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Numeration systems

A numeration system is an increasing sequence U = (Un)n≥0 of

integers such that U0 = 1 and CU := supn≥0d
Un+1

Un
e < +∞.

We set AU := {0, . . . ,CU − 1}.

The greedy representation of the positive integer n is the word

repU(n) = wl−1 . . .w0 over AU satisfying

`−1∑
i=0

wiUi = n,w`−1 6= 0 and ∀j ∈ {1, . . . , `},
j−1∑
i=0

wiUi < Uj .
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We set repU(0) = ε.

The language 0∗ repU(N) is the numeration language.

A set X of integers is U-recognizable if repU(X ) is regular.

The numerical value valU : Z∗ → N maps a word d`−1 . . . d0 to the

number
∑`−1

i=0 diUi .
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De�nition

A numeration system U is a Bertrand numeration system if, for all

w ∈ A∗U , w ∈ 0∗ repU(N) if and only if w0 ∈ 0∗ repU(N).

Examples :

Integer base

Fibonacci : F0 = 1,F1 = 2 and Fn+2 = Fn+1 + Fn, n ≥ 0.

repF (N) = 1{0, 01}∗ ∪ {ε}
Modi�ed Fibonacci : G0 = 1,G1 = 3.

(Gn)n≥0 = (1, 3, 4, 7, . . .)

2 ∈ 0∗ repG (N)
repG (valG (20)) = 102.

20 6∈ 0∗ repG (N), because
repG (valG (20)) = 102.
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Let β > 1 be a real number.

The β-expansion of a real number x ∈ [0, 1] is the sequence dβ(x) =
(xi )i≥1 ∈ Nω that satis�es

x =
+∞∑
i=1

xiβ
−i

and which is the maximal (for lexicographic order) element having

this property.

Greedy algorithm + xi ∈ Aβ := {0, . . . , dβe − 1}

Fact (Dβ) = set of �nite factors occurring the the base-β expansions

of real numbers in [0, 1).
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De�nition

If dβ(1) = t1 . . . tm0
ω with t1, . . . , tm ∈ Aβ and tm 6= 0, we say that

dβ(1) is �nite and we set d∗β(1) = (t1 . . . tm−1(tm − 1))ω.

Otherwise,

we set d∗β(1) = dβ(1).
When d∗β(1) is (ultimately) periodic, then β is said to be a Parry

number.

Equivalent de�nition : d∗β(1) = limx→1− dβ(x).

De�nition

Let β > 1 be a real number such that d∗β(1) = (ti )i≥1. The
numeration system Uβ = (Un)n≥0 canonically associated with β is

de�ned by

Un = t1Un−1 + . . .+ tnU0 + 1, ∀n ≥ 0.
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De�nition

A numeration system U is a Parry numeration system if there exists

a Parry number β such that U = Uβ .

Golden ratio ϕ = 1+
√
5

2

x2 − x − 1

dϕ(1) = 11, d∗ϕ(1) = (10)ω, Parry number

U0 = 1,U1 = 1× U0 + 1 = 2,U2 = 1× U1 + 0× U0 + 1 = 3, . . .

Un+2 = Un+1 + Un−1 + Un−3 + . . .+ U0
1

+ 1

Un = Un−1 + Un−3 + . . .+ U0
1

+ 1

Un+2 = Un+1 + Un
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Proposition

The set of Parry numeration systems is a strict subset of the set of

Bertrand numeration systems.

B = (Bn)n≥0 where B0 = 1 and Bn+1 = 3Bn + 1, ∀n ≥ 0.

0∗ repB(N) = {0, 1, 2}∗ ({ε} ∪ 30∗)

If ∃β s.t. B = Uβ , then 1 = 3
β : the greatest word of length n in

0∗ repB(N) is 30n−1.

U3 is the classical base 3, so 0∗ repU3
(N) = {0, 1, 2}∗.
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Theorem (Parry, 1960)

A sequence x = (xi )i≥1 over N is the β-expansion of a real number

in [0, 1) if and only if (xn+i )i≥1 is lexicographically less than d∗β(1)
for all n ≥ 0.

