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Abstract  

Energy access projects in remote off-grid areas would benefit from the adoption of a multi-energy system 

perspective, addressing all energy needs – not only lighting and power appliances, but also water-

heating and cooking – by means of a mix of energy vectors. However, multi-energy analyses in remote 

areas are hindered by a lack of models allowing for the generation of multi-energy load profiles based 

on interview-based information characterised by high uncertainty. This study proposes a novel open-

source bottom-up stochastic model specifically conceived for the generation of multi-energy loads for 

systems located in remote areas. The model is tested and validated against data obtained from a real 

system, showing a very good approximation of measured profiles, with percentage errors consistently 

below 2% for all the selected indicators, and an improved accuracy compared to existing approaches. 

In particular, some innovative features – such as the possibility to define and modulate throughout the 

day appliances’ duty cycles – seem to be determinant in marking a difference with previous approaches. 

This might arguably be even more beneficial for case studies characterised by a larger penetration of 

appliances that are subject to complex and unpredictable duty cycle behaviour. 

Keywords:  load profile; energy demand; multi-energy system; off-grid; rural areas 
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1. Introduction 

The transition towards cleaner and more sustainable energy systems requires a comprehensive 

approach, going beyond the unique aspect of renewable energies penetration into the electricity 

generation mix and focusing more on the integrated use of multiple energy vectors and storage options 

that may meet different local needs [1]. In fact, adopting what has been defined by Mancarella et al. [2] 

a “Multi-Energy System” (MES) configuration ensures an enhanced flexibility [3] and has the potential 

to unveil synergies that would remain unexploited within a single-vector (typically electricity) perspective 

[4]. This concept is particularly relevant in the framework of energy access projects in remote rural areas, 

which are often off the grid: in such contexts, non-electric energy needs (such as space heating, water 

heating and cooking) are rarely taken into account within energy planning strategies, even though they 

represent the major share in the total final energy consumption and are traditionally satisfied by non-

affordable, non-clean and non-safe sources [5]. One of the reasons behind the lack of multi-energy 

analyses in those contexts is the intrinsic complexity linked to the accurate assessment of local needs 

and the consequent generation of appropriate load profiles, as uncertainties about the energy demand 

depend on different factors and are not easily predictable [6], especially for non-electric types of 

demand. Indeed, the estimation of load profiles for remote off-grid systems often entails the reliance on 

interview-based information, which are used – in the absence of measured data – as an input for bottom-

up models generating synthetic profiles [7].  

In the framework of residential load curves modelling, stochastic approaches are commonly employed 

to reproduce unpredictable random consumers’ behaviour [8]. However, despite the abundance in the 

literature of models based on such approaches, those are usually conceived for on-grid residential 

buildings of industrialised countries, where the availability and detail level of the data is higher. For 

instance, Widén et al. [9,10] rely on activity diaries collected by Statistics Sweden as a basis to define 

the activity transition probabilities of a Markov-chain model of households’ activity patterns. Such diaries 

provide precise data about the daily activities – on 5-min intervals – of a large number of households in 

different settings. An analogous approach is adopted by Tsagarakis et al. [11] and Collin et al. [12], who 

draw on detailed time-use surveys for the UK to build a Markov-Chain model of activity patterns, also 

complemented by databases regarding power profiles per appliance and device ownership statistics. 
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Similarly, Fischer et al. [13] and McKenna et al. [14] define transition probabilities within their stochastic 

models based on data provided, respectively, by national time-use surveys for Germany and UK, with 

similar temporal resolutions and detail. The UK time-use survey datasets are also employed by 

Richardson et al. [15] to elaborate activity probabilities with traditional statistical techniques, which are 

subsequently compared against random numbers to determine the occurrence of a given switch-on 

event. The same data are used as a basis, together with other complementary statistical datasets, by 

Good et al. [16] to define activity profiles which are then coupled with detailed appliances operation 

profiles and building models to generate synthetic multi-energy demand profiles. Finally, Marszal-

Pomianowska et al. [17] rely on a series of detailed datasets (such as 1-hour yearly profiles of household 

electricity consumption per appliance group) specific to the Denmark context to build a load demand 

model based on statistically-derived occupancy profiles and appliances characteristics, highlighting also 

how the highly context-specific nature of previously-developed similar models prevents their application 

in different circumstances.  

