our case study, it is the metal with the largest emission in
soil due to the organic fertilizers, and in a lesser extent to
mineral fertilizers. The large amount of zinc in organic
fertilizers mostly comes from the use of pig manure, which
is rich in zinc because zinc supplements are given to pigs to
accelerate their growth (it helps to stimulate the activity of
certain enzymes), even though only 5% of this zinc is
absorbed, on average, by the pigs.

Zinc is abundant and is an important trace element in
the human body. It is useful for growth, bone and brain
development, etc. and the European Commission recom-
mends the consumption of 7–10mg of zinc by person and
per day. Moreover, mammals are able to eliminate excess
zinc and maintain a constant level independently of the
exposure. Consequently, the potential of zinc bio-accumu-
lation is low for mammals, but this is not the case for the
soil and vegetables, where the zinc can accumulate and
interfere with the absorption of other metals [17–20].



Fig. 2. Impact on human toxicity, non-cancer effects of the farming of 1 hectare of corn in Wallonia: Influence of zinc.

Fig. 2. Impact sur la toxicité humain, effet non-cancérogène de la culture d’un hectare de maïs en Wallonie : influence du zinc.
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For humans, only the exposure to high doses can have
toxic effects because it interferes with the uptake of copper
[17–20]. On the other hand, some zinc compounds such as
zinc chloride can be toxic. Therefore, this high contribution
of zinc to non-cancerous toxicity for humans is quite
surprising. In USEtox, the characterization factors are
calculated by multiplying the effects expressed in cases/
kgintake by the intake fraction expressed in kgintake/
kgemitted. The intake fraction is the fraction of the emission
that is taken by the overall exposed population. The effect
factor of zinc is small in comparison to other metals;
however, its characterization factor for emissions in
agricultural soil is especially high because its intake
fraction is high. The high contribution of zinc in human
toxicity, is also underlined by the study of Querini et al. [4].

A test was made with the characterization factor of zinc
equal to 0 in the USEtox model. In this case, human
toxicity, non-cancer effect drops to 0.00179CTUh (a 92%
reduction), mostly from lead and mercury emissions in the
soil.

The same observation can be made for the pesticides:
their impact is smaller than 1%. Some tests were made with
ReCiPe and the impact of pesticides is always small
compared to that of heavy metals, whatever the cultural
perspectives considered [1,2]. Other tests were performed
using USEtox 2.01. Two situations have been investigated,
in the first only the recommended characterization factors
were considered, and in the second both recommended and
interim characterization factors were used. All the factors
for metals are classified as interim, as those for dissociating
substances and amphiphilics. For the other substances,
recommended characterization factors are based on chronic
and subchronic effects, while those based on sub-acute data
are classified as interim. If only the recommended
characterization factors are considered, the score for corn
production in human toxicity is strongly reduced and the
impact fraction of pesticides becomes significant. In both
cases, the impact from pesticides remains similar, but since
most of the impact from other elements are interim, the
total impact in human toxicity, non-cancer effect is
2.32� 10�7 CTUh when using only the recommended
factors, and 98% of this impact is from the pesticides.
4 Discussion and conclusions

This work underlines the uncertainties related to the
characterization of human toxicity in LCA. The impact of
certain metals are as high as the inaccuracy of their
measurements (unspecified chromium in human toxicity,
for example), or can even seem incorrect (zinc in human
toxicity, non-cancer effect). Moreover, the contribution of
pesticides is negligible even if large amounts are used and
emitted. In general, determining the toxicity of metals is
difficult because their impact depends on their speciation,
and their bioavailability within the environment makes the
determination of a characterization factor difficult.
Moreover, the high persistence of metals in the environ-
ment increases the uncertainties [3,4].

Although the uncertainties about toxicity categories
are well-known, this case study underlines the impact of the
user hypotheses and shows that a detailed analysis of the
results is essential for a critical view on the toxicity results.
Without a detailed analysis, results can be misinterpreted
in all related problems: misplaced effort to reduce the
impact, problem when comparing products, etc. The
understanding of how the LCA method deals with toxicity
categories and the issues of metals is of tremendous
importance for a correct interpretation of the results, and
sensitivity analyses on the methods should be conducted
[3]. This article shows that the recommendation about a
significant level of difference in toxicity categories should
be increased from one order of magnitude, in the present
recommendation of Jolliet [21] to several orders of
magnitude. Another possibility could be to separately
investigate the impact of organics and inorganics in
toxicity categories as suggested by Querini et al. [4]. More
investigation on that topic is clearly necessary.
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