Parameter inference and data modelling with deep learning

Flexible operation and advanced control workshop
Isaac Newton Institute January 8, 2019

Gilles Louppe
@glouppe

The probability of ending in bin x corresponds to the total probability of all the paths z from start to x.

$$
p(x \mid \theta)=\int p(x, z \mid \theta) d z=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}
$$

What if we shift or remove some of the pins?

$$
\begin{aligned}
p(x \mid \theta) & =\underbrace{\int}_{\text {intractable! }} p(x, z \mid \theta) d z \\
& \neq\binom{ n}{x} \theta^{x}(1-\theta)^{n-x}
\end{aligned}
$$

Does this mean inference is no longer possible?

The Galton board is a metaphore of simulation-based science:

Galton board device	\rightarrow	Computer simulation
Parameters θ	\rightarrow	Model parameters θ
Buckets x	\rightarrow	Observables x
Random paths z	\rightarrow	Latent variables z (stochastic execution traces through simulator)

Inference in this context requires likelihood-free algorithms.

Prediction (simulation):

- Well-understood mechanistic model
- Simulator can generate samples

Observables
$\longrightarrow x$

Prediction (simulation):

- Well-understood mechanistic model
- Simulator can generate samples

Inference:

- Likelihood function $p(x \mid \theta)$ is intractable
- Goal: estimator $\hat{p}(x \mid \theta)$

