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The probability of ending in bin  corresponds to the total probability of all the

paths  from start to .

But what if we shift or remove some of the pins?

x

z x

 

p(x∣θ) = p(x, z∣θ)dz =  θ (1 − θ)∫ (
n

x
) x n−x
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Galton board device Computer simulation

Parameters Model parameters 

Buckets Observables 

Random paths Latent variables  

(stochastic execution traces
through simulator)

The Galton board is a metaphore of simulation-based science:

Inference in this context requires likelihood-free algorithms.

→

θ → θ

x → x

z → z
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Particle physics
Cosmology

Epidemiology Climatology

Computational topography
Astronomy

Applications

5 / 26



 
 

Particle physics
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p(x∣θ) =  p(z  ∣θ)p(z  ∣z  )p(z  ∣z  )p(x∣z  )dz  dz  dz  

intractable

 ∭ p s p d s d p s d
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Likelihood ratio
The likelihood ratio

is the quantity that is central to many statistical inference procedures.

Examples

Frequentist hypothesis testing

Supervised learning

Bayesian posterior sampling with MCMC

Bayesian posterior inference through Variational Inference

Generative adversarial networks

Empirical Bayes with Adversarial Variational Optimization

The likelihood  is actually rarely needed.

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0

p(x∣θ)
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When solving a problem of interest, do not solve a more
general problem as an intermediate step. – Vladimir Vapnik

Direct likelihood ratio estimation is simpler than density estimation. 
(This is fortunate, we are in the likelihood-free scenario!)

10 / 26



The Neyman-Pearson lemma states that the likelihood
ratio

is the most powerful test statistic to discriminate between
a null hypothesis  and an alternative .

 

The frequentist physicist's way

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0

θ  0 θ  1
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De�ne a projection function  mapping

observables  to a summary statistics .

Then, approximate the likelihood  as

From this it comes

 
s : X → R

x x = s(x)′

p(x∣θ)

p(x∣θ) ≈  (x∣θ) = p(x ∣θ).p̂ ′

 ≈  = (x∣θ  , θ  ).
p(x∣θ  )1

p(x∣θ  )0

 (x∣θ  )p̂ 1

 (x∣θ  )p̂ 0
r̂ 0 1
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Cᴀᴀʀʟ
Supervised learning provides a way to automatically construct :

Let us consider a binary classi�er  (e.g., a neural network) trained to

distinguish  from .

 is trained by minimizing the cross-entropy loss

s

ŝ
x ∼ p(x∣θ  )0 x ∼ p(x∣θ  )1

ŝ

L  [ ] = −E [XE ŝ p(x∣θ)π(θ) 1(θ = θ  ) log (x)+0 ŝ

1(θ = θ  ) log(1 − (x))]1 ŝ

―――
Reference: Cranmer et al, 2015 [arXiv:1506.02169]. 13 / 26

https://arxiv.org/abs/1506.02169


The solution  found after training approximates the optimal classi�er

Therefore,

That is, supervised classi�cation is equivalent to likelihood ratio estimation.

ŝ

(x) ≈ s (x) =  .ŝ ∗

p(x∣θ  ) + p(x∣θ  )0 1

p(x∣θ  )1

r(x∣θ  , θ  ) ≈ (x∣θ  , θ  ) =  0 1 r̂ 0 1 (x)ŝ

1 − (x)ŝ
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For a given model ,

Bayesian inference usually consists in
computing the posterior

x

θ

z

Bayesian inference

For most cases, this is intractable since it requires evaluating the evidence

In the likelihood-free scenario, this is even less tractable since we cannot even
evaluate the likelihood

p(x, z, θ)

p(θ∣x) =  .
p(x)

p(x∣θ)p(θ)

p(x) = p(x∣θ)p(θ)dθ.∫

p(x∣θ) = p(x, z∣θ)dz.∫
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Posterior sampling

―――
Credits: Chuck Huber, 2016. 16 / 26

https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/


 

―――
Reference: Hermans et al, 2019 [arXiv:1903.04057]. 17 / 26

https://arxiv.org/abs/1903.04057


Likelihood-free Variational inference

―――
Reference: Tran et al, 2017 [arXiv:1702.08896]. 18 / 26

https://arxiv.org/abs/1702.08896


Generative adversarial networks
 
 
 

 

―――
Reference: Goodfellow et al, 2014 [arXiv:1406.2661]. 19 / 26

https://arxiv.org/abs/1406.2661


Adversarial Variational
Optimization
 

 

Replace  with an actual scienti�c simulator!g

―――
Reference: Louppe et al, 2017 [arXiv:1707.07113]. 20 / 26

https://arxiv.org/abs/1707.07113


Key insights

Replace the generative network with a non-differentiable forward simulator 

.

Let the neural network critic �gure out how to adjust the simulator
parameters.

Combine with variational optimization to bypass the non-differentiability by
optimizing upper bounds of the adversarial objectives

respectively over  and .

Effectively, this amounts to empirical Bayes guided by the likelihood ratios
estimated from the critic.

g(z; θ)

  

U  (ϕ)d

U  (ψ)g

= E  L  (ϕ)θ∼q(θ;ψ) [ d ]

= E  L  (θ)θ∼q(θ;ψ) [ g ]

ϕ ψ
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Mining gold

―――
Reference: Brehmer et al, 2018 [arXiv:1805.12244]. 22 / 26

https://arxiv.org/pdf/1805.12244.pdf


Mining gold

―――
Reference: Brehmer et al, 2018 [arXiv:1805.12244]. 22 / 26

https://arxiv.org/pdf/1805.12244.pdf


Increased data ef�ciency

―――
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Better sensitivity

―――
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Summary
Much of modern science is based on "likelihood-free" simulations.

The likelihood-ratio is central to many statistical inference procedures.

Supervised learning enables likelihood-ratio estimation.

Better likelihood-ratio estimates can be achieved by mining simulators.
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Collaborators
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The end.
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