Automatic sequences based on Parry or Bertrand numeration systems

Adeline Massuir
Joint work with Jarkko Peltomäki and Michel Rigo

Discrete Mathematics Seminar
February 26 $^{\text {th }}, 2019$

Introduction

Abstract numeration systems

Bertrand systems with a regular numeration language

Parry systems

Pisot systems

Integer base systems

Numeration systems

A numeration system is an increasing sequence $U=\left(U_{n}\right)_{n \geq 0}$ of integers such that $U_{0}=1$ and $C_{U}:=\sup _{n \geq 0}\left\lceil\frac{U_{n+1}}{U_{n}}\right\rceil<+\infty$.

Numeration systems

A numeration system is an increasing sequence $U=\left(U_{n}\right)_{n \geq 0}$ of integers such that $U_{0}=1$ and $C_{U}:=\sup _{n \geq 0}\left\lceil\frac{U_{n+1}}{U_{n}}\right\rceil<+\infty$.

We set $A_{U}:=\left\{0, \ldots, C_{U}-1\right\}$.
The greedy representation of the positive integer n is the word $\operatorname{rep}_{U}(n)=w_{I-1} \ldots w_{0}$ over A_{U} satisfying

$$
\sum_{i=0}^{\ell-1} w_{i} U_{i}=n, w_{\ell-1} \neq 0 \text { and } \forall j \in\{1, \ldots, \ell\}, \sum_{i=0}^{j-1} w_{i} U_{i}<U_{j}
$$

We set $\operatorname{rep}_{U}(0)=\varepsilon$.

We set $\operatorname{rep}_{U}(0)=\varepsilon$.
The language $0^{*} \operatorname{rep}_{U}(\mathbb{N})$ is the numeration language.

We set $\operatorname{rep}_{U}(0)=\varepsilon$.
The language $0^{*} \operatorname{rep}_{U}(\mathbb{N})$ is the numeration language.
A set X of integers is U-recognizable if $\operatorname{rep}_{U}(X)$ is regular.

We set $\operatorname{rep}_{U}(0)=\varepsilon$.
The language $0^{*} \operatorname{rep}_{U}(\mathbb{N})$ is the numeration language.
A set X of integers is U-recognizable if $\operatorname{rep}_{U}(X)$ is regular.
The numerical value val ${ }_{U}: \mathbb{Z}^{*} \rightarrow \mathbb{N}$ maps a word $d_{\ell-1} \ldots d_{0}$ to the number $\sum_{i=0}^{\ell-1} d_{i} U_{i}$.

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Examples:

- Integer base

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Examples:

- Integer base
- Fibonacci: $F_{0}=1, F_{1}=2$ and $F_{n+2}=F_{n+1}+F_{n}, n \geq 0$.

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Examples:

- Integer base
- Fibonacci: $F_{0}=1, F_{1}=2$ and $F_{n+2}=F_{n+1}+F_{n}, n \geq 0$.

$$
\operatorname{rep}_{F}(\mathbb{N})=1\{0,01\}^{*} \cup\{\varepsilon\}
$$

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Examples:

- Integer base
- Fibonacci: $F_{0}=1, F_{1}=2$ and $F_{n+2}=F_{n+1}+F_{n}, n \geq 0$.

$$
\operatorname{rep}_{F}(\mathbb{N})=1\{0,01\}^{*} \cup\{\varepsilon\}
$$

- Modified Fibonacci : $G_{0}=1, G_{1}=3$.

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Examples:

- Integer base
- Fibonacci: $F_{0}=1, F_{1}=2$ and $F_{n+2}=F_{n+1}+F_{n}, n \geq 0$.

$$
\operatorname{rep}_{F}(\mathbb{N})=1\{0,01\}^{*} \cup\{\varepsilon\}
$$

- Modified Fibonacci : $G_{0}=1, G_{1}=3$.

$$
\left(G_{n}\right)_{n \geq 0}=(1,3,4,7, \ldots)
$$

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Examples:

- Integer base
- Fibonacci: $F_{0}=1, F_{1}=2$ and $F_{n+2}=F_{n+1}+F_{n}, n \geq 0$.

$$
\operatorname{rep}_{F}(\mathbb{N})=1\{0,01\}^{*} \cup\{\varepsilon\}
$$

- Modified Fibonacci : $G_{0}=1, G_{1}=3$.

$$
\begin{aligned}
& \quad\left(G_{n}\right)_{n \geq 0}=(1,3,4,7, \ldots) \\
& 2 \in 0^{*} \operatorname{rep}_{G}(\mathbb{N})
\end{aligned}
$$

Definition

A numeration system U is a Bertrand numeration system if, for all $w \in A_{U}^{*}, w \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0 \in 0^{*} \operatorname{rep}_{U}(\mathbb{N})$.

Examples:

- Integer base
- Fibonacci: $F_{0}=1, F_{1}=2$ and $F_{n+2}=F_{n+1}+F_{n}, n \geq 0$.

$$
\operatorname{rep}_{F}(\mathbb{N})=1\{0,01\}^{*} \cup\{\varepsilon\}
$$

- Modified Fibonacci : $G_{0}=1, G_{1}=3$.

$$
\begin{array}{cc}
\left(G_{n}\right)_{n \geq 0}= & (1,3,4,7, \ldots) \\
2 \in 0^{*} \operatorname{rep}_{G}(\mathbb{N}) & 20 \notin 0^{*} \operatorname{rep}_{G}(\mathbb{N}), \text { because } \\
& \operatorname{rep}_{G}\left(\operatorname{val}_{G}(20)\right)=102 .
\end{array}
$$

Let $\beta>1$ be a real number.
The β-expansion of a real number $x \in[0,1]$ is the sequence $d_{\beta}(x)=$ $\left(x_{i}\right)_{i \geq 1} \in \mathbb{N}^{\omega}$ that satisfies

$$
x=\sum_{i=1}^{+\infty} x_{i} \beta^{-i}
$$

and which is the maximal (for lexicographic order) element having this property.

Let $\beta>1$ be a real number.
The β-expansion of a real number $x \in[0,1]$ is the sequence $d_{\beta}(x)=$ $\left(x_{i}\right)_{i \geq 1} \in \mathbb{N}^{\omega}$ that satisfies

$$
x=\sum_{i=1}^{+\infty} x_{i} \beta^{-i}
$$

and which is the maximal (for lexicographic order) element having this property.

Greedy algorithm $+x_{i} \in A_{\beta}:=\{0, \ldots,\lceil\beta\rceil-1\}$

Let $\beta>1$ be a real number.
The β-expansion of a real number $x \in[0,1]$ is the sequence $d_{\beta}(x)=$ $\left(x_{i}\right)_{i \geq 1} \in \mathbb{N}^{\omega}$ that satisfies

$$
x=\sum_{i=1}^{+\infty} x_{i} \beta^{-i}
$$

and which is the maximal (for lexicographic order) element having this property.

Greedy algorithm $+x_{i} \in A_{\beta}:=\{0, \ldots,\lceil\beta\rceil-1\}$
Fact $\left(D_{\beta}\right)=$ set of finite factors occurring the the base- β expansions of real numbers in $[0,1)$.

Definition

If $d_{\beta}(1)=t_{1} \ldots t_{m} 0^{\omega}$ with $t_{1}, \ldots, t_{m} \in A_{\beta}$ and $t_{m} \neq 0$, we say that $d_{\beta}(1)$ is finite and we set $d_{\beta}^{*}(1)=\left(t_{1} \ldots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}$.

Definition

If $d_{\beta}(1)=t_{1} \ldots t_{m} 0^{\omega}$ with $t_{1}, \ldots, t_{m} \in A_{\beta}$ and $t_{m} \neq 0$, we say that $d_{\beta}(1)$ is finite and we set $d_{\beta}^{*}(1)=\left(t_{1} \ldots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}$. Otherwise, we set $d_{\beta}^{*}(1)=d_{\beta}(1)$.

Definition

If $d_{\beta}(1)=t_{1} \ldots t_{m} 0^{\omega}$ with $t_{1}, \ldots, t_{m} \in A_{\beta}$ and $t_{m} \neq 0$, we say that $d_{\beta}(1)$ is finite and we set $d_{\beta}^{*}(1)=\left(t_{1} \ldots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}$. Otherwise, we set $d_{\beta}^{*}(1)=d_{\beta}(1)$.
When $d_{\beta}^{*}(1)$ is (ultimately) periodic, then β is said to be a Parry number.

Definition

If $d_{\beta}(1)=t_{1} \ldots t_{m} 0^{\omega}$ with $t_{1}, \ldots, t_{m} \in A_{\beta}$ and $t_{m} \neq 0$, we say that $d_{\beta}(1)$ is finite and we set $d_{\beta}^{*}(1)=\left(t_{1} \ldots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}$. Otherwise, we set $d_{\beta}^{*}(1)=d_{\beta}(1)$.
When $d_{\beta}^{*}(1)$ is (ultimately) periodic, then β is said to be a Parry number.

Equivalent definition : $d_{\beta}^{*}(1)=\lim _{x \rightarrow 1^{-}} d_{\beta}(x)$.

Definition

If $d_{\beta}(1)=t_{1} \ldots t_{m} 0^{\omega}$ with $t_{1}, \ldots, t_{m} \in A_{\beta}$ and $t_{m} \neq 0$, we say that $d_{\beta}(1)$ is finite and we set $d_{\beta}^{*}(1)=\left(t_{1} \ldots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}$. Otherwise, we set $d_{\beta}^{*}(1)=d_{\beta}(1)$.
When $d_{\beta}^{*}(1)$ is (ultimately) periodic, then β is said to be a Parry number.

Equivalent definition : $d_{\beta}^{*}(1)=\lim _{x \rightarrow 1^{-}} d_{\beta}(x)$.

Definition

Let $\beta>1$ be a real number such that $d_{\beta}^{*}(1)=\left(t_{i}\right)_{i \geq 1}$. The numeration system $U_{\beta}=\left(U_{n}\right)_{n \geq 0}$ canonically associated with β is defined by

$$
U_{n}=t_{1} U_{n-1}+\ldots+t_{n} U_{0}+1, \forall n \geq 0
$$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$
$x^{2}-x-1$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$
$x^{2}-x-1$
$d_{\varphi}(1)=11$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$
$x^{2}-x-1$
$d_{\varphi}(1)=11, \quad d_{\varphi}^{*}(1)=(10)^{\omega}$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$
$x^{2}-x-1$
$d_{\varphi}(1)=11, \quad d_{\varphi}^{*}(1)=(10)^{\omega}, \quad$ Parry number

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$
$x^{2}-x-1$
$d_{\varphi}(1)=11, \quad d_{\varphi}^{*}(1)=(10)^{\omega}, \quad$ Parry number
$U_{0}=1, U_{1}=1 \times U_{0}+1=2, U_{2}=1 \times U_{1}+0 \times U_{0}+1=3, \ldots$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$
$x^{2}-x-1$
$d_{\varphi}(1)=11, \quad d_{\varphi}^{*}(1)=(10)^{\omega}, \quad$ Parry number
$U_{0}=1, U_{1}=1 \times U_{0}+1=2, U_{2}=1 \times U_{1}+0 \times U_{0}+1=3, \ldots$
$U_{n+2}=U_{n+1}+U_{n-1}+U_{n-3}+\ldots+U_{0}+1$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$

$$
\begin{aligned}
& x^{2}-x-1 \\
& d_{\varphi}(1)=11, \quad d_{\varphi}^{*}(1)=(10)^{\omega}, \quad \text { Parry number } \\
& U_{0}=1, U_{1}=1 \times U_{0}+1=2, U_{2}=1 \times U_{1}+0 \times U_{0}+1=3, \ldots \\
& U_{n+2}=U_{n+1}+U_{n-1}+U_{n-3}+\ldots+U_{0}+1 \\
& U_{n}=U_{n-1}+U_{n-3}+\ldots+U_{0}+1
\end{aligned}
$$

Definition

A numeration system U is a Parry numeration system if there exists a Parry number β such that $U=U_{\beta}$.

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$

$$
\begin{aligned}
& x^{2}-x-1 \\
& d_{\varphi}(1)=11, \quad d_{\varphi}^{*}(1)=(10)^{\omega}, \quad \text { Parry number } \\
& U_{0}=1, U_{1}=1 \times U_{0}+1=2, U_{2}=1 \times U_{1}+0 \times U_{0}+1=3, \ldots \\
& U_{n+2}=U_{n+1}+U_{n-1}+U_{n-3}+\ldots+U_{0}+1 \\
& U_{n}=U_{n-1}+U_{n-3}+\ldots+U_{0}+1 \\
& U_{n+2}=U_{n+1}+U_{n}
\end{aligned}
$$

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.
$0^{*} \operatorname{rep}_{B}(\mathbb{N})=\{0,1,2\}^{*}\left(\{\varepsilon\} \cup 30^{*}\right)$

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.
$0^{*} \operatorname{rep}_{B}(\mathbb{N})=\{0,1,2\}^{*}\left(\{\varepsilon\} \cup 30^{*}\right)$
If $\exists \beta$ s.t. $B=U_{\beta}$, then $1=\frac{3}{\beta}$:

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.
$0^{*} \operatorname{rep}_{B}(\mathbb{N})=\{0,1,2\}^{*}\left(\{\varepsilon\} \cup 30^{*}\right)$
If $\exists \beta$ s.t. $B=U_{\beta}$, then $1=\frac{3}{\beta}$: the greatest word of length n in $0^{*} \operatorname{rep}_{B}(\mathbb{N})$ is 30^{n-1}.

Proposition

The set of Parry numeration systems is a strict subset of the set of Bertrand numeration systems.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.
$0^{*} \operatorname{rep}_{B}(\mathbb{N})=\{0,1,2\}^{*}\left(\{\varepsilon\} \cup 30^{*}\right)$
If $\exists \beta$ s.t. $B=U_{\beta}$, then $1=\frac{3}{\beta}$: the greatest word of length n in $0^{*} \operatorname{rep}_{B}(\mathbb{N})$ is 30^{n-1}.
U_{3} is the classical base 3 , so $0^{*} \operatorname{rep}_{U_{3}}(\mathbb{N})=\{0,1,2\}^{*}$.

Theorem (Parry, 1960)

A sequence $x=\left(x_{i}\right)_{i \geq 1}$ over \mathbb{N} is the β-expansion of a real number in $[0,1)$ if and only if $\left(x_{n+i}\right)_{i \geq 1}$ is lexicographically less than $d_{\beta}^{*}(1)$ for all $n \geq 0$.

Theorem (Parry, 1960)

A sequence $x=\left(x_{i}\right)_{i \geq 1}$ over \mathbb{N} is the β-expansion of a real number in $[0,1)$ if and only if $\left(x_{n+i}\right)_{i \geq 1}$ is lexicographically less than $d_{\beta}^{*}(1)$ for all $n \geq 0$.
β Parry number

Theorem (Parry, 1960)

A sequence $x=\left(x_{i}\right)_{i \geq 1}$ over \mathbb{N} is the β-expansion of a real number in $[0,1)$ if and only if $\left(x_{n+i}\right)_{i \geq 1}$ is lexicographically less than $d_{\beta}^{*}(1)$ for all $n \geq 0$.
β Parry number
$d_{\beta}^{*}(1)=t_{1} \ldots t_{i}\left(t_{i+1} \ldots t_{i+p}\right)^{\omega}$ with $i \geq 0$ and $p \geq 1$ minimal

Theorem (Parry, 1960)

A sequence $x=\left(x_{i}\right)_{i \geq 1}$ over \mathbb{N} is the β-expansion of a real number in $[0,1)$ if and only if $\left(x_{n+i}\right)_{i \geq 1}$ is lexicographically less than $d_{\beta}^{*}(1)$ for all $n \geq 0$.
β Parry number
$d_{\beta}^{*}(1)=t_{1} \ldots t_{i}\left(t_{i+1} \ldots t_{i+p}\right)^{\omega}$ with $i \geq 0$ and $p \geq 1$ minimal
Deterministic finite automaton \mathscr{A}_{β}

Definition

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U=U_{\beta}$.

Definition

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U=U_{\beta}$.

A Pisot number is a Parry number.

Definition

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U=U_{\beta}$.

A Pisot number is a Parry number.
$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, n \geq 4 ;$ with $U_{0}=1, U_{1}=4, U_{2}=$ $15, U_{3}=54$ is Parry but not Pisot.

Definition

A Pisot number is an algebraic integer $\beta>1$ whose conjugates have modulus less than 1.

Definition

A numeration system U is a Pisot numeration system if there exists a Pisot number β such that $U=U_{\beta}$.

A Pisot number is a Parry number.
$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, n \geq 4 ;$ with $U_{0}=1, U_{1}=4, U_{2}=$ $15, U_{3}=54$ is Parry but not Pisot.

Fibonacci is Pisot, but not an integer base.

Automatic sequences

Definition

Let U be a numeration system. An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ over an alphabet B is U-automatic (it is an U-automatic sequence) if there exists a complete DFAO $\left(Q, q_{0}, A_{U}, \delta, \tau\right)$ with transition function $\delta: Q \times A_{U} \rightarrow Q$ and output function $\tau=Q \rightarrow B$ such that $\delta\left(q_{0}, 0\right)=q_{0}$ and

$$
x_{n}=\tau\left(\delta\left(q_{0}, \operatorname{rep}_{u}(n)\right)\right), \quad \forall n \geq 0
$$

Automatic sequences

Definition

Let U be a numeration system. An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ over an alphabet B is U-automatic (it is an U-automatic sequence) if there exists a complete DFAO $\left(Q, q_{0}, A_{U}, \delta, \tau\right)$ with transition function $\delta: Q \times A_{U} \rightarrow Q$ and output function $\tau=Q \rightarrow B$ such that $\delta\left(q_{0}, 0\right)=q_{0}$ and

$$
x_{n}=\tau\left(\delta\left(q_{0}, \operatorname{rep}_{u}(n)\right)\right), \quad \forall n \geq 0
$$

The infinite word \mathbf{x} is k-automatic (resp. Parry-automatic, resp. Bertrand-automatic) if $U=\left(k^{n}\right)_{n \geq 0}$ for an integer $k \geq 2$ (resp. U is a Parry numeration system, resp. U is a Bertrand numeration system).

Factor complexity

Definition

The factor complexity function $p_{\mathbf{x}}(n)$ of an infinite word \mathbf{x} counts the number of factors of length n occurring in \mathbf{x}.

Factor complexity

Definition

The factor complexity function $p_{\mathrm{x}}(n)$ of an infinite word x counts the number of factors of length n occurring in \mathbf{x}.

Proposition (Cobham, 1972)

The factor complexity function of a k-automatic sequence is sublinear.

Theorem
The factor complexity of a Parry-automatic sequence is sublinear.

Theorem
The factor complexity of a Parry-automatic sequence is sublinear.

Sketch of the proof : on board.

Definition

Let $\sigma: A^{*} \rightarrow A^{*}$ be a substitution. If there exists $\alpha \geq 1$ such that $\left|\sigma^{n}(a)\right|=\Theta\left(\alpha^{n}\right)$ for all $a \in A$, then we say that σ is quasi-uniform.