Applications

Particle physics

Epidemiology

Computational topography

Cosmology

Particle physics

Parameters
θ \qquad

Observables
$\longrightarrow \quad x$
$\mathcal{L}_{S M}=-\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a}-g_{s}{ }^{f a b c} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c}-\frac{1}{4} g_{s}^{2} f^{a k c} f^{a d e} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{e}-\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{-}^{-}$
 $\left.\left.W_{\nu}^{+} W_{\mu}^{-}\right)-Z_{\nu}^{(}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+Z_{\mu}^{0}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-$
$s_{w}\left(\partial_{\nu} A_{\mu}\left(W_{+}^{+} W_{\nu}^{-}-W_{+}^{+} W_{-}^{-}\right)-A_{\nu}\left(W^{+} \partial_{\nu} W_{-}^{-}-W^{-} \partial_{\nu} W^{+}\right)+A_{\mu}\left(W^{+} \partial_{\nu} W^{-}\right.\right.$ $\left.\left.{ }^{2} S_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-}+g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-}\right.$ $\left.Z_{\mu}^{0} Z_{\mu}^{\nu} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w}^{\mu}\left(A_{\mu}^{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w} c_{w}\left(A_{\mu} Z_{\nu}^{\circ}\left(W_{\mu}^{+} W_{\nu}^{\nu}\right.\right.$ $\left.\left.W_{\nu}^{+} W_{\mu}^{-}\right)-2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-2 M^{2} \alpha_{h} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}$
$\beta_{h}\left(\frac{2 M 2^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right)+\frac{2 M \Lambda^{4}}{g^{2}} \alpha_{h}$
$g \alpha_{h} M\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right.$
$g \alpha_{h} M\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right)$
$+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2}$
$4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2}+\phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}$
$i g\left(W^{+}\left(\delta^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-W^{-}\left(\delta^{0} \partial_{\mu} \phi^{+}\right.\right.$
 $\frac{1}{2} g\left(W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)+W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\delta^{+} \partial_{\mu} H\right)+\frac{1}{2} g \frac{1}{\iota_{\mu}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)+\right.\right.$ $M\left(\frac{1}{c_{w}} Z_{\mu}^{0} \partial_{\mu} \phi^{0}+W_{\mu}^{+} \partial_{\mu} \phi^{-}+W_{\mu}^{-} \partial_{\mu} \phi^{+}\right)-i g \frac{s_{w}^{2}}{c_{w}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}\right.$
$\left.W_{\mu}^{-} \phi^{+}\right)-i \frac{1-2 c_{w}^{2}}{2} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+i g s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)-$
$g^{2} W^{+} W^{-}\left(H^{2}+\left(\rho^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right)-\frac{1}{2} q^{2} \frac{1}{2} Z^{0} Z^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s^{2}-1\right)^{2} \phi^{+}{ }^{+}\right)$
$\frac{1}{4} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left(H^{2}+\left(\phi^{\circ}\right)^{2}+2 \phi^{+} \phi^{-}\right)-\frac{1}{8} g^{2} \overline{1}_{\epsilon_{w}^{2}}^{\sigma_{\mu}^{0}} Z_{\mu}^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right)-$ $\frac{1}{2} g^{2} \frac{s_{\omega_{w}^{2}}^{2}}{c_{w}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)-\frac{1}{2} i g^{2} \frac{s_{\omega}^{2}}{c_{w}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+\right.$ $\left.W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-g^{2} \frac{s_{w}}{c_{\mu}}\left(2 c_{w}^{2}-1\right) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}$ $g^{2} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}+\frac{1}{2} i g_{s} \lambda_{i j}^{a}\left(\tilde{q}_{i}^{\top} \gamma^{\mu} q_{j}^{\sigma}\right) g_{\mu}^{a}-\bar{e}^{\lambda}\left(\gamma \partial+m_{e}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda}\left(\gamma \partial+m_{\nu}^{\lambda}\right) \nu^{\lambda}-\bar{u}_{j}^{\lambda}(\gamma \partial+$
$\left.m_{u}^{\lambda}\right) u_{j}^{\lambda}-d_{j}^{\lambda}\left(\gamma \partial+m_{d}^{\lambda}\right) d_{j}^{\lambda}+i g s_{w} A_{\mu}\left(-\left(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}\right)+\frac{2}{3}\left(\bar{u}_{j}^{\lambda} \gamma^{\mu} u_{j}^{\lambda}\right)-\frac{1}{3}\left(d_{j}^{\lambda} \gamma^{\mu} d_{j}^{\lambda}\right)\right)+$
$\frac{i}{4 c_{c}} Z_{\mu}^{0}\left\{\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right\}+\left(d_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{2}-1-\gamma^{5}\right) d_{j}^{\lambda}\right)+\right.$
$\left.\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1-\frac{\delta}{3} s_{u}^{2}+\gamma^{5}\right) u_{j}^{\lambda}\right)\right\}+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left(\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) U^{\ell \epsilon p}{ }_{\lambda \kappa} e^{\kappa}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{\kappa}\right)\right)+$
$\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left(\left(\bar{c}^{\kappa} C^{l e}{ }_{k \lambda}{ }_{k} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{d}_{j}^{k} C_{k \lambda}^{\dagger} \gamma^{\mu}\left(1+\gamma^{5}\right) u_{j}^{\lambda}\right)\right)+$
$\frac{\lambda_{i}^{2}}{2 M \sqrt{2}} \phi^{+}\left(-m_{e}^{\kappa}\left(\bar{\nu}^{\lambda} U^{\ell \ell p_{\lambda \kappa}}\left(1-\gamma^{5}\right) e^{\kappa}\right)+m_{\nu}^{\lambda}\left(\bar{\nu}^{\lambda} U^{l \ell p} \lambda_{\lambda \kappa}\left(1+\gamma^{5}\right) e^{\kappa}\right)+\right.$
$\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{e}^{\lambda}\left(\bar{e}^{\lambda} U^{l e p_{\lambda k} \dagger}\left(1+\gamma^{5}\right) \nu^{\kappa}\right)-m_{\nu}^{\kappa}\left(\bar{e}^{\lambda} U^{l e p_{\lambda k}^{\dagger}}{ }_{\lambda k}\left(1-\gamma^{5}\right) \nu^{k}\right)-\frac{g}{2} \frac{m_{\lambda}^{\lambda}}{M} H\left(\bar{\nu}^{\lambda} \nu^{\lambda}\right)-\right.$ $\frac{g}{2} \frac{m_{c}^{2}}{M} H\left(\bar{e}^{\lambda} e^{\lambda}\right)+\frac{i q}{2} \frac{m_{\dot{s}}^{\lambda}}{M} \phi^{0}\left(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}\right)-\frac{i q}{2} \frac{m_{s}^{M}}{M} \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)-\frac{1}{4} \bar{\nu}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{\nu}_{\kappa}-$ $\frac{1}{4} \overline{\bar{\nu}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{\nu}_{\kappa}}+\frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1-\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1+\gamma^{5}\right) d_{j}^{\kappa}\right)+\right.$
$\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{d}^{\lambda}\left(\bar{d}_{j}^{\lambda} C_{\lambda_{k}}^{\dagger}\left(1+\gamma^{5}\right) u_{j}^{\kappa}\right)-m_{n}^{\kappa}\left(\vec{d}_{j} C_{\lambda_{k}}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{\kappa}\right)-\frac{q}{2} \frac{m_{\vec{\lambda}}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)-\right.$
 $X^{+}\left(\partial^{2}-M^{2}\right) X^{+}+X^{-}\left(\partial^{2}-M^{2}\right) X^{-}+X^{0}\left(\partial^{2}-\frac{M 2}{c_{2}^{2}}\right) X^{0}+Y \partial^{2} Y+i g c_{w} W_{\mu}^{+}\left(\partial_{\mu} X^{0} X^{-}\right.$
$\left.\partial_{\mu} \bar{X}^{+} X^{0}\right)+i g s_{w} W_{\mu}^{+}\left(\partial_{\mu} \bar{Y} X^{-}-\partial_{\mu} \bar{X}^{+} Y\right)+i g c_{w} W_{\mu}^{-}\left(\partial_{\mu} \bar{X}^{-} X^{0}\right.$
$\left.\partial_{\mu} \bar{X}^{0} X^{+}\right)+i g s_{w} W_{\mu}^{-}\left(\partial_{\mu} X^{-} Y-\partial_{\mu} Y X^{+}\right)+i g c_{w} Z_{\mu}^{0}\left(\partial_{\mu} \bar{X}^{+} X^{+}\right.$
$\left.\partial_{\mu} \bar{X}^{-} X^{-}\right)+i g s_{w} A_{\mu}\left(\partial_{\mu} \bar{X}^{+} X^{\dagger}\right.$
$\left.\partial_{\mu} \overline{X^{-}} X^{-}\right)-\frac{1}{2} g M\left(\bar{X}^{+} X^{+} H+\bar{X}-X^{-} H+\frac{1}{c_{2}^{2}} \bar{X}^{0} X^{0} H\right)+\frac{1-2 c_{c}^{2}}{2_{c \omega}} i g M\left(\bar{X}^{+} X^{0} \phi^{+}-\bar{X}^{-} X^{0} \phi^{-}\right)+$
$\frac{1}{2 c_{w}} i g M\left(\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right)+i g M s_{w}\left(\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right)+$ $\frac{1}{2} i g M\left(\bar{X}^{+} X^{+} \phi^{0}-\bar{X}^{-} X^{-} \phi^{0}\right)$

