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Sir Francis Galton saw his bean machine as an analogy for
the inheritance of genetic traits.

The pinballs accumulate in a bell-shaped curve that is
similar to the distribution of human heights.

The puzzle of why human heights do not spread out
from one generation to the next, as the balls would, led
him to the discovery of "regression to the mean".
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The probability of ending in bin  corresponds to the total probability of all the

paths  from start to .

x

z x

p(x∣θ) = p(x, z∣θ)dz =  θ (1 − θ)∫ (
n

x
) x n−x
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Inference
Given a set of realizations  at the bins, inference consists in determining

the value of  that best describes these observations.

For example, following the principle of maximum likelihood estimation, we have

In general, when  can be evaluated, this problem can be solved either

analytically or using optimization algorithms.

d = {x  }i
θ

= arg   p(x  ∣θ).θ̂
θ

max
x  ∈di

∏ i

p(x  ∣θ)i
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What if we shift or remove some of the pins?
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The probability of ending in bin  still corresponds to the cumulative probability of

all the paths from start to :

But this integral can no longer be simpli�ed analytically!

As  grows larger, evaluating  becomes intractable since the number of

paths grows combinatorially.

Generating observations remains easy: drop the balls.

Since  cannot be evaluated, does this mean inference is no longer possible?

x

x

p(x∣θ) = p(x, z∣θ)dz∫

n p(x∣θ)

p(x∣θ)
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The Galton board is a metaphore of simulation-based science:

the Galton board device is the equivalent of the scienti�c simulator

 are observables

 are parameters of interest

 are stochastic execution traces through the simulator

Inference in this context requires likelihood-free algorithms.

x

θ

z
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―――

Credits: Johann Brehmer 8 / 48



Applications
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Cosmological N-body simulations

―――

Refs: Planck Collaboration, 2015 (arXiv:1502.01589); Vogelsberger et al, 2014 (arXiv:1405.2921) 10 / 48



Computational topography

―――

Refs: Benoit Bovy (xarray-simlab) 11 / 48



Climatology

―――

Refs: NASA's Goddard Space Flight Center / B. Putman, 2014 (press release) 12 / 48



Epidemiology

―――

Refs: Brockmann and Helbing, 2013 (doi:10.1126/science.1245200) 13 / 48



Particle physics

The Galton board of particle physics
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Algorithms
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Treat the simulator as a black box

Histograms of observables

Approximate Bayesian
computation

Neural density (ratio) estimation

Adversarial Variational
Optimization

Use latent structure

Matrix Element Method

Optimal Observables

Shower deconstruction, event
Deconstruction

Mining gold from the simulator

Probabilistic programming
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De�ne a projection function  mapping

observables  to a summary statistics .

Then, approximate the likelihood  as

where  can be estimated by running the

simulator for different parameter values  and �lling

histograms.

 

The physicist's way

s : X → R
x x = s(x)′

p(x∣θ)

p(x∣θ) ≈ (x∣θ) = p(x ∣θ),p̂ ′

p(x ∣θ)′

θ
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The Neyman-Pearson lemma states that the likelihood ratio

is the most powerful test statistic to discriminate between a
null hypothesis  and an alternative .

Hypothesis testing

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0

θ  0 θ  1
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In the likelihood-free setup, the ratio is dif�cult to compute. However, using the
approximate likelihood we can de�ne

 ≈  

p(x∣θ  )1

p(x∣θ  )0

 (x∣θ  )p̂ 1

 (x∣θ  )p̂ 0
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Choosing the projection  is

dif�cult and problem-dependent.

Often there is no single good
variable: compressing to any 

loses information.

Ideally: analyse high-dimensional 

, including all correlations.

Unfortunately, because of the curse of
dimensionality, �lling high-dimensional
histograms is not tractable.

This methodology has worked great for physicists for the last 20-30 years, but ...

Who you gonna call? Machine learning!

s

x′

x′

―――

Refs: Bolognesi et al, 2012 (arXiv:1208.4018) 20 / 48
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Cᴀʀʟ

Key insights

The likelihood ratio is suf�cient for maximum likelihood estimation.

