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Abstract

An intercomparison of seven gridded rainfall products incorporating satellite data
(ARC, CHIRPS, CMORPH, PERSIANN, TAPEER, TARCAT, TMPA) is carried
out over Central Africa, by evaluating them against three observed datasets: (a)
the WaTFor database, consisting of 293 (monthly records) and 154 (daily records)
rain-gauge stations collected from global datasets, national meteorological services
and monitoring projects, (b) the WorldClim v2 gridded database, and (c) a set of
stations expanded from the FAOCLIM network, these two latter sets describing cli-
mate normals. All products fairly well reproduce the mean rainfall regimes and the
spatial patterns of mean annual rainfall, although with some discrepancies in the
east—west gradient. A systematic positive bias is found in the CMORPH product.
Despite its lower spatial resolution, TAPEER shows reasonable skills. When consid-
ering daily rainfall amounts, TMPA shows best skills, followed by CMORPH, but
over the central part of the Democratic Republic of the Congo, TARCAT is amongst
the best products. Skills ranking is however different at the interannual time-scale,
with CHIRPS and TMPA performing best, though PERSIANN has comparable skills
when only fully independent stations are used as reference. A preliminary study of
Southern Hemisphere dry season variability, from the example of Kinshasa, shows
that it is a difficult variable to capture with satellite-based rainfall products. Users
should still be careful when using any product in the most data-sparse regions,

especially for trend assessment.

KEYWORDS

Precipitation, Remote sensing, Congo Basin, DRC, Central African Republic, Cameroon, Gabon

RMets

Q J R Meteorol Soc. 2019;1-24.

wileyonlinelibrary.com/journal/qj © 2019 Royal Meteorological Society

1


https://orcid.org/0000-0003-4896-2332

Quarterly Journal of the

EIRMets

CAMBERLIN ET AL.

Royal Meteorological Society

INTRODUCTION

1 |

Although an important region for the huge carbon stock con-
tained in its forests (Lewis et al., 2009; Saatchi et al., 2011;
Verhegghen et al., 2012), Central Africa is still poorly doc-
umented in terms of climate change and climate variability.
An important explaining factor is the scarcity of in sifu obser-
vations available, even compared to other African regions
(Malhi et al., 2013). Meteorological networks, already char-
acterized by a low density of stations in the 1960s and
1970s, have been gradually deteriorating since then (Maloba
Makanga, 2009; Washington et al., 2013; Nicholson et al.,
2018). For instance, in the early 2010s, no station reports were
received any more in the Global Telecommunication System
from most of the Democratic Republic of the Congo (DRC),
which covers over 2 million km?. Therefore, in order to prop-
erly describe the rainfall patterns, trends and variability over
recent decades in Central Africa, the use of precipitation esti-
mates from satellite observations is crucial. A large number
of near-global, gridded rainfall datasets based on, or incor-
porating, satellite data are now available. However, the skills
of these datasets need to be assessed regionally and at differ-
ent time-scales. Heaney et al. (2016) inventoried the sources
of meteorological data used to study the interactions between
weather and infectious diseases in Central Africa. They noted
that due to sparse and intermittent ground-based observations,
gauge-only interpolated datasets in Central Africa do not con-
tain adequate information for local-scale analyses, although
researchers use them regularly. Zhou et al. (2014) and Hua
et al. (2016) found strong decreasing trends in April-June
rainfall over the northern part of DRC since the late 1990s,
in two global-scale datasets merging satellite and rain-gauge
data. However, Maidment et al. (2015) obtained striking
differences in Central Africa de-seasonalised precipitation
trends between 1983 and 2010 depending on the gridded
dataset, especially a suspicious rainfall decline in the ARC
product, which they attributed to temporally inconsistent and
sparse gauge networks.

Only a small number of studies have been dedicated to
the intercomparison between satellite rainfall estimates over
Central Africa, and very few have included a validation step
against in situ observations. McCollum et al. (2000) analysed
an early version of GPCP (Global Precipitation Climatol-
ogy Project) satellite estimates showing that in Central Africa
annual rainfall estimates had approximately twice the mag-
nitude of those obtained from rain-gauges. Beighley et al.
(2011), through streamflow data and a river routing model,
found that satellite rainfall estimates provide unreasonably
high values during the rainy seasons, although TMPA (some-
times referred to as TRMM in the literature) outperforms
CMORPH and PERSIANN (see Table 1 for a listing of
satellite-derived precipitation datasets). Washington et al.
(2013) compared a number of satellite rainfall estimates

(CMAP, TAMSAT, GPCP, CMORPH, TMPA) with gridded,
gauge-only observations (Climate Research Unit — CRU),
reanalysis data and outputs from CMIP3 and CMIPS models.
Their analysis however considered neither interannual vari-
ability nor the daily time-scale. They found inconsistencies
(including between the observational datasets) in the loca-
tion of mean annual precipitation maxima over the Congo
Basin. Vondou and Haensler (2017) assessed the skill of
the regional climate model REMO against various gridded
observation or satellite products. They noted that regarding
interannual variations, a large spread is found among obser-
vations, highlighting uncertainties related to the very low
density of stations. Major differences are also found between
TMPA and GPCP in the wet-day frequency and the 95th
percentile of daily rainfall. Munzimi et al. (2015) found rela-
tively large biases in TMPA over the Congo Basin. However,
a recalibrated version of the product using 12 rain-gauges
from DRC performs better, as based on a validation against
the WorldClim long-term mean precipitation field. Monsieurs
et al. (2018) validated TMPA over the western branch of
the East African Rift against 46-gauge observations from
1998 to 2018. They found a systematic underestimation of
TMPA for rainfall above 5 mm/day, and a lower perfor-
mance during the dry months and in areas with complex
topography.

Other intercomparison or validation studies were car-
ried out at continental scale or considering several regions
across Africa. Thiemig et al. (2012) analysed CMORPH,
RFE v2, TMPA, PERSIANN, GSMap products as well
as ERA-Interim over four sparsely gauged African river
basins (Zambezi in Southern Africa, Volta in West Africa,
Juba—Shabelle in East Africa and Baro—Akobo in Ethiopia).
The validation against 205 rain-gauge stations focused on
rainfall characteristics relevant to hydrological applications,
such as annual catchment totals, spatial patterns, seasonality,
number of rainy days, timing and volume of heavy rain-
fall events. On the whole, RFE v2 and TMPA tended to be
the most accurate. Sylla ef al. (2013) intercompared daily
rainfall from three observed datasets incorporating satellite
data (TMPA, RFE v2 and GPCP) over Africa as a whole.
Small differences were found in mean rainfall, but larger
ones in higher-order daily precipitation statistics, such as
frequency of wet days, precipitation intensity, extremes and
maximum length of wet and dry spells. These differences
between observational datasets prevent an unambiguous eval-
uation of numerical climate models over Africa. Awange et al.
(2016) compared six satellite rainfall products at monthly
time-scale over Africa. Via a multiple comparison ranking,
and by taking GPCC (Global Precipitation Climatology Cen-
tre) data over entire Africa and rain-gauge observations over
the Greater Horn of Africa as references, it was found that
PERSIANN had the highest signