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The probability of ending in bin  corresponds to the total probability of all the

paths  from start to .

But what if we shift or remove some of the pins?

x

z x

 

p(x∣θ) = p(x, z∣θ)dz =  θ (1 − θ)∫ (
n

x
) x n−x
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Galton board device Computer simulation

Parameters Model parameters 

Buckets Observables 

Random paths Latent variables  

(stochastic execution traces
through simulator)

The Galton board is a metaphore of simulation-based science:

Inference in this context requires likelihood-free algorithms.

→

θ → θ

x → x

z → z
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―――
Credits: Johann Brehmer. 4 / 18



Particle physics
Cosmology

Epidemiology Climatology

Applications (some)
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Particle physics
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Likelihood ratio estimation
The likelihood ratio

is the quantity that is central to many statistical inference procedures.

Examples

Frequentist hypothesis testing

Supervised learning

Bayesian posterior sampling with MCMC

Bayesian posterior inference through Variational Inference

Generative adversarial networks

Empirical Bayes with Adversarial Variational Optimization

Optimal compression

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0
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When solving a problem of interest, do not solve a more
general problem as an intermediate step. – Vladimir Vapnik

Direct likelihood ratio estimation is simpler than density estimation.

(This is fortunate, we are in the likelihood-free scenario!)
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The Neyman-Pearson lemma states that the likelihood
ratio

is the most powerful test statistic to discriminate between
a null hypothesis  and an alternative .

 

The frequentist physicist's way

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0

θ  0 θ  1
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De�ne a projection function  mapping

observables  to a summary statistics .

Then, approximate the likelihood  as

From this it comes

 
s : X → R

x x = s(x)′

p(x∣θ)

p(x∣θ) ≈  (x∣θ) = p(x ∣θ).p̂ ′

 ≈  = (x∣θ  , θ  ).
p(x∣θ  )1

p(x∣θ  )0

 (x∣θ  )p̂ 1

 (x∣θ  )p̂ 0
r̂ 0 1
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Cᴀᴀʀʟ
Supervised learning provides a way to automatically construct :

Let us consider a binary classi�er  (e.g., a neural network) trained to

distinguish  from .

 is trained by minimizing the cross-entropy loss

s

ŝ
x ∼ p(x∣θ  )0 x ∼ p(x∣θ  )1

ŝ

  

L[ ] = −E  [ŝ p(x∣θ)π(θ) 1(θ = θ  ) log (x)+0 ŝ

1(θ = θ  ) log(1 − (x))]1 ŝ

―――
Cranmer et al, 2015 [arXiv:1506.02169]. 11 / 18

https://arxiv.org/abs/1506.02169


The solution  found after training approximates the optimal classi�er

Therefore,

That is, supervised classi�cation is equivalent to likelihood ratio estimation.

ŝ

(x) ≈ s (x) =  .ŝ ∗

p(x∣θ  ) + p(x∣θ  )0 1

p(x∣θ  )1

r(x∣θ  , θ  ) ≈ (x∣θ  , θ  ) =  .0 1 r̂ 0 1 (x)ŝ

1 − (x)ŝ
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Bayesian inference usually consists in
computing the posterior

x

θ

z

Bayesian inference

Doubly intractable in the likelihood-free scenario:

Cannot evaluate the evidence .

Cannot evaluate the likelihood .

p(θ∣x) =  .
p(x)

p(x∣θ)p(θ)

p(x) = p(x∣θ)p(θ)dθ∫

p(x∣θ) = p(x, z∣θ)dz∫
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Posterior sampling

MCMC algorithms can be made likelihood-free by plugging in the likelihood ratio.

―――
Chuck Huber, 2016; Hermans and Louppe, 2019 [arXiv:1903.04057]. 14 / 18

https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/
https://arxiv.org/abs/1903.04057


GANs

 

=

=

  E  log(d(x; ϕ)) + E  log(1 − d(x; ϕ))
θ

min
ϕ

max x∼p(x) [ ] x∼q(x∣θ) [ ]

 E  log  + E  log  

θ
min x∼p(x) [

q(x; θ) + p(x)
p(x)

] x∼q(x;θ) [
q(x; θ) + p(x)

q(x; θ)
]

 E  log  + E  log  

θ
min x∼p(x) [

1 + r(x; θ)−1

1
] x∼q(x;θ) [

1 + r(x; θ)
1

]

―――
Goodfellow et al, 2014 [arXiv:1406.2661]. 15 / 18

https://arxiv.org/abs/1406.2661


Optimal compression
The likelihood ratio  relates to the score

It quanti�es the relative change of the likelihood under in�nitesimal changes.

It can be seen as a local equivalent of the likelihood ratio.

In a small patch around , we have the approximation

where the score  are its suf�cient statistics. Therefore,

in the local model the likelihood ratio between  and  only depends on the

product between the score and .

That is,  can be compressed into a single scalar without loss of power.

r

t(x∣θ  ) = ∇  log p(x∣θ)∣  = ∇  r(x∣θ, θ  )∣  .ref θ θ  ref θ ref θ  ref

θ  ref

p  (x∣θ) =  p(t(x∣θ  )∣θ  ) exp(t(x∣θ  ) ⋅ (θ − θ  ))local
Z(θ)

1
ref ref ref ref

t(x∣θ  )ref

θ  0 θ  1

θ  − θ  0 1

x

―――
Brehmer et al, 2018 [arXiv:1805.12244]. 16 / 18

https://arxiv.org/abs/1805.12244


Treat the simulator 
as a black box

Make use of 
the inner structure

 
 
 

Learn a proxy for
inference

 

Histograms of observables 
Supervised learning 

Neural density (ratio) estimation

Mining gold from implicit models

 
 
 

Learn to control the
simulator

 

Adversarial variational optimization Probabilistic programming

How to estimate  or ?r t
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Kyle Cranmer Juan Pavez Johann
Brehmer Joeri Hermans

Summary
Much of modern science is based on "likelihood-free" simulations.

The likelihood-ratio is central to many statistical inference procedures.

Supervised learning enables likelihood-ratio estimation.

(Better likelihood-ratio estimates can be achieved by mining simulators.)

 

Collaborators
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The end.
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Variational inference for hierarchical implicit models

―――
Tran et al, 2017 [arXiv:1702.08896]. 18 / 18

https://arxiv.org/abs/1702.08896


Adversarial Variational Optimization

 

Replace  with an actual scienti�c simulator.

Bypass the non-differentiability with REINFORCE.

g

―――
Louppe et al, 2017 [arXiv:1707.07113]. 18 / 18

https://arxiv.org/abs/1707.07113