β Parry number

d∗β(1) = t1 . . . ti (ti+1 . . . ti+p)ω with i ≥ 0 and p ≥ 1 minimal

Deterministic �nite automaton Aβ
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De�nition

A Pisot number is an algebraic integer β > 1 whose conjugates have

modulus less than 1.

De�nition

A numeration system U is a Pisot numeration system if there exists

a Pisot number β such that U = Uβ .

A Pisot number is a Parry number.

Un = 3Un−1 + 2Un−2 + 3Un−4, n ≥ 4; with U0 = 1,U1 = 4,U2 =
15,U3 = 54 is Parry but not Pisot.

Fibonacci is Pisot, but not an integer base.
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Automatic sequences

De�nition

Let U be a numeration system. An in�nite word x = (xn)n≥0 over an
alphabet B is U-automatic (it is an U-automatic sequence) if there

exists a complete DFAO (Q, q0,AU , δ, τ) with transition function

δ : Q × AU → Q and output function τ = Q → B such that

δ(q0, 0) = q0 and

xn = τ (δ (q0, repU(n))) , ∀n ≥ 0.

The in�nite word x is k-automatic (resp. Parry-automatic, resp.

Bertrand-automatic) if U = (kn)n≥0 for an integer k ≥ 2 (resp.

U is a Parry numeration system, resp. U is a Bertrand numeration

system).
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Factor complexity

De�nition

The factor complexity function px(n) of an in�nite word x counts

the number of factors of length n occurring in x.

Proposition (Cobham, 1972)

The factor complexity function of a k-automatic sequence is subli-

near.
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Theorem

The factor complexity of a Parry-automatic sequence is sublinear.

Sketch of the proof : on board.
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De�nition

Let σ : A∗ → A∗ be a substitution. If there exists α ≥ 1 such that

|σn(a)| = Θ (αn) for all a ∈ A, then we say that σ is quasi-uniform.

Let x be a U-automatic sequence :

x = τ (σω(a))

k-automatic : σ uniform

Parry-automatic : σ quasi-uniform
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Theorem

There exists a Bertrand-automatic sequence with superlinear factor

complexity.

B = (Bn)n≥0 where B0 = 1 and Bn+1 = 3Bn + 1, ∀n ≥ 0.

0∗ repB(N) = {0, 1, 2}∗ ({ε} ∪ 30∗)

a b

0, 1, 2 0

3

σ : a 7→ aaab, b 7→ b

x = σω(a) = aaabaaabaaabb . . .
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Theorem (Pansiot, 1984)

Let x be a purely morphic word and p its complexity function. Then

one of the following holds :

p(n) = Θ(1)

p(n) = Θ(n)

p(n) = Θ(n log log n)

p(n) = Θ(n log n)

p(n) = Θ(n2).
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Closure properties

Theorem

Let U be a numeration system such that repU(N) is regular. An

in�nite word x = (xn)n≥0 over A is U-automatic in and only if, for

all a ∈ A, the set {j ≥ 0|xj = a} is U-recognizable.

Proposition

The image of a k-automatic sequence under a substitution of

constant length is again a k-automatic sequence.
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x ∈ Aω a k-automatic sequence

µ : A→ B∗ a substitution of length `

∀a ∈ A, ∃ϕa(n) in 〈N,+,Vk〉 which holds i� x[n] = a

∀b ∈ B,∃ψb(n) that holds i� µ(x)[n] = b

n = `q + r , q, r unique, 0 ≤ r < `

∀a ∈ A, σa(r) that holds i� µ(a) contains a letter b at position r

ψb(n) = (∃q)(∃r < `)(n = `q + r ∧
∨

a∈A(ϕa(q) ∧ σa(r)))
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ψb(n) = (∃q)(∃r < `)(n = `q + r ∧
∨

a∈A(ϕa(q) ∧ σa(r)))

A = {a, b},B = {i , j}, ` = 3, µ(a) = iij , µ(b) = jij

(∃q)(∃r < 3)

(n = 3q + r ∧ [(ϕa(q) ∧ (r = 0 ∨ r = 1)) ∨ (ϕb(q) ∧ r = 1)])

(∃q)(∃r < 3)

(n = 3q + r ∧ [(ϕa(q) ∧ r = 2) ∨ (ϕb(q) ∧ (r = 0 ∨ r = 2))])
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Theorem

There exists a Parry numeration system U such that the class of U-

automatic sequences is not closed under taking image by a uniform

substitution.

