The Quaternary biogeographic history of bryophytes: a window into their ability to face global change

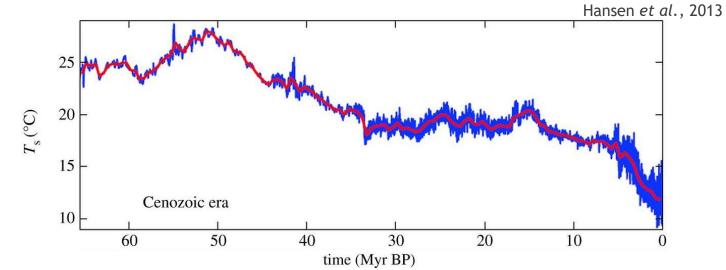
Doctoral thesis defense

Alice Ledent, June 2019

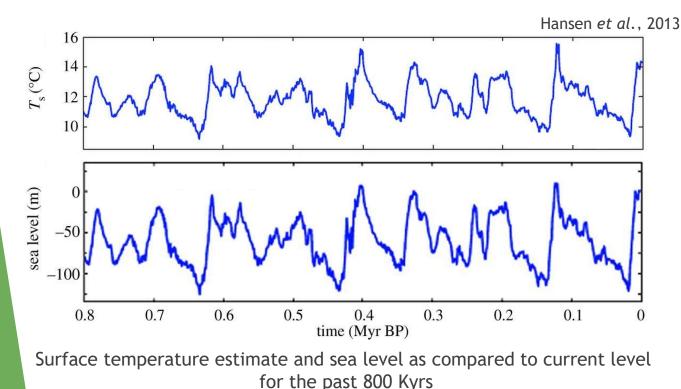
The Quaternary biogeographic history of bryophytes: a window into their ability to face global change

Doctoral thesis defense

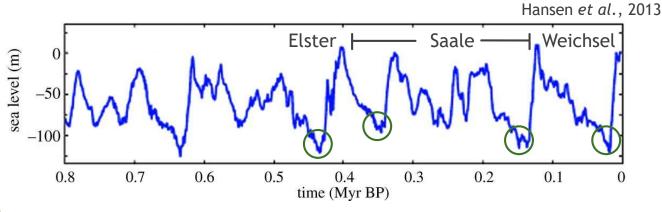
Alice Ledent, June 2019



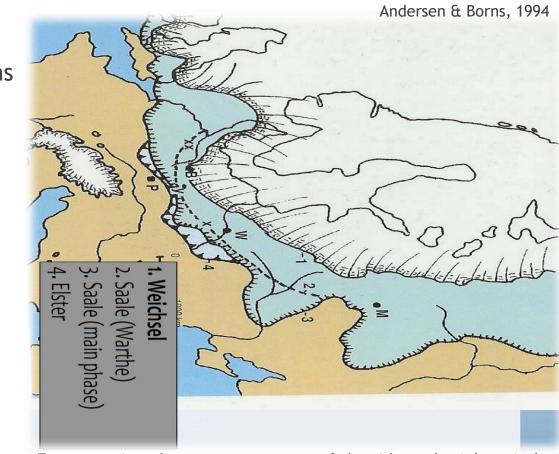
Climate changes impact the distribution of species


Surface temperature estimate for the past 65.5 Myrs

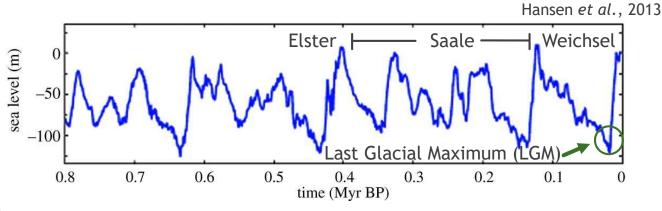
Climate changes impact the distribution of species

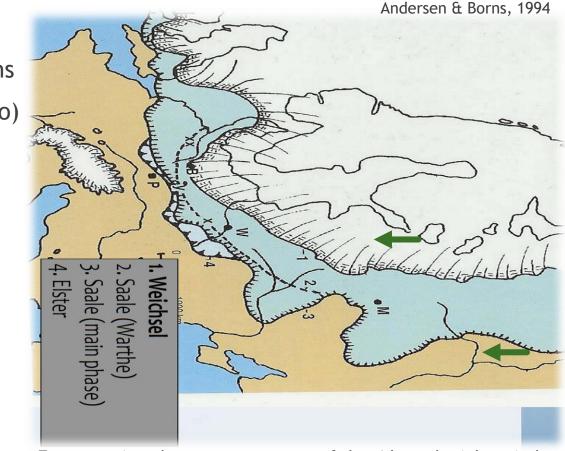

- Quaternary period = high amplitude climatic oscillations
 - 2.4 Myrs ago present
 - Glacial/interglacial periods

Climate changes impact the distribution of species


- Quaternary period = high amplitude climatic oscillations
 - 2.4 Myrs ago present
 - Glacial/interglacial periods
 - Temperatures and Ice-sheets extent fluctuations

- Climate changes impact the distribution of species
 - Quaternary period = high amplitude climatic oscillations
 - 2.4 Myrs ago present
 - Glacial/interglacial periods
 - Temperatures and Ice-sheets extent fluctuations

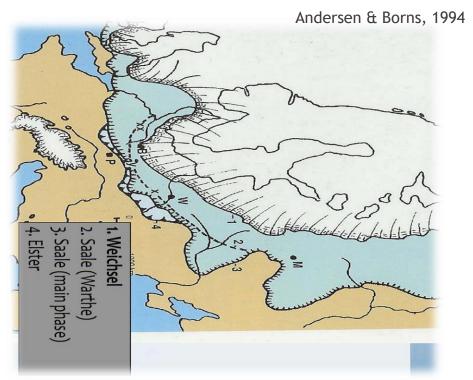

Sea level as compared to current level for the past 800 Kyrs


European ice-sheets max. extent of the 4 last glacial periods

- Climate changes impact the distribution of species
 - Quaternary period = high amplitude climatic oscillations
 - 2.4 Myrs ago present
 - Glacial/interglacial periods
 - Temperatures and Ice-sheets extent fluctuations
 - Last Glacial Maximum (LGM, c. 22,000 years ago)

 \rightarrow Current species distributions shaped by LGM!

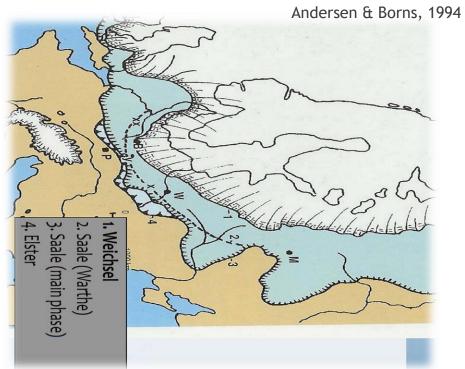
Sea level as compared to current level for the past 800 Kyrs



European ice-sheets max. extent of the 4 last glacial periods

Europe during the Quaternary period = model region

Europe during the Quaternary period = model region


Ice-sheets extent fluctuating

European ice-sheets max. extent of the 4 last glacial periods

Europe during the Quaternary period = model region

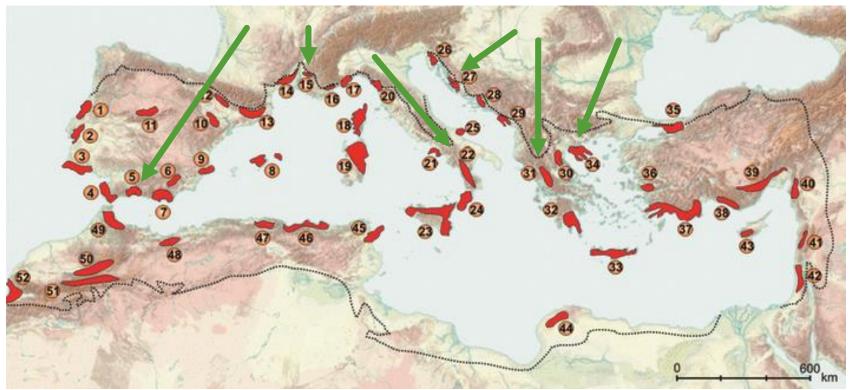
- Ice-sheets extent fluctuating
- E-W-oriented mountain ranges
 - ► Barriers to migration

European ice-sheets max. extent of the 4 last glacial periods

Current European topography

Europe during the Quaternary period = model region

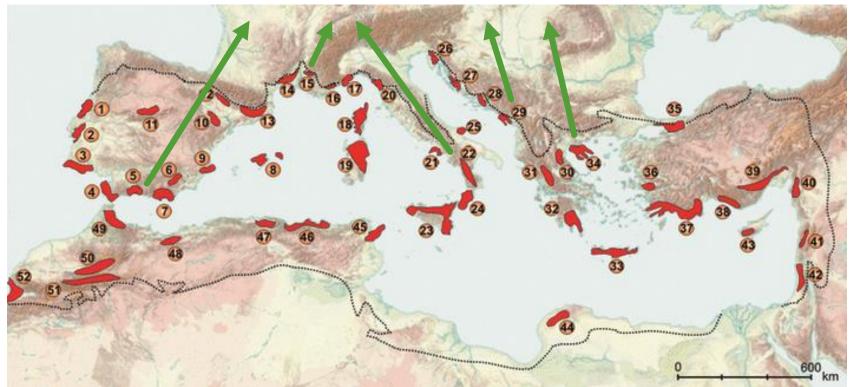
European regions ice-free at LGM


European regions covered in ice at LGM

Distribution of ice-free European species during the Quaternary period

Distribution of ice-free European species during the Quaternary period

- Southern *Refugia* Hypothesis (SRH)
 - Southwards migrations towards southern *refugia* during glacial periods



Médail & Diadema, 2009

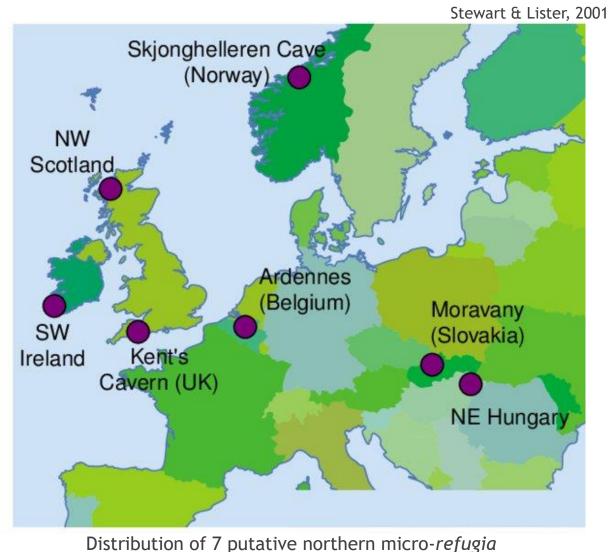
Distribution of 52 putative *refugia* within the Mediterranean region

Distribution of ice-free European species during the Quaternary period

- Southern *Refugia* Hypothesis (SRH)
 - Southwards migrations towards southern *refugia* during glacial periods
 - Northwards migrations during interglacial periods

Médail & Diadema, 2009

Distribution of 52 putative *refugia* within the Mediterranean region


Distribution of ice-free European species during the Quaternary period

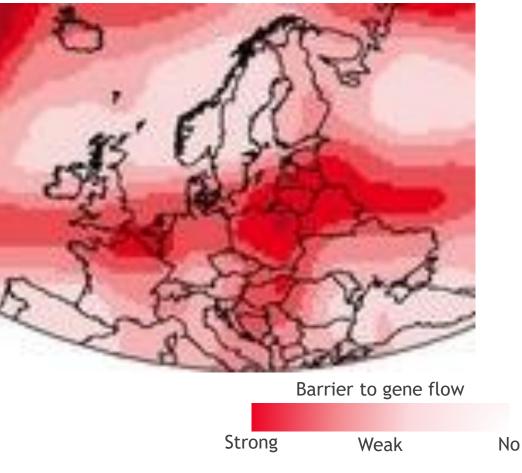
- ► Northern micro-*Refugia* Hypothesis (NRH)
 - Southern mountains act as barriers to southwards migrations
 - Survival within northern micro-refugia during glacial periods