Energy?

Likelihood-free inference algorithms

$x+\frac{2}{x}=$
Encoder/Decoder

ReLu
BatchNorm

Concat

$$
-\frac{0}{8}
$$

LSTM
:\%84
250
CTC

Attention

Capsule Nets

Mixture of Experts
Neural Collaborative Filtering

Block Sparse LSTM

Can we harness deep learning for inference and generation?

Neural networks are

- function approximators with a gazillion of parameters,
- tuned with stochastic gradient descent

$$
\theta_{t+1}=\theta_{t}-\gamma \hat{\nabla}_{\theta} \mathcal{L}\left(\theta_{t}\right)
$$

- are flexible enough to be structured by domain knowledge.

Treat the simulator as a black box

Treat the simulator as a black box

Learn to control the simulator

Make use of the inner structure

Probabilistic programming

The physicist's way

The Neyman-Pearson lemma states that the likelihood ratio

$$
r\left(x \mid \theta_{0}, \theta_{1}\right)=\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}
$$

is the most powerful test statistic to discriminate between a null hypothesis θ_{0} and an alternative θ_{1}.

IX. On the Problem of the most Efficient Tests of Statistical Hypotheses.

By J. Neyman, Nencki Institute, Soc. Sci. Lit. Varsoviensis, and Lecturer at the Central College of Agriculture, Warsaw, and E. S. Pearson, Department of Applied Statistics, University College, London.
(Communicated by K. Pearson, F.R.S.)
(Received August 31, 1932.—Read November 10, 1932.)

Contents.

[^0]

Define a projection function $s: \mathcal{X} \rightarrow \mathbb{R}$ mapping observables x to a summary statistics $x^{\prime}=s(x)$.

Then, approximate the likelihood $p(x \mid \theta)$ as

$$
p(x \mid \theta) \approx \hat{p}(x \mid \theta)=p\left(x^{\prime} \mid \theta\right)
$$

From this it comes

$$
\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)} \approx \frac{\hat{p}\left(x \mid \theta_{0}\right)}{\hat{p}\left(x \mid \theta_{1}\right)}=\hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)
$$

This methodology has worked great for physicists for the last 20-30 years, but ...

- Choosing the projection s is difficult and problem-dependent.
- Often there is no single good variable: compressing to any x^{\prime} loses information.
- Ideally: analyse high-dimensional x^{\prime}, including all correlations.

Unfortunately, filling high-dimensional histograms is not tractable.

Who you gonna call? Machine learning!

