

Automatic sequences based on Parry or Bertrand numeration systems

Adeline Massuir Joint work with Jarkko Peltomäki and Michel Rigo

Discrete Mathematics Seminar February 26th, 2019

A numeration system is an increasing sequence $U = (U_n)_{n \ge 0}$ of integers such that $U_0 = 1$ and $C_U := \sup_{n \ge 0} \lceil \frac{U_{n+1}}{U_n} \rceil < +\infty$.

A numeration system is an increasing sequence $U = (U_n)_{n \ge 0}$ of integers such that $U_0 = 1$ and $C_U := \sup_{n \ge 0} \lceil \frac{U_{n+1}}{U_n} \rceil < +\infty$.

We set $A_U := \{0, ..., C_U - 1\}.$

The greedy representation of the positive integer n is the word $\operatorname{rep}_U(n) = w_{l-1} \dots w_0$ over A_U satisfying

$$\sum_{i=0}^{\ell-1} w_i U_i = n, w_{\ell-1}
eq 0 \; ext{ and } orall j \in \{1,\ldots,\ell\}, \; \sum_{i=0}^{j-1} w_i U_i < U_j.$$

The language $0^* \operatorname{rep}_U(\mathbb{N})$ is the numeration language.

The language $0^* \operatorname{rep}_U(\mathbb{N})$ is the numeration language.

A set X of integers is U-recognizable if $rep_U(X)$ is regular.

The language $0^* \operatorname{rep}_U(\mathbb{N})$ is the numeration language.

A set X of integers is U-recognizable if $rep_U(X)$ is regular.

The numerical value val_U : $\mathbb{Z}^* \to \mathbb{N}$ maps a word $d_{\ell-1} \dots d_0$ to the number $\sum_{i=0}^{\ell-1} d_i U_i$.

A numeration system U is a *Bertrand numeration system* if, for all $w \in A_U^*$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

A numeration system U is a *Bertrand numeration system* if, for all $w \in A_U^*$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

Examples :

• Integer base

A numeration system U is a *Bertrand numeration system* if, for all $w \in A^*_U$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

Examples :

- Integer base
- Fibonacci : $F_0 = 1, F_1 = 2$ and $F_{n+2} = F_{n+1} + F_n, n \ge 0$.

A numeration system U is a *Bertrand numeration system* if, for all $w \in A_U^*$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

Examples :

• Integer base

• Fibonacci :
$$F_0 = 1, F_1 = 2$$
 and $F_{n+2} = F_{n+1} + F_n, n \ge 0$.
rep_F(\mathbb{N}) = 1{0,01}* \cup { ε }

A numeration system U is a *Bertrand numeration system* if, for all $w \in A^*_U$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

Examples :

- Integer base
- Fibonacci : $F_0 = 1, F_1 = 2$ and $F_{n+2} = F_{n+1} + F_n, n \ge 0$. rep_F(\mathbb{N}) = 1{0,01}* \cup { ε }
- Modified Fibonacci : $G_0 = 1, G_1 = 3$.

A numeration system U is a *Bertrand numeration system* if, for all $w \in A^*_U$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

Examples :

- Integer base
- Fibonacci : $F_0 = 1, F_1 = 2$ and $F_{n+2} = F_{n+1} + F_n, n \ge 0$. rep_F(\mathbb{N}) = 1{0,01}* \cup { ε }
- Modified Fibonacci : $G_0 = 1, G_1 = 3$.

$$(G_n)_{n\geq 0} = (1,3,4,7,\ldots)$$

A numeration system U is a *Bertrand numeration system* if, for all $w \in A^*_U$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

Examples :

Integer base

2

- Fibonacci : $F_0 = 1, F_1 = 2$ and $F_{n+2} = F_{n+1} + F_n, n \ge 0$. rep_F(\mathbb{N}) = 1{0,01}* \cup { ε }
- Modified Fibonacci : $G_0 = 1, G_1 = 3$.

$$(G_n)_{n\geq 0}=(1,3,4,7,\ldots)$$

 $\in 0^*\operatorname{rep}_G(\mathbb{N})$

A numeration system U is a *Bertrand numeration system* if, for all $w \in A^*_U$, $w \in 0^* \operatorname{rep}_U(\mathbb{N})$ if and only if $w0 \in 0^* \operatorname{rep}_U(\mathbb{N})$.

