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Abstract
High-resolution whole brain recordings have the potential to uncover unknown functionality but also present the challenge
of how to find such associations between brain and behavior when presented with a large number of regions and spectral
frequencies. In this paper, we propose an exploratory data analysis method that sorts through a massive quantity of
multivariate neural recordings to quickly extract a subset of brain regions and frequencies that encode behavior. This
approach combines existing tools and exploits low-rank approximation of matrices without a priori selection of regions
and frequency bands for analysis. In detail, the spectral content of neural activity across all frequencies of each recording
contact is computed and represented as a matrix. Then, the rank-1 approximation of the matrix is computed using singular
value decomposition and the associated singular vectors are extracted. The temporal singular vector, which captures the
salient features of the spectrogram, is then correlated to the trial-varying behavioral signal. The distribution of correlations
for each brain region is efficiently computed and used to find a subset of regions and frequency bands of interest for
further examination. As an illustration, we apply this approach to a data set of local field potentials collected using
stereoelectroencephalography from a human subject performing a reaching task. Using the proposed procedure, we produced
a comprehensive set of brain regions and frequencies related to our specific behavior. We demonstrate how this tool can
produce preliminary results that capture neural patterns related to behavior and aid in formulating data-driven hypotheses,
hence reducing the time it takes for any scientist to transition from the exploratory to the confirmatory phase.

Keywords Exploratory data analysis · Multivariate neural data · Singular value decomposition ·
Stereoelectroencephalography

1 Introduction

The BRAIN Initiative has led to the emergence of new
neurotechnologies that probe and manipulate the brain at
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multiple scales, from cells to systems at fine temporal
resolution. Availability of these new data has, in turn,
led to the emergence of a new field of neuroscience
that is computational and data-intensive. In the past, the
knowledge about the brain was limited by the fact that the
necessary data were simply not available (Cunningham and
Yu 2014). In the future, the huge amount of available data
will be more of a problem than its previous scarcity. Just as
technological advancements have fluctuated the capacity of
data availability and computational power, the approaches
used to analyze these large multivariate neural data sets must
scale to meet demand (Brown et al. 2004).

It is now more common than ever to come across large-
scale high temporal resolution, whole brain recordings from
humans and nonhuman primates obtained using techniques
such as ElectroEncephaloGraphy (EEG), ElectroCorticoG-
raphy (ECoG), Stereo-EEG (SEEG), and Magneto-EEG
(MEG). Neuroscientists often investigate the spectral content
of continuous neural signals obtained using these techniques as
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the power in specific frequency bands. These are shown to
play important roles in encoding and communicating infor-
mation about the environment at a population-level (Ward
2003). For example, beta band oscillations are found
throughout motor regions of the brain and, when present,
are thought to block movement initiation, while the gamma
band is thought to facilitate movement (Crone et al. 1998a,
b). Theta band oscillations play an important role in learn-
ing and memory (Kahana et al. 2001), REM sleep (Jouvet
1969; Kahana et al. 2001), and arousal (Basar et al. 2000).
But could there be something more?

The magnitude of neural data collected from experiments
makes it difficult to find meaningful information out of
their inherent subtle and complex patterns. To reduce its
dimensionality, investigators typically limit the scope of
their analysis to a specific subset of brain regions and
frequency bands in recorded brain signals, thus ignoring a
large chunk of their data (Crone et al. 1998a, b). Another
common trimming approach is to average neural activity
across multiple trials, eliminating temporal variation that
could have provided interesting insight (Breault et al.
2017; Cunningham and Yu 2014; Kerr et al. 2014).
An ideal data mining approach would extract possible
underlying trends in the neural data related to behavioral
measurements without predefining constraints such as
regions or frequencies.

In particular, it would be highly useful to have a single
exploratory data analysis tool that (i) processes the entire
data set at once—all regions and frequencies—and then
(ii) generates a rank order list of regions and frequencies
of interest (iii) without necessarily being guided by a pre-
defined hypothesis. This would then be followed by confir-
matory data analysis, where the significance of correlations
between brain and behavior is quantified. In principle,
this method should quickly extract neural correlates using
any dynamic signal, such as behavior, without requiring a
priori knowledge of which brain regions nor frequency band
to study. It should also preserve the dynamic nature of the
neural activity related to temporal brain processes yet be
flexible enough to allow for trial-to-trial variability (Cun-
ningham and Yu 2014; Ward 2003).

We propose a method, in the form of a tool, that uses
Singular Value Decomposition (SVD) and its low-rank
matrix approximation to identify neural correlates of beha-
vior from whole brain recordings which meets the above
requirements. Specifically, the method involves computing
spectrograms over time windows of interest for each
brain region and trial—viewing the spectrograms as
rectangular matrices, where columns represent frequency
bins (e.g., ranging from 1–200 Hz), rows represent
time bins, and cell values represent power in a given
frequency and time bin. SVD is then performed on each
matrix to compute its rank-1 approximation matrix, which

corresponds to the largest singular value and associated
singular vectors. Optionally, multiple matrices can be
found using the other singular components to extract
other characteristics from the original spectrogram. For
each approximation, we extract the left or temporal
singular vector. This vector is a temporal signal that
retains important characteristics of how the spectral content
across all frequencies evolves over the time window. The
temporal singular vector is then correlated to the behavioral
signal using cross-correlation for each brain region and
trial (Varela et al. 2001). These correlation statistics can
then be rigorously analyzed—within brain regions, across
trials, and subjects—to generate a ranked list of regions and
frequencies of interest.

The use of SVD on neuronal data is not novel. Similar to
SVD, Principal Components Analysis (PCA) is a technique
widely used in neuroscience to cluster individual neurons
into populations based on similar activity (D’Aleo et al.
2017; Lewicki 1998), reduce dimensionality of neuronal
signals (Agarwal et al. 2015; Cunningham and Yu 2014),
control Brain–Computer Interfaces (Chapin 2004), and
even localize brain activity or extract features from EEG
data (Cong et al. 2015). However, unlike traditional
applications, which use PCA for grouping, we are using it to
study the dominant modes (time and frequency) in spectral
data.