Red squirrel

Red deer

Distribution of ice-covered European species during the Quaternary period

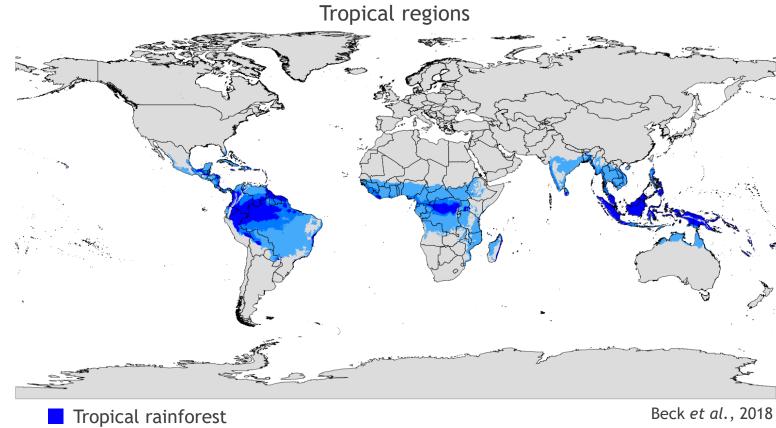
Distribution of ice-covered European species during the Quaternary period


- ► Tabula rasa hypothesis
 - ► No survival under the ice-sheets
 - ► Migrations towards lowland areas during glacial periods

Distribution of ice-covered European species during the Quaternary period

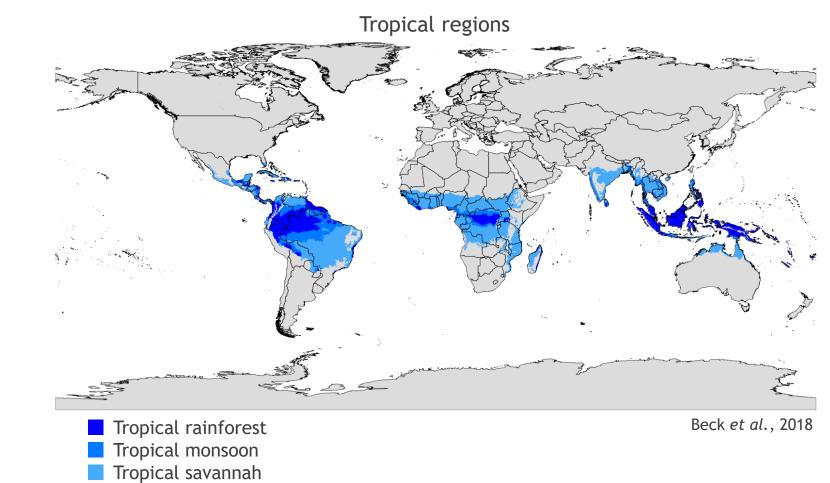
- Nunatak/micro-*refugia* hypothesis
 - No survival within lowland areas: too dry
 - Survival in micro-*refugia* within the ice-sheets during glacial periods

Distribution of barriers to gene flow for ice-covered species


Eidesen et al., 2013

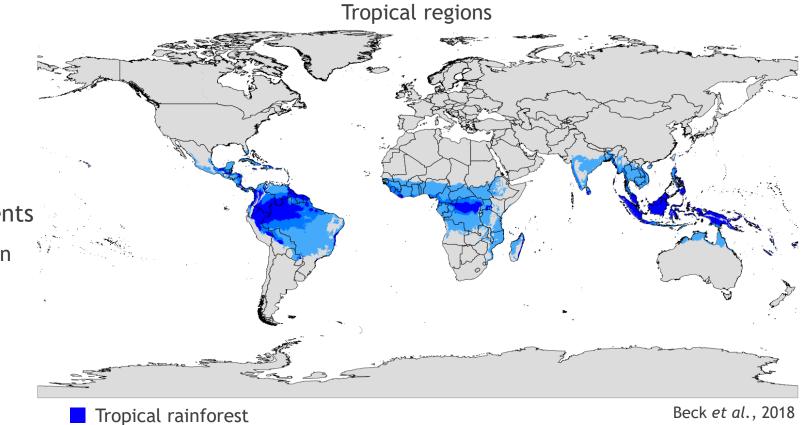
Distribution of ice-covered European species during the Quaternary period

- Southern mountains nunatak/micro-*refugia* hypothesis
 - Survival in Micro-*refugia* only in southern mountains during glacial periods
 - ▶ Recolonization of northern areas from southern mountains during interglacial periods

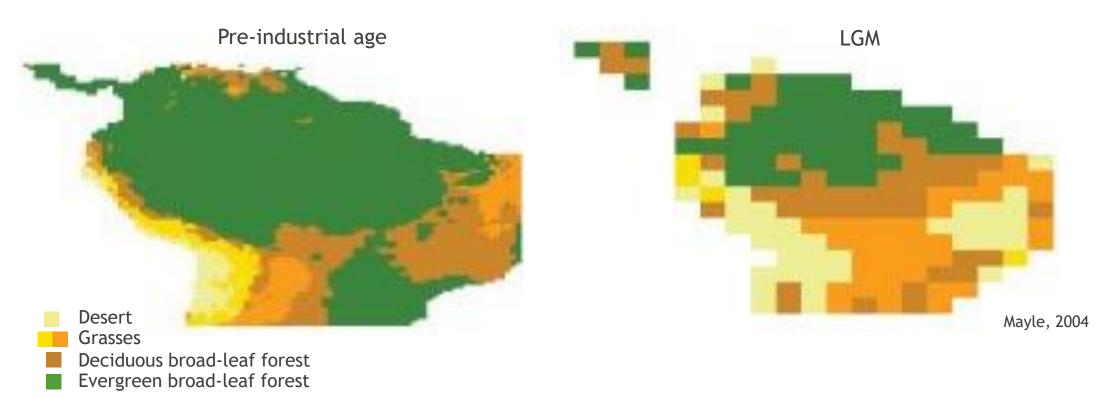


- Tropical regions during the Quaternary period
 - Less studied

Tropical rainforest Tropical monsoon Tropical savannah


- Tropical regions during the Quaternary period
 - Less studied
 - ► No ice-sheet
 - Lack of fossils

- Tropical regions during the Quaternary period
 - Less studied
 - ► No ice-sheet
 - Lack of fossils
 - Lowland tropical regions
 - Homogeneous environments
 - ► No barriers to migration
 - ► ► B-diversity


Condit *et al*., 2002

Tropical monsoon Tropical savannah

Distribution of lowland Amazonian species during the Quaternary period

Contractions of the lowland evergreen forest during glacial periods

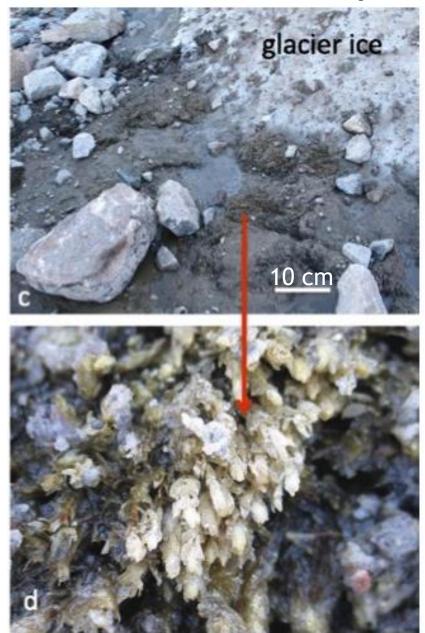
Dynamic vegetation models of Amazonia

Model organism: bryophytes

- Bryophytes and climate changes
 - Non-vascular = cannot pump up water from soil
 - Poïkilohydric = drought-tolerant, not resistant
 - ► Lower temperature *optima* than angiosperms

Targionia hypophylla under humid conditions

Targionia hypophylla under dry conditions


- Bryophytes and climate changes
 - Non-vascular = cannot pump up water from soil
 - Poïkilohydric = drought-tolerant, not resistant
 - ► Lower temperature *optima* than angiosperms

- Sensitive to climate changes

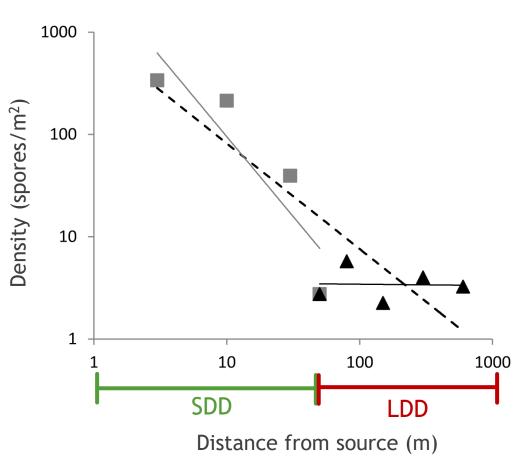
La Farge et al., 2013

Introduction

- Bryophytes and climate changes
 - Non-vascular = cannot pump up water from soil
 - Poïkilohydric = drought-tolerant, not resistant
 - ► Lower temperature *optima* than angiosperms
 - High cold-tolerance
 - Survive in ice and regenerate after 100's to 1000's of years
 - \rightarrow Good candidates for the northern and nunatak micro-refugia hypotheses

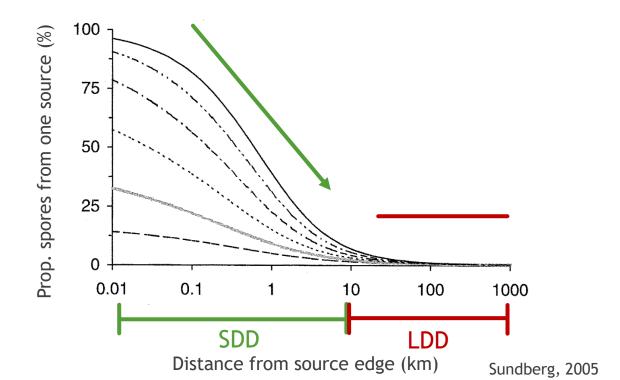
Emerging subglacial populations of Aulacomnium turgidum

- Bryophytes and climate changes
 - Non-vascular = cannot pump up water from soil
 - Poïkilohydric = drought-tolerant, not resistant
 - ► Lower temperature *optima* than angiosperms
 - High cold-tolerance
 - High dispersal capacities
 - ► Small highly dispersive spores (c. 20 µm)

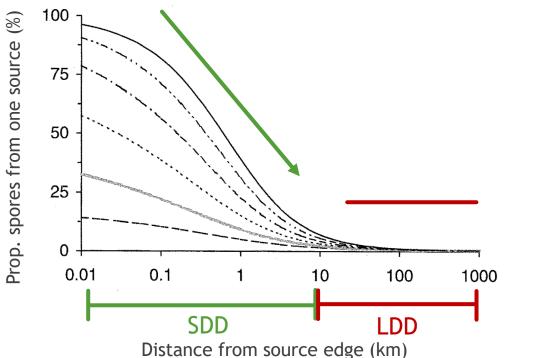

Sphagnum affine capsule explosion

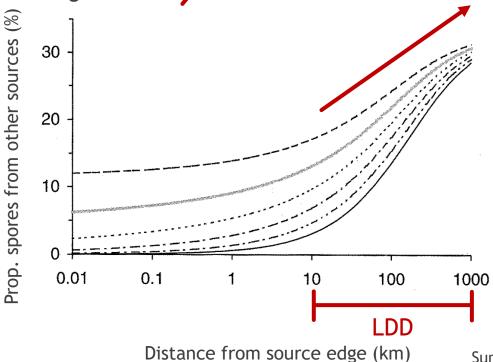
- Bryophytes and climate changes
 - Non-vascular = cannot pump up water from soil
 - Poïkilohydric = drought-tolerant, not resistant
 - ► Lower temperature *optima* than angiosperms
 - High cold-tolerance
 - High dispersal capacities
 - ► Small highly dispersive spores (c. 20 µm)
 - Ability to cross oceans