Examples :

- Integer base
- Fibonacci : $F_0 = 1, F_1 = 2$ and $F_{n+2} = F_{n+1} + F_n, n \ge 0$. rep_F(\mathbb{N}) = 1{0,01}* \cup { ε }
- Modified Fibonacci : $G_0 = 1, G_1 = 3.$

$$(G_n)_{n \ge 0} = (1, 3, 4, 7, ...)$$

 $2 \in 0^* \operatorname{rep}_G(\mathbb{N})$ $20 \notin 0^* \operatorname{rep}_G(\mathbb{N})$, because
 $\operatorname{rep}_G(\operatorname{val}_G(20)) = 102.$

Let $\beta > 1$ be a real number.

The β -expansion of a real number $x \in [0, 1]$ is the sequence $d_{\beta}(x) = (x_i)_{i \ge 1} \in \mathbb{N}^{\omega}$ that satisfies

$$x = \sum_{i=1}^{+\infty} x_i \beta^{-i}$$

and which is the maximal (for lexicographic order) element having this property.

Let $\beta > 1$ be a real number.

The β -expansion of a real number $x \in [0, 1]$ is the sequence $d_{\beta}(x) = (x_i)_{i \geq 1} \in \mathbb{N}^{\omega}$ that satisfies

$$x = \sum_{i=1}^{+\infty} x_i \beta^{-i}$$

and which is the maximal (for lexicographic order) element having this property.

Greedy algorithm + $x_i \in A_\beta := \{0, \dots, \lceil \beta \rceil - 1\}$

Let $\beta > 1$ be a real number.

The β -expansion of a real number $x \in [0, 1]$ is the sequence $d_{\beta}(x) = (x_i)_{i \geq 1} \in \mathbb{N}^{\omega}$ that satisfies

$$x = \sum_{i=1}^{+\infty} x_i \beta^{-i}$$

and which is the maximal (for lexicographic order) element having this property.

Greedy algorithm + $x_i \in A_\beta := \{0, \dots, \lceil \beta \rceil - 1\}$

Fact (D_{β}) = set of finite factors occurring the the base- β expansions of real numbers in [0, 1).

If $d_{\beta}(1) = t_1 \dots t_m 0^{\omega}$ with $t_1, \dots, t_m \in A_{\beta}$ and $t_m \neq 0$, we say that $d_{\beta}(1)$ is *finite* and we set $d_{\beta}^*(1) = (t_1 \dots t_{m-1}(t_m - 1))^{\omega}$.

If $d_{\beta}(1) = t_1 \dots t_m 0^{\omega}$ with $t_1, \dots, t_m \in A_{\beta}$ and $t_m \neq 0$, we say that $d_{\beta}(1)$ is *finite* and we set $d_{\beta}^*(1) = (t_1 \dots t_{m-1}(t_m - 1))^{\omega}$. Otherwise, we set $d_{\beta}^*(1) = d_{\beta}(1)$.

If $d_{\beta}(1) = t_1 \dots t_m 0^{\omega}$ with $t_1, \dots, t_m \in A_{\beta}$ and $t_m \neq 0$, we say that $d_{\beta}(1)$ is *finite* and we set $d_{\beta}^*(1) = (t_1 \dots t_{m-1}(t_m - 1))^{\omega}$. Otherwise, we set $d_{\beta}^*(1) = d_{\beta}(1)$. When $d_{\beta}^*(1)$ is (ultimately) periodic, then β is said to be a *Parry number*.

If $d_{\beta}(1) = t_1 \dots t_m 0^{\omega}$ with $t_1, \dots, t_m \in A_{\beta}$ and $t_m \neq 0$, we say that $d_{\beta}(1)$ is *finite* and we set $d_{\beta}^*(1) = (t_1 \dots t_{m-1}(t_m - 1))^{\omega}$. Otherwise, we set $d_{\beta}^*(1) = d_{\beta}(1)$. When $d_{\beta}^*(1)$ is (ultimately) periodic, then β is said to be a *Parry number*.

Equivalent definition : $d^*_{\beta}(1) = \lim_{x \to 1^-} d_{\beta}(x)$.

If $d_{\beta}(1) = t_1 \dots t_m 0^{\omega}$ with $t_1, \dots, t_m \in A_{\beta}$ and $t_m \neq 0$, we say that $d_{\beta}(1)$ is *finite* and we set $d_{\beta}^*(1) = (t_1 \dots t_{m-1}(t_m - 1))^{\omega}$. Otherwise, we set $d_{\beta}^*(1) = d_{\beta}(1)$. When $d_{\beta}^*(1)$ is (ultimately) periodic, then β is said to be a *Parry number*.

Equivalent definition :
$$d^*_{\beta}(1) = \lim_{x \to 1^-} d_{\beta}(x)$$
.

Definition

Let $\beta > 1$ be a real number such that $d_{\beta}^*(1) = (t_i)_{i \ge 1}$. The numeration system $U_{\beta} = (U_n)_{n \ge 0}$ canonically associated with β is defined by

$$U_n = t_1 U_{n-1} + \ldots + t_n U_0 + 1, \ \forall n \geq 0.$$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$

 $x^2 - x - 1$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$

 $x^2 - x - 1$

 $d_{arphi}(1)=11$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$

 $x^2 - x - 1$

 $d_arphi(1)=11, \qquad d_arphi^*(1)=(10)^\omega$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$

 $x^2 - x - 1$

 $d_arphi(1)=11, \qquad d_arphi^*(1)=(10)^\omega, \qquad$ Parry number

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$

 $x^2 - x - 1$

 $d_arphi(1)=11, \qquad d^*_arphi(1)=(10)^\omega, \qquad ext{Parry number}$

 $U_0 = 1, U_1 = 1 \times U_0 + 1 = 2, U_2 = 1 \times U_1 + 0 \times U_0 + 1 = 3, \dots$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$ $x^2 - x - 1$ $d_{\varphi}(1) = 11, \quad d_{\varphi}^*(1) = (10)^{\omega}, \quad \text{Parry number}$ $U_0 = 1, U_1 = 1 \times U_0 + 1 = 2, U_2 = 1 \times U_1 + 0 \times U_0 + 1 = 3, \dots$ $U_{n+2} = U_{n+1} + U_{n-1} + U_{n-3} + \dots + U_{\frac{1}{2}} + 1$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$ $x^2 - x - 1$ $d_{\omega}(1) = 11,$ $d_{\omega}^*(1) = (10)^{\omega},$ Parry number $U_0 = 1, U_1 = 1 \times U_0 + 1 = 2, U_2 = 1 \times U_1 + 0 \times U_0 + 1 = 3, \dots$ $U_{n+2} = U_{n+1} + U_{n-1} + U_{n-3} + \ldots + U_{q} + 1$ $U_n = U_{n-1} + U_{n-3} + \ldots + U_q + 1$

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U = U_{\beta}$.

Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$ $x^2 - x - 1$ $d_{\omega}(1) = 11,$ $d_{\omega}^*(1) = (10)^{\omega},$ Parry number $U_0 = 1, U_1 = 1 \times U_0 + 1 = 2, U_2 = 1 \times U_1 + 0 \times U_0 + 1 = 3, \dots$ $U_{n+2} = U_{n+1} + U_{n-1} + U_{n-3} + \ldots + U_{9} + 1$ $U_n = U_{n-1} + U_{n-3} + \ldots + U_q + 1$ $U_{n+2} = U_{n+1} + U_n$

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.

$$B=(B_n)_{n\geq 0}$$
 where $B_0=1$ and $B_{n+1}=3B_n+1, \ orall n\geq 0.$
The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.

$$B=(B_n)_{n\geq 0}$$
 where $B_0=1$ and $B_{n+1}=3B_n+1, \ orall n\geq 0.$

$$0^* \operatorname{rep}_B(\mathbb{N}) = \{0, 1, 2\}^* (\{\varepsilon\} \cup 30^*)$$

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.

$$B=(B_n)_{n\geq 0}$$
 where $B_0=1$ and $B_{n+1}=3B_n+1, \ orall n\geq 0.$

$$0^*\operatorname{\mathsf{rep}}_B(\mathbb{N})=\{0,1,2\}^*\left(\{arepsilon\}\cup 30^*
ight)$$

If $\exists \beta$ s.t. $B = U_{\beta}$, then $1 = \frac{3}{\beta}$:

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.

$$B=(B_n)_{n>0}$$
 where $B_0=1$ and $B_{n+1}=3B_n+1, \ \forall n\geq 0.$

$$0^*\operatorname{\mathsf{rep}}_B(\mathbb{N})=\{0,1,2\}^*(\{arepsilon\}\cup 30^*)$$

If $\exists \beta$ s.t. $B = U_{\beta}$, then $1 = \frac{3}{\beta}$: the greatest word of length *n* in $0^* \operatorname{rep}_B(\mathbb{N})$ is 30^{n-1} .