We demonstrate the use of this tool on data collected
from a motor control experiment, wherein SEEG neural
recordings were acquired from one epilepsy human subject
undergoing invasive monitoring at the Cleveland Clinic
for treatment purposes. The data set consisted of Local
Field Potential (LFP) recordings from 62 electrode contacts
across 24 unique, nonmotor brain regions while the subject
performed 98 trials of a center-out arm reaching task. The
breadth of access and originality provided by this study
was met with the daunting task of sifting through this large
data set of neuronal activities in hopes of finding neural
correlates of movement. Since all electrode contacts were
in nonmotor regions, there was no clear hypothesis as to
which regions and frequency bands are of interest. Our goal
was to determine whether nonmotor regions encode path-
related information, and in particular, we were interested in
whether the activity in any of these regions modulates with
the temporal evolution of movement in a consistent manner.

2Methods

In this section, we describe our proposed exploratory
data analysis tool that processes large-scale neural data to
establish a finite set of brain regions and frequencies that
correlate to behavior. An outline of this procedure is
illustrated in Fig. 1a.
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Fig. 1 a The overall architecture of the proposed analysis for all brain
regions j = 1, ..., J and trials i = 1, ..., I . This method takes in
the neural signal xij and the behavioral signal yi to extract Regions-
Of-Interest (ROIs) and corresponding Frequencies-Of-Interest (FOIs).
It is broken down into three general steps. b Spectral Decomposi-
tion. For brain region j and trial i, the raw neural signal of voltage
over time xij is transformed into its time-frequency representation
through spectral methods to produce a spectrogram Xij . This matrix
is then broken down using SVD to find the top modes, denoted
Aij,m. The output of this step is the temporal singular vector uij,1
associated with the time domain of Aij,m and the frequency sin-
gular vector vij,m associated with the frequency domain of Aij,m,
which is used in a later step. c Cross-correlation analysis. The behav-
ioral signal yi and uij,m are cross-correlated to produce a range of
correlations, denoted rij,m, as a function of lag between the two sig-
nals with the 95%-confidence interval (dashed line) and associated

p-values, denoted pij,m. The infinity norm of rij,m is calculated as
rij,m. The p-value at the lag of the infinity norm is saved as pij,m.
d Ranking procedure. The process of creating a rank ordered list begins
by finding the ROIs across all trials, brain regions, and modes. An
average correlation rj,m and p-value pj,m are calculated for each brain
region using the output metrics from the previous step across all tri-
als. The list of ROIs is found by sorting rj,m or pj,m. A subset can be
obtained by applying a threshold to rj,m or pj,m to distinguish ROIs
that are very correlated from not very correlated. To find the FOIs for
each ROIs, vij,m is averaged over all trials per region. Then, the fre-
quency bins of vj,m are sorted to produce a list from highest to lowest
average frequency singular value. Similarly, FOIs in terms of bands are
calculated by averaging the aggregation of vj,m into each frequency
band, based on predefined frequency bounds. In the end, this analysis
produces a data-driven list or subset of ROIs and FOIs
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2.1 Notation

This method applies to data sets that contain recordings
from multiple brain regions indexed by j ∈ {1, . . . , J } and
multiple repeated samples of structured behavior that can be
partitioned into trials indexed by i ∈ {1, . . . , I }.

Let xij (t) ∈ R be the continuous signal of time-varying
neural activity recorded from brain region j during trial i.
This data is represented by a waveform of voltage over time,
such as LFP activity.

Let yi(t) ∈ R be the continuous signal associated with
the behavior of interest for each trial i, which is typically
time locked to some event (e.g., movement onset). Each
behavioral signal consists of Ti time bins, which may vary
from trial-to-trial.

2.2 Spectral decomposition

The first part of the analysis is dedicated to realizing the
temporal singular vectors associated with the largest modes
of the time-frequency representation corresponding to the
xij using SVD, as outlined in Fig. 1b.

2.2.1 Spectral analysis

Spectral analysis is defined as the study of time series in the
time-frequency domain. It is performed on the raw neural
activity xij of each brain region j for each trial i. One can
compute the time-frequency spectrum of xij to capture the
neural oscillations using a variety of approaches (Kass et al.
2014; van Vugt et al. 2007). For details on our preprocessing
steps, see Section 3.1.1.

Regardless of the specifics, the result will be the set{
Xij

}I,J

i,j=1, where each element Xij (t, f ) ∈ R is the spectral
power associated with time bin t and frequency bin f

for brain region j during trial i.

2.2.2 Singular value decomposition

A standard strategy for probing multivariate data is to constrain
the complexity of the data. Here, we utilize SVD on Xij to

find the top modes, each with an associated time-component
vector and frequency-component vector.

Formally, the equation for SVD is as follows:

Xij = Uij Sij VT
ij ,

where Xij is an Ti ×F matrix containing the original neural
spectral data of real values; Uij is an Ti × Ti orthogonal
matrix known as the left singular matrix; VT

ij is the transpose
of Vij , which is an F × F orthogonal matrix known as the
right singular matrix; Sij is an Ti × F rectangular matrix
with singular values along the pseudo-diagonal (Gentle
2017). The singular values are nonnegative real numbers,
where mode m is denoted σij,m, which are ordered from
largest to smallest. The number of nonzero singular values
corresponds to the rank of Xij . That is, Mij = rank(Xij ).

SVD is used to decompose Xij into a linear summation
of Mij rank-1 matrices, illustrated in Fig. 2. Specifically:

Xij =
Mij∑

m=1

Aij,m =
Mij∑

m=1

σij,m uij,m vT
ij,m, (1)

where Aij,m is an Ti × F rank-1 matrix composed of the m-
th SVD components, or mode m, including the m-th singular
value and the left and right singular vectors from the m-
th columns of Uij and Vij , respectively denoted as uij,m

and vij,m (Gentle 2017). Each mode is a unique low-rank
approximation. In fact, the best rank-1 approximation of
Xij in terms of minimizing the 2-induced matrix norm is
Aij,1 where m = 1. Adding the matrix Aij,2 to Aij,1 would
produce the best rank-2 approximation and so on.

2.2.3 Select number of modes

Each Aij,m will contain unique information about Xij .
One can also think of each mode as capturing a unique
pattern found in the original spectrogram. Therefore, it
may be beneficial to analyze multiple modes. On the one
hand, using the first mode may bias the tool to focus
its approximation to one particular frequency. On the
other hand, one could choose to examine all of the modes but
this would be computationally expensive and could produce
results that are as overwhelming as the original data set.