Definition

Let $\sigma: A^{*} \rightarrow A^{*}$ be a substitution. If there exists $\alpha \geq 1$ such that $\left|\sigma^{n}(a)\right|=\Theta\left(\alpha^{n}\right)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let x be a U-automatic sequence :

Definition

Let $\sigma: A^{*} \rightarrow A^{*}$ be a substitution. If there exists $\alpha \geq 1$ such that $\left|\sigma^{n}(a)\right|=\Theta\left(\alpha^{n}\right)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let x be a U -automatic sequence :

$$
\mathbf{x}=\tau\left(\sigma^{\omega}(a)\right)
$$

Definition

Let $\sigma: A^{*} \rightarrow A^{*}$ be a substitution. If there exists $\alpha \geq 1$ such that $\left|\sigma^{n}(a)\right|=\Theta\left(\alpha^{n}\right)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let x be a U -automatic sequence :

$$
\mathbf{x}=\tau\left(\sigma^{\omega}(a)\right)
$$

k-automatic: σ uniform

Definition

Let $\sigma: A^{*} \rightarrow A^{*}$ be a substitution. If there exists $\alpha \geq 1$ such that $\left|\sigma^{n}(a)\right|=\Theta\left(\alpha^{n}\right)$ for all $a \in A$, then we say that σ is quasi-uniform.

Let x be a U-automatic sequence :

$$
\mathbf{x}=\tau\left(\sigma^{\omega}(a)\right)
$$

k-automatic: σ uniform

Parry-automatic: σ quasi-uniform

Theorem

There exists a Bertrand-automatic sequence with superlinear factor complexity.

Theorem

There exists a Bertrand-automatic sequence with superlinear factor complexity.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.

Theorem

There exists a Bertrand-automatic sequence with superlinear factor complexity.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.
$0^{*} \operatorname{rep}_{B}(\mathbb{N})=\{0,1,2\}^{*}\left(\{\varepsilon\} \cup 30^{*}\right)$

Theorem

There exists a Bertrand-automatic sequence with superlinear factor complexity.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.
$0^{*} \operatorname{rep}_{B}(\mathbb{N})=\{0,1,2\}^{*}\left(\{\varepsilon\} \cup 30^{*}\right)$

$\sigma: a \mapsto a a a b, b \mapsto b$

Theorem

There exists a Bertrand-automatic sequence with superlinear factor complexity.
$B=\left(B_{n}\right)_{n \geq 0}$ where $B_{0}=1$ and $B_{n+1}=3 B_{n}+1, \forall n \geq 0$.
$0^{*} \operatorname{rep}_{B}(\mathbb{N})=\{0,1,2\}^{*}\left(\{\varepsilon\} \cup 30^{*}\right)$

$\sigma: a \mapsto a a a b, b \mapsto b$
$\mathbf{x}=\sigma^{\omega}(a)=$ aaabaaabaaabb \ldots

Theorem (Pansiot, 1984)

Let \mathbf{x} be a purely morphic word and p its complexity function. Then one of the following holds:

- $p(n)=\Theta(1)$
- $p(n)=\Theta(n)$
- $p(n)=\Theta(n \log \log n)$
- $p(n)=\Theta(n \log n)$
- $p(n)=\Theta\left(n^{2}\right)$.

Closure properties

Theorem

Let U be a numeration system such that $\operatorname{rep}_{U}(\mathbb{N})$ is regular. An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ over A is U-automatic in and only if, for all $a \in A$, the set $\left\{j \geq 0 \mid x_{j}=a\right\}$ is U-recognizable.

Closure properties

Theorem

Let U be a numeration system such that $\operatorname{rep}_{U}(\mathbb{N})$ is regular. An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ over A is U-automatic in and only if, for all $a \in A$, the set $\left\{j \geq \overline{0} \mid x_{j}=a\right\}$ is U-recognizable.

Proposition

The image of a k-automatic sequence under a substitution of constant length is again a k-automatic sequence.