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.

$$B=(B_n)_{n\geq 0}$$
 where $B_0=1$ and $B_{n+1}=3B_n+1, \ orall n\geq 0.$

$$\mathfrak{0}^*\operatorname{\mathsf{rep}}_B(\mathbb{N})=\{\mathfrak{0},\mathfrak{1},\mathfrak{2}\}^*\left(\{arepsilon\}\cup\mathfrak{30}^*
ight)$$

If $\exists \beta$ s.t. $B = U_{\beta}$, then $1 = \frac{3}{\beta}$: the greatest word of length *n* in $0^* \operatorname{rep}_B(\mathbb{N})$ is 30^{n-1} .

 U_3 is the classical base 3, so $0^* \operatorname{rep}_{U_3}(\mathbb{N}) = \{0, 1, 2\}^*$.

A sequence $x = (x_i)_{i \ge 1}$ over \mathbb{N} is the β -expansion of a real number in [0,1) if and only if $(x_{n+i})_{i \ge 1}$ is lexicographically less than $d^*_{\beta}(1)$ for all $n \ge 0$.

A sequence $x = (x_i)_{i \ge 1}$ over \mathbb{N} is the β -expansion of a real number in [0,1) if and only if $(x_{n+i})_{i \ge 1}$ is lexicographically less than $d_{\beta}^*(1)$ for all $n \ge 0$.

 β Parry number

A sequence $x = (x_i)_{i \ge 1}$ over \mathbb{N} is the β -expansion of a real number in [0, 1) if and only if $(x_{n+i})_{i \ge 1}$ is lexicographically less than $d_{\beta}^*(1)$ for all $n \ge 0$.

 β Parry number

 $d^*_eta(1) = t_1 \ldots t_i \left(t_{i+1} \ldots t_{i+p}
ight)^\omega$ with $i \ge 0$ and $p \ge 1$ minimal

A sequence $x = (x_i)_{i \ge 1}$ over \mathbb{N} is the β -expansion of a real number in [0, 1) if and only if $(x_{n+i})_{i \ge 1}$ is lexicographically less than $d_{\beta}^*(1)$ for all $n \ge 0$.

β Parry number

 $d^*_eta(1) = t_1 \dots t_i \left(t_{i+1} \dots t_{i+p}
ight)^\omega$ with $i \geq 0$ and $p \geq 1$ minimal

Deterministic finite automaton \mathscr{A}_{β}

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U = U_{\beta}$.

A $\mathit{Pisot\ number}$ is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U = U_{\beta}$.

A Pisot number is a Parry number.

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U = U_{\beta}$.

A Pisot number is a Parry number.

 $U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, n \ge 4$; with $U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$ is Parry but not Pisot.

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U = U_{\beta}$.

A Pisot number is a Parry number.

 $U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, n \ge 4$; with $U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$ is Parry but not Pisot.

Fibonacci is Pisot, but not an integer base.

Let U be a numeration system. An infinite word $\mathbf{x} = (x_n)_{n \ge 0}$ over an alphabet B is U-automatic (it is an U-automatic sequence) if there exists a complete DFAO $(Q, q_0, A_U, \delta, \tau)$ with transition function $\delta : Q \times A_U \rightarrow Q$ and output function $\tau = Q \rightarrow B$ such that $\delta(q_0, 0) = q_0$ and

 $x_n = \tau \left(\delta \left(q_0, \operatorname{rep}_U(n) \right) \right), \ \forall n \ge 0.$

Let U be a numeration system. An infinite word $\mathbf{x} = (x_n)_{n \ge 0}$ over an alphabet B is U-automatic (it is an U-automatic sequence) if there exists a complete DFAO $(Q, q_0, A_U, \delta, \tau)$ with transition function $\delta : Q \times A_U \rightarrow Q$ and output function $\tau = Q \rightarrow B$ such that $\delta(q_0, 0) = q_0$ and

$$x_n = au \left(\delta \left(q_0, \operatorname{rep}_U(n)
ight)
ight), \ \forall n \geq 0.$$

The infinite word x is k-automatic (resp. Parry-automatic, resp. Bertrand-automatic) if $U = (k^n)_{n\geq 0}$ for an integer $k \geq 2$ (resp. U is a Parry numeration system, resp. U is a Bertrand numeration system).

The factor complexity function $p_x(n)$ of an infinite word x counts the number of factors of length n occurring in x.

The factor complexity function $p_x(n)$ of an infinite word x counts the number of factors of length n occurring in x.

Proposition (Cobham, 1972)

The factor complexity function of a k-automatic sequence is sublinear.

The factor complexity of a Parry-automatic sequence is sublinear.

The factor complexity of a Parry-automatic sequence is sublinear.

Sketch of the proof : on board.

