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The probability of ending in bin  corresponds to the total probability of all the

paths  from start to .

x

z x

p(x∣θ) = p(x, z∣θ)dz =  θ (1 − θ)∫ (
n

x
) x n−x
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What if we shift or remove some of the pins?
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The probability of ending in bin  still corresponds to the cumulative probability of

all the paths from start to :

But this integral can no longer be simpli�ed analytically!

As  grows larger, evaluating  becomes intractable since the number of

paths grows combinatorially.

Generating observations remains easy: drop the balls.

Since  cannot be evaluated, does this mean inference is not possible?

x

x

p(x∣θ) = p(x, z∣θ)dz∫

n p(x∣θ)

p(x∣θ)

4 / 42



Galton board device Computer simulation

Parameters Model parameters 

Buckets Observables 

Random paths Latent variables  

(stochastic execution traces
through simulator)

The Galton board is a metaphore of simulation-based science:

Inference in this context requires likelihood-free algorithms.

→

θ → θ

x → x

z → z
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―――

Credits: Johann Brehmer 6 / 42
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Applications
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Cosmological N-body simulations

―――

Refs: Planck Collaboration, 2015 (arXiv:1502.01589); Vogelsberger et al, 2014 (arXiv:1405.2921) 8 / 42



Epidemiology

―――

Refs: Brockmann and Helbing, 2013 (doi:10.1126/science.1245200) 9 / 42



Particle physics

The Galton board of particle physics
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Likelihood-free inference
algorithms

11 / 42



Treat the simulator 
as a black box

Make use of 
the inner structure

 
 
 

Learn a proxy for
inference

 

Histograms of observables 
Neural density (ratio) estimation

Mining gold from implicit models

 
 
 

Learn to control
the simulator

 

Adversarial variational optimization Probabilistic programming
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The Neyman-Pearson lemma states that the likelihood ratio

is the most powerful test statistic to discriminate between a
null hypothesis  and an alternative .

How does one compute this ratio in the likelihood-free
context?

The physicist's way

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0

θ  0 θ  1
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De�ne a projection function  mapping

observables  to a summary statistics .

Then, approximate the likelihood  as

From this it comes

 
s : X → R

x x = s(x)′

p(x∣θ)

p(x∣θ) ≈ (x∣θ) = p(x ∣θ).p̂ ′

 ≈  = (x∣θ  , θ  ).
p(x∣θ  )1

p(x∣θ  )0

 (x∣θ  )p̂ 1

 (x∣θ  )p̂ 0
r̂ 0 1
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Choosing the projection  is

dif�cult and problem-dependent.

Often there is no single good
variable: compressing to any 

loses information.

Ideally: analyse high-dimensional 

, including all correlations.

Unfortunately, �lling high-dimensional
histograms is not tractable.

This methodology has worked great for physicists for the last 20-30 years, but ...

Who you gonna call? Machine learning!

s

x′

x′

―――

Refs: Bolognesi et al, 2012 (arXiv:1208.4018) 14 / 42



Cᴀʀʟ

Key insights

The likelihood ratio is often suf�cient for inference.

Evaluating the likelihood ratio does not require evaluating the individual
likelihoods.

Supervised learning indirectly estimates likelihood ratios.

―――

Refs: Cranmer et al, 2016 (arXiv:1506.02169) 15 / 42



Supervised learning provides a way to automatically construct :

Let us consider a binary classi�er  (e.g., a neural network) trained to

distinguish  from .

 is trained by minimizing the cross-entropy loss

s

ŝ
x ∼ p(x∣θ  )0 x ∼ p(x∣θ  )1

ŝ

  

L  [ ] = −E  [XE ŝ p(x∣θ)π(θ) 1(θ = θ  ) log (x)+0 ŝ

1(θ = θ  ) log(1 − (x))]1 ŝ
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The solution  found after training approximates the optimal classi�er

Therefore,

That is, supervised classi�cation is equivalent to likelihood ratio estimation and can
therefore be used for MLE inference.

ŝ

(x) ≈ s (x) =  .ŝ ∗

p(x∣θ  ) + p(x∣θ  )0 1

p(x∣θ  )1

r(x∣θ  , θ  ) ≈ (x∣θ  , θ  ) =  0 1 r̂ 0 1 (x)ŝ

1 − (x)ŝ
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Mining gold from simulators

 is usually intractable.

What about ?

p(x∣θ)

p(x, z∣θ)
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As the trajectory  and the observable  are emitted, it is often possible:

to calculate the joint likelihood ;

to calculate the joint likelihood ratio ;

to calculate the joint score .

We call this process mining gold from your simulator!

z  , ..., z  1 T x

p(x, z∣θ)

r(x, z∣θ  , θ  )0 1

t(x, z∣θ  ) = ∇  log p(x, z∣θ)0 θ ∣
∣
θ  0
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Observe that the joint likelihood ratios

are scattered around .