$\mathbf{x} \in A^{\omega}$ a k-automatic sequence

$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
$\mu: A \rightarrow B^{*}$ a substitution of length ℓ
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
$\mu: A \rightarrow B^{*}$ a substitution of length ℓ
$\forall a \in A, \exists \varphi_{a}(n)$ in $\left\langle\mathbb{N},+, V_{k}\right\rangle$ which holds iff $\mathbf{x}[n]=a$
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
$\mu: A \rightarrow B^{*}$ a substitution of length ℓ
$\forall a \in A, \exists \varphi_{a}(n)$ in $\left\langle\mathbb{N},+, V_{k}\right\rangle$ which holds iff $\mathbf{x}[n]=a$
$\forall b \in B, \exists \psi_{b}(n)$ that holds iff $\mu(\mathbf{x})[n]=b$
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
$\mu: A \rightarrow B^{*}$ a substitution of length ℓ
$\forall a \in A, \exists \varphi_{a}(n)$ in $\left\langle\mathbb{N},+, V_{k}\right\rangle$ which holds iff $\mathbf{x}[n]=a$
$\forall b \in B, \exists \psi_{b}(n)$ that holds iff $\mu(\mathbf{x})[n]=b$
$n=\ell q+r, q, r$ unique, $0 \leq r<\ell$
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
$\mu: A \rightarrow B^{*}$ a substitution of length ℓ
$\forall a \in A, \exists \varphi_{a}(n)$ in $\left\langle\mathbb{N},+, V_{k}\right\rangle$ which holds iff $\mathbf{x}[n]=a$
$\forall b \in B, \exists \psi_{b}(n)$ that holds iff $\mu(\mathbf{x})[n]=b$
$n=\ell q+r, q, r$ unique, $0 \leq r<\ell$
$\forall a \in A, \sigma_{a}(r)$ that holds iff $\mu(a)$ contains a letter b at position r
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
$\mu: A \rightarrow B^{*}$ a substitution of length ℓ
$\forall a \in A, \exists \varphi_{a}(n)$ in $\left\langle\mathbb{N},+, V_{k}\right\rangle$ which holds iff $\mathbf{x}[n]=a$

$$
\forall b \in B, \exists \psi_{b}(n) \text { that holds iff } \mu(\mathbf{x})[n]=b
$$

$n=\ell q+r, q, r$ unique, $0 \leq r<\ell$
$\forall a \in A, \sigma_{a}(r)$ that holds iff $\mu(a)$ contains a letter b at position r

$$
\psi_{b}(n)=(\exists q)(\exists r<\ell)\left(n=\ell q+r \wedge \bigvee_{a \in A}\left(\varphi_{a}(q) \wedge \sigma_{a}(r)\right)\right)
$$

$$
\psi_{b}(n)=(\exists q)(\exists r<\ell)\left(n=\ell q+r \wedge \bigvee_{a \in A}\left(\varphi_{a}(q) \wedge \sigma_{a}(r)\right)\right)
$$

$$
\psi_{b}(n)=(\exists q)(\exists r<\ell)\left(n=\ell q+r \wedge \bigvee_{a \in A}\left(\varphi_{a}(q) \wedge \sigma_{a}(r)\right)\right)
$$

$$
A=\{a, b\}, B=\{i, j\}, \ell=3, \mu(a)=i i j, \mu(b)=j i j
$$

$$
\psi_{b}(n)=(\exists q)(\exists r<\ell)\left(n=\ell q+r \wedge \bigvee_{a \in A}\left(\varphi_{a}(q) \wedge \sigma_{a}(r)\right)\right)
$$

$A=\{a, b\}, B=\{i, j\}, \ell=3, \mu(a)=i i j, \mu(b)=j i j$
$(\exists q)(\exists r<3)$

$$
\left(n=3 q+r \wedge\left[\left(\varphi_{a}(q) \wedge(r=0 \vee r=1)\right) \vee\left(\varphi_{b}(q) \wedge r=1\right)\right]\right)
$$

$$
\psi_{b}(n)=(\exists q)(\exists r<\ell)\left(n=\ell q+r \wedge \bigvee_{a \in A}\left(\varphi_{a}(q) \wedge \sigma_{a}(r)\right)\right)
$$

$A=\{a, b\}, B=\{i, j\}, \ell=3, \mu(a)=i i j, \mu(b)=j i j$
$(\exists q)(\exists r<3)$

$$
\left(n=3 q+r \wedge\left[\left(\varphi_{a}(q) \wedge(r=0 \vee r=1)\right) \vee\left(\varphi_{b}(q) \wedge r=1\right)\right]\right)
$$

$(\exists q)(\exists r<3)$

$$
\left(n=3 q+r \wedge\left[\left(\varphi_{a}(q) \wedge r=2\right) \vee\left(\varphi_{b}(q) \wedge(r=0 \vee r=2)\right)\right]\right)
$$

Theorem

There exists a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform substitution.

Theorem

There exists a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform substitution.

$$
U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54
$$

Theorem

There exists a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform substitution.
$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54$
$\beta \approx 3.61645, \gamma \approx-1.09685$, two complex roots with modulus less than 1

Theorem

There exists a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform substitution.
$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54$
$\beta \approx 3.61645, \gamma \approx-1.09685$, two complex roots with modulus less than 1

Let \mathbf{x} be the characteristic sequences of the set $\left\{U_{n} \mid n \geq 0\right\}$:

$$
x=0100100000000001000 \ldots
$$

Theorem

There exists a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform substitution.
$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54$
$\beta \approx 3.61645, \gamma \approx-1.09685$, two complex roots with modulus less than 1