Let $\sigma: A^* \to A^*$ be a substitution. If there exists $\alpha \ge 1$ such that $|\sigma^n(a)| = \Theta(\alpha^n)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let $\sigma: A^* \to A^*$ be a substitution. If there exists $\alpha \ge 1$ such that $|\sigma^n(a)| = \Theta(\alpha^n)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let \mathbf{x} be a *U*-automatic sequence :

Let $\sigma: A^* \to A^*$ be a substitution. If there exists $\alpha \ge 1$ such that $|\sigma^n(a)| = \Theta(\alpha^n)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let \mathbf{x} be a U-automatic sequence :

$$\mathbf{x} = \tau \left(\sigma^{\omega}(\mathbf{a}) \right)$$

Let $\sigma: A^* \to A^*$ be a substitution. If there exists $\alpha \ge 1$ such that $|\sigma^n(a)| = \Theta(\alpha^n)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let \mathbf{x} be a U-automatic sequence :

$$\mathbf{x} = \tau \left(\sigma^{\omega}(\mathbf{a}) \right)$$

k-automatic : σ uniform

Let $\sigma: A^* \to A^*$ be a substitution. If there exists $\alpha \ge 1$ such that $|\sigma^n(a)| = \Theta(\alpha^n)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let \mathbf{x} be a U-automatic sequence :

$$\mathbf{x} = \tau \left(\sigma^{\omega}(\mathbf{a}) \right)$$

k-automatic : σ uniform

Parry-automatic : σ quasi-uniform

There exists a Bertrand-automatic sequence with superlinear factor complexity.

There exists a Bertrand-automatic sequence with superlinear factor complexity.

 $B=\left(B_n
ight)_{n\geq 0}$ where $B_0=1$ and $B_{n+1}=3B_n+1, \ orall n\geq 0.$

There exists a Bertrand-automatic sequence with superlinear factor complexity.

$$B=\left(B_n
ight)_{n\geq 0}$$
 where $B_0=1$ and $B_{n+1}=3B_n+1, \ orall n\geq 0.$

 $0^*\operatorname{\mathsf{rep}}_B(\mathbb{N})=\{0,1,2\}^*\left(\{arepsilon\}\cup 30^*
ight)$

There exists a Bertrand-automatic sequence with superlinear factor complexity.

$$B = (B_n)_{n \geq 0}$$
 where $B_0 = 1$ and $B_{n+1} = 3B_n + 1, \ \forall n \geq 0.$

 $0^*\operatorname{\mathsf{rep}}_B(\mathbb{N})=\{0,1,2\}^*\left(\{arepsilon\}\cup 30^*
ight)$

 $\sigma: a \mapsto aaab, b \mapsto b$

There exists a Bertrand-automatic sequence with superlinear factor complexity.

$$B=\left(B_n
ight)_{n>0}$$
 where $B_0=1$ and $B_{n+1}=3B_n+1, \ orall n\geq 0.$

 $0^*\operatorname{\mathsf{rep}}_B(\mathbb{N})=\{0,1,2\}^*\left(\{arepsilon\}\cup 30^*
ight)$

 $\sigma: a \mapsto aaab, b \mapsto b$

$$\mathbf{x} = \sigma^{\omega}(\mathbf{a}) = \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{b} \dots$$

Theorem (Pansiot, 1984)

Let \mathbf{x} be a purely morphic word and p its complexity function. Then one of the following holds :

- $p(n) = \Theta(1)$
- $p(n) = \Theta(n)$
- $p(n) = \Theta(n \log \log n)$
- $p(n) = \Theta(n \log n)$
- $p(n) = \Theta(n^2)$.

Let U be a numeration system such that $\operatorname{rep}_U(\mathbb{N})$ is regular. An infinite word $\mathbf{x} = (x_n)_{n\geq 0}$ over A is U-automatic in and only if, for all $a \in A$, the set $\{j \geq 0 | x_j = a\}$ is U-recognizable.

Let U be a numeration system such that $\operatorname{rep}_U(\mathbb{N})$ is regular. An infinite word $\mathbf{x} = (x_n)_{n \ge 0}$ over A is U-automatic in and only if, for all $a \in A$, the set $\{j \ge 0 | x_j = a\}$ is U-recognizable.

Proposition

The image of a k-automatic sequence under a substitution of constant length is again a k-automatic sequence.

