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The probability of ending in bin  corresponds to the total probability of all the

paths  from start to .
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p(x∣θ) = p(x, z∣θ)dz =  θ (1 − θ)∫ (
n

x
) x n−x

2 / 24



What if we shift or remove some of the pins?
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The probability of ending in bin  still corresponds to the total probability of all the

paths  from start to :

But this integral can no longer be simpli�ed analytically!

As  grows larger, evaluating  becomes intractable since the number of

paths grows combinatorially.

Generating observations remains easy: drop balls.

x

z x

p(x∣θ) = p(x, z∣θ)dz∫

n p(x∣θ)
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The Galton board is a metaphore for the simulator-based scienti�c method:

the Galton board device is the equivalent of the scienti�c simulator

 are parameters of interest

 are stochastic execution traces through the simulator

 are observables

Inference in this context requires likelihood-free algorithms.
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The Galton board of particle physics
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Treat the simulator as a black box

Histograms of observables,
Approximate Bayesian
computation.

Rely on summary statistics.

Machine learning algorithms

Density estimation, Cᴀʀʟ,
autoregressive models, normalizing
�ows, etc.

Use latent structure

Matrix Element Method, Optimal
Observables, Shower
deconstruction, Event
Deconstruction.

Neglect or approximate shower +
detector, explicitly calculate  integral.

*new* Mining gold from the
simulator.

Leverage matrix-element information +
Machine Learning.

Likelihood-free inference methods

z
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Mining gold from simulators

 is usually intractable.

What about ?

p(x∣θ)

p(x, z∣θ)
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This can be computed as the ball falls down the board!

  

p(x, z∣θ) = p(z  ∣θ)p(z  ∣z  , θ) … p(z  ∣z  , θ)p(x∣z  , θ)1 2 1 T <T ≤T

= p(z  ∣θ)p(z  ∣θ) … p(z  ∣θ)p(x∣z  )1 2 T T

= p(x∣z  )  θ (1 − θ)T

t

∏ z  t 1−z  t
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As the trajectory  and the observable  are emitted, it is often

possible:

to calculate the joint likelihood ;

to calculate the joint likelihood ratio ;

to calculate the joint score .

We call this process mining gold from your simulator!

z = z  , ..., z  1 T x

p(x, z∣θ)

r(x, z∣θ  , θ  )0 1

t(x, z∣θ  ) = ∇  log p(x, z∣θ)0 θ ∣
∣
θ  0
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Constraining Effective Field
Theories, effectively
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LHC processes
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LHC processes
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LHC processes
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LHC processes
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p(x∣θ) =  p(z  ∣θ)p(z ∣z  )p(z  ∣z  )p(x∣z  )dz  dz  dz  

intractable

 ∭ p s p d s d p s d
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Key insights:

The distribution of parton-level momenta

where  and  are the total and differential cross sections, is tractable.

Downstream processes ,  and  do not depend on .

 This implies that both  and  can be mined. E.g.,

p(z  ∣θ) =   ,p
σ(θ)

1
dz  p

dσ(θ)

σ(θ)  dz  p

dσ(θ)

p(z  ∣z  )s p p(z  ∣z  )d s p(x∣z  )d θ

⇒ r(x, z∣θ  , θ  )0 1 t(x, z∣θ  )0

  

r(x, z∣θ  , θ  )0 1 =     =  

p(z  ∣θ  )p 1

p(z  ∣θ  )p 0

p(z  ∣z  )s p

p(z  ∣z  )s p

p(z  ∣z  )d s

p(z  ∣z  )d s

p(x∣z  )d

p(x∣z  )d

p(z  ∣θ  )p 1

p(z  ∣θ  )p 0
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Proof of concept

Higgs production in weak boson fusion

Goal: Constraints on two theory parameters:

L = L  +   (D ϕ) σ D ϕ W  −   (ϕ ϕ) W  WSM  

Λ2

f  W

2
ig μ † a ν

μν
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†
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Precise likelihood ratio estimates
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Increased data ef�ciency
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Better sensitivity
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Stronger bounds
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Summary
Many LHC analysis (and much of modern science) are based on "likelihood-
free" simulations.

New inference algorithms:

Leverage more information from the simulator

Combine with the power of machine learning

First application to LHC physics: stronger EFT constraints with less
simulations.
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Collaborators

      

Johann Brehmer, Kyle Cranmer and Juan Pavez
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The end.
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