Stenøien et al., 2010

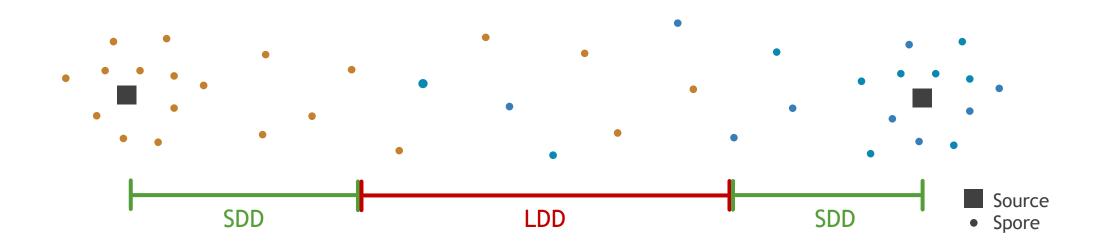


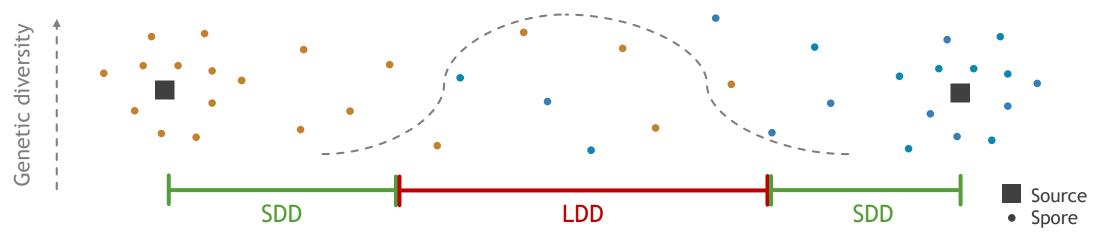
- Bryophytes and climate changes
 - Non-vascular = cannot pump up water from soil
 - Poïkilohydric = drought-tolerant, not resistant
 - Lower temperature optima than angiosperms
 - High cold-tolerance
 - High dispersal capacities
 - ► Small highly dispersive spores (c. 20 µm)
 - Ability to cross oceans
 - Fat-tailed deposition curves
 - ► SDD: deposition decreases with increasing distances
 - **LDD:** deposition stable with increasing distances




Lönnell et al., 2012

- Bryophytes and climate changes
 - High dispersal capacities
 - ► Fat-tailed deposition curves → **inverse isolation hypothesis**
 - SDD: individual deposition decreases with increasing distances \
 - LDD: individual deposition stable with increasing distances —


- Bryophytes and climate changes
 - High dispersal capacities
 - \blacktriangleright Fat-tailed deposition curves \rightarrow inverse isolation hypothesis
 - SDD: individual deposition decreases with increasing distances \
 - LDD: individual deposition stable with increasing distances —
 - LDD: populational deposition increases with increasing distances

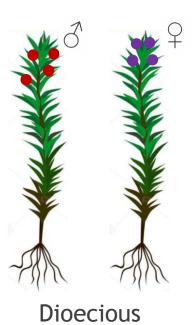


Sundberg, 2005

- Bryophytes and climate changes
 - High dispersal capacities
 - ► Fat-tailed deposition curves → inverse isolation hypothesis
 - SDD: individual deposition decreases with increasing distances
 - LDD: individual deposition stable with increasing distances —
 - ► LDD: populational deposition increases with increasing distances

- Bryophytes and climate changes
 - High dispersal capacities
 - \blacktriangleright Fat-tailed deposition curves \rightarrow inverse isolation hypothesis
 - SDD: individual deposition decreases with increasing distances
 - LDD: individual deposition stable with increasing distances ——
 - LDD: populational deposition increases with increasing distances
 - \rightarrow Higher genetic diversity of colonizing propagules with increasing isolation !
 - \rightarrow Counteracting genetic differentiation
 - \rightarrow No Isolation-By-Distance (IBD) beyond the range of SDD due to efficient LDD

- Bryophytes and climate changes
 - ► High dispersal capacities
 - Ability to cross oceans
 - \rightarrow Extra-European postglacial recolonization?


- Bryophytes and climate changes
 - High dispersal capacities
 - Ability to cross oceans
 - \rightarrow Extra-European postglacial recolonization?
 - ► Inverse isolation hypothesis: no IBD beyond the range of SDD due to efficient LDD
 - Erasure of historical events?
 - ▶ No allopatric differentiation/speciation → Other speciation mechanisms? IBE?

- Bryophytes and climate changes
 - High dispersal capacities
 - Ability to cross oceans
 - \rightarrow Extra-European postglacial recolonization?
 - ▶ Inverse isolation hypothesis: no IBD beyond the range of SDD due to efficient LDD
 - Erasure of historical events?
 - ▶ No allopatric differentiation/speciation → Other speciation mechanisms? IBE?
 - Inverse isolation hypothesis application
 - \blacktriangleright High dispersal capacities \rightarrow higher in monoecious species
 - / sporophyte production because of \searrow distances 2°

🕨 Antheridium 🖧

• Archegonium \mathcal{Q}

- Bryophytes and climate changes
 - High dispersal capacities
 - Ability to cross oceans
 - \rightarrow Extra-European postglacial recolonization?
 - ► Inverse isolation hypothesis: no IBD beyond the range of SDD due to efficient LDD
 - Erasure of historical events?
 - ▶ No allopatric differentiation/speciation → Other speciation mechanisms? IBE?
 - Inverse isolation hypothesis application
 - High dispersal capacities \rightarrow higher in monoecious species
 - ► Random colonization of propagules → higher in homogeneous environments

- Bryophytes and climate changes
 - High dispersal capacities
 - Ability to cross oceans
 - \rightarrow Extra-European postglacial recolonization?
 - ► Inverse isolation hypothesis: no IBD beyond the range of SDD due to efficient LDD
 - Erasure of historical events?
 - ▶ No allopatric differentiation/speciation → Other speciation mechanisms? IBE?
 - Inverse isolation hypothesis application
 - ► High dispersal capacities → higher in monoecious species
 - \blacktriangleright Random colonization of propagules \rightarrow higher in homogeneous environments

Lowland tropical bryophytes characterized by "higher than normal levels of monoecism"

Longton & Schuster, 1983

Across homogeneous lowland Amazonia "epiphytic bryophytes behave as one single metacommunity"

Mota & ter Steege, 2015

- Bryophytes and climate changes
 - High dispersal capacities
 - Ability to cross oceans
 - \rightarrow Extra-European postglacial recolonization?
 - ► Inverse isolation hypothesis: no IBD beyond the range of SDD due to efficient LDD
 - Erasure of historical events?
 - ▶ No allopatric differentiation/speciation → <u>Other speciation mechanisms? IBE</u>?
 - Inverse isolation hypothesis application
 - \blacktriangleright High dispersal capacities \rightarrow higher in monoecious species
 - \blacktriangleright Random colonization of propagules \rightarrow higher in homogeneous environments
 - \rightarrow Inverse isolation hypothesis is likely to apply to lowland Amazonian bryophytes!

Characterize lowland

Amazonian bryophytes!

Research aims

Research aims

How bryophytes responded to Quaternary climate changes,

in Europe, E-W-oriented mountain ranges acting as barrier to migration? in lowland Amazonia, homogeneous without apparent barrier to migration?

Research aims

How bryophytes responded to Quaternary climate changes,

in Europe, E-W-oriented mountain ranges acting as barrier to migration? in lowland Amazonia, homogeneous without apparent barrier to migration?

Specifically, we tested:

- 1. Erasure of historical events due to efficient LDD? (H1)
- 2. IBE as a differentiation/speciation mechanism? (H2)
- 3. Post-glacial history of bryophytes? (H3)
 - A. In Europe
 - B. In lowland Amazonia (ongoing study)

Europe

- ► 12 ice-free and 3 ice-covered species
- ► Holarctic

Lowland Amazonia

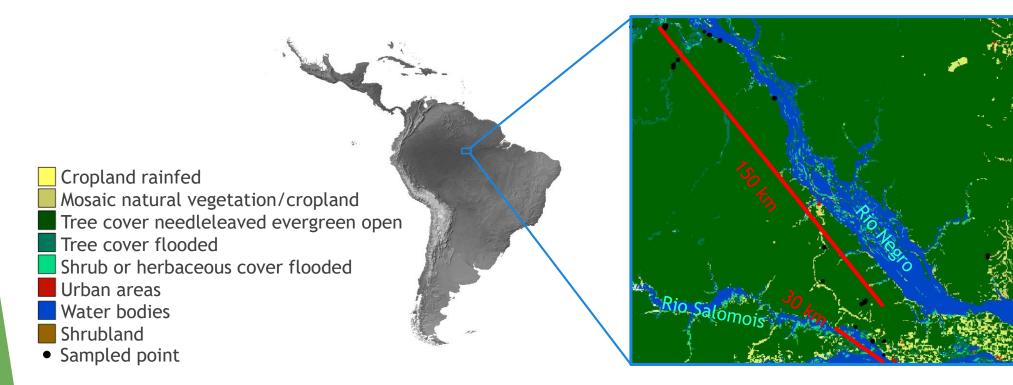
- ► 10 species
- ▶ 44,000 km² area in the Rio Negro Basin

Europe

- ► 12 ice-free and 3 ice-covered species
- ► Holarctic
 - ► 1729 samples
 - ▶ Herbaria

Lowland Amazonia

- ► 10 species
- ▶ 44,000 km² area in the Rio Negro Basin


Europe

- 12 ice-free and 3 ice-covered species
- ► Holarctic
 - ► 1729 samples
 - ▶ Herbaria

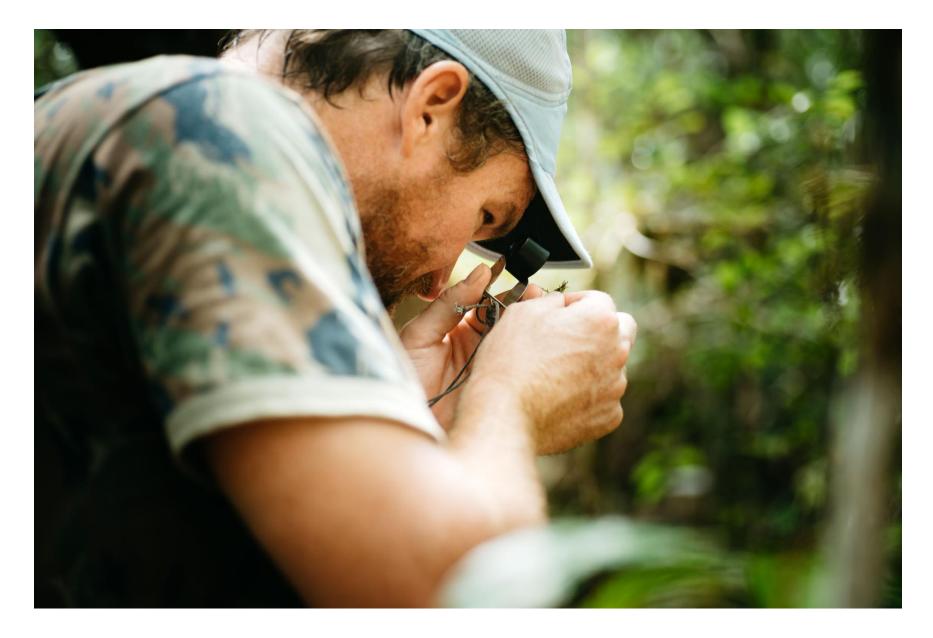
Lowland Amazonia

- ► 10 species
- ▶ 44,000 km² area in the Rio Negro Basin
 - ► 353 samples
 - ► Team sampling: 3 transects 0 25 50 km