Fig. 2 SVD. Example of SVD on a spectrogram. As illustrated above,
the spectrogram Xij can be decomposed into a linear summation of
Mij rank-1 matrices as in Eq. (1). Each Aij,m matrix adds more
information about the original matrix, where mode m = 1 contains the

most information and mode m = Mij contains the least. The transpose
of Xij and Aij are plotted in the spectrogram so that time is along the
horizontal axis and frequency is along the vertical axis
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To minimize the number of modes while maximizing
the approximation of the original data, one would need to
look no further than the largest consecutive modes. The
quality of how well Aij,m reflects the original spectrogram
is calculated using the following ratio:

R2
ij,m =

∥∥∥σij,m uij,m vT
ij,m

∥∥2

∥∥Xij

∥∥2
= σ 2

ij,m
∑Mij

m=1 σ 2
ij,m

. (2)

This quantity is referred to as the amount of variance
explained by mode m. Notice how the ratio only depends
on the singular values. That is, the squared singular values
are proportional to the amount of variance explained by
its corresponding singular vectors. The amount of variance
explained by each mode for trial i and brain region j can be
collated into the vector R2

ij ∈ R
Mij .

We can use R2
ij to determine the minimal number

of modes to analyze while maximizing the amount of
variability across all trials and all brain regions. To find this
number, the cumulative sum of R2

ij is averaged across all
trials and all brain regions, appending NaN to the end of the
vector to match the length of the largest Mij . Alternatively,
one could truncate the vectors to an agreeable length.

Figure 3 demonstrates the average cumulative percent of
variance explained over the top five modes using our data
set described in Section 3. One should immediately observe
that most of the variance is explained by the top two modes,

Fig. 3 Select number of modes. Plot of the average cumulative percent
of variance explained for modes m ∈ {1, . . . , 5} across all trials and all
brain regions. Error bars represent ±1 standard deviation. Notice how
the average first mode accounts for nearly 50% of the original data. A
criterion can be set to optimize the minimum number of modes needed
to maximize the amount of variance captured. For example, the optimal
number of modes needed for a criterion of 50 (dashed line)—to capture
at least 50% of the variance of the original data—would be M = 2

which supports the rationale of limiting the analysis to the
first few modes.

The user can choose a criterion between 0–100% to
initiate a constraint that limits the number of modes the tool
will analyze. For example, choosing a criterion of 50 would
use the minimum number of modes needed to explain at
least 50% of all the variance in the original data, which
optimally would be the first few modes. We applied this
criterion (dashed line in Fig. 3) to our data to find that we
only need to use the first 2 modes. The subset of modes the
tool will analyze will be denoted as m ∈ {1, . . . ,M} where
M is the optimal number of modes based on the criterion.

2.3 Cross-correlation analysis

Next, we aim to relate the temporal summary of neural
activity with the dynamic behavioral signal utilizing cross-
correlation.

2.3.1 Cross-correlate

To compare the neural activity in brain region j to behavior,
we cross-correlate the temporal singular vector uij,m and
time-varying behavioral signal yi for each trial i. The cross-
correlation value, or correlation, measures the similarity bet-
ween two signals as a function of lag d. The result is a vector
of correlations for each lag value, denoted rij,m ∈ R

2Ti−1

(Fig. 1c). Corresponding to each correlation is a p-values,
denoted pij,m ∈ R

2Ti−1.

2.3.2 Calculate norm

This step measures the strength of the correlation between
the two signals by summarizing rij,m. The p-norm is
calculated to measure the “size” of rij,m or the overall
magnitude of its values. The resulting scalar is denoted as
rij,m and is used to quantify the overall correlation between
the two signals for brain region j and trial i. Three common
norms are p = 1, 2, ∞ (Gentle 2017). Regardless of the
type of norm, the result is a scalar rij,m which quantifies the
fit between uij,m and yi .

We commonly choose the infinity norm as our measure-
ment. The infinity norm is a special case whose solution
is the maximum absolute value of rij,m. This choice per-
mits access to alternatively quantifying the strength of the
correlation with pij,m = pij,m(d) such that lag d satisfies

‖rij,m ‖∞ = max
−Ti � d � Ti

{|rij,m(d)|} .

Both rij,m and pij,m measure the correlation between the
approximate neural activity of mode m in brain region j and
the behavior for trial i.



J Comput Neurosci

2.4 Ranking procedure

Recall that the goal of the analysis is to (i) produce a
rank ordered list of pairs of brain regions j ∈ {1, . . . , J }
and modes m ∈ {1, . . . , M} sorted by how well neural
activity correlates with behavior and (ii) determine a
focused range of frequencies that significantly contributes
to the neural activity for each of these brain region and
modes.

Here, we demonstrate how to accomplish these goals
utilizing the results from Section 2.3. The outline of this
procedure is shown in Fig. 1d and described below.

2.4.1 Rank ROIs

We define ROIs (Regions-Of-Interest) as the rank ordered
list pairs of brain regions and modes sorted from strongest
to weakest by the average correlation between the temporal
singular vectors and the behavioral signals.

At this point in the analysis, each trial i for brain
region j has a correlation for each mode m, denoted
rij,m. The decision to make is how to use these values
to determine which brain regions are most related to
the behavior. There are multiple approaches to summa-
rize the overall relationship between brain region j and
the behavioral signal. A straightforward way is to calculate
the average correlation for each brain region an mode:
rj,m = I−1 ∑I

i=1 rij,m. Alternatively, if pij,m is avail-
able, then the average p-value can also be calculated:
pj,m = I−1∑I

i=1 pij,m.
The more closely the temporal singular vector aligns with

the behavior signal, the higher the average correlation (or
the lower the average p-value) will be. Therefore, these
averages can be used to arrange the pairs of brain regions
and modes into a rank ordered list, from highest average
correlation to lowest average correlation.

Optionally, one could apply a threshold on the averages
to limit the number of ROIs to a subset. For example,
applying a decision rule of θ � r̄j,m grants the user the
ability to finely tune a subset of ROIs to those that have an
average correlation above θ . Exploring the full list of J ×M

ROIs is equivalent to a threshold of θ = 0.
From here, one can freely select a subset of ROIs to

further explore, or choose to look at all regions as ROIs.

2.4.2 Rank FOIs

Additionally, a rank ordered list of FOIs (Frequencies-Of-
Interest) for a given ROI is found using the frequency
singular vectors. The FOIs are obtained by sorting the
frequencies which occur from most commonly and influen-
tially across all trials to least. FOIs can be framed in terms
of bins or bands.

Recall that Aij,m can be decomposed into the vectors
uij,m and vij,m, where the latter—known as the frequency
singular vector—summarizes the frequencies that contribute
to the m-th mode of Xij . Then it is fair to assume that vij,m

contains important features pertaining to the contributions of
each frequency bin when uij,m is strongly correlated with yi .

The goal of this step is to summarize vij,m over all trials
by quantifying the influence each frequency bin has on Xij .
There are multiple ways to encapsulate vij,m over all trials
into a F × 1 vector. One approach would be to calculate the
average absolute value of each frequency bin across all trials:

vj,m=
{

vj,m(f ) =
∑I

i=1 |vij,m(f )|
I

}F

f =1

.

Frequency bins would be equally weighted across trials
since each vij,m is a unit vector from the orthogonal matrix
Vij . Hence, one could add a weighting factor on vij,m

to accentuate the response for stronger trials in the average by
using correlation value rij,m or singular value σij,m. For the
purposes of this paper, we only considered the nonweighted
average.

The FOIs for the m-th mode of brain region j are
determined by sorting the values of vj,m, from highest to
lowest, and reordering the frequency bins along the sorted
dimension. In other words, the frequency bins that have the
highest absolute average must be the frequency bins that are
most influential in Xij . Refer to Section 4 for a discussion
on other possible approaches to locating bins of interest.

Above, FOIs are defined using frequency bins. But FOIs
can analogously be interpreted using the frequency bands
commonly referenced in literature. Here, we demonstrate
one approach with the bands delta (1–4 Hz), theta (4–8 Hz),
alpha (8–15 Hz), beta (15–30 Hz), low gamma (30–60 Hz),
high gamma (60–100 Hz), and hyper gamma (100–200 Hz)
(Basar et al. 2000; Canolty and Knight 2010; Crone et al.
1998a, b; Kahana et al. 2001). The frequency band version
of FOIs is found by averaging the aggregated list of
frequency singular values for all the bins contained in the
band, then ranking each band in a similar manner as before.

3 Amotor control case study

We recently collected a data set consisting of neural
activity from nonmotor brain regions during a move-
ment task without any predefined hypothesis (Breault et
al. 2017; Kerr et al. 2014, 2017). Due to the inherent
complexity of human data, we were uncertain as to
whether any neural correlates existed between the neu-
ral data and path-related behavioral information because
no regions within the motor circuit were recorded. Only
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associative cortices and subcortical structures were acces-
sible. Therefore, we required an exploratory data analysis
methods, such as that proposed here, to reveal what brain
areas, if any, were relevant to behavior. Analyses on electro-
physiological and behavioral data were conducted offline
using custom MATLAB� scripts (Mathworks, Natick, MA).

3.1 Neural data

Electrophysiological data were collected from a medically
refractory epileptic subject at Cleveland Clinic while per-
forming a motor task. LFP recordings of deep to periph-
eral brain regions were captured using SEEG technique
from multiple depth electrodes implanted for seizure local-
ization (González-Martı́nez et al. 2015).

Neural recordings were collected at a sampling rate of
2 kHz using a clinical electrophysiology acquiring system
(Nihon Kohden 1200, Nihon Kohden America, USA) onsite
in the Epilepsy Monitoring Unit. The recording session was
free of epileptic activity. All electrode contacts were labeled
by clinicians according to anatomical location based on
postoperative imaging.

3.1.1 Preprocessing

The neural activity was preprocessed using spectral analysis
on the voltage data to obtain the data structure described
in Section 2.2.1. Oscillatory power was calculated using
continuous wavelet transform with a logarithmic scale
vector ranging 1–200 Hz and complex Morlet wavelet with
ω 0 = 6. Next, we divided the instantaneous power spectral
density into overlapping time bins (50%) by using a time
window of 100 ms every 50 ms, averaging over each bin.
Each 100 ms time bin was labeled using the last temporal
index corresponding to that window. Finally, the power
of each frequency bin was log normalized over the entire
recording session time using the z-score based on the log of
the power for each frequency bin fitted to a standard normal
distribution.

3.1.2 Neural temporal summarization

The temporal summary of the neuronal activity from each
electrode over all trials was found using the proposed
method from Section 2.2.2 on the first M = 2 modes. In all,
our analysis consisted of J = 62 brain regions and I = 98
trials from a single subject during one recording session.

3.2 Behavioral data

The raw behavioral data comprised of cursor position
recorded using a robotic manipulandum from the InMotion
ARM Interactive Therapy System (Interactive Motion

Technologies, Watertown, MA, USA), which were collected
simultaneously with the SEEG data over the entire session.

3.2.1 Motor task

The subject performed a speed and goal directed reaching
movements that have been previously described (Breault
et al. 2017; Johnson et al. 2014; Kerr et al. 2014). The
interface of the task was prepared in MATLAB (Mathworks,
Natick, MA) using MonkeyLogic (Asaad and Eskandar
2008; Asaad et al. 2013) and displayed on a computer screen
attached to the manipulandum. The task consisted of several
epochs, which were distinguishable by the visual stimuli
as shown in a timeline of simulated screens in Fig. 4. A
window of time between MoveOnset and HitTarget was
used for the neural and behavioral signal in our analysis.

3.2.2 Deriving the behavioral signal

The behavioral signal yi for each trial was derived using
cursor position. This signal, called the modulation angle
captured the temporal evolution of the correction angle of
the cursor’s movement. This angle represents the difference
between the instantaneous direction of the cursor and the
direction of its current position to the target. The larger the
modulation angle was, the more off course the subject’s
movement was from reaching the target. A modulation
angle of zero is interpreted as the subject moving directly
towards the center of the target.

The raw position data, such as those seen in Fig. 5,
was smoothed using a low-pass Butterworth filter with a
cutoff frequency of 10 Hz. For trial i, the gradient on
the raw position data was used to obtain the instantaneous
vector wi for each time point. The target vector zi always
points towards the center of the target of a trial. The
modulation angle yi was calculated by extracting the
projection of the instantaneous vector on to the straight
line between the position point and the center of the
target.

The modulate angle was calculated as the angle between
the instantaneous and target vectors:

yi(t) = sign([zi (t)×wi (t)]·e3) atan2d

(‖zi (t) × wi (t)‖
zi (t) · wi (t)

)

using the four-quadrant inverse tangent in degrees (MAT-
LAB 2017). In our equation, we solved for the magnitude
and direction of modulation angle separately. We then com-
bined terms with element-wise multiplication to get a vector
of angles between [−180◦, 180◦] at each time point t for
trial i. A visualization of this calculation is demonstrated
in Fig. 5. The behavioral signal was subsequently down-
sampled in order to match the time indexing of the neural
signal.
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Fig. 4 Motor task. a An illustration of the manipulandum set-up in
relation to the subject, who sat approximately two feet from the screen.
b A detailed timeline of visual stimuli displayed on the screen over the
course of a completed trial. The goal of the task was to move a cursor to
the target at an instructed speed. Each trial began with a speed instruc-
tion of either “fast” or “slow,” represented by the position of the green
rectangle on the blue bar (SpeedInst). After the subject moved the
yellow cursor to the center, one of four targets was presented (Show-
Target) for 2 ± 0.25 s (mean ± standard deviation) prior to movement
command (GoCue). The point when the yellow cursor left the center

(MoveOnset) was marked in order to capture the point in the movement
that did not include movement initiation (MoveOnset). The movement
was complete after the cursor hit the target (HitTarget) and stayed in
the target for 0.50 s. The subject received immediate feedback on their
trial speed relative to the speed instruction, as represented by the thin
yellow rectangle (MoveFeedback). If they successfully met the speed
instruction, then a $5 bill was displayed. Otherwise, they were shown
a red X (Outcome). The time window chosen for this analysis was
between MoveOnset and HitTarget

3.3 Correlation results

The infinity norm (p = ∞) was used to capture the absolute
maximum correlation, rij,m, and the concurrent p-value,
pij,m, between uij,m and yi across m ∈ {1, . . . , M}, i ∈
{1, . . . , I }, and j ∈ {1, . . . , J }.

To understand the relationship between rij,m and pij,m,
the pairs were organized in a scatter plot seen in Fig. 6a
where the points are shaded from short (light) to long (dark)
trials. The general trend observed is that higher correlations
coincide with lower p-values. Hence, a strongly correlated
trial also tends to be a statistically significant trial. There is
also a tendency for shorter trials having higher correlations
but higher p-values. This is inherently due to the fact that
lesser time bins will lead to weaker p-values despite large

correlations. The opposite is true for longer trials. These
trials will tend to get lower correlation but lower p-values
since there are more time bins.

Examples of a weak and strong correlation were prepared
in Fig. 6b–c, respectively, to obtain intuition about rij,m.
Each example represents a separate brain region during
different trials. We first wanted to confirm whether uij,m

represented the spectrogram well enough before judging the
fit of the correlation, via visual inspection.

It is clear that both examples of uij,m summarize aspects
of their spectrograms. In the weak example (Fig. 6b), the
temporal singular vector summarizes rhythmic oscillation
across 30–200 Hz while the strong example (Fig. 6c)
summarizes the broadband activity across 4–15 Hz and 8–
100 Hz. Therefore, uij,m is a sufficient representation of

(a) (b)

Fig. 5 Deriving the behavioral signal. a The raw cursor trajectories
of 98 trials from one subject used between MoveOnset and HitTar-
get. This data was used to derive the behavior signal called modulation
angle. For each trial, the subject was instructed to move a cursor from
the center circle to one of four targets. Cursor paths varied from trial-
to-trial. b (Top) Visual representation of modulation angle at time

point t overlapping actual cursor position for a particular trial i. (Bot-
tom) Plot of yi computed from the cursor position moving from the
center to the right target. The dot represents the modulation angle
measured between wi (dashed line) and zi (hashed line) at the same
corresponding time point t visualized above. The event is time locked
to MoveOnset
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Fig. 6 Calculate norm. a Scatter plot of rij,m and associated pij,m

across all trials, brain regions, and modes. The p-values have been
transformed for visualization purposes by − log(pij,m). The number
of points depends on the number of trials I , brain regions J , and the
number of modes M . In our example, I = 98, J = 62, and M = 2,
resulting in I × J × M = 12, 152 total points of

(
rij,m, pij,m

)
. Points

are colored based on the total time of the trial from short (light) to long

trials (dark). b The original spectrogram, uij,m, and yi from a weakly
correlated example where

(
r(2,1),1, p(2,1),1

) = (0.16, 0.46), marked by
the star (�) in the lower left quadrant of the scatter plot in (a). c The
original spectrogram, uij,m, and yi from a strongly correlated exam-
ple where

(
r(90,59),1, p(90,59),1

) = (
0.96, 8.3 × 10−16

)
, marked by the

diamond (�) in the upper right quadrant of the scatter plot in (a)

the spectrogram. The strength of the correlation between
uij,m and yi are evident by visual comparison. The
temporal singular vector of the weak example has an
oscillatory pattern that is not matched by the behavioral
signal. Meanwhile, the temporal singular vector of the
strong example has a clear positive correlation. From these
observations, it is clear to see why Fig. 6b received a low
correlation and Fig. 6c received a high correlation.

3.4 Ranking results

Using the results of SVD and cross-correlation, ROIs and
corresponding FOIs were ranked as described below.

3.4.1 ROIs

The average correlation rj,m for each mode of each brain
region was calculated, as discussed in Section 2.4.1. Under
this regime, it is assumed that brain regions encoding the
behavior will have a higher average correlation than those
that are not encoding the behavior. Figure 7a shows the
distribution of rj,m, which was found to have a mean of
0.65 ± 0.03 (mean ± standard deviation) with a negative
skewness. This skewness may indicate a subset of highly
correlated regions.

Next, brain regions were arranged in a list, ordered by
their respective rj,m to find the preliminary ROIs. Figure 7b
shows a subset of brain regions with the highest rj,m (dark
left) and the lowest rj,m (light right). Interestingly, 9 out of
the 10 ROIs were found using the second singular vector.

To verify whether there was a significant difference
between correlations from the top ranked ROI compared to
the correlations from the bottom ranked ROI, a two-sample
t-test was performed using the distributions of rij,m from
the highest and lowest ranking ROI from Fig. 7b. These
distributions (Fig. 7c) were found to statistically differ (p �
0.05).

Though we used rj,m for demonstrative purposes, similar
results are found when using the corresponding pj,m. The
concern brought up in Section 3.3 and Fig. 6a about trial
lengths would be nullified if all brain regions are averaged
using the same trials. Hence, each average would be equally
conflicted by the disparity due to the dependence of p-
values and the number of observations in a trial.

Upon closer observation, we determined that the top 10
ROIs shown in Fig. 7b primarily consisted of limbic and
visual brain regions (Esslen et al. 2003; Gitelman et al.
1999). In other words, limbic and visual regions of the
brain were correlated with our behavioral metric measuring
movement error. This preliminary result suggests that the
brain could be emotionally reacting to the subject moving
their cursor “off course” from the intended target.

The left superior temporal gyrus was found in the both
ROIs subsets consisting of the highest and lowest rj,m.
This indicates that some electrode contacts within the same
labeled brain region may be observing different neuronal
responses, implying that neurons within the same region can
simultaneously produce two different signals to generate
the same behavior. This is consistent with the idea that
the activity within a region is not necessarily ubiquitous,
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Fig. 7 Rank ROIs. a Histogram of average correlation rj,m across
all pairs of brain regions and modes. The mean of the distribution is
0.65 ± 0.03 (mean ± standard deviation) with a negative skew, indi-
cating that more pairs of brain regions and modes have an average
correlation above 0.65 than below. b Bar graph of a subset of 20 ROIs
consisting of the 10 brain region modes with the highest average cor-
relation rj,m (dark left) and 10 brain region modes with the lowest

average correlation rj,m (light right). Error bars represent ±1 stan-
dard error of the mean based on the distribution of correlations rij,m
for each brain region j and mode m. c Box plot of rij,m values of the
correlations for the brain region and mode pairs with the highest aver-
age correlation rj,m (dark left) and the lowest average correlation rj,m

(light right). These distributions were compared using a two-sample
t-test and found to be statistically different (p � 0.05)

namely noticed in larger areas such as the superior temporal
gyrus. In actuality, the superior temporal gyrus found in the
top was located on an electrode located more dorsally to
the superior temporal gyrus in the bottom. Further, the left
superior temporal gyrus had more electrode contacts than
most other regions, consisting of 12.90% of all contacts
compared to 1.61% of right precuneus contacts.

For the purposes of this demonstration, we arbitrarily
restricted our ROIs to the 10 brain regions with the highest
rj,m, as shown in Fig. 7b and Table 1. However, it is
important to emphasize that the ROI decision is entirely
defined by the user of this tool.

3.4.2 FOIs

FOIs were found using the frequency singular vector vij,m

for each ROI as described in Section 2.4.2.
Figure 8a showcases the result of FOI extraction using

all trials in the left OrbitoFrontal Cortex (OFC), which
happened to be the top ROI in Fig. 7a. The most
influential bins ranged primarily between 7–54 Hz. The
least significant frequency range was between 100–200 Hz.
Table 1 contains the top 24 (out of 55) FOIs in terms of
frequency bins of the ROIs, in numerical order.

A common representation of frequency domain on neural
data is to group frequency bins into frequency bands. Using
the predefined bands and procedure stated in Section 2.4.2,

FOIs in terms of frequency bands were found using the same
procedure. In Fig. 8b, we found the following bands in order
from most to least important: alpha, beta, low gamma, theta,
high gamma, delta, hyper gamma. These bands correspond
with the ranges found to be most and least important from
the frequency bin results described in the paragraph above.

Refer to Table 1 for the top 3 (out of 7) FOIs band of
the remaining ROIs, ordered by their frequency range. In
Section 3.4.4, we discuss an application for the FOIs based
on this example.

3.4.3 Method comparison

This framework is flexible enough to be utilized for a
variety of conditions. One could consider omitting spectral
decomposition (Section 2.2) in favor of correlating the
behavioral signal to the raw neural time series. In this
section, guided by qualitative examples, we show that
skipping spectral decomposition leads to biased correlations
and restricts the tool from producing a comprehensive
result.

The raw voltage signal was downsampled using the
MATLAB function decimate. This signal was used as
a substitute for uij,m to run through the cross-correlation
analysis (Section 2.3) and rank ROIs (Section 2.4.1).
FOIs could not be calculated due to missing frequency
information from the lack of spectral decomposition.
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Table 1 List of selected ROIs and FOIs extracted using the proposed tool

ROIs m Brain regions FOIs bins [Hz] FOIs bands

42 2 orbitofrontal cortex L 7–54 alpha, beta, low gamma

24 2 inferior temporal sulcus R 6–13, 16–54 alpha, beta, low gamma

45 2 parietooccipital sulcus R 8–46, 84–109 alpha, beta, low gamma

48 1 precuneus L 1–7, 9–14, 17–21 delta, theta, alpha

60 2 supramarginal gyrus R 5, 10–65, 84 alpha, beta, low gamma

7 2 fusiform gyrus L 4–5, 8–54 alpha, beta, low gamma

12 2 hippocampus (anterior) L 4, 6–46 alpha, beta, low gamma

50 2 superior temporal gyrus (ventral) L 1–6, 8–9, 46–84 delta, theta, high gamma

30 2 intraparietal sulcus R 4, 10–11, 14–84 beta, low gamma, high gamma

25 2 inferior temporal sulcus R 4–6, 8–42 alpha, beta, low gamma

The distribution of average correlation using the raw
data (not shown) was symmetrical with a mean of 0.53 ±
0.07, which was lower than the distributions of the spectral
correlations (Fig. 7a). Further, the raw correlation results
were neither as strong nor as significant as the spectral
correlation results. Comparing the correlation scatter plots
from the raw analysis (Fig. 9a) to the spectral data
(Fig. 6a), the raw correlations are weaker than the spectral
correlations as shown by the lack of points in the upper right
quadrant. This leads us to believe that the temporal singular
vectors correlated better than the raw data to the behavioral
data.

We will refer to the ROIs from the raw data as raw ROIs
and the ROIs from the spectral decomposition as spectral
ROIs. The top 10 raw ROIs consisted primarily of brain
regions from the limbic system, including the left cingulate
cortex (posterior), left hippocampus (anterior and posterior),
right hippocampus (anterior), and left amygdala.

To understand why the tool found correlation using the
raw data and the cause of the disparity between the top
10 raw ROIs and spectral ROIs, we qualitatively com-
pared the spectral (m = 1), raw, and behavioral data on a
trial-by-trial case. We choose to visualize the left hippocam-
pus (anterior). Examples of our tool are exhibited in Fig. 9
for two cases: (b) when the raw data correlated well with
behavior and (c) when the raw data did not correlate well.