Conversely, when planning an intervention in remote areas, the detailed input parameters that are 

requested by those approaches are hardly available with an acceptable degree of accuracy. Interview-

based information are typically much less detailed than time-use diaries and inherently affected by 

significant degrees of uncertainty, which prevent a high-resolution characterisation of the activity 

patterns [18]. Furthermore, models conceived for remote areas need to be tailored for energy planning 

purposes rather than for load forecasting [19], i.e. they need to be flexible and adaptable to appliances 

and loads that might not even be present in the target community when interviews are held. Accordingly, 

even assuming that more detailed and highly-resolved surveys could be hold – which is typically not a 

realistic assumption [18] – it would be impossible to capture statistics and probabilities associated with 

non-yet existing activity patterns  (such as switching from traditional biomass cooking to various electric 

cooking appliances such as boilers, ovens, hobs, etc.), which are nonetheless essential from a policy 

maker perspective.  To this regard, a first attempt to extend the applicability of stochastic load profiles 

modelling to systems located in remote areas has been recently made by Mandelli et al. [19], by 

developing a bottom-up stochastic approach specifically conceived for the reliance on interview-based 

information. In practice, this approach (implemented in the software LoadProGen) embeds the inherent 

uncertainties of the input data in the modelling process by randomly varying the parameter related to 
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the self-declared activity patterns (such as time frames and duration of appliances use) as well as 

parameters referred to random consumers’ behaviour (such as switch-on times).  

Nonetheless, none of the above mentioned approaches is capable of fully responding to the needs of 

energisation projects in remote rural areas, which require not only to deal with the inherent uncertainty 

and low detail of input data, but also to extend the range of modelling possibilities to non-electric loads, 

like water-heating or cooking. Those, in fact, would require a further degree of stochasticity in terms, for 

example, of random variation of the nominal power of each appliance or of the characteristics of its duty 

cycles, as recently demonstrated by Lombardi et al. [20]. Moreover, energy planning in remote areas 

requires a highly flexible and customisable modelling approach, in such a way to ensure its applicability 

to a wide range of contexts. 

This study discusses the design and validation of a bottom-up stochastic model for the generation of 

high-resolution multi-energy load profiles for energy systems located in remote areas. The model builds 

on the concept proposed by Mandelli et al. [8] for the use of interview-based input data, but proposes 

an expanded stochastic approach with an increased degree of stochasticity. It is specifically designed 

for the characterisation of multi-energy needs. In addition, the scientific community is increasingly 

recognising the necessity of an open-source philosophy for models that need to cope with high degrees 

of uncertainties and subjectivities, in order to ensure transparency, testability and knowledge transfer 

[21]. The model is therefore implemented in a Python environment and is released as open-source 

software. This also enhances the degree of customisability and adaptability, in line with the previously 

identified model requirements. The model is freely accessible as “Remote-Areas Multi-energy systems 

load Profiles” (RAMP) from the GitHub repository: https://github.com/SESAM-Polimi/RAMP.  

 

2. Methods 

From a conceptual point of view, RAMP is based on three main layers of modelling, namely: i) the User 

type; ii) the User; and iii) the Appliance layers (Figure 1).  

https://github.com/SESAM-Polimi/RAMP
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Figure 1 – Graphical sketch of the modelling layers constituting the simulation process 

The higher layer consists in the definition of a set of arbitrary User types (e.g. Household, Commercial 

activities, Public offices, Hospitals, etc.), whose level of discretisation depends on the modeller’s needs; 

for instance, when more precise information is available, a “Households” User type may be further 

subdivided by income classes or building type. Each User type is subsequently characterised in terms 

of the number of individual Users associated to that category (second layer) and in terms of Appliances 

owned by each of those Users (third layer). As shown in Figure 1, the three-layer structure allows to 

independently model the behaviour of each jik-th Appliance, so that each individual ji-th User within a 

given i-th User type will have a unique an independent load profile compared to the other Users of the 

same type. The aggregation of all independent User profiles ultimately results in a total load profile, 

which is uniquely generated at each model run. Multiple model runs generate different total load profiles, 

reproducing the inherent randomness and unpredictability of users’ behaviour and allowing to obtain a 

series of different daily profiles. 
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All the inputs required to run the model are summarised in Table 1, and consist of information that can 

be obtained from common field surveys, in analogy with and expanding those defined by Mandelli et al. 

[19]. 

 

User type and Users 
𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝒕𝒕𝒕𝒕𝒕𝒕𝒆𝒆𝒋𝒋 Name of the User type (e.g. “households”, “commercial activities”, etc.)  