CARL

Key insights

- The likelihood ratio is often sufficient for inference.
- Evaluating the likelihood ratio does not require evaluating the individual likelihoods.
- Supervised learning indirectly estimates likelihood ratios.

Supervised learning provides a way to automatically construct s :

- Let us consider a binary classifier \hat{s} (e.g., a neural network) trained to distinguish $x \sim p\left(x \mid \theta_{0}\right)$ from $x \sim p\left(x \mid \theta_{1}\right)$.
- \hat{s} is trained by minimizing the cross-entropy loss

$$
\begin{aligned}
L_{X E}[\hat{s}]=-\mathbb{E}_{p(x \mid \theta) \pi(\theta)}[1(\theta & \left.=\theta_{0}\right) \log \hat{s}(x)+ \\
1(\theta & \left.\left.=\theta_{1}\right) \log (1-\hat{s}(x))\right]
\end{aligned}
$$

The solution \hat{s} found after training approximates the optimal classifier

$$
\hat{s}(x) \approx s^{*}(x)=\frac{p\left(x \mid \theta_{1}\right)}{p\left(x \mid \theta_{0}\right)+p\left(x \mid \theta_{1}\right)}
$$

Therefore,

$$
r\left(x \mid \theta_{0}, \theta_{1}\right) \approx \hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)=\frac{1-\hat{s}(x)}{\hat{s}(x)}
$$

That is, supervised classification is equivalent to likelihood ratio estimation and can therefore be used for MLE inference.

Treat the simulator as a black box

Learn a proxy for inference

Histograms of observables
Neural density (ratio) estimation

Learn to control

 the simulatorAdversarial variational optimization

Make use of the inner structure

Mining gold from implicit models

Probabilistic programming

Mining gold from simulators

$p(x \mid \theta)$ is usually intractable.
What about $p(x, z \mid \theta)$?

As the trajectory z_{1}, \ldots, z_{T} and the observable x are emitted, it is often possible:

- to calculate the joint likelihood $p(x, z \mid \theta)$;
- to calculate the joint likelihood ratio $r\left(x, z \mid \theta_{0}, \theta_{1}\right)$;
- to calculate the joint score $t\left(x, z \mid \theta_{0}\right)=\left.\nabla_{\theta} \log p(x, z \mid \theta)\right|_{\theta_{0}}$.

We call this process mining gold from your simulator!

Observe that the joint likelihood ratios

$$
r\left(x, z \mid \theta_{0}, \theta_{1}\right)=\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}
$$

are scattered around $r\left(x \mid \theta_{0}, \theta_{1}\right)$.
Can we use them to approximate $r\left(x \mid \theta_{0}, \theta_{1}\right)$?

Let us define

$$
L_{r}=\mathbb{E}_{p\left(x, z \mid \theta_{1}\right)}\left[\left(r\left(x, z \mid \theta_{0}, \theta_{1}\right)-\hat{r}(x)\right)^{2}\right]
$$

Via calculus of variations, we find that this functional is minimized by

$$
\begin{aligned}
r^{*}(x) & =\frac{1}{p\left(x \mid \theta_{1}\right)} \int p\left(x, z \mid \theta_{1}\right) \frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)} d z \\
& =\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)} \\
& =r\left(x \mid \theta_{0}, \theta_{1}\right)
\end{aligned}
$$

How does one find r^{*} ?

$$
r^{*}\left(x \mid \theta_{0}, \theta_{1}\right)=\arg \min _{\hat{r}} L_{r}[\hat{r}]
$$

Minimizing functionals is exactly what machine learning does. In our case,

- \hat{r} are neural networks (or the parameters thereof);
- L_{r} is the loss function;
- minimization is carried out using stochastic gradient descent from the data extracted from the simulator.

Similarly, we can mine the simulator to extract the joint score

$$
t\left(x, z \mid \theta_{0}\right)=\left.\nabla_{\theta} \log p(x, z \mid \theta)\right|_{\theta_{0}}
$$

which indicates how much more or less likely x, z would be if one changed θ_{0}.

We define

$$
L_{t}=\mathbb{E}_{p\left(x, z \mid \theta_{0}\right)}\left[\left(t\left(x, z \mid \theta_{0}\right)-\hat{t}(x)\right)^{2}\right]
$$

which can be shown to be minimized by $t^{*}(x)=t\left(x \mid \theta_{0}\right)$.

RAsCAL

$$
L_{R A S C A L}=L_{r}+L_{t}
$$

RAsCAL

$$
L_{R A S C A L}=L_{r}+L_{t}
$$

Treat the simulator as a black box

Learn a proxy for inference

Histograms of observables Neural density (ratio) estimation

Adversarial variational optimization

Make use of the inner structure

Mining gold from implicit models

Probabilistic programming

Generative adversarial networks

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

Brock et al 2018

Figure 2. Uncurated set of images produced by our style-based generator (config F) with the FFHQ dataset. Here we used a variation of the truncation trick [5,29] with $\psi=0.7$ for resolutions $4^{2}-32^{2}$. Please see the accompanying video for more results.

Karras et al, 2018.

AVO

Replace g with an actual scientific simulator!

Key insights

- Replace the generative network with a non-differentiable forward simulator $g(\mathbf{z} ; \theta)$.
- Let the neural network critic figure out how to adjust the simulator parameters.
- Combine with variational optimization to bypass the non-differentiability by optimizing upper bounds of the adversarial objectives

$$
\begin{aligned}
U_{d}(\phi) & =\mathbb{E}_{\theta \sim q(\theta ; \psi)}\left[\mathcal{L}_{d}(\phi)\right] \\
U_{g}(\psi) & =\mathbb{E}_{\theta \sim q(\theta ; \psi)}\left[\mathcal{L}_{g}(\theta)\right]
\end{aligned}
$$

respectively over ϕ and ψ.

Samples for $\theta=0$ (top) vs.
samples for $\theta=0.81$ (bottom).

Treat the simulator as a black box

Learn a proxy for inference

Learn to control the simulator

Histograms of observables Neural density (ratio) estimation

Mining gold from implicit models

Probabilistic programming

Probabilistic programming

CS

Probabilistic programming

CS

Statistics

Probabilistic programming

CS
Probabilistic Programming Statistics

Probabilistic programming

Inference

CS Probabilistic Programming Statistics

Key insights

Let a neural network take full control of the internals of the simulation program by hijacking all calls to the random number generator.

(defquery captcha
[image num-chars tol]
(let [[wh] (size image)
; ; sample random characters num-chars (sample
(poisson num-chars)) chars (repeatedly num-chars sample-char)]
; compare rendering to true image
(map (fn [y z]
(observe (normal z tol) y))
(reduce-dim image)
(reduce-dim (render chars wh)))
; predict captcha text
\{: text
(map :symbol (sort-by :x chars))\}))

How to break captchas with probabilistic programming

X

y

event \& detector simulators ATLAS detector output

Probabilistic programming hooked to particle physics simulators (work in progress)

(a) Prior execution $p(\mathbf{x})$.

(b) Posterior execution $p(\mathbf{x} \mid \mathbf{y})$ conditioned on a given calorimeter observation \mathbf{y}.

Summary

Summary

- Much of modern science is based on "likelihood-free" simulations.
- Recent (and older) developments from machine learning offer solutions for likelihood-free inference, including:
- Supervised learning
- Neural networks trained with augmented data
- Adversarial training
- Probabilistic programming

Collaborators

References

- Stoye, M., Brehmer, J., Louppe, G., Pavez, J., \& Cranmer, K. (2018). Likelihood-free inference with an improved cross-entropy estimator. arXiv preprint arXiv:1808.00973.
- Baydin, A. G., Heinrich, L., Bhimji, W., Gram-Hansen, B., Louppe, G., Shao, L., ... \& Wood, F. (2018). Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. arXiv preprint arXiv:1807.07706.
- Brehmer, J., Louppe, G., Pavez, J., \& Cranmer, K. (2018). Mining gold from implicit models to improve likelihood-free inference. arXiv preprint arXiv:1805.12244.
- Brehmer, J., Cranmer, K., Louppe, G., \& Pavez, J. (2018). Constraining Effective Field Theories with Machine Learning. arXiv preprint arXiv:1805.00013.
- Brehmer, J., Cranmer, K., Louppe, G., \& Pavez, J. (2018). A Guide to Constraining Effective Field Theories with Machine Learning. arXiv preprint arXiv:1805.00020.
- Casado, M. L., Baydin, A. G., Rubio, D. M., Le, T. A., Wood, F., Heinrich, L., ... \& Bhimji, W. (2017). Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators. arXiv preprint arXiv:1712.07901.
- Louppe, G., Hermans, J., \& Cranmer, K. (2017). Adversarial Variational Optimization of NonDifferentiable Simulators. arXiv preprint arXiv:1707.07113.
- Cranmer, K., Pavez, J., \& Louppe, G. (2015). Approximating likelihood ratios with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169.

The end.

[^0]: I. Introductory Page
 II. Outline of General Theory

 293