Evaluating the likelihood ratio does not require evaluating the individual
likelihoods.

Machine learning can be used to learn the likelihood ratio.

―――

Refs: Cranmer et al, 2016 (arXiv:1506.02169) 21 / 48



Theorem. The likelihood ratio is invariant under the change of variable ,

provided  is monotonic with .

Note that the equality is strict.

No information relevant for determining the ratio is lost.

Although information about  may be lost through .

U = s(X)
s(x) r(x)

r(x∣θ  , θ  ) =  =  0 1
p(x∣θ  )1

p(x∣θ  )0

p(s(x)∣θ  )1

p(s(x)∣θ  )0

x s
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Supervised learning provides a way to automatically construct :

Let us consider a binary classi�er  (e.g., a neural network) trained to

distinguish  from .

 is trained by minimizing the cross-entropy loss

s

ŝ
x ∼ p(x∣θ  )0 x ∼ p(x∣θ  )1

ŝ

  

L  [ ] = −E  [XE ŝ p(x∣θ)π(θ) 1(θ = θ  ) log (x)+0 ŝ

1(θ = θ  ) log(1 − (x))]1 ŝ
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The solution  found after training approximates the optimal classi�er

which is monotonic with .

Therefore,

That is, supervised classi�cation is equivalent to likelihood ratio estimation and can
therefore be used for MLE inference.

ŝ

(x) ≈ s (x) =  ,ŝ ∗

p(x∣θ  ) + p(x∣θ  )0 1

p(x∣θ  )1

r

r(x∣θ  , θ  ) ≈ (x∣θ  , θ  ) =  0 1 r̂ 0 1 (x)ŝ

1 − (x)ŝ
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Mining gold from simulators

 is usually intractable.

What about ?

p(x∣θ)

p(x, z∣θ)
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This can be computed as the ball falls down the board!

  

p(x, z∣θ) = p(z  ∣θ)p(z  ∣z  , θ) … p(z  ∣z  , θ)p(x∣z  , θ)1 2 1 T <T ≤T

= p(z  ∣θ)p(z  ∣θ) … p(z  ∣θ)p(x∣z  )1 2 T T

= p(x∣z  )  θ (1 − θ)T

t

∏ z  t 1−z  t
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As the trajectory  and the observable  are emitted, it is often possible:

to calculate the joint likelihood ;

to calculate the joint likelihood ratio ;

to calculate the joint score .

We call this process mining gold from your simulator!

z  , ..., z  1 T x

p(x, z∣θ)

r(x, z∣θ  , θ  )0 1

t(x, z∣θ  ) = ∇  log p(x, z∣θ)0 θ ∣
∣
θ  0

27 / 48



Observe that the joint likelihood ratios

are scattered around .

Can we use them to approximate 

?

r(x, z∣θ  , θ  ) =  0 1
p(x, z∣θ  )1

p(x, z∣θ  )0

r(x∣θ  , θ  )0 1

r(x∣θ  , θ  )0 1
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Key insights

Consider the squared error of a function  that only depends on , but is trying

to approximate a function  that also depends on the latent :

Via calculus of variations, we �nd that the function  that extremizes 

is given by

 (x)ĝ x

g(x, z) z

L  = E  (g(x, z) −  (x)) .MSE p(x,z∣θ) [ ĝ 2]

g (x)∗ L  [g]MSE

g (x)∗ =  p(x, z∣θ)g(x, z)dz
p(x∣θ)

1
∫

= E  g(x, z)p(z∣x,θ) [ ]
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Therefore, by identifying the  with the joint likelihood ratio 

and  with , we de�ne

which is minimized by

g(x, z) r(x, z∣θ  , θ  )0 1

θ θ  1

L  = E  (r(x, z∣θ  , θ  ) − (x)) ,r p(x,z∣θ  )1 [ 0 1 r̂ 2]

r (x)∗ =  p(x, z∣θ  )  dz
p(x∣θ )1

1
∫ 1

p(x, z∣θ  )1

p(x, z∣θ  )0

=  

p(x∣θ )1

p(x∣θ )0

= r(x∣θ  , θ  ).0 1
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How does one �nd ?