Can we use them to approximate 

?

r(x, z∣θ  , θ  ) =  0 1
p(x, z∣θ  )1

p(x, z∣θ  )0

r(x∣θ  , θ  )0 1

r(x∣θ  , θ  )0 1
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Key insights

Consider the squared error of a function  that only depends on , but is trying

to approximate a function  that also depends on the latent :

Via calculus of variations, we �nd that the function  that extremizes 

is given by

 (x)ĝ x

g(x, z) z

L  = E  (g(x, z) −  (x)) .MSE p(x,z∣θ) [ ĝ 2]

g (x)∗ L  [g]MSE

g (x)∗ =  p(x, z∣θ)g(x, z)dz
p(x∣θ)

1
∫

= E  g(x, z)p(z∣x,θ) [ ]
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Therefore, by identifying the  with the joint likelihood ratio 

and  with , we de�ne

which is minimized by

g(x, z) r(x, z∣θ  , θ  )0 1

θ θ  1

L  = E  (r(x, z∣θ  , θ  ) − (x)) ,r p(x,z∣θ  )1 [ 0 1 r̂ 2]

r (x)∗ =  p(x, z∣θ  )  dz
p(x∣θ )1

1
∫ 1

p(x, z∣θ  )1

p(x, z∣θ  )0

=  

p(x∣θ )1

p(x∣θ )0

= r(x∣θ  , θ  ).0 1
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How does one �nd ?

Minimizing functionals is exactly what machine learning does. In our case,

 are neural networks (or the parameters thereof);

 is the loss function;

minimization is carried out using stochastic gradient descent from the data
extracted from the simulator.

r∗

r (x∣θ  , θ  ) = arg  L  [ ]∗
0 1

r̂
min r r̂

r̂

L  r
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Similarly, we can mine the simulator to
extract the joint score

which indicates how much more or less
likely  would be if one changed .

t(x, z∣θ  ) = ∇  log p(x, z∣θ)   ,0 θ ∣
∣
θ  0

x, z θ  0
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Using the same trick, by identifying  with the joint score  and 

with , we de�ne

which is minimized by

g(x, z) t(x, z∣θ  )0 θ

θ  0

L  = E  (t(x, z∣θ  ) − (x)) ,t p(x,z∣θ  )0 [ 0 t̂ 2]

t (x)∗ =  p(x, z∣θ  )(∇  log p(x, z∣θ)   )dz
p(x∣θ )0

1
∫ 0 θ ∣

∣
θ  0

=  p(x, z∣θ  )  dz
p(x∣θ )0

1
∫ 0

p(x, z∣θ  )0

∇  p(x, z∣θ)   θ ∣
∣
θ  0

=  

p(x∣θ )0

∇  p(x∣θ)   θ ∣
∣
θ  0

= t(x∣θ  ).0
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Rᴀsᴄᴀʟ
L  = L  + L  RASCAL r t

―――

Refs: Brehmer et al, 2018 (arXiv:1805.12244) 26 / 42
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LHC processes

―――

Credits: Johann Brehmer 27 / 42
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LHC processes
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Increased data ef�ciency

―――

Credits: Johann Brehmer 28 / 42
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Generative adversarial networks

L  (ϕ)d

L  (θ)g

= E  − log(d(x;ϕ)) + E  − log(1 − d(g(z; θ);ϕ))x∼p  (x)r
[ ] z∼p(z) [ ]

= E  log(1 − d(g(z; θ);ϕ))z∼p(z) [ ]
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AVO

Replace  with an actual scienti�c simulator!g
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Key insights

Replace the generative network with a non-differentiable forward simulator 

.

Let the neural network critic �gure out how to adjust the simulator parameters.

Combine with variational optimization to bypass the non-differentiability by
optimizing upper bounds of the adversarial objectives

respectively over  and .

g(z; θ)

U  (ϕ)d

U  (ψ)g

= E  L  (ϕ)θ∼q(θ;ψ) [ d ]

= E  L  (θ)θ∼q(θ;ψ) [ g ]

ϕ ψ
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Samples for  (top) vs. 

samples for  (bottom).

θ = 0
θ = 0.81
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Probabilistic programming
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Key insights

Let a neural network take full control of the internals of the simulation program by
hijacking all calls to the random number generator.

―――

Image credits: Le, Baydin and Wood, Inference Compilation and Universal Probabilistic Programming, arXiv:160.09900.
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Inference Compilation and Universal Probabilisti…
 
 
 

How to break captchas with probabilistic programming
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Probabilistic programming for particle physics 
(work in progress)
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Summary
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Summary
Much of modern science is based on "likelihood-free" simulations.

Recent (and older) developments from machine learning offer solutions for
likelihood-free inference, including:

Supervised learning

Neural networks trained with augmented data

Adversarial training

Probabilistic programming

40 / 42



Collaborators
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The end.
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