 $\mathbf{x} \in A^\omega$ a k-automatic sequence

 $\mathbf{x} \in A^{\omega}$ a k-automatic sequence

 $\mu: {\it A} \rightarrow {\it B}^*$ a substitution of length ℓ

 $\mathbf{x} \in \mathcal{A}^\omega$ a k-automatic sequence

 $\mu: {\cal A} \to {\cal B}^*$ a substitution of length ℓ

 $\forall a \in A, \ \exists arphi_a(n) \ ext{in} \ \langle \mathbb{N}, +, V_k
angle \ ext{which holds iff } \mathbf{x}[n] = a$

 $\mathbf{x} \in \mathcal{A}^\omega$ a k-automatic sequence

 $\mu: {\cal A} \to {\cal B}^*$ a substitution of length ℓ

 $\forall a \in A, \ \exists arphi_a(n) \ ext{in} \ \langle \mathbb{N}, +, V_k
angle \ ext{which holds iff } \mathbf{x}[n] = a$

 $orall b \in B, \exists \psi_b(n)$ that holds iff $\mu({f x})[n] = b$
$\mu: {\cal A} \to {\cal B}^*$ a substitution of length ℓ

 $\forall a \in A, \exists \varphi_a(n) \text{ in } \langle \mathbb{N}, +, V_k \rangle \text{ which holds iff } \mathbf{x}[n] = a$

 $ig| orall b \in B, \exists \psi_b(n)$ that holds iff $\mu({f x})[n] = b$

 $n = \ell q + r, \ q, r$ unique, $0 \le r < \ell$

 $\mu: {\it A} \rightarrow {\it B}^*$ a substitution of length ℓ

 $\forall a \in A, \exists \varphi_a(n) \text{ in } \langle \mathbb{N}, +, V_k \rangle \text{ which holds iff } \mathbf{x}[n] = a$

 $\forall b \in B, \exists \psi_b(n) ext{ that holds iff } \mu(\mathbf{x})[n] = b$

 $n = \ell q + r, \ q, r$ unique, $0 \le r < \ell$

 $\forall a \in A, \sigma_a(r)$ that holds iff $\mu(a)$ contains a letter b at position r

 $\mu: {\it A} \rightarrow {\it B}^*$ a substitution of length ℓ

 $\forall a \in A, \ \exists arphi_a(n) \ ext{in} \ \langle \mathbb{N}, +, V_k
angle \ ext{which holds iff } \mathbf{x}[n] = a$

 $ig| orall b \in B, \exists \psi_b(n) ext{ that holds iff } \mu({f x})[n] = b$

 $n = \ell q + r, \ q, r$ unique, $0 \le r < \ell$

 $\forall a \in A, \sigma_a(r)$ that holds iff $\mu(a)$ contains a letter b at position r

$$\psi_b(n) = (\exists q)(\exists r < \ell)(n = \ell q + r \land \bigvee_{a \in A} (\varphi_a(q) \land \sigma_a(r)))$$

$\psi_b(n) = (\exists q)(\exists r < \ell)(n = \ell q + r \land \bigvee_{a \in \mathcal{A}}(\varphi_a(q) \land \sigma_a(r)))$

$$\psi_b(n) = (\exists q)(\exists r < \ell)(n = \ell q + r \land \bigvee_{a \in A}(\varphi_a(q) \land \sigma_a(r)))$$

$$A = \{a, b\}, B = \{i, j\}, \ell = 3, \mu(a) = iij, \mu(b) = jij$$

$$\psi_b(n) = (\exists q)(\exists r < \ell)(n = \ell q + r \land \bigvee_{a \in A}(\varphi_a(q) \land \sigma_a(r)))$$

$$A = \{a, b\}, B = \{i, j\}, \ell = 3, \mu(a) = iij, \mu(b) = jij$$

$$(\exists q)(\exists r < 3)$$

(n = 3q + r \lapha [(\varphi_a(q) \lapha (r = 0 \lapha r = 1)) \lapha (\varphi_b(q) \lapha r = 1)])

$$\psi_b(n) = (\exists q)(\exists r < \ell)(n = \ell q + r \land \bigvee_{a \in A}(\varphi_a(q) \land \sigma_a(r)))$$

$$A = \{a, b\}, B = \{i, j\}, \ell = 3, \mu(a) = iij, \mu(b) = jij$$

$$(\exists q)(\exists r < 3)$$

(n = 3q + r \lapha [(\varphi_a(q) \lapha (r = 0 \lapha r = 1)) \lapha (\varphi_b(q) \lapha r = 1)])

$$(\exists q)(\exists r < 3)$$

(n = 3q + r \lapha [(\varphi_{a}(q) \lapha r = 2) \lapha (\varphi_{b}(q) \lapha (r = 0 \lapha r = 2))])

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under taking image by a uniform substitution.

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under taking image by a uniform substitution.

 $U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under taking image by a uniform substitution.

$$U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$$

 $\beta \approx 3.61645, \gamma \approx -1.09685,$ two complex roots with modulus less than 1

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under taking image by a uniform substitution.

$$U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$$

 $\beta \approx 3.61645, \gamma \approx -1.09685,$ two complex roots with modulus less than 1

Let \mathbf{x} be the characteristic sequences of the set $\{U_n|n\geq 0\}$:

 ${\bf x} = 010010000000001000\ldots$

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under taking image by a uniform substitution.

$$U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$$

 $\beta \approx 3.61645, \gamma \approx -1.09685,$ two complex roots with modulus less than 1

Let \mathbf{x} be the characteristic sequences of the set $\{U_n|n\geq 0\}$:

 $\mathbf{x} = 01001000000001000\ldots$

We consider $\mu: 0 \mapsto 0^t, 1 \mapsto 10^{t-1}, t \ge 4$

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under taking image by a uniform substitution.

$$U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$$

 $\beta \approx 3.61645, \gamma \approx -1.09685,$ two complex roots with modulus less than 1

Let ${f x}$ be the characteristic sequences of the set $\{U_n|n\geq 0\}$:

 $x = 01001000000001000 \dots$

We consider $\mu: 0 \mapsto 0^t, 1 \mapsto 10^{t-1}, t \ge 4$

 $\mu(\mathbf{x})$ is the characteristic sequence of the set $\{tU_n|n\geq 0\}$

Proposition

Let $r \ge 2$ be an integer. If t is an integer such that $4 \le t \le \lfloor \beta^r \rfloor$, then the β -expansion of the number $\frac{t}{\beta^r}$ is aperiodic.

Proposition

Let $r \ge 2$ be an integer. If t is an integer such that $4 \le t \le \lfloor \beta^r \rfloor$, then the β -expansion of the number $\frac{t}{\beta^r}$ is aperiodic.

Corollary

The set $\{tU_n | n \ge 0\}$ is not *U*-recognizable for $t \ge 4$. In other words, its characteristic sequence $\mu(\mathbf{x})$ is not *U*-automatic.

Let $t \ge 2$ and let y be the sequence defined by y[n] = x[tn]

Let $t \ge 2$ and let y be the sequence defined by y[n] = x[tn]

 $\forall a \in A, \varphi_a(n) \text{ holds iff } \mathbf{x}[n] = a$

Let $t \ge 2$ and let y be the sequence defined by y[n] = x[tn]

 $\forall a \in A, \varphi_a(n) \text{ holds iff } \mathbf{x}[n] = a$

 $\psi_{\mathsf{a}}(n) = \varphi_{\mathsf{a}}(tn)$

Let $t \ge 2$ and let y be the sequence defined by y[n] = x[tn]

 $\forall a \in A, \varphi_a(n) \text{ holds iff } \mathbf{x}[n] = a$

 $\psi_{a}(n) = \varphi_{a}(tn)$

Theorem

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under periodic deletion.

$U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$

 $U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$ Let y be the characteristic sequence of the set $\{\frac{U_n}{2} | n \ge 0, U_n \in 2\mathbb{N}\}$:

 $\mathbf{y}[n] = \mathbf{x}[2n]$ and $\mathbf{y}[n] = 1$ iff $2n \in \{U_j | j \ge 0\}$

 $U_n = 3U_{n-1} + 2U_{n-2} + 3U_{n-4}, U_0 = 1, U_1 = 4, U_2 = 15, U_3 = 54$ Let y be the characteristic sequence of the set $\{\frac{U_n}{2} | n \ge 0, U_n \in 2\mathbb{N}\}$:

$$\mathbf{y}[n] = \mathbf{x}[2n]$$
 and $\mathbf{y}[n] = 1$ iff $2n \in \{U_j | j \ge 0\}$

Proposition

The set $\{\frac{U_n}{2} | n \ge 0, U_n \in 2 \mathbb{N}\}$ is not *U*-recognizable. In other words, its characteristic sequence **y** is not *U*-automatic.