𝒏𝒏 Number of 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝒊𝒊𝒊𝒊 (for 𝒊𝒊 =  𝟏𝟏:𝒏𝒏 ) within 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝒕𝒕𝒕𝒕𝒕𝒕𝒆𝒆𝒋𝒋 

Appliances 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 Name of the k-th Appliance associated with the j-th User type and the i-th User 

𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋 Numerosity of 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 (e.g. numerosity of “indoor light bulbs”) 

𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋 [𝑾𝑾] Power absorbed by a single item of 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 (i.e. assuming numerosity = 1) 

𝒕𝒕𝒕𝒕𝒕𝒕_𝒖𝒖𝒖𝒖𝒖𝒖𝒋𝒋𝒋𝒋𝒋𝒋 [𝒎𝒎𝒎𝒎𝒎𝒎] Total time of use of the 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 in a day 
𝒕𝒕_𝒎𝒎𝒎𝒎𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋 [𝒎𝒎𝒎𝒎𝒎𝒎] Minimum time that the 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 is kept on after a switch-on event 

𝜹𝜹𝒕𝒕_𝒎𝒎𝒎𝒎𝒎𝒎,𝒋𝒋𝒋𝒋𝒋𝒋 [%] Percentage random variability applied to 𝒕𝒕_𝒎𝒎𝒎𝒎𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋 

𝒖𝒖𝒖𝒖𝒖𝒖_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒋𝒋𝒋𝒋𝒋𝒋 Time frames in which a random switch-on of 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 can occur 

𝜹𝜹𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,𝒋𝒋𝒋𝒋𝒋𝒋 [%] Percentage random variability applied to 𝒖𝒖𝒖𝒖𝒖𝒖_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒋𝒋𝒋𝒋𝒋𝒋 

Appliances’ optional attributes 

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒋𝒋𝒋𝒋𝒋𝒋 Duty cycle of 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 (up to 3 per appliance) 

𝜹𝜹𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝒋𝒋𝒋𝒋𝒋𝒋 [%] Percentage random variability applied to the duration of the segments composing 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒋𝒋𝒋𝒋𝒋𝒋 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄_𝒎𝒎𝒎𝒎𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋 Association between time frames and different duty cycles 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒋𝒋𝒋𝒋𝒋𝒋 [%] Weekly frequency of use of 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋𝒋𝒋𝒋𝒋 (<100% for “occasional-use” appliances) 
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇_𝒏𝒏𝒏𝒏𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋 Constraint for all the 𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋 appliances to always switch-on simultaneously 

𝜹𝜹𝑷𝑷,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 [%] Percentage random variability applied to 𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋, conceived for thermal appliances 

Table 1 – Summary of the input data required by the model. 

2.1. Core stochastic algorithm 

From a mathematical point of view, the stochastic algorithm that constitutes the core of the model 

(without including the Appliances’ optional attributes mentioned in Table 1) is articulated in the following 

steps: 

1. identify the expected peak time frame; 



8 

 

2. for each 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑗𝑗, for each 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 and for each 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗, check if the appliance is used 

based on the weekly frequency of use (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗𝑗𝑗). If not, ignore the appliance; otherwise, 

compute: 

a. the randomised total time of use 𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗; 

b. the randomised vector of time frames in which the appliance can be on 𝑢𝑢𝑢𝑢𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗𝑗𝑗; 

Subsequently:  

c. compute a random switch-on time (with random switch-on even duration ≥ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗 ) 

within the available use frames;  

d. compute the randomised power required by the appliance for the switch-on event under 

consideration 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗. 

e. compute the actual power absorbed by 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗  during the switch-on event 

considering a random numerosity in the range �0,𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖�.    

Repeat steps 2.c – 2.e until the sum of the durations of all the switch-on events equals the 

randomised 𝑡𝑡𝑜𝑜𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗; 

3. Aggregate all profiles in a total load profile. 

The identification of a peak time frame allows differentiating between off- and on-peak switch-on events, 

which are associated with different probability distributions for the computation of the random 

numerosity. To this end, a theoretical peak time frame is identified, as proposed in [19], as the time 

frame associated with the maximum load in a virtual total load profile resulting from the fictitious 

assumption that each Appliance is always switched-on with maximum power and numerosity during all 

of its potential time frames of use. Within such theoretical peak time frame, a unique peak time (𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

is hence randomly sampled with uniform distribution. Finally, an actual expected peak time frame is 

defined as per Equation 1.  

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  �𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑘𝑘 �  (1) 

Where 𝑘𝑘  is the product of a random sampling with normal distribution around 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and standard 

deviation equal to 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . By default, 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is set to 15% of 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , but it represents a potential 
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calibration parameter that allows to modulate the extension of the peak time frame and may serve to 

simulate, for instance, a different social behaviour during holidays or weekends. 

Peak-load periods correspond to periods in which a large share of Users is interested by intensive 

activity patterns and when, consequently, they are more likely to switch-on multiple Appliances of the 

same kind (e.g. “Households” might be likely to switch-on multiple indoor lights simultaneously in the 

evening, when they also cook, watch TV, etc.). To this regard, the model acts on the modulation of the 

“coincident numerosity” factor, defined by Equation 2. 