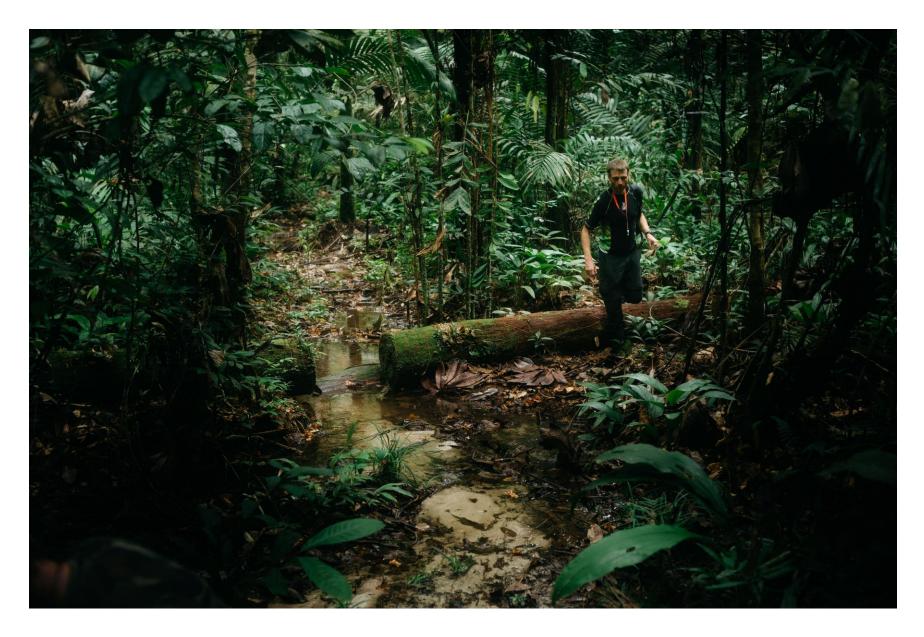
Balbina

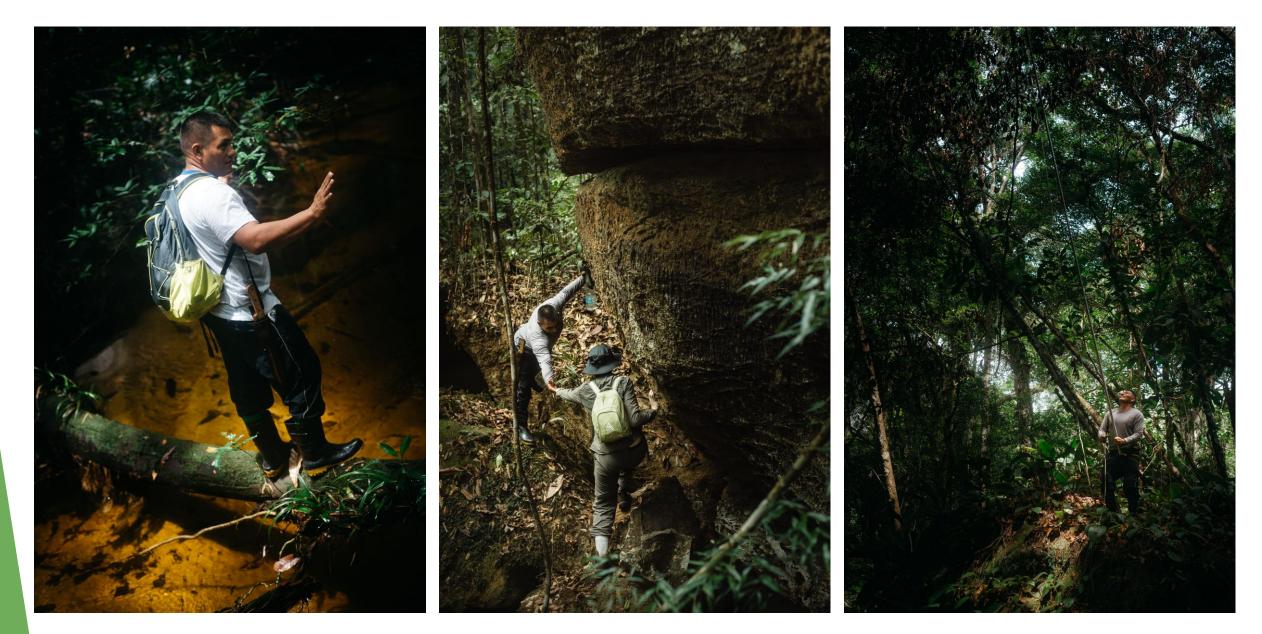
Europe

- 12 ice-free and 3 ice-covered species
- ► Holarctic
 - ► 1729 samples
 - ▶ Herbaria

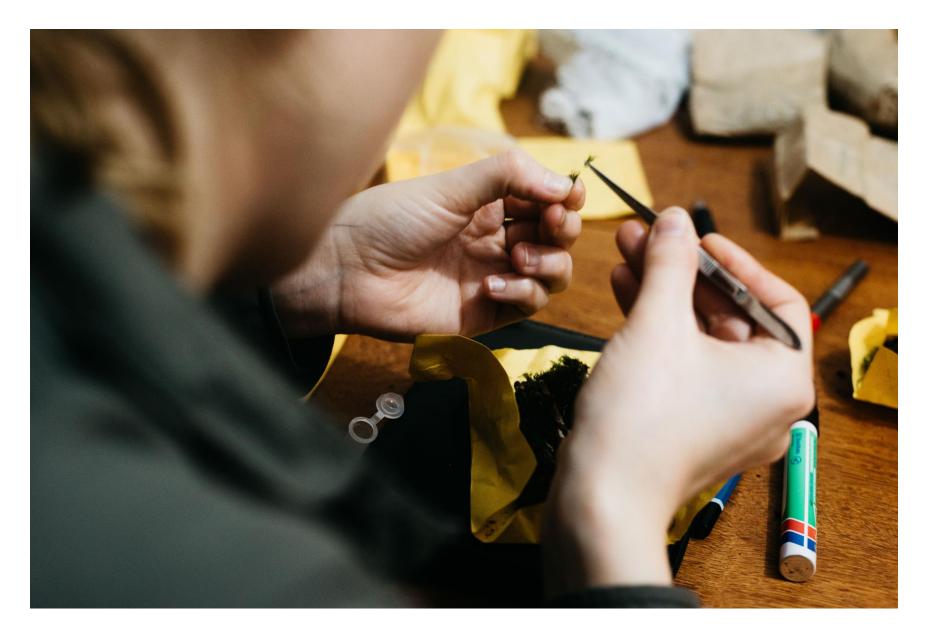

Lowland Amazonia

- ► 10 species
- ▶ 44,000 km² area in the Rio Negro Basin
 - ► 353 samples
 - ► Team sampling: 3 transects
 - 2 forest types

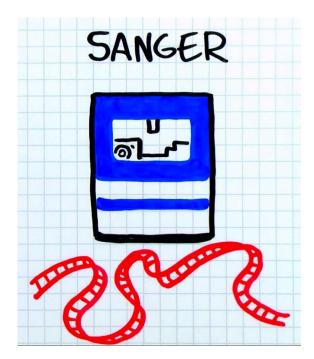



white-sand forest



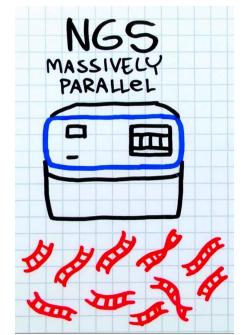


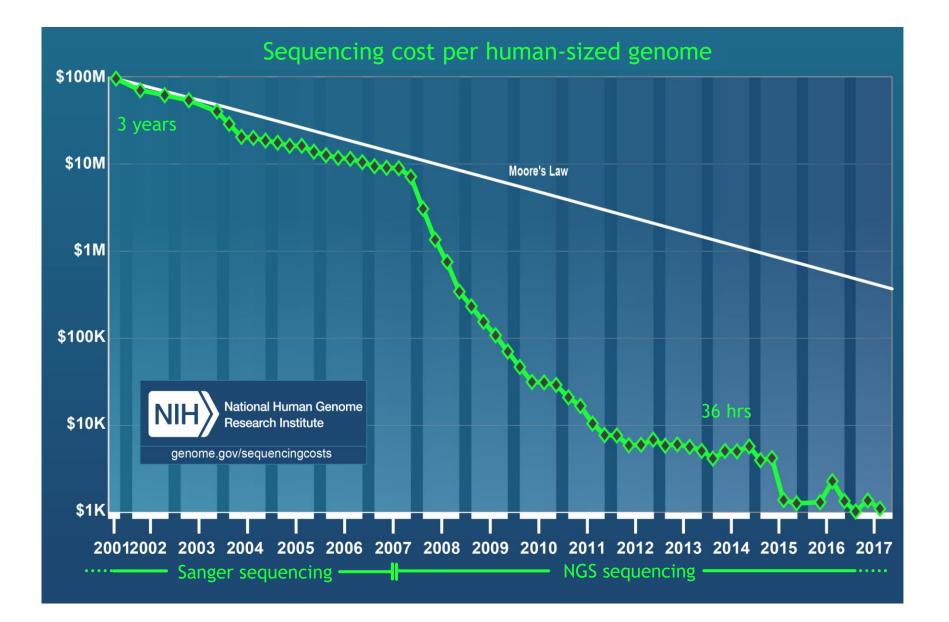
Europe


- 12 ice-free and 3 ice-covered species
- ► Holarctic
 - ► 1729 samples
- Sanger sequencing: 2-3 cpDNA and 0-3 nDNA *loci* (400-700bp)

Lowland Amazonia

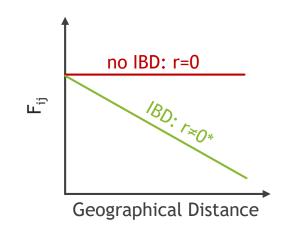
- 10 species
- ▶ 44,000 km² area in the Rio Negro Basin
 - ► 353 samples
- Sanger sequencing: no genetic variation
- RADseq (NGS): 100-2000 SNPs datasets
 - Protocol modified from Elshire et al., 2011


Europe


- 12 ice-free and 3 ice-covered species
- ► Holarctic
 - 1729 samples
- Sanger sequencing: 2-3 cpDNA and 0-3 nDNA *loci* (400-700bp)

Lowland Amazonia

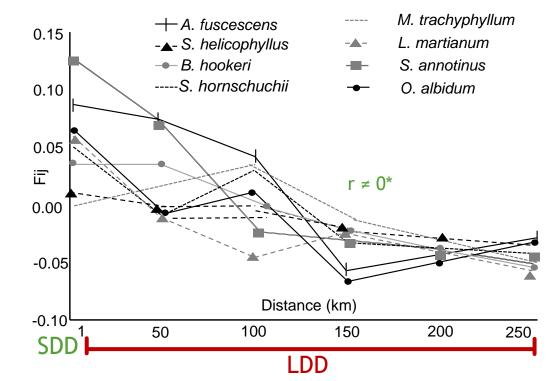
- ► 10 species
- ▶ 44,000 km² area in the Rio Negro Basin
 - ► 353 samples
- Sanger sequencing: no genetic variation
- RADseq (NGS): 100-2000 SNPs datasets



H1: Erasure of historical events due to efficient LDD?

H1: Erasure of historical events due to efficient LDD?

Paper I: lowland Amazonia


- Does the Inverse isolation hypothesis apply?
 - ► No IBD beyond the range of SDD due to efficient LDD?
 - Mantel test = regression
 - ► Kinship coefficient (F_{ij}, degree of genetic identity between individuals)
 - Geographical distance
 - Significant slope (r ≠ 0*) = IBD

H1: Erasure of historical events due to efficient LDD?

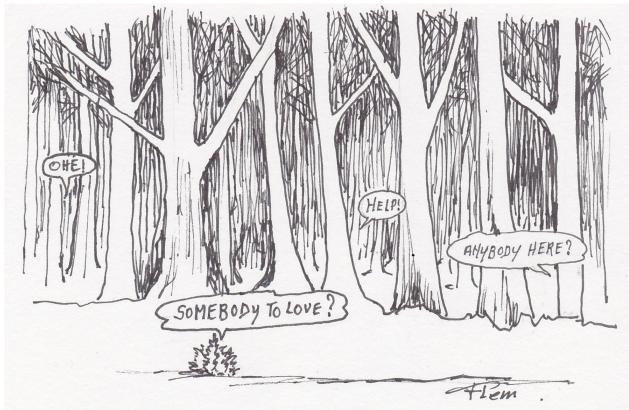
Paper I: lowland Amazonia

- Does the Inverse isolation hypothesis apply?
 - ► No IBD beyond the range of SDD due to efficient LDD?
 - ► Mantel test: IBD in 8 out of 10 species beyond the range of SDD!

Regression between F_{ij} and geographical distance for 8 Amazonian bryophyte species

H1: Erasure of historical events due to efficient LDD?

Paper I: lowland Amazonia


- Does the Inverse isolation hypothesis apply?
 - ► No IBD beyond the range of SDD due to efficient LDD?
 - ► Mantel test: IBD in 8 out of 10 species beyond the range of SDD!