Un = 3Un−1 + 2Un−2 + 3Un−4, U0 = 1,U1 = 4,U2 = 15,U3 = 54

β ≈ 3.61645, γ ≈ −1.09685, two complex roots with modulus less

than 1

Let x be the characteristic sequences of the set {Un|n ≥ 0} :

x = 0100100000000001000 . . .

We consider µ : 0 7→ 0t , 1 7→ 10t−1, t ≥ 4

µ(x) is the characteristic sequence of the set {tUn|n ≥ 0}
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Proposition

Let r ≥ 2 be an integer. If t is an integer such that 4 ≤ t ≤ bβrc,
then the β-expansion of the number t

βr is aperiodic.

Corollary

The set {tUn|n ≥ 0} is not U-recognizable for t ≥ 4. In other words,

its characteristic sequence µ(x) is not U-automatic.
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x ∈ Aω a k-automatic sequence

Let t ≥ 2 and let y be the sequence de�ned by y[n] = x[tn]

∀a ∈ A, ϕa(n) holds i� x[n] = a

ψa(n) = ϕa(tn)

Theorem

There exists a Parry numeration system U such that the class of

U-automatic sequences is not closed under periodic deletion.
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Un = 3Un−1 + 2Un−2 + 3Un−4, U0 = 1,U1 = 4,U2 = 15,U3 = 54

Let y be the characteristic sequence of the set {Un
2
|n ≥ 0,Un ∈ 2N} :

y = 0010000000000000000000000001 . . .

y[n] = x[2n] and y[n] = 1 i� 2n ∈ {Uj |j ≥ 0}

Proposition

The set {Un
2
|n ≥ 0,Un ∈ 2N} is not U-recognizable. In other words,

its characteristic sequence y is not U-automatic.
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Multidimensional sequences

De�nition

Let U be a numeration system. A 2-dimensional word x =
(xm,n)m,n≥0 over an alphabet B is U-automatic if there exists

a complete DFAO (Q, q0,AU × AU , δ, τ) with transition function

δ : Q × (AU ×AU)∗ → Q and output function τ : Q → B such that

δ(q0, (0, 0)) = q0 and

xm,n = τ
(
δ(q0, (0

`−| repU(m)| repU(m), 0`−| repU(n)| repU(n)))
)

∀m, n ≥ 0, where ` = max{| repU(m)|, | repU(n)|}.

The 2-dimensional word x is k-automatic (resp. Parry-automatic,

resp. Bertrand-automatic) if U = (kn)n≥0 for an integer k ≥ 2 (resp.

U is a Parry numeration system, resp. U is a Bertrand numeration

system).
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Let k ≥ 2 be an integer.

The k-kernel of an in�nite word x = (xn)n≥0 over A is the set of its

subsequences of the form

{(xken+d)n≥0 |e ≥ 0, 0 ≤ d ≤ ke}
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Let U be a numeration system and s ∈ A∗U be a �nite word. De�ne

the ordered set of integers

Is := valU(0∗ repU(N) ∩ A∗Us) = {i(s, 0), i(s, 1), . . .}.

De�nition

The U-kernel of an in�nite word x = (xn)n≥0 over B is the set

kerU(x) := {
(
xi(s,n)

)
n≥0 |s ∈ A∗U}.

De�nition

The U-kernel of an 2-dimensional word x = (xm,n)m,n≥0 over B is

the set

kerU(x) := {
(
xi(s,m),i(t,n)

)
m,n≥0 |s, t ∈ A∗U , |s| = |t|}.
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Proposition

Let U be a numeration system such that repU(N) is regular. A word

x is U-automatic if and only if its U-kernel is �nite.

Proposition

Let U be a numeration system such that the numeration language

repU(N) is regular. A 2-dimensional word x = (xm,n)m,n≥0 is U-

automatic if and only if its U-kernel is �nite.
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