 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
 (2) 

Where 𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖 represents the numerosity of appliances that are simultaneously switched on during a 

switch-on event related to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. Such factor can assume values ranging from 1
𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

 to 1. During 

off-peak periods, 𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖  is randomly chosen based on Equation 3, i.e. by relying on a uniform 

distribution. During peak-load periods, conversely, 𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖 is randomly chosen based on a Gaussian 

distribution (Equation 4). 

 𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:  𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖)� (3) 

 

 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:  𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�µ% ∙ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜎𝜎% ∙ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖�� (4) 

Where the parameters µ% and 𝜎𝜎% are set by default so as to have, respectively, a mean value of the on-

peak distribution that is the average of the range [0,𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖] and a standard deviation that reaches the 

extremes of the range. Indeed, µ%  and 𝜎𝜎% represent two further calibration parameters that can be 

manipulated by the modeller to reproduce behavioural patterns that are typical of its context of 

application, as well as to force the model towards the generation of “extreme” profiles, which may be 

required by robust optimisation tools [22]. 

2.2. Optional stochastic attributes 

As shown in Table 1, RAMP offers the possibility to define several optional Appliances’ attributes, which 

allow to further enhance the customisability and the stochasticity of the model. 

2.2.1. Modular duty-cycles and cooking cycles 
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Key optional attributes are those allowing to model pre-defined duty cycles and to modulate (if needed) 

the behaviour of such cycles throughout the day. For instance, a pre-defined duty cycle may be set to 

reproduce the behaviour of a fridge; however, considering that actual fridge’s cycles are not fixed but 

rather dependent on the temperature and on user’s activity patterns [23,24], different duty cycles (e.g. 

standard, intensive, etc.) can be modelled and associated with different time frames to follow the 

variation of such parameters during the day (Figure 2). Alternatively, duty cycles segments can be 

allowed to randomly vary within a user-defined range, to reproduce the behaviour of highly random and 

subjective tasks, such as cooking (Figure 3). 

 

Figure 2 – Example of duty cycle modulation throughout the day for a fridge. 

 

Figure 3 – Example of two different randomisations of a cooking cycle (in this case representing a 

boiling task followed by a simmering period). 
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2.2.2. Frequency of use 

It is also possible to mark Appliances as “occasionally-used”: in this case, the latter will be included in 

the set of Appliances that the i-th User will switch on during the day only conditionally to a random 

probability check (Equation 5), independently evaluated for each User. 

 
 

𝑖𝑖𝑖𝑖:  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,1) →   ∃ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑗𝑗𝑗𝑗 (5) 

As a result, on a given day (i.e. a single model run) some of the Users of a given type may use them, 

while others may not; this functionality is conceived to reproduce the real patterns of use of appliances 

such as irons or mixers, and strengthens the unique random characterisation of each individual User. 

Figure 4 shows an example of different daily load profiles for a single household – owning iron and using 

it with a frequency of 3 days a week – over a 7 days period; the appliance is used only occasionally, 

and its relative weight on the weekly average profile is thus opportunely represented. 

 

Figure 4 – Example of 7 different stochastic daily profiles for a single household using iron with an 

average frequency of 3 days a week, modelled by the “occasional-use” attribute. Some of the stochastic 

daily profiles (in light green) include iron use, while others (in grey) do not.  

 

2.2.3. Thermal appliances and random power regulation 

A special functionality is included in the model to better simulate the behaviour of thermal appliances. 

Those, in fact, are typically characterised by a high degree of variability in terms of absorbed power, 

which is a function of subjective and random preferences, for example in terms of hot tap water 

temperature. Such variability is embedded in the model by allowing to set a percentage random 
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variability for thermal appliances’ power (𝛿𝛿𝑃𝑃,𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), which RAMP exploits to uniquely characterise each 

switch-on event, as shown in the example in Figure 5. The possibility to randomly variate Appliances’ 

power is nonetheless useful for modelling any other kind of appliance that allows for power regulation 

(e.g. electric heating stoves, ovens, etc.) as already shown in Figure 3 for the cooking cycle example. 

 

Figure 5 – Example of multiple stochastic runs (10) for a thermal appliance, in this case reproducing a 

“shower” task: the model variates not only switch-on times and shower duration, but also the absorbed 

power (i.e. hot water temperature).  