Let x be the characteristic sequences of the set $\left\{U_{n} \mid n \geq 0\right\}$:

$$
x=0100100000000001000 \ldots
$$

We consider $\mu: 0 \mapsto 0^{t}, 1 \mapsto 10^{t-1}, t \geq 4$

Theorem

There exists a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform substitution.
$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54$
$\beta \approx 3.61645, \gamma \approx-1.09685$, two complex roots with modulus less than 1

Let \mathbf{x} be the characteristic sequences of the set $\left\{U_{n} \mid n \geq 0\right\}$:

$$
x=0100100000000001000 \ldots
$$

We consider $\mu: 0 \mapsto 0^{t}, 1 \mapsto 10^{t-1}, t \geq 4$
$\mu(\mathbf{x})$ is the characteristic sequence of the set $\left\{t U_{n} \mid n \geq 0\right\}$

Proposition

Let $r \geq 2$ be an integer. If t is an integer such that $4 \leq t \leq\left\lfloor\beta^{r}\right\rfloor$, then the β-expansion of the number $\frac{t}{\beta^{r}}$ is aperiodic.

Proposition

Let $r \geq 2$ be an integer. If t is an integer such that $4 \leq t \leq\left\lfloor\beta^{r}\right\rfloor$, then the β-expansion of the number $\frac{t}{\beta^{r}}$ is aperiodic.

Corollary

The set $\left\{t U_{n} \mid n \geq 0\right\}$ is not U-recognizable for $t \geq 4$. In other words, its characteristic sequence $\mu(\mathbf{x})$ is not U-automatic.

$\mathbf{x} \in A^{\omega}$ a k-automatic sequence

$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
Let $t \geq 2$ and let \mathbf{y} be the sequence defined by $\mathbf{y}[n]=\mathbf{x}[t n]$
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
Let $t \geq 2$ and let \mathbf{y} be the sequence defined by $\mathbf{y}[n]=\mathbf{x}[t n]$
$\forall a \in A, \varphi_{a}(n)$ holds iff $\mathbf{x}[n]=a$
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
Let $t \geq 2$ and let \mathbf{y} be the sequence defined by $\mathbf{y}[n]=\mathbf{x}[t n]$
$\forall a \in A, \varphi_{a}(n)$ holds iff $\mathbf{x}[n]=a$
$\psi_{a}(n)=\varphi_{a}(t n)$
$\mathbf{x} \in A^{\omega}$ a k-automatic sequence
Let $t \geq 2$ and let \mathbf{y} be the sequence defined by $\mathbf{y}[n]=\mathbf{x}[t n]$
$\forall a \in A, \varphi_{a}(n)$ holds iff $\mathbf{x}[n]=a$
$\psi_{a}(n)=\varphi_{a}(t n)$

Theorem

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under periodic deletion.

$$
U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54
$$

$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54$
Let \mathbf{y} be the characteristic sequence of the set $\left\{\left.\frac{U_{n}}{2} \right\rvert\, n \geq 0, U_{n} \in 2 \mathbb{N}\right\}$:

$$
y=0010000000000000000000000001 \ldots
$$

$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54$
Let \mathbf{y} be the characteristic sequence of the set $\left\{\left.\frac{U_{n}}{2} \right\rvert\, n \geq 0, U_{n} \in 2 \mathbb{N}\right\}$:

$$
\mathbf{y}=0010000000000000000000000001 \ldots
$$

$\mathbf{y}[n]=\mathbf{x}[2 n]$ and $\mathbf{y}[n]=1$ iff $2 n \in\left\{U_{j} \mid j \geq 0\right\}$
$U_{n}=3 U_{n-1}+2 U_{n-2}+3 U_{n-4}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54$
Let \mathbf{y} be the characteristic sequence of the set $\left\{\left.\frac{U_{n}}{2} \right\rvert\, n \geq 0, U_{n} \in 2 \mathbb{N}\right\}$:

$$
\mathbf{y}=0010000000000000000000000001 \ldots
$$

$\mathbf{y}[n]=\mathbf{x}[2 n]$ and $\mathbf{y}[n]=1$ iff $2 n \in\left\{U_{j} \mid j \geq 0\right\}$

Proposition

The set $\left\{\left.\frac{U_{n}}{2} \right\rvert\, n \geq 0, U_{n} \in 2 \mathbb{N}\right\}$ is not U-recognizable. In other words, its characteristic sequence \mathbf{y} is not U-automatic.

Multidimensional sequences

Definition

Let U be a numeration system. A 2-dimensional word $\mathbf{x}=$ $\left(x_{m, n}\right)_{m, n \geq 0}$ over an alphabet B is U-automatic if there exists a complete DFAO $\left(Q, q_{0}, A_{U} \times A_{U}, \delta, \tau\right)$ with transition function $\delta: Q \times\left(A_{U} \times A_{U}\right)^{*} \rightarrow Q$ and output function $\tau: Q \rightarrow B$ such that $\delta\left(q_{0},(0,0)\right)=q_{0}$ and

$$
x_{m, n}=\tau\left(\delta\left(q_{0},\left(0^{\ell-\left|\operatorname{rep}_{U}(m)\right|} \operatorname{rep}_{U}(m), 0^{\ell-\left|\operatorname{rep}_{U}(n)\right|} \operatorname{rep}_{U}(n)\right)\right)\right)
$$

$\forall m, n \geq 0$, where $\ell=\max \left\{\left|\operatorname{rep}_{U}(m)\right|,\left|\operatorname{rep}_{U}(n)\right|\right\}$.

Multidimensional sequences

Definition

Let U be a numeration system. A 2-dimensional word $\mathbf{x}=$ $\left(x_{m, n}\right)_{m, n \geq 0}$ over an alphabet B is U-automatic if there exists a complete $\operatorname{DFAO}\left(Q, q_{0}, A_{U} \times A_{U}, \delta, \tau\right)$ with transition function $\delta: Q \times\left(A_{U} \times A_{U}\right)^{*} \rightarrow Q$ and output function $\tau: Q \rightarrow B$ such that $\delta\left(q_{0},(0,0)\right)=q_{0}$ and

$$
x_{m, n}=\tau\left(\delta\left(q_{0},\left(0^{\ell-\left|\operatorname{rep}_{U}(m)\right|} \operatorname{rep}_{U}(m), 0^{\ell-\left|\operatorname{rep}_{U}(n)\right|} \operatorname{rep}_{U}(n)\right)\right)\right)
$$

$\forall m, n \geq 0$, where $\ell=\max \left\{\left|\operatorname{rep}_{U}(m)\right|,\left|\operatorname{rep}_{U}(n)\right|\right\}$.
The 2-dimensional word \mathbf{x} is k-automatic (resp. Parry-automatic, resp. Bertrand-automatic) if $U=\left(k^{n}\right)_{n \geq 0}$ for an integer $k \geq 2$ (resp. U is a Parry numeration system, resp. U is a Bertrand numeration system).

Let $k \geq 2$ be an integer.

Let $k \geq 2$ be an integer.
The k-kernel of an infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ over A is the set of its subsequences of the form

$$
\left\{\left(x_{k}^{e} n+d\right)_{n \geq 0} \mid e \geq 0,0 \leq d \leq k^{e}\right\}
$$

Let U be a numeration system and $s \in A_{U}^{*}$ be a finite word. Define the ordered set of integers

$$
\mathscr{I}_{s}:=\operatorname{val}_{U}\left(0^{*} \operatorname{rep}_{U}(\mathbb{N}) \cap A_{U}^{*} s\right)=\{i(s, 0), i(s, 1), \ldots\}
$$

Let U be a numeration system and $s \in A_{U}^{*}$ be a finite word. Define the ordered set of integers

$$
\mathscr{I}_{s}:=\operatorname{val}_{U}\left(0^{*} \operatorname{rep}_{U}(\mathbb{N}) \cap A_{U}^{*} s\right)=\{i(s, 0), i(s, 1), \ldots\}
$$

Definition

The U-kernel of an infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ over B is the set

$$
\operatorname{ker}_{U}(\mathbf{x}):=\left\{\left(x_{i(s, n)}\right)_{n \geq 0} \mid s \in A_{U}^{*}\right\}
$$

Let U be a numeration system and $s \in A_{U}^{*}$ be a finite word. Define the ordered set of integers

$$
\mathscr{I}_{s}:=\operatorname{val}_{U}\left(0^{*} \operatorname{rep}_{U}(\mathbb{N}) \cap A_{U}^{*} s\right)=\{i(s, 0), i(s, 1), \ldots\}
$$

Definition

The U-kernel of an infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ over B is the set

$$
\operatorname{ker}_{U}(\mathbf{x}):=\left\{\left(x_{i(s, n)}\right)_{n \geq 0} \mid s \in A_{U}^{*}\right\} .
$$

Definition

The U-kernel of an 2-dimensional word $\mathbf{x}=\left(x_{m, n}\right)_{m, n \geq 0}$ over B is the set

$$
\operatorname{ker}_{U}(\mathbf{x}):=\left\{\left(x_{i(s, m), i(t, n)}\right)_{m, n \geq 0}\left|s, t \in A_{U}^{*},|s|=|t|\right\}\right.
$$

Proposition

Let U be a numeration system such that $\operatorname{rep}_{U}(\mathbb{N})$ is regular. A word \mathbf{x} is U-automatic if and only if its U-kernel is finite.

Proposition

Let U be a numeration system such that $\operatorname{rep}_{U}(\mathbb{N})$ is regular. A word \mathbf{x} is U-automatic if and only if its U-kernel is finite.

Proposition

Let U be a numeration system such that the numeration language $\operatorname{rep}_{U}(\mathbb{N})$ is regular. A 2-dimensional word $\mathbf{x}=\left(x_{m, n}\right)_{m, n \geq 0}$ is U automatic if and only if its U-kernel is finite.