- There is significant spatial genetic variation in sets of DNA sequences!
- Efficient LDD did not erase historical events!
- Data suitable for demographic inference!

H1: Erasure of historical events due to efficient LDD?

Paper I: lowland Amazonia

- Does the Inverse isolation hypothesis apply?
 - ► No IBD beyond the range of SDD due to efficient LDD?
 - Mantel test: IBD in 8 out of 10 species beyond the range of SDD!
- Inverse isolation hypothesis rejected in 80% of the cases
 - Amazonian bryophytes do not behave as one single metacommunity!
 - Dispersal capacities of Amazonian bryophytes much more limiting than hypothesized!

H2: IBE as a differentiation/speciation mechanism?

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

► F_{st} between TF and WSF individuals

Paper II: sibling species case

Syrrhopodon annotinus & S. simmondsii

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - F_{st} = index of genetic divergence
 - ► WSF individuals ≠ TF individuals?
 - ► Significant F_{st} = IBE

Syrrhopodon annotinus & S. simmondsii

white-sand forest

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - F_{st} = index of genetic divergence
 - ► WSF individuals ≠ TF individuals?
 - ► Significant F_{st} = IBE

white-sand forest

terra firme

Paper II: sibling species case

- Syrrhopodon annotinus & S. simmondsii
 - Sympatric
 - White-sand forest exclusive
 - S. *annotinus* = mineral substrates
 - ► S. *simmondsii* = organic substrates

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - F_{st} = index of genetic divergence
 - ► WSF individuals ≠ TF individuals?
 - ► Significant F_{st} = IBE

Paper II: sibling species case

- Syrrhopodon annotinus & S. simmondsii
 - Sympatric
 - White-sand forest exclusive
 - ► S. annotinus = mineral substrates
 - S. *simmondsii* = organic substrates
 - Morphologically distinct
 - Genetically distinct?

white-sand forest

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - F_{st} = index of genetic divergence
 - ► WSF individuals ≠ TF individuals?
 - ► Significant F_{st} = IBE

Paper II: sibling species case

- ► F_{st} between species
 - ► F_{st} = index of genetic divergence
 - ► Mineral individuals ≠ organic individuals?
 - ► Significant F_{st} = genetically distinct

white-sand forest

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - ► IBE in 2 species

Species	F _{st} (P-value)
Archilejeunea fuscescens	0.14 (P= <mark>0.004</mark>)
Octoblepharum pulvinatum	0.29 (P= <mark>0.002</mark>)

► F_{st} between species

white-sand forest

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - ► IBE in 2 species
 - IBE does not globally contribute to Amazonian genetic structure
 - Bryophytes = "multi-purpose" genotypes
 - 1 genotype in several environments

white-sand forest

terra firme

Paper II: sibling species case

► F_{st} between species

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - ► IBE in 2 species
 - IBE does not globally contribute to Amazonian genetic structure
 - Bryophytes = "multi-purpose" genotypes
 - 1 genotype in several environments

white-sand forest

terra firme

Paper II: sibling species case

► F_{st} between species

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - ► IBE in 2 species
 - IBE does not globally contribute to Amazonian genetic structure
 - Bryophytes = "multi-purpose" genotypes
 - 1 genotype in several environments

white-sand forest

terra firme

- ► F_{st} between species
 - ► F_{st} = 0.059 (P-value = 0.004)
 - Genetically distinct!

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - ► IBE in 2 species
 - IBE does not globally contribute to Amazonian genetic structure
 - Bryophytes = "multi-purpose" genotypes
 - 1 genotype in several environments

white-sand forest

terra firme

- ► F_{st} between species
 - Genetically distinct!
- ► IBE as speciation mechanism?
 - Habitat differentiation triggered or followed speciation?

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - ► IBE in 2 species
 - IBE does not globally contribute to Amazonian genetic structure
 - Bryophytes = "multi-purpose" genotypes
 - 1 genotype in several environments

white-sand forest

terra firme

- ► F_{st} between species
 - Genetically distinct!
 - IBE might contribute to Amazonian genetic structure in some groups

H2: IBE as a differentiation/speciation mechanism?

Paper I: global scale

- ► F_{st} between TF and WSF individuals
 - ► IBE in 2 species
 - IBE does not globally contribute to Amazonian genetic structure
 - Bryophytes = "multi-purpose" genotypes
 - 1 genotype in several environments

white-sand forest

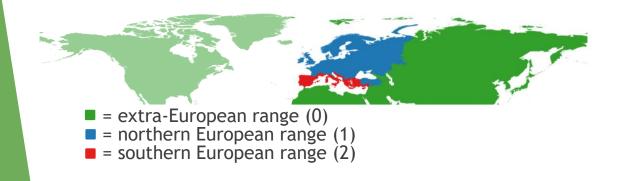
terra firme

- ► F_{st} between species
 - Genetically distinct!
 - IBE might contribute to Amazonian genetic structure in some groups
 - Bryophytes = "multi-purpose" genotypes?
 - Growing evidence for genetic divergence observed along environmental gradients

H3: Post-glacial history of bryophytes?

Paper III: Europe

- ABC based on coalescent simulations
 - Compare demographic scenarios


Ongoing study: lowland Amazonia

- ABC based on coalescent simulations
 - Compare demographic scenarios

H3: Post-glacial history of bryophytes?

Paper III: Europe

- ABC based on coalescent simulations
 - Compare demographic scenarios
 - Classic coalescent population model
 - Pre-defined panmictic populations
 - Sink and source from literature

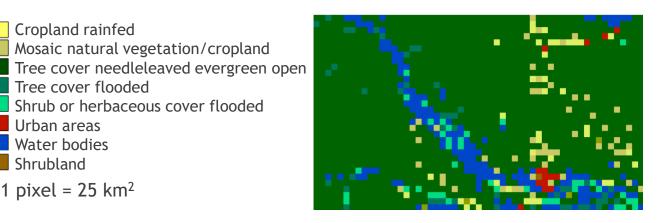
Ongoing study: lowland Amazonia

- ABC based on coalescent simulations
 - Compare demographic scenarios

H3: Post-glacial history of bryophytes?

Paper III: Europe

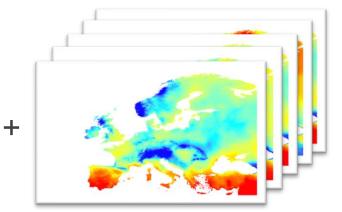
- ► ABC based on coalescent simulations
 - Compare demographic scenarios
 - Classic coalescent population model
 - Pre-defined panmictic populations
 - Sink and source from literature


Ongoing study: lowland Amazonia

- ABC based on coalescent simulations
 - Compare demographic scenarios
 - Spatially explicit coalescent model
 - Continuous portions of species range
 - Matrix of pixels = panmictic populations
 - Amazonia = Homogeneous

1 pixel = 25 km^2

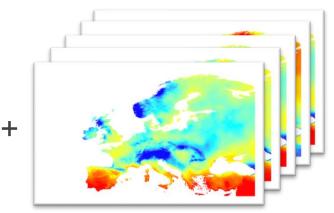
Cropland rainfed


H3: Post-glacial history of bryophytes?

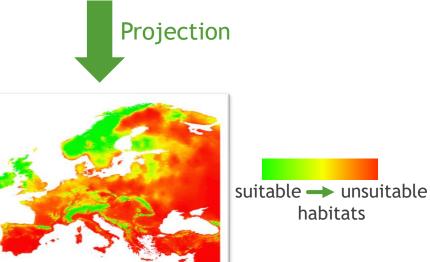
Paper III: Europe

- ABC based on coalescent simulations
 - Compare demographic scenarios
- Species Distribution Models (SDMs)
 - Confirm *refugia* location
 - Ecological models localizing suitable habitats
 - Dependent data: species occurrences
 - Independent data: environmental factors

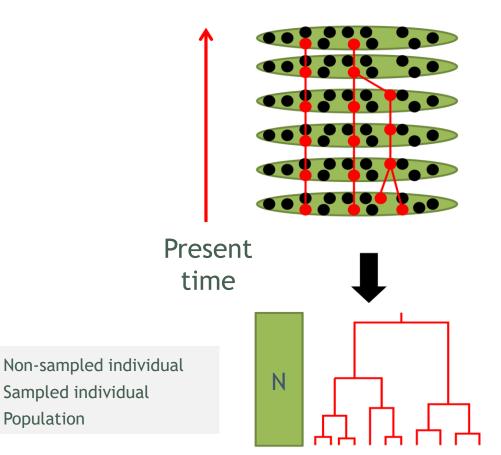
Species occurrences


Environmental factors

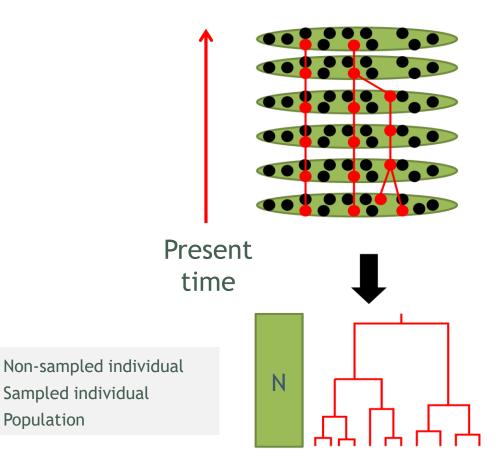
H3: Post-glacial history of bryophytes?


Paper III: Europe

- ABC based on coalescent simulations
 - Compare demographic scenarios
- Species Distribution Models (SDMs)
 - Confirm *refugia* location
 - Ecological models localizing suitable habitats
 - Dependent data: species occurrences
 - Independent data: environmental factors
 - Projected into region/time of interest
 - LGM climatic conditions
 - Holarctic
- \rightarrow Identify location of potential *refugia* during the LGM!


Projected Species Distribution Model (SDM)

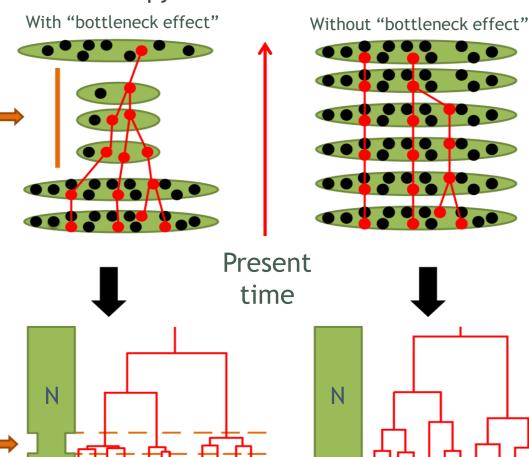
H3: Post-glacial history of bryophytes?


- **Coalescent simulations**
 - Aim: reconstruct gene genealogies of populations to infer their past demographies

Population

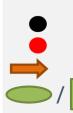
► Grouping sampled gene copies until last common ancestral copy

- Coalescent simulations
 - ► Aim: reconstruct gene genealogies of populations to infer their past demographies
 - Grouping sampled gene copies until last common ancestral copy
 - Probability of coalescence in a population
 - ► $Pc \approx n(n-1)/2N$
 - Depends on
 - Sample size (n)
 - ► Effective population size (N)

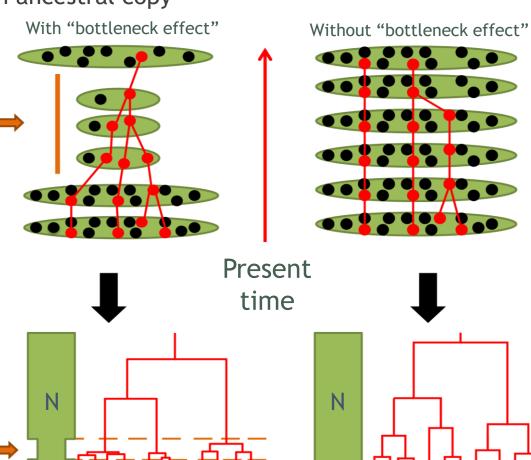


H3: Post-glacial history of bryophytes?