Upon visualization, it was clear that the high correlation
between the raw and behavioral data was obtained due to
a bias towards the lower frequency component in the raw
signal, which closely matched the low frequency inherent
in the behavioral signal. This bias may explain why the
top raw ROIs were populated by primarily limbic regions.
The limbic system is known for emotional processing and
memory, functions that tend to associate with slower waves
such as delta and theta (Basar et al. 2000; Kahana et al.
2001; Knyazev 2007). This claim is supported by the FOI

Fig. 8 Rank FOIs of left OFC. a Bar graph of the average absolute fre-
quency singular vector vj,m for brain region j in frequency bins. Grey
horizontal lines represent the bounds for each frequency band. Bars
are colored according to their relative ranking, from highest (dark)

to lowest (light). b Bar graph of the average absolute frequency sin-
gular vector vj,m for brain region j in frequency bands according to
Section 2.4.2. Bars are colored according to their relative ranking, from
highest (dark) to lowest (light)
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Fig. 9 Method comparison. a Scatter plot of rij,m and associated pij,m

by correlating the raw data to the behavioral signal, across all trials and
brain regions. The p-values have been transformed for visualization
purposes by − log(pij,m). Points are colored based on the total time of
the trial from short trials (light) to long trials (dark). “Good” points are
those located in the upper right quadrant, indicating a strong and sig-
nificant correlation. Correlations found using the raw data were neither
as strong nor as significant as the correlations found using the temporal
singular vectors seen in Fig. 6a. b Example trial of the left hippocam-
pus (anterior) having a high correlation with the behavioral signal for
both the raw data

((
r(12,5), p(12,5)

) = (
0.91, 3.3 × 10−8

))
and spectral

data
((

r(12,5),1, p(12,5),1
) = (

0.76, 3.9 × 10−5
))

. This follows a similar

layout as Fig. 6b–c, with the addition of the raw signal xij over the
same duration. The raw signal and temporal singular vector uij,m share
a similar influence from a lower frequency component that comple-
ments the behavioral signal yi , hence their high correlations. c Exam-
ple trial of the left hippocampus (anterior) with contradicting results
between the raw data

((
r(12,27), p(12,27)

) = (
0.53, 3.8 × 10−3

))
and

spectral data
((

r(12,27),1, p(12,27),1
) = (

0.93, 1.9 × 10−10
))

with the
same layout. The raw data appears to be composed of higher
frequencies relative compared to the behavioral signal. The spec-
tral data is able to capture the frequency components that corre-
lates with the behavioral signal in a way that the raw data could
not

bands found for the left hippocampus (anterior) (m = 1)—
associated with memory processing (Kahana et al. 2001)—
which included delta, theta, high gamma, and hyper gamma
(not shown).

Therefore, the spectral deposition step retains the essen-
tial qualities of the raw data. Moreover, spectral deposition
enhances the capability of our proposed tool by providing
more comprehensive results, which includes stronger sig-
nificant correlations and a complete frequency inspection
exclusive to SVD via multiple modes and FOIs.

3.4.4 Moving towards confirmatory analysis

This tool could be the first step for numerous applica-
tions that a neuroscientist may devise, from preliminary
exploratory analysis to trial condition comparisons. This
section summarizes two results found by applying the pro-
posed framework to our data set. In particular, we focused
on three of the top 10 spectral ROIs: the left OFC (inset
Fig. 10a) as well as the left and right precuneus (inset Fig. 10b).

The highest FOI band for the left OFC was the alpha
band as shown in Fig. 8b and listed in Table 1. Upon
viewing the results of the left OFC on a trial-by-trial case,
we observed a modulation in alpha band activity around
instances of positive critical points (a.k.a. turning points) in
the behavioral signal for left and right trials.

To capture our observation, we summarized the neural
activity of each trial into a single scalar by averaging
across frequency and time in the original spectrogram
using a window around the alpha band (8–15 Hz) and
a time-locked window of ±0.2 s corresponding to the
time around the positive critical point(s) in the behavioral
signal. A simple confirmatory analysis was performed by
plotting this average alpha power against the concurrent
value of the positive critical point across all left and right
trials. The Pearson correlation and corresponding p-value
were calculated to quantify the relationship between neural
activity and the value of the critical point.

As shown in Fig. 10a, we found a significant (p � 0.05)

positive linear relationship between the magnitude of the
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Fig. 10 Applications. a Scatter plot of average normalized alpha power
in left OFC time-locked to positive critical points during left and right
trials (n = 50). The Pearson correlation and p-value were calculated
to find a significant (p � 0.05) positive trend line (solid line) with a
slope of 0.37 and p-value of 8.2 × 10−3. (Inset) Anatomical location
of left OFC, highlighted on an MRI slice in matching color. b Plot of
average normalized alpha power in left precuneus (solid line) and right

precuneus (dot-dashed line) over all right trials (n = 28) shaded using
±1 standard error and a window time-locked from movement onset
at 0 s until 2 s after movement onset. The time-series were compared
using a nonparametric cluster statistic. We found a statistical difference
(p � 0.05) between 0.5–1 s, indicated by the solid thickened portion
on both lines. (Inset) Anatomical location of left and right precuneus,
highlighted on an MRI slice in matching colors

critical point and the average alpha power. That is, the larger
the critical point, the higher the power in alpha band co-
occurs. This observation relates to the functionality of the
left OFC in movement planning evaluation. In a previous
study of this data by Kerr et al. (2017), OFC activation was
observed in trials when random force perturbations were
applied to the manipulandum where the magnitude of OFC
activation scaled with the force of the perturbation. Bryden
and Roesch (2015) found that activity in OFC increased
in response to suppressing or redirecting movements. Our
observation leads to the hypothesis that OFC is reacting to
the subject redirecting their movement due to unexpected
drifts, measured by the critical points, scaled by the
magnitude of how “off course” they were.

Next, we compared the bilateral functionality of the
precuneus, as it was one of the few regions that was recorded
in both hemispheres as well as highly ranked. In particular,
the left precuneus was the only ROIs in the top 10 that was
found using the first mode (m = 1). The right precuneus
was ranked shortly after (14 out of 124).