Minimizing functionals is exactly what machine learning does. In our case,

 are neural networks (or the parameters thereof);

 is the loss function;

minimization is carried out using stochastic gradient descent from the data
extracted from the simulator.

r∗

r (x∣θ  , θ  ) = arg  L  [ ]∗
0 1

r̂
min r r̂

r̂

L  r
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Similarly, we can mine the simulator to
extract the joint score

which indicates how much more or less
likely  would be if one changed .

t(x, z∣θ  ) = ∇  log p(x, z∣θ)   ,0 θ ∣
∣
θ  0

x, z θ  0
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Using the same trick, by identifying  with the joint score  and 

with , we de�ne

which is minimized by

g(x, z) t(x, z∣θ  )0 θ

θ  0

L  = E  (t(x, z∣θ  ) − (x)) ,t p(x,z∣θ  )0 [ 0 t̂ 2]

t (x)∗ =  p(x, z∣θ  )(∇  log p(x, z∣θ)   )dz
p(x∣θ )0

1
∫ 0 θ ∣

∣
θ  0

=  p(x, z∣θ  )  dz
p(x∣θ )0

1
∫ 0

p(x, z∣θ  )0

∇  p(x, z∣θ)   θ ∣
∣
θ  0

=  

p(x∣θ )0

∇  p(x∣θ)   θ ∣
∣
θ  0

= t(x∣θ  ).0
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Rᴀsᴄᴀʟ
L  = L  + L  RASCAL r t

―――

Refs: Brehmer et al, 2018 (arXiv:1805.12244) 34 / 48
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Effective inference

Toy experiment on the Galton board.
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Constraining Effective Field
Theories, effectively
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LHC processes

―――

Credits: Johann Brehmer 37 / 48
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p(x∣θ) =  p(z  ∣θ)p(z ∣z  )p(z  ∣z  )p(x∣z  )dz  dz  dz  

intractable

 ∭ p s p d s d p s d
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Key insights

The distribution of parton-level momenta

where  and  are the total and differential cross sections, is tractable.

Downstream processes ,  and  do not depend on .

 This implies that both  and  can be mined. E.g.,

p(z  ∣θ) =   ,p
σ(θ)

1
dz  p

dσ(θ)

σ(θ)  dz  p

dσ(θ)

p(z  ∣z  )s p p(z  ∣z  )d s p(x∣z  )d θ

⇒ r(x, z∣θ  , θ  )0 1 t(x, z∣θ  )0

  

r(x, z∣θ  , θ  )0 1 =     =  

p(z  ∣θ  )p 1

p(z  ∣θ  )p 0

p(z  ∣z  )s p

p(z  ∣z  )s p

p(z  ∣z  )d s

p(z  ∣z  )d s

p(x∣z  )d

p(x∣z  )d

p(z  ∣θ  )p 1

p(z  ∣θ  )p 0

39 / 48



Proof of concept

Higgs production in weak boson fusion

Goal: Constraints on two theory parameters:

L = L  +   (D ϕ) σ D ϕ W  −   (ϕ ϕ) W  WSM  

Λ2

f  W

2
ig μ † a ν

μν
a

 

Λ2

f  WW

4
g2

†
μν
a μν a

―――

Credits: Johann Brehmer 40 / 48



Precise likelihood ratio estimates

―――

Credits: Johann Brehmer 41 / 48



Increased data ef�ciency

―――

Credits: Johann Brehmer 42 / 48



Better sensitivity

―――

Credits: Johann Brehmer 43 / 48



Stronger bounds

―――

Credits: Johann Brehmer 44 / 48



Summary
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Summary
Many LHC analysis (and much of modern science) are based on "likelihood-
free" simulations.

New inference algorithms:

Leverage more information from the simulator

Combine with the power of machine learning

First application to LHC physics: stronger EFT constraints with less
simulations.

46 / 48



Collaborators
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The end.
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