- Coalescent simulations
 - ► Aim: reconstruct gene genealogies of populations to infer their past demographies
 - ► Grouping sampled gene copies until last common ancestral copy
 - Probability of coalescence in a population
 - ► $Pc \approx n(n-1)/2N$
 - Depends on
 - Sample size (n)
 - ► Effective population size (N)
 - Probability / when N \



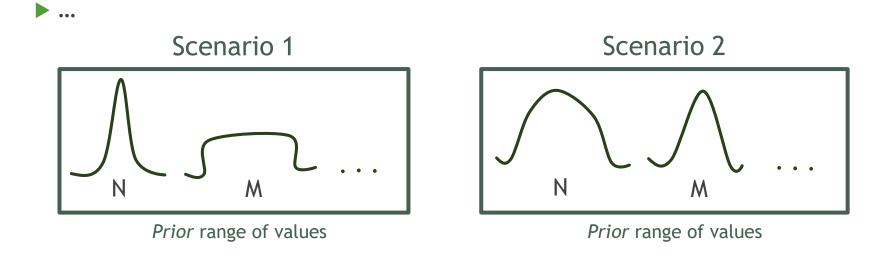
Non-sampled individual Sampled individual "Bottleneck effect" Population



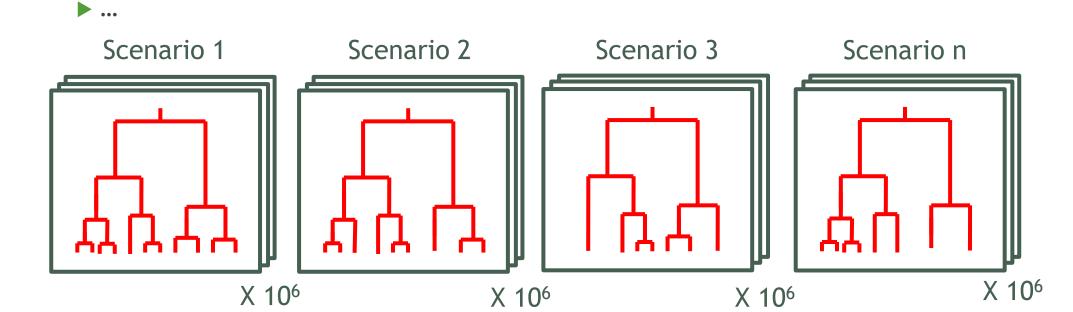
H3: Post-glacial history of bryophytes?

- Coalescent simulations
 - ► Aim: reconstruct gene genealogies of populations to infer their past demographies
 - ► Grouping sampled gene copies until last common ancestral copy
 - Probability of coalescence in a population
 - ► $Pc \approx n(n-1)/2N$
 - Depends on
 - Sample size (n)
 - ► Effective population size (N)
 - Probability / when N \
 - \rightarrow Constraint by demographic events

Non-sampled individual Sampled individual "Bottleneck effect" Population

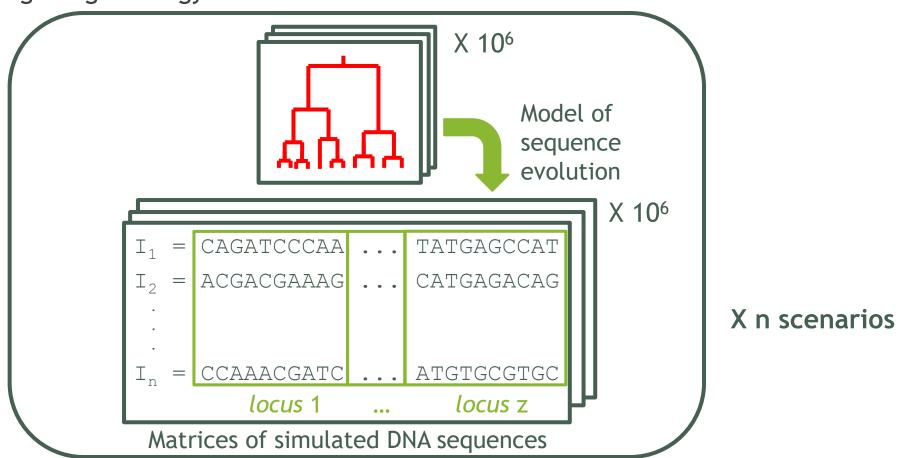

H3: Post-glacial history of bryophytes?

Coalescent simulations in ABC


► Aim: compare demographic scenarios with observed set of DNA sequences

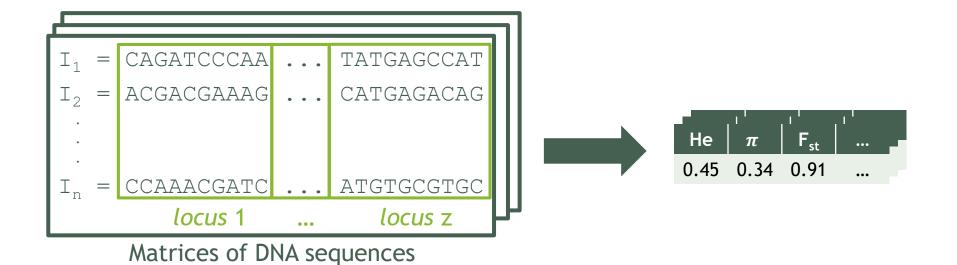
- ► ABC in 3 steps
 - 1. Simulation of gene genealogies = demographic process
 - 2. Simulation of matrices of DNA sequences = mutation process
 - 3. Selection of the best-fit scenario = computational process

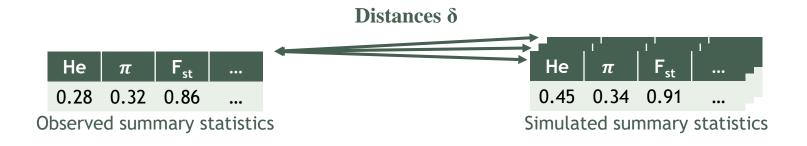
- 1. Simulation of gene genealogies
 - Coalescent model
 - Under the constraint of different demographic scenarios
 - ► Through definition of *prior* range of values of demographic parameters
 - ► Effective population size (N)
 - ► Migration rate (M)


- 1. Simulation of gene genealogies
 - Coalescent model
 - Under the constraint of different demographic scenarios
 - ► Through definition of *prior* range of values of demographic parameters
 - ► Effective population size (N)
 - ► Migration rate (M)

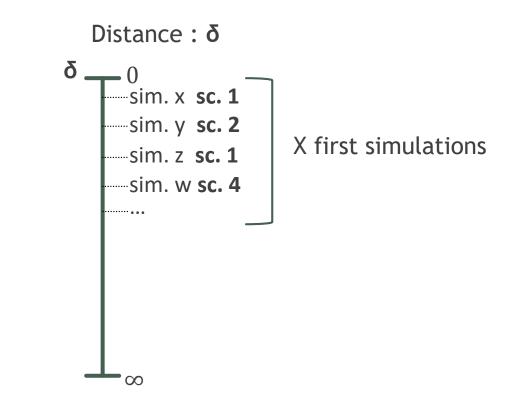
H3: Post-glacial history of bryophytes?

2. Simulation of matrices of DNA sequences

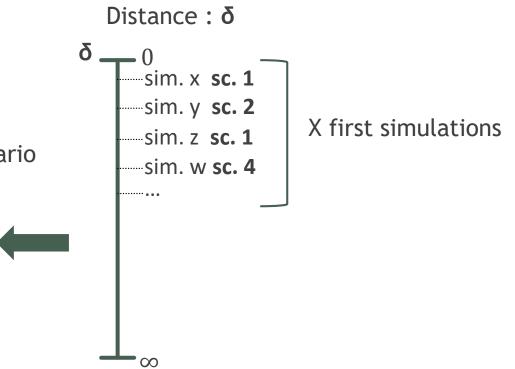

- Using models of sequence evolution
- Along each gene genealogy


H3: Post-glacial history of bryophytes?

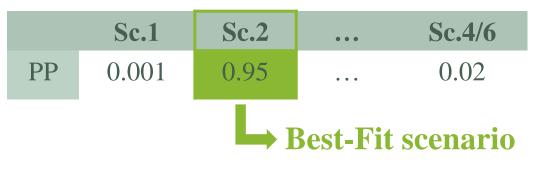
3. Selection of the best-fit scenario

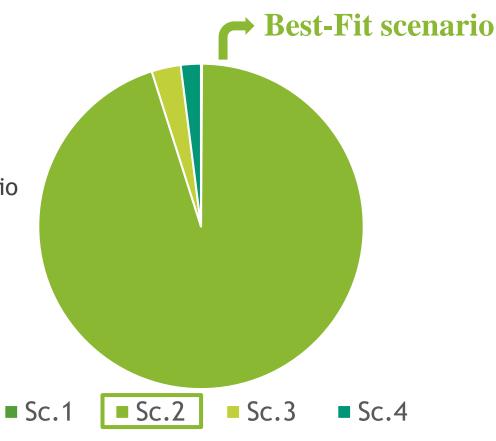

Summary statistics to synthesize observed and simulated matrices of DNA sequences

- 3. Selection of the best-fit scenario
 - Summary statistics to synthesize observed and simulated matrices of DNA sequences
 - Euclidian distance between
 - ► The set of observed summary statistics
 - Each set of simulated summary statistics

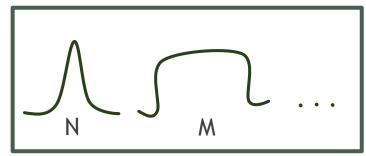


- 3. Selection of the best-fit scenario
 - Summary statistics to synthesize observed and simulated matrices of DNA sequences
 - Euclidian distance between
 - ► The set of observed summary statistics
 - Each set of simulated summary statistics
 - Select the X first simulations




- 3. Selection of the best-fit scenario
 - Summary statistics to synthesize observed and simulated matrices of DNA sequences
 - Euclidian distance between
 - ► The set of observed summary statistics
 - Each set of simulated summary statistics
 - Select the X first simulations
 - ► Determine *Posterior* Probability (PP) of each scenario

	Sc.1	Sc.2	• • •	Sc.4/6	
PP	0.001	0.95	• • •	0.02	



- 3. Selection of the best-fit scenario
 - Summary statistics to synthesize observed and simulated matrices of DNA sequences
 - Euclidian distance between
 - ► The set of observed summary statistics
 - Each set of simulated summary statistics
 - Select the X first simulations
 - ► Determine *Posterior* Probability (PP) of each scenario
 - Select the best-fit scenario

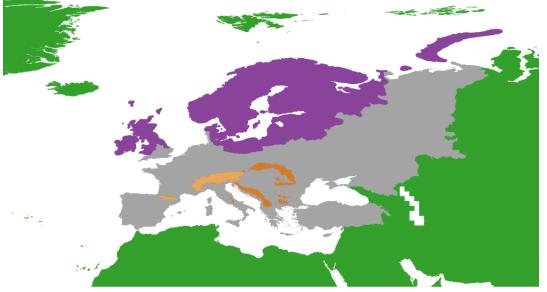
- 3. Selection of the best-fit scenario
 - Summary statistics to s synthesize observed and simulated matrices of DNA sequences
 - Euclidian distance between
 - ► The set of observed summary statistics
 - Each set of simulated summary statistics
 - Select the X first simulations
 - ► Determine *Posterior* Probability (PP) of each scenario
 - Select the best-fit scenario
 - Compute Posterior range of values of demographic parameters

Posterior range of values

H3: Post-glacial history of bryophytes (Europe, Paper III)?