3. Empirical data and validation criteria 

To validate the model, we test it against empirical data measured by the isolated hybrid micro-grid 

system of the village “El Espino” (-19.188, -63.560), in Bolivia, installed in September 2015 and 

composed of 60 kW of PV panels, 464 kWh of battery storage and a 58 kW Gen-Set. The system serves 

a community of 128 households, a hospital and a school, as well as the public lighting service. A 

comprehensive description of the system and of the data is available in Balderrama et al. [25]. Aggregate 

electric load data are available as an indirect measure, i.e. as the sum of direct measurements retrieved 

from PV arrays, Gen-Set and batteries by means of smart meters. No measurement systems is instead 

available in the area for the quantification of non-electrical energy usage by individual users (e.g. 

traditional biomass or LPG for cooking). Accordingly, the latter is not considered for the present analysis. 

3.1. Validation dataset 
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A survey campaign was conducted in El Espino in November 2016 to collect the interview-based 

information needed as an input for the bottom-up RAMP model. As a result of the interviews, it is possible 

to identify 8 User types, summarised in Table 2, whilst Table 3 shows the main appliances owned, on 

average, by Users comprised in the identified types.  

User type name Acronym Users number 

High-Income households HI 11 

Higher Middle-Income households HMI 38 

Lower Middle-Income households LMI 34 

Low Income households LI 45 

Hospital HO 1 

School SC 1 

Public lighting service PL 1 

Church CH 3 

Table 2 – Summary of the identified User types, with their respective number of Users. 

 HI HMI LMI LI HO SC PL CH 

Indoor bulbs 6 5 3 2 12 8 0 10 

Outdoor bulbs 2 2 2 1 1 6 0 7 

TV 2 1 1 1 0 1 0 0 

DVD 1 1 1 1 0 1 0 0 

Antenna 1 1 1 1 0 0 0 0 

Phone charger 5 4 4 2 8 5 0 0 

Freezer 2 1 0 0 0 1 0 0 

Fridge 0 0 0 0 3 0 0 0 

Stereo system 0 0 0 0 0 1 0 0 

Mixer 1 1 1 0 1 0 0 0 

PC 0 0 0 0 1 18 0 0 

Printer 0 0 0 0 0 1 0 0 

Radio 0 1 0 0 0 0 0 0 

Large public light 0 0 0 0 0 0 25 0 

Small public light 0 0 0 0 0 0 12 0 

Speaker 0 0 0 0 0 0 0 1 

Table 3 – Summary of the appliances owned, on average, by each User belonging to the different 

User types. 

Appliances’ power, time frames of use and average total daily time of use, are also gathered from the 

interviews. For the simulation, months from May 2016 to April 2017 – i.e. the six months before and after 
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the interview period – are considered. As summarised in Table 4, the input files for each month take into 

account: (i) monthly-averaged variation of dawn and dusk timings with respect to the interview period; 

(ii) holidays, weekends and periods of seasonal work outside the village; and (iii) monthly-averaged daily 

temperature trends affecting the behaviour of fridges and freezers. In fact, dawn timing are used to 

variate accordingly the switch-off timing of public lighting, while dusk timing correlates with both public 

lighting switch-on and with the start of the time frame related with households evening activities. Modular 

duty cycles are employed to better reproduce the actual behaviour of fridges and freezer with respect 

to the identified seasonal temperature trends (further details are given in Appendix A). School vacations 

are identified to exclude the school load in the corresponding periods, whilst other holidays and 

Christmas vacations are considered as weekends (see sub-section 3.2). In January and February, a 

few households (precisely 6 LMI and 9 LI) move outside the village to work as farmers, determining a 

corresponding reduction in the number of modelled users. It is also worth specifying that mixers are 

flagged as “occasionally-used” and public lights are of course set to always switch-on altogether 

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑛𝑛𝑛𝑛𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = True), following the specified dawn and dusk timings. All the detailed input files used 

to model each month in RAMP are reported in the Supplementary material.   

Month Dawn Dusk Season type Special conditions 
May 06:01:00 17:49:00 Cold 

 

June 06:20:00 17:46:00 Cold 
 

July 06:22:00 17:54:00 Cold School vacations (1st – 17th) 
August 06:10:00 18:03:00 Warm 

 

September 05:52:00 18:07:00 Warm 
 

October 05:22:00 18:14:00 Hot 
 

November 05:10:00 18:27:00 Hot 
 

December 05:14:00 18:43:00 Hot Start school vacations: 8th 
Vacation for all: 8th – 31st 

January 05:31:00 18:52:00 Hot School vacations 
Seasonal work 

February 05:45:00 18:45:00 Hot End school vacations: 8th 
Seasonal work 

March 05:54:00 18:25:00 Warm 
 

April 06:02:00 18:02:00 Cold 
 

Table 4 – Summary of changes to the input files in each month in relationship with seasonal factors. 

Given the high degree of uncertainty inherent to synthetic loads generated with a bottom-up approach 

based on data collected via interviews, the validation of the model against experimental data is also 

complemented – only for the representative month of November 2016 – with a further comparison 
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against the only previously-published model conceived for this kind of application, i.e. LoadProGen. 