Definition

Let U be a numeration system. A 2-dimensional word $\mathbf{x} = (x_{m,n})_{m,n\geq 0}$ over an alphabet B is U-automatic if there exists a complete DFAO $(Q, q_0, A_U \times A_U, \delta, \tau)$ with transition function $\delta : Q \times (A_U \times A_U)^* \to Q$ and output function $\tau : Q \to B$ such that $\delta(q_0, (0, 0)) = q_0$ and

$$x_{m,n} = au \left(\delta(q_0, (0^{\ell - |\operatorname{rep}_U(m)|} \operatorname{rep}_U(m), 0^{\ell - |\operatorname{rep}_U(n)|} \operatorname{rep}_U(n)))
ight)$$

 $\forall m, n \geq 0$, where $\ell = \max\{|\operatorname{rep}_U(m)|, |\operatorname{rep}_U(n)|\}$.

Definition

Let U be a numeration system. A 2-dimensional word $\mathbf{x} = (x_{m,n})_{m,n\geq 0}$ over an alphabet B is U-automatic if there exists a complete DFAO $(Q, q_0, A_U \times A_U, \delta, \tau)$ with transition function $\delta : Q \times (A_U \times A_U)^* \to Q$ and output function $\tau : Q \to B$ such that $\delta(q_0, (0, 0)) = q_0$ and

$$x_{m,n} = \tau \left(\delta(q_0, (0^{\ell-|\operatorname{rep}_U(m)|}\operatorname{rep}_U(m), 0^{\ell-|\operatorname{rep}_U(n)|}\operatorname{rep}_U(n))) \right)$$

 $\forall m, n \ge 0$, where $\ell = \max\{|\operatorname{rep}_U(m)|, |\operatorname{rep}_U(n)|\}$. The 2-dimensional word x is *k*-automatic (resp. Parry-automatic, resp. Bertrand-automatic) if $U = (k^n)_{n\ge 0}$ for an integer $k \ge 2$ (resp. U is a Parry numeration system, resp. U is a Bertrand numeration system). Let $k \geq 2$ be an integer.

Let $k \ge 2$ be an integer.

The *k*-kernel of an infinite word $\mathbf{x} = (x_n)_{n \ge 0}$ over A is the set of its subsequences of the form

$$\{(x_{k^e n+d})_{n\geq 0} | e \geq 0, 0 \leq d \leq k^e\}$$

Let U be a numeration system and $s \in A^*_U$ be a finite word. Define the ordered set of integers

$$\mathscr{I}_s := \mathsf{val}_U(0^* \operatorname{rep}_U(\mathbb{N}) \cap A^*_U s) = \{i(s,0), i(s,1), \ldots\}.$$

Let U be a numeration system and $s \in A^*_U$ be a finite word. Define the ordered set of integers

$$\mathscr{I}_s := \mathsf{val}_U(0^* \operatorname{rep}_U(\mathbb{N}) \cap A^*_U s) = \{i(s,0), i(s,1), \ldots\}.$$

Definition

The U-kernel of an infinite word $\mathbf{x} = (x_n)_{n \ge 0}$ over B is the set

$$\ker_U(\mathbf{x}) := \{ (x_{i(s,n)})_{n \ge 0} \, | s \in A_U^* \}.$$

Let U be a numeration system and $s \in A^*_U$ be a finite word. Define the ordered set of integers

$$\mathscr{I}_{s}:=\mathsf{val}_{U}(\mathsf{0}^{*}\,\mathsf{rep}_{U}(\mathbb{N})\cap A_{U}^{*}s)=\{i(s,0),i(s,1),\ldots\}.$$

Definition

The U-kernel of an infinite word $\mathbf{x} = (x_n)_{n \geq 0}$ over B is the set

$$\ker_U(\mathbf{x}) := \{ (x_{i(s,n)})_{n \ge 0} \, | s \in A_U^* \}.$$

Definition

The U-kernel of an 2-dimensional word $\mathbf{x} = (x_{m,n})_{m,n\geq 0}$ over B is the set

$$\ker_U({\sf x}) := \{ ig(x_{i(s,m),i(t,n)} ig)_{m,n \geq 0} \ | s,t \in A^*_U, |s| = |t| \}.$$

Proposition

Let U be a numeration system such that $\operatorname{rep}_U(\mathbb{N})$ is regular. A word x is U-automatic if and only if its U-kernel is finite.

Proposition

Let U be a numeration system such that $\operatorname{rep}_U(\mathbb{N})$ is regular. A word x is U-automatic if and only if its U-kernel is finite.

Proposition

Let U be a numeration system such that the numeration language rep_U(\mathbb{N}) is regular. A 2-dimensional word $\mathbf{x} = (x_{m,n})_{m,n\geq 0}$ is U-automatic if and only if its U-kernel is finite.