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

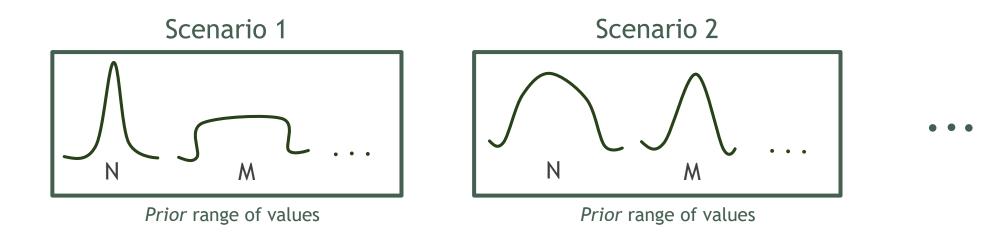

► 3 regions

- = extra-European range
- = northern range
- = southern range

- = extra-European range
- = northern range iced at LGM
- = southern mountains range iced at LGM
- southern mountains range ice-free at LGM
- = lowland range South of the ice sheet at LGM

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species


- ► 3 regions
- ► 3 demographic scenarios

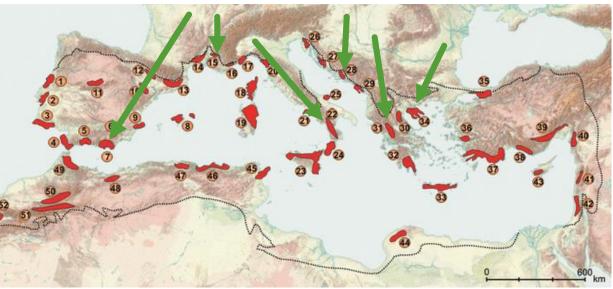
Ice-covered species

- ► 5 regions
- 4 demographic scenarios

Ice-covered

lce-free

H3: Post-glacial history of bryophytes (Europe, Paper III)?


Ice-free species

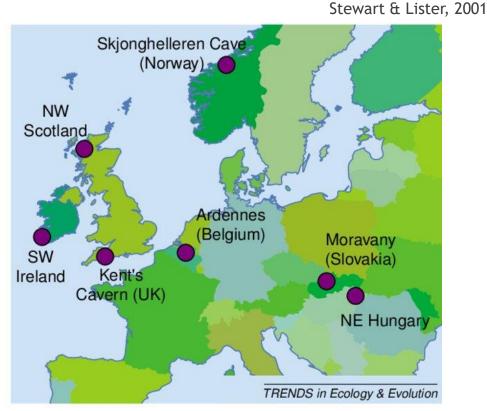
- ► 3 regions
- 3 demographic scenarios
 - Classical southern refugia scenario

Ice-covered species

- 5 regions
- 4 demographic scenarios

Médail & Diadema, 2009

Distribution of 52 putative refugia within the Mediterranean region


H3: Post-glacial history of bryophytes (Europe, Paper III)?

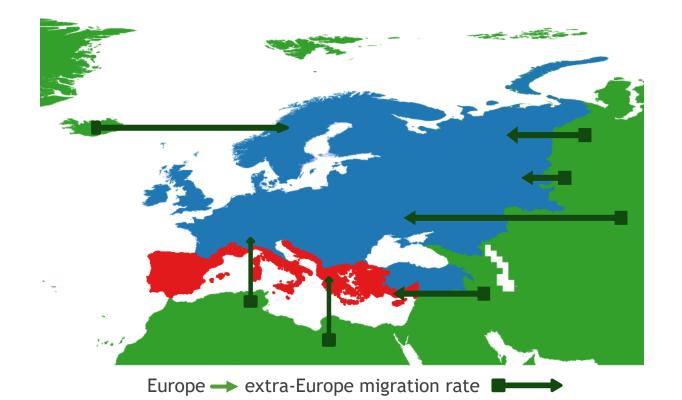
Ice-free species

- 3 regions
- ► 3 demographic scenarios
 - Classical southern refugia scenario
 - Expected northern micro-refugia scenario

Ice-covered species

- ► 5 regions
- 4 demographic scenarios

Distribution of 7 putative northern micro-refugia


H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- ► 3 regions
- 3 demographic scenarios
 - Classical southern refugia scenario
 - Expected northern micro-refugia scenario

Extra-European post-glacial recolonization scenario

- ► 5 regions
- 4 demographic scenarios

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- ► 3 regions
- ► 3 demographic scenarios
 - Classical southern refugia scenario
 - Expected northern micro-refugia scenario

Extra-European post-glacial recolonization scenario

- ► 5 regions
- 4 demographic scenarios
 - Classical Tabula rasa scenario

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- ► 3 regions
- 3 demographic scenarios
 - Classical southern refugia scenario
 - Expected northern micro-refugia scenario

Extra-European post-glacial recolonization scenario

- ► 5 regions
- 4 demographic scenarios
 - Classical Tabula rasa scenario
 - Expected nunatak/micro-refugia scenario

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- ► 3 regions
- 3 demographic scenarios
 - Classical southern refugia scenario
 - Expected northern micro-refugia scenario

Extra-European post-glacial recolonization scenario

Ice-covered species

- ► 5 regions
- 4 demographic scenarios
 - Classical Tabula rasa scenario
 - Expected nunatak/micro-refugia scenario
 - Specific southern mountains nunatak/micro-refugia scenario

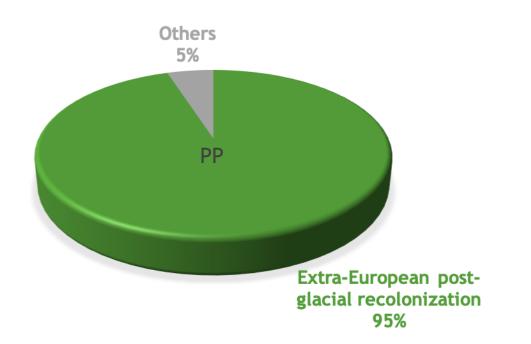
Ice-covered

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

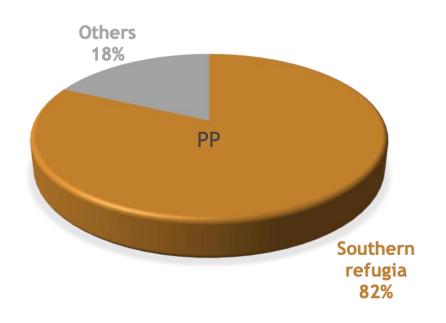
- ► 3 regions
- 3 demographic scenarios
 - Classical southern refugia scenario
 - Expected northern micro-refugia scenario

Extra-European post-glacial recolonization scenario


- ► 5 regions
- 4 demographic scenarios
 - Classical Tabula rasa scenario
 - Expected nunatak/micro-refugia scenario
 - Specific southern mountains nunatak/micro-*refugia* scenario
 - Extra-European post-glacial recolonization scenario

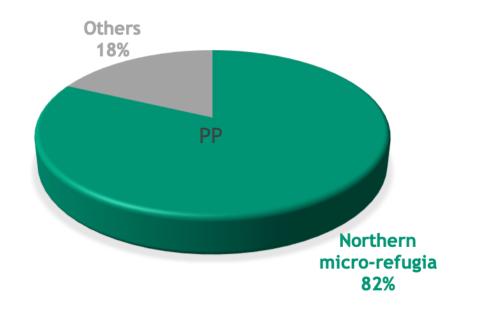
H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species


- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species

H3: Post-glacial history of bryophytes (Europe, Paper III)?

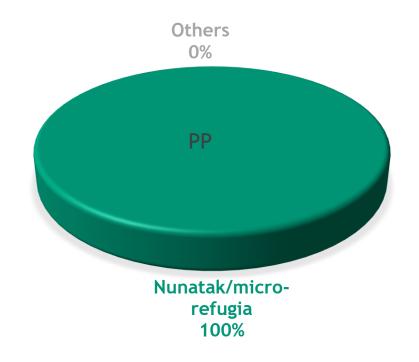
Ice-free species


- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Southern refugia: 3/12 species

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species



H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

- Best-fit scenarios
 - Nunatak/micro-refugia: 2/3 species

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

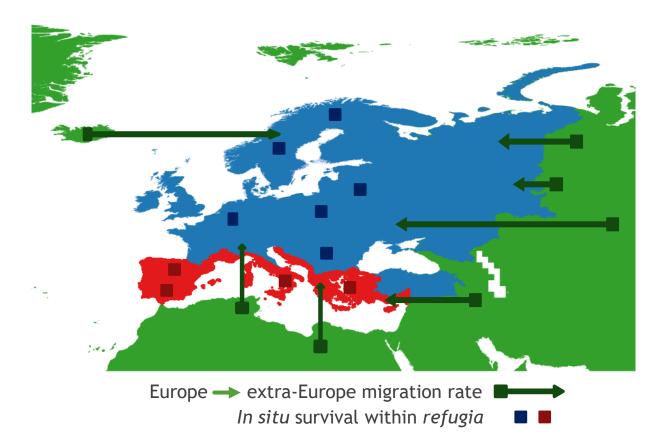
- Best-fit scenarios
 - Nunatak/micro-refugia: 2/3 species
 - Tabula rasa: 1/3 species

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

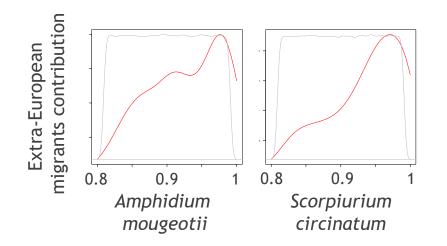
Ice-covered species

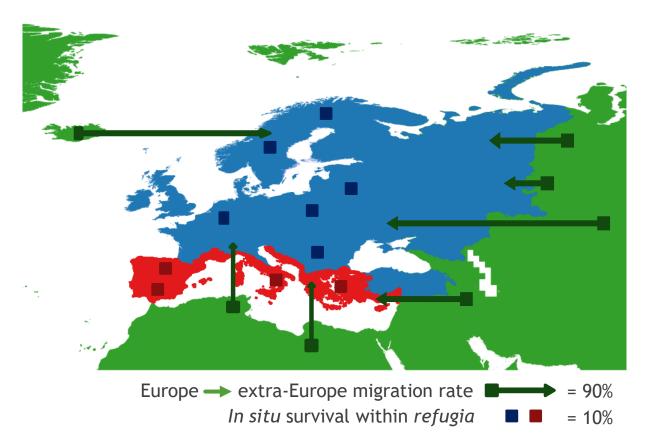

- Best-fit scenarios
 - Nunatak/micro-refugia: 2/3 species
 - Tabula rasa: 1/3 species

 \rightarrow Post-glacial assembly of Europe = complex history from multiple sources!

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

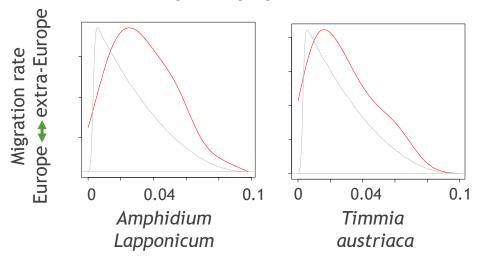

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species



H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Posterior distribution: 90% of extra-European migrants
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species



H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Posterior distribution: 90% of extra-European migrants
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

- Best-fit scenarios
 - Nunatak/micro-*refugia*: 2/3 species
 - Tabula rasa: 1/3 species
- Posterior distributions
 - High migration rate between Europe and extra-European pops

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Posterior distribution: 90% of extra-European migrants
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

Ice-covered species

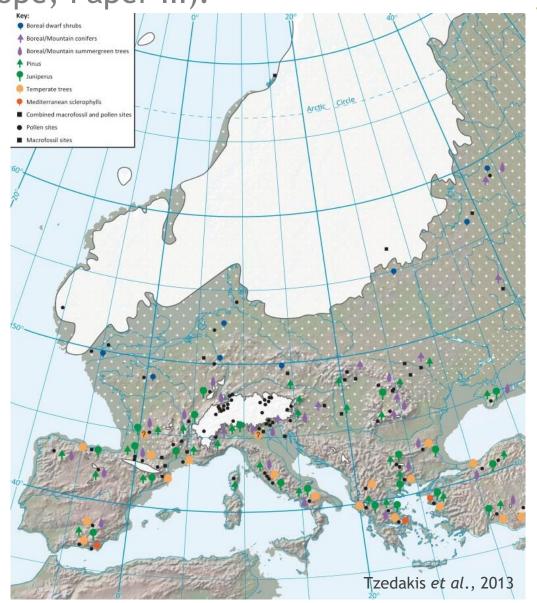
- Best-fit scenarios
 - Nunatak/micro-refugia: 2/3 species
 - Tabula rasa: 1/3 species
- Posterior distributions
 - High migration rate between Europe and extra-European pops

 \rightarrow Importance of LDD for the post-glacial recolonization of Europe by bryophytes!