Given the formal analogy in the definition of the inputs for the two models, these are kept identical when 

possible, with the exception of the additional Appliances’ optional attributes, introduced in the present 

study, that are not applicable to LoadProGen. The inputs for the latter model are also reported in the 

Supplementary material. 

3.2. Validation parameters 

For each month, a number of stochastic profiles equivalent to the number of days in the month is 

generated, discriminating between weekdays and weekends or holidays. These are differentiated by 

acting on the parameter µ%, which is incremented by 50% for weekends and holidays in order to skew 

the on-peak distribution of 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑛𝑛𝑛𝑛𝑛𝑛 towards higher values. Detailed information for each month about 

the number of weekdays, weekends and holidays are reported in the Supplementary material.  

A set of indicators are defined to evaluate how much the generated profiles adhere to the experimental 

ones. The accuracy of the shape of the average daily aggregate load profile is evaluated by means of 

the Normalised Root-Mean-Squared Error (NRMSE) (Equation 6). 

 

𝑁𝑁𝑁𝑁𝑀𝑀𝑆𝑆𝑆𝑆 =  

�∑ �𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)�2𝑁𝑁𝑡𝑡
𝑥𝑥

𝑁𝑁𝑡𝑡
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 [%] 
(6) 

Where 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) [𝑊𝑊] is the value of the modelled load (via either RAMP or LoadProGen) at each time-

step 𝑥𝑥, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) [𝑊𝑊] is the one related to the measured load and 𝑁𝑁𝑡𝑡 is the total number of time-step 

(e.g. 1440 for a 1-minute resolution). 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  [𝑊𝑊] is the average value of the measured daily 

average load profile. 

Other parameters that are widely used to validate load profile models against measured data and that 

are also critical with regards to the sizing of the associated energy systems are the Load Factor, the 

Coincidence Factor, the value of the Peak Load and the value of the Aggregate demand [9,18,26]. The 

mathematical definitions of Load Factor and Coincidence Factor are reported in Equations 7 and 8, 

respectively. 

 𝐿𝐿𝐿𝐿 =  
𝑃𝑃𝐿𝐿,𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

 

(7) 
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 𝐶𝐶𝐶𝐶 =  
𝑃𝑃𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑃𝑃𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚
 

 

(8) 

Where 𝑃𝑃𝐿𝐿,𝑎𝑎𝑎𝑎𝑎𝑎 [𝑊𝑊] and 𝑃𝑃𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  [𝑊𝑊] are, respectively, the daily average and the maximum (or peak) values 

of the average profile resulting from those measured or modelled; and  𝑃𝑃𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚  [𝑊𝑊] is the theoretical 

maximum load, i.e. the total installed load. 

 

4. Results and discussion 

The comparison between measured data and synthetic profiles generated based on the existing 

approach (LoadProGen) and on RAMP are represented in Figure 6 and Figure 7, respectively. Figure 6 

shows how the existing approach, though well reproducing the measured degree of day-to-day 

variability, leads to a significant overestimation of the Peak Load and of the load related to the first hours 

of the day, which is  in turns compensated by an underestimation of the load during mid-day hours. This 

behaviour can be partly attributed to the reliance on an empirical correlation for the computation of 

coincidence and load factors, and partly to the impossibility to modulate the load of fridges and freezers 

throughout the day; in fact, this last effect plays a major role since cooling appliances are among the 

few high-power appliances of the village. Conversely, Figure 7 shows that RAMP is capable of 

reproducing both the average daily profile and the day-to-day fluctuations with good approximation, as 

a consequence of its higher degree of stochasticity and of its additional features – such as duty cycles 

modulation.  
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Figure 6 – Comparison between measured data (boxplots) for the weekdays of November 2016 and 

stochastic profiles generated by LoadProGen.  

 

Figure 7 – Comparison between measured data (boxplots) for the weekdays of November 2016 and 

stochastic profiles generated by RAMP. 

Table 5 provides a quantitative overview of the comparison between measured data and the two models, 

based on the previously defined indicators. The LoadProGen approach confirms a marked discrepancy 

with measured data in terms of Peak Load, Load Factor and Coincidence Factor as well as a higher 

NRMSE as compared to RAMP. The latter, instead, provides a good approximation for all the indicators, 
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with percentage errors compared to measured data consistently small – the highest being 2.9% for the 

Peak Load – and with a NRMSE value below 10%.  