We conducted a temporal confirmatory analysis by
averaging the alpha band (8–15 Hz) activity in both brain
regions over all right trials using their common FOIs band
alpha. The temporal signal of each brain region was then
compared using a nonparametric cluster statistic to locate
times where the signals statistically differed (Breault et al.
2017; Kerr et al. 2017; Sacré et al. 2016). A time window
of 2 s after movement onset ensured we were capturing the
neural activity for the entirety of all right trials. Using right
trials, which had an average trial time of 0.94±0.33 s, we
found a significant difference (p � 0.05) between the left

(solid line) and right (dot-dashed line) precuneus between
0.5–1 s after movement onset (Fig. 10b).

The approximate anatomical location of the left and
right precuneus is shown in the inset of Fig. 10b. Each pre-
cuneus began movement onset (0 s) with an initial decrease
in neural activity relative to baseline. Roughly 0.5 s after
movement onset, the left precuneus returned to baseline
while the right precuneus maintained a steady decrease until 1 s.
Our finding aids us in developing questions for future
studies, such as why is there a disparity between the hemi-
spheres and how does this relate to our behavioral signal.

It is important to emphasize that these observations
are just examples of the capability of our tool to aid in
forming novel hypotheses and motivating other studies from
evidence it finds that may have previously gone unnoticed.

4 Discussion

This methodology is useful for scientists who wish to refine
their large-scale spectral neural data into an objective subset
of regions and frequencies that correlate with a dynamic task
signal for further investigation. Our versatile framework is
not only tractable and fast—sifting through our example
of whole-brain spectral data in eight seconds—but also
provides a multitude of flexibilities: it is robust enough
to account for trial-to-trial variability, does not require
predefined frequency bands, and adapts to different signals.

Though the use of SVD is not novel, our manner at which
we apply it is unique. Correlating time singular vectors,
found by decomposing spectral data via SVD, to behavior is
novel to our knowledge.
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In this paper, we have shown one way this general
framework can be applied. Below, we discuss how to modify
each step to fit the aim of any analysis.

Since each mode will emphasize a distinctive pattern in
the spectrogram (i.e., different phases or frequencies), one
may consider utilizing the other singular components and
their directions in addition to or instead of the first. One
may find regions that originally had weak correlations may
actually have strong correlations for a different mode. In
this paper, we demonstrated a method by which one could
choose and include multiple modes. This type of analysis
confirmed that each mode contains unique information, as
we found that FOIs using m = 1 primarily picked up lower
frequency bands, such as delta and theta, whereas FOIs
using m = 2 picked up relatively higher frequency bands.

In general, the relative magnitude of the power in
each spectrogram should be considered when choosing the
mode, as some may contain overpowering activity such
as broadband bursting, which could drown out any other
patterns. Instead of throwing these trials away, one can
use SVD to filter out the noise. Extreme activity will be
primarily accounted for by the first few modes, meaning the
others may contain subtle patterns that may correlate with
behavior. It is also good practice to always look at the data
before, during, and after any analysis step.

Another variation could be to interchange different
dynamic signals, such as physiological or behavioral measure-
ments, or even compare time singular vectors between brain
regions. When faced with data littered with confounding
variables, or multiple trials conditions, it may be appropriate
to probe subsets of the data based on trial conditions. This
tool is versatile enough to fit partitions of data, such as spe-
cific trial conditions. Our application example was obtained
using our tool on a subset of trials consisting of left and right
targets. However, this adaptability comes with the disadvan-
tage that it can sometimes be difficult to find commonality
in activity within regions or amongst trials.

In addition to the scalability of implementing SVD in
MATLAB, the customizability of our methodology is preva-
lent in every major step. There are five critical decisions
users must make: 1) Selecting the number of modes to ana-
lyze, 2) Summarizing correlations across trials and regions,
3) Defining the ROI decision rule, 4) Summarizing fre-
quency bins across trials and regions, and 5) Defining the
FOI decision rule. In this paper, we have demonstrated
one of many ways to define these steps. Apart from des-
ignating a different correlation measurement or appointing
another ranking policy, one could filter out irrelevant tri-
als by imposing a notion of “significant trials” in order to
emphasize stronger correlations and more distinctive fre-
quencies. A threshold can be enforced to restrict the number
of ROIs, such as limiting brain regions to those that satisfy

θ � r̄j,m. To summarize frequencies, frequency singular
vectors can be weighted, by using singular values or corre-
lation for example, on a trial-by-trial case when averaging
to emphasize the bins during stronger trials. Finally, we also
suggest fitting Gaussian distributions to the bar graph in
(Fig. 8a) to identify FOIs. They would be identified using
peak detection, based on an interval around the mean of
each distribution to mark the FOIs as bins and converting
the mean to FOIs bands.

Spectral analysis on neural data traditionally partition
frequencies into predefined frequency bands (Breault et al.
2017; Canolty and Knight 2010; Crone et al. 1998a, b;
Kerr et al. 2014; Sacré et al. 2016; Ward 2003). However,
this may result in losing key features where frequency bins
are split. Further, it has been shown that frequency bands
ranges vary between humans (Crone et al. 1998a); the range
of frequencies that are considered beta band oscillations
for one person may overlap into gamma band range in
another person. Therefore, it is more general to keep the
frequencies in terms of bins as opposed to grouping bins into
bands. In this paper, we have shown how to identify FOIs
that preserves the frequency bins by utilizing the frequency
singular vector. We could have also extracted FOIs as bins
using the extreme values in the Aij,m matrix to identify
frequency bins. Still, frequency bands are typically used in
favor of bins because of the lack of strategies for analyzing
high-dimensional multivariate data. For this reason, we also
demonstrated how to frame FOIs in terms of frequency
bands.

One aspect of our method not discussed in this paper
is the potential implications of correlation lag, defined in
Section 2.3.1. It is possible to recover the value of the
lag corresponding to the infinity norm (Section 2.3.2).
Intuitively, this lag represents the time delay between the
neural and behavioral signal that produces the highest
absolute correlation. One could explore the relationship
of lag between brain and behavior or define a network
hierarchy based on the relative lag between brain regions.
Further, the addition of a lag term would enable this
conceptual framework to be applicable to other fields of
study such as phase synchronization and cross-frequency
coupling (Canolty and Knight 2010; Varela et al. 2001).
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Kerr, M., Sacré, P., Kahn, K., Park, H.-J., Johnson, M., Lee,
J., Thompson, S., Bulacio, J., Jones, J., González-Martı́nez,
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