H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Posterior distribution: 90% of extra-European migrants
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species


→ European *refugia* = too small and scattered compared to the huge waves of extra-European migrants

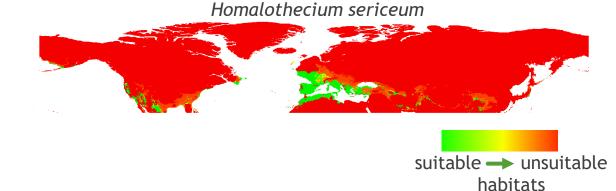
H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Posterior distribution: 90% of extra-European migrants
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

→ European *refugia* = too small and scattered compared to the huge waves of extra-European migrants

European paleoenvironments at LGM


H3: Post-glacial history of bryophytes (Europe, Paper III)?

Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Posterior distribution: 90% of extra-European migrants
 - Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

→ European *refugia* = too small and scattered compared to the huge waves of extra-European migrants SDMs projected onto LGM climatic conditions

Amphidium mougeotii

H3: Post-glacial history of bryophytes (Europe, Paper III)?

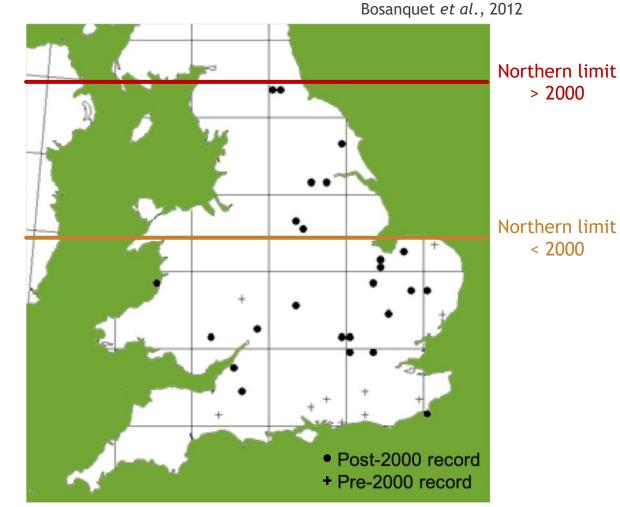
Ice-free species

- Best-fit scenarios
 - Extra-European post-glacial recolonization: 7/12 species
 - Posterior distribution: 90% of extra-European migrants
 - ► Southern refugia: 3/12 species
 - ► Northern micro-*refugia*: 2/12 species

→ European *refugia* = too small and scattered compared to the huge waves of extra-European migrants SDMs projected onto LGM climatic conditions

Amphidium mougeotii

"A long-known feature of LGM climate simulations is that they underestimate the degree of cooling" Tzedakis *et al.*, 2013


 \rightarrow Too optimistic LGM paleoclimatic reconstructions? \rightarrow Warm bias?

Europe

- Dispersal does not seem limited!
 - Post-glacial recolonization mainly from extra-European migrants
 - Importance of LDD events

Europe

- Dispersal does not seem limited!
 - Post-glacial recolonization mainly from extra-European migrants
 - ► Importance of LDD events
- Striking range shifts observed within the past 20 years!

Distribution of vagrant Orthotrichaceae species in England and Wales

Europe

- Dispersal does not seem limited!
 - Post-glacial recolonization mainly from extra-European migrants
 - Importance of LDD events
- Striking range shifts observed within the past 20 years!

Lowland Amazonia

- Dispersal limited!
 - ► IBD in most species
 - Insufficient LDD

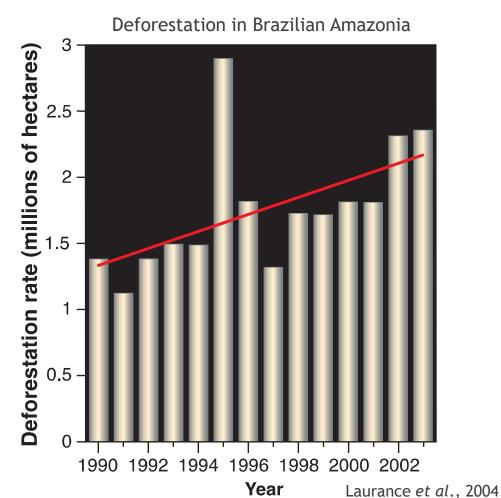
Europe

- Dispersal does not seem limited!
 - Post-glacial recolonization mainly from extra-European migrants
 - ► Importance of LDD events
- Striking range shifts observed within the past 20 years!

Lowland Amazonia

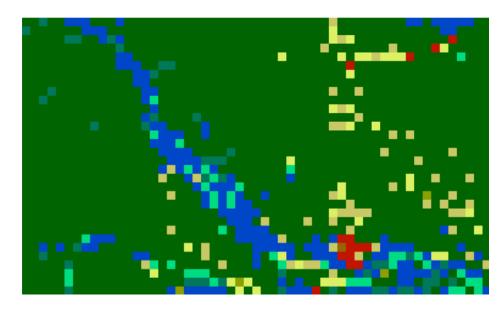
- Dispersal limited!
 - ► IBD in most species
 - Insufficient LDD

Vulnerable to current global change!


- Ongoing global change
 - Land/sea-use conversion= 1st direct driver of global declines in nature!

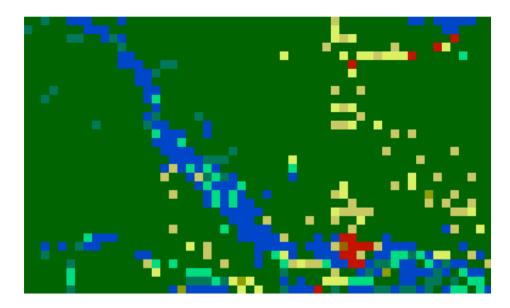
DIRECT DRIVERS Terrestrial Freshwater Marine 80 100% 20 Land/sea use change Direct exploitation Climate change Pollution Invasive alien species Others

Direct drivers of global declines in nature


Ongoing global change

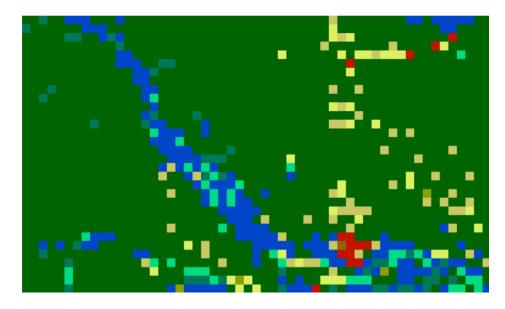
- Land/sea-use conversion= 1st direct driver of global declines in nature!
- Deforestation = most measured land-use process!
 - Amazonia: highest deforestation rate in the world (c. 2.4 million ha/yr)

Ongoing study


- Comparing the relative impact of past climate changes and deforestation in Amazonia
- Spatially explicit coalescent simulations
 - Scenario 1: LGM bottleneck
 - Scenario 2: recent deforestation bottleneck
 - Scenario 3: LGM + recent deforestation bottlenecks

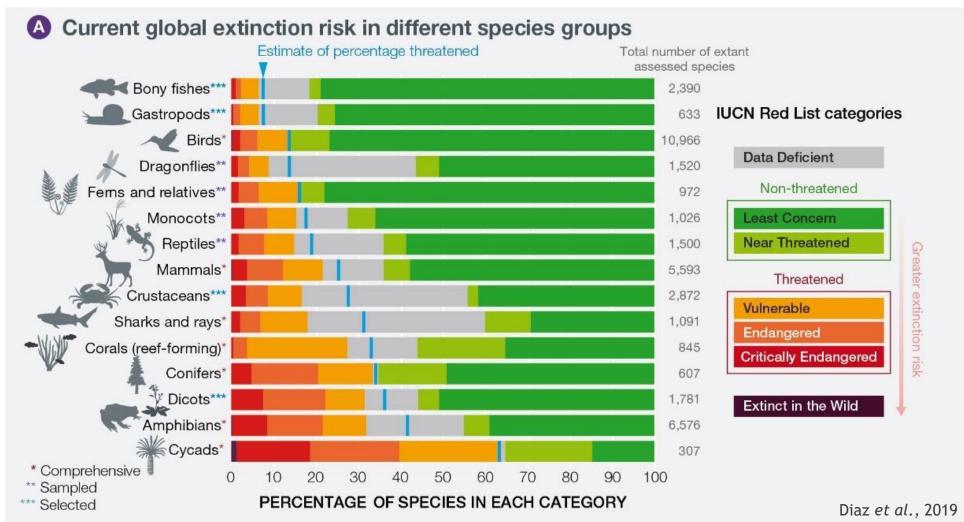
Cropland rainfed
Mosaic natural vegetation/cropland
Tree cover needleleaved evergreen open
Tree cover flooded
Shrub or herbaceous cover flooded
Urban areas
Water bodies
Shrubland
1 pixel = 25 km²

Ongoing study


- Comparing the relative impact of past climate changes and deforestation in Amazonia
- Spatially explicit coalescent simulations
 - Scenario 1: LGM bottleneck
 - Scenario 2: recent deforestation bottleneck
 - Scenario 3: LGM + recent deforestation bottlenecks
- Assess actual migration rates in Amazonia
 - Posterior distribution of migration rate between neighbor pixels

Cropland rainfed
 Mosaic natural vegetation/cropland
 Tree cover needleleaved evergreen open
 Tree cover flooded
 Shrub or herbaceous cover flooded
 Urban areas
 Water bodies
 Shrubland
 1 pixel = 25 km²

Ongoing study


- Comparing the relative impact of past climate changes and deforestation in Amazonia
- Spatially explicit coalescent simulations
 - Scenario 1: LGM bottleneck
 - Scenario 2: recent deforestation bottleneck
 - Scenario 3: LGM + recent deforestation bottlenecks
- Assess actual migration rates in Amazonia
 - Posterior distribution of migration rate between neighbor pixels
- \rightarrow Predict to what extent Amazonian bryophytes might suffer from ongoing deforestation!

Cropland rainfed
 Mosaic natural vegetation/cropland
 Tree cover needleleaved evergreen open
 Tree cover flooded
 Shrub or herbaceous cover flooded
 Urban areas
 Water bodies
 Shrubland
 pixel = 25 km²

▶ 1 million species currently face extinction because of human actions!

Around 25% of species in all assessed animal and plant groups threatened!

1 million species currently face extinction because of human actions!
 Around 25% of species in all assessed animal and plants groups threatened!

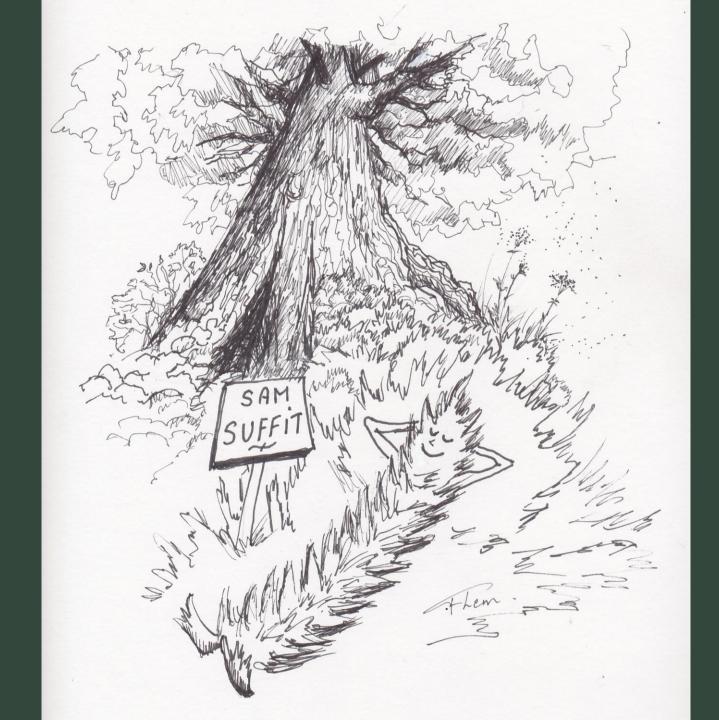
 \rightarrow Let's evaluate our impact BUT ALSO act to not reach that number!

Acknowledgments

- Supervisors
 - Alain Vanderpoorten (ULiège)
 - Patrick Mardulyn (ULB)

GARDEN

- Mentors & colleagues during internships
 - Norman Wickett: Chicago Botanic Garden
 - Love Dalén: Swedish Museum of Natural History
- Members and past members of our lab
- Family and friends



Thank you for your attention!

Time for questions!