 Measured data  LoadProGen RAMP Err% 

LoadProGen 

Err% RAMP 

Peak Load [W] 18222 23466 18751 28.8% 2.9% 

LF [-] 0.585 0.491 0.578 16.1% 1.2% 

CF [-] 0.114 0.147 0.117 28.9% 2.6% 

Aggregate 

Demand [kWh] 

256 269 260 5.1% 1.6% 

NRMSE [%] - 30.6% 9.6% - - 

Table 5 – Quantitative comparison between measured data, LoadProGen and RAMP, for the 

reference month of November 2016. 

 
Err% LF Err% CF NRMSE [%] 

May-16 0,5% 8,3% 14,3% 

Jun-16 0,4% 9,1% 13,5% 

Jul-16 2,4% 1,9% 11,1% 

Aug-16 9,0% 0,4% 12,9% 

Sep-16 8,4% 2,2% 10,2% 

Oct-16 0,7% 0,9% 9,7% 

Nov-16 2,4% 2,7% 9,1% 

Dec-16 4,8% 1,8% 9,8% 

Jan-17 2,2% 2,7% 9,0% 

Feb-17 1,5% 5,1% 8,1% 

Mar-17 7,6% 4,3% 8,5% 

Apr-17 2,1% 5,8% 11,8% 

Average 3,5% 3,8% 10,7% 

Table 6 – Quantitative summary for all months of the agreement between RAMP results and 

measured data.  
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The above values are computed for the reference month of November 2016. However, it is also relevant 

to check the effect of seasonal and/or weather effects on the model validation. Figure 8 shows the 

consistency of RAMP-generated profiles for each month of the year. The modelled average monthly 

profiles follow with a good agreement the changes in the real load associated with seasonal patterns. 

Changes in the peak time are well approximated by the shift of evening activities and public lighting in 

correlation with sunset timings, whilst the drop in the load during the coldest months (from April to July) 

is well captured by the lower intensity of fridges and freezers cycling behaviour. As further highlighted 

by Figure 9, which reports the corresponding Load Duration Curves, the modelled profiles match with a 

satisfying degree of accuracy the peak load in all months. Some discrepancies remain for medium loads 

but are deemed acceptable, especially considering the lack of precise information about the users’ 

behaviour in all months. Quantitative indicators are reported in Table 6. 

 

Figure 8 – Monthly-averaged daily load profiles throughout the year. Comparison between measured 

data and RAMP. 
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Figure 9 – Monthly-averaged daily Load Duration Curves throughout the year. Comparison between 

measured data and RAMP. 

To evaluate the robustness of the model with respect to some of the calibration parameters assumed, 

such as 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝜇𝜇% , a sensitivity analysis on the latter is performed. For the reference month of 

November, a set of 15 synthetic profiles is generated and averaged for each calibration parameter value. 

As shown in Figure 10,  𝜇𝜇% is varied between -25% and +50% of tis default value – i.e. the mean value 

of the on-peak distribution, as per Equation 4 – without having significant effects on the peak time frame 

behaviour. As expected, increasing  𝜇𝜇% produces a slightly higher load during the peak time frame, as 

a result of the more likely coincident switch-on of multiple appliances of the same kind. The higher 

increase of 50%, which is assumed for week-ends and holidays as discussed in sub-section 3.2, 

produces a variation comparable to an increase of 25%, allowing to realistically represent a weekend-

like behaviour without producing significant changes in the load shape. Similarly, the variation of 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 

aimed at shortening or enlarging the peak time frame duration in relationship with days in which the 

users may stay awake for shorter or longer periods (e.g. special events), is only marginally affecting the 

results, demonstrating a satisfying robustness of the model with respect to the assumed values. 
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Figure 10 – Sensitivity analysis on the values assumed for the calibration parameters 𝜇𝜇% and 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

 

Conclusions 

The analysis demonstrates that the designed RAMP model provides a good agreement with measured 

data for all the selected indicators (with an average NRMSE around 10%). Moreover, it exhibits a higher 

performance than previous approaches, in terms of both profile shape and quantitative indicators. The 

increased adherence to reality of the newly designed RAMP is explained, among others, by the 

increased degree of stochasticity and the possibility to define modular duty-cycles for selected 

appliances. The latter functionality has revealed to be very useful to reproduce correctly the seasonal 

variations of the load, by adjusting the cycling depths of some appliances as a function of the ambient 

temperature. This is especially relevant if the load is dominated by cooling appliances. A good 

consistency has also been obtained for the parameters that can be manipulated to force the model 

towards reproducing social behaviours that are typical of weekends, holidays or special events. The 

sensitivity analysis has also shown that there are no excessive changes in the results depending on the 

modeller’s assumptions. Other innovative functionalities introduced within RAMP – such as cooking 

cycles, thermal appliances power regulation, frequency of use, etc. – that are only partially relevant for 

the context considered for the validation, would likely mark an even larger differentiation from the 

existing approach in cases in which they are predominant.  
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The model validation focused only on energy uses satisfied by electrical appliances due to the complete 

lack of measurement systems for other types of energy vectors in the area. Nonetheless, a key 

innovation introduced by RAMP is that the model features are not conceived for the mere generation of 

electric load profiles (in fact, the model is independent from any empirical correlation) but rather for the 

generation of “multi-energy” loads that may help designing energy systems capable of satisfying all final 

energy uses. What is more, the model is tailored for energy planning purposes. As such, it is adaptable 

to the simulation of additional loads than those assessed via interviews. To this regard, it is also worth 

underlining how RAMP is released as open-source software, allowing for a better user- and context-

adaptability as well as for the simulation of “extreme scenarios” (e.g. one with a high probability of 

coincident behaviour) that may be relevant within the framework of robust optimisation. The code 

openness also facilitates further developments, which may include standby power consumption and 

simplified and context-adaptable building models for space heating loads simulation. 
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Appendix A – Fridges cycle modulation 

As discussed in sub-section 3.1, fridges and freezers cycles are modulated within RAMP based on the 

main parameters influencing their behaviour, i.e. room temperature and users’ activity level (as a proxy 

for door openings) [23,24]. Given the lack of data about indoor temperatures for the simulated building 

types, and considering that those are not well insulated and lack any air conditioning or space heating 

system, outdoor temperature is considered as approximately equal to the indoor one. The assumption 

is also supported by the fact that indoor and outdoor temperatures correlate better at warmer outdoor 

temperatures, as those considered [27]. 
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As shown in Figure 11, the outdoor temperature profile for the month of November is, on average, often 

above 25 °C, and approaches 30°C during mid-day hours. Accordingly, a “standard” cycle (compressor 

working for 1/3 of the time) is modelled only for those time frames in which the temperature is in its 

lowest range (24-25 °C) and users’ activity levels are low. An “intensive” cycle (compressor on for 2/3 

of the time) is instead modelled for the time frame in which temperature is higher than 27°C and/or users’ 

activity is high, whilst an “intermediate” cycle (compressor on for 1/2 of the time) is modelled for the time 

frame in which temperature starts to increase but users’ activity level are medium-high to medium-low.  

As regards LoadProGen, an “intermediate” behaviour has been set as the unique input to the model, 

given the impossibility to reproduce such cycle modulation. 

 

 

Figure 11 – Outdoor temperature average profile and boxplot for El Espino in November 2016, 

compared with the corresponding typical residential user activity level (i.e. qualitative level of 

interaction with fridges and freezers). 

Such kind of considerations are repeated for the other months so as to capture potential variations of 

fridges cycling behaviour throughout the year. Figure 12 shows the temperature trends in El Espino in 

the period considered for the validation. Months from October to February all present similar temperature 

profiles, and are classified as “hot months”, for which the cycling behaviour is the same as November. 

The periods preceding and following such hot months (namely August, September and March) can be 

instead treated as “warm months”, for which the cycling behaviour experiences some minor variations. 
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Finally, months from April to July are “cold months” for which the cycling behaviour is significantly less 

intense, as reported in Table 7.  The detailed cycling behaviour assumed for all months is reported in 

the Supplementary material. 

 

Figure 12 – Monthly-averaged daily temperature profiles in El Espino. 

 

Season type Standard cycle Intermediate cycle Intensive cycle 

Hot 00:00:00 – 04:59:00 

20:01:00 – 23:59:00 

05:00:00 – 07:59:00 08:00:00 – 20:00:00 

Warm 00:00:00 – 04:59:00 

18:01:00 – 23:59:00 

05:00:00 – 09:39:00 09:40:00 – 18:00:00 

Cold 00:00:00 – 04:59:00 

20:01:00 – 23:59:00 

08:00:00 – 20:00:00 - 

Table 7 – Summary of the fridges duty-cycle modulation estimated based on the seasonal temperature 

trends. 
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Nomenclature 

𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  Factor multiplying 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 to get st.dev. of peak time frame random sampling [%] 

𝜇𝜇%  Factor multiplying 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖o get average of 𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖e random sampling [%] 

𝐶𝐶𝐶𝐶  Coincidence Factor [ - ] 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑛𝑛𝑛𝑛𝑛𝑛 Coincident numerosity factor [ - ] 

𝐿𝐿𝐿𝐿  Load Factor [ - ] 

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖  Numerosity of appliances of a certain type [ - ] 

𝑚𝑚𝑂𝑂𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖  Numerosity of appliances of a certain type switched-on in a switch-on event [ - ] 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  Normalised Root-Mean-Squared Error [%] 

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  Peak time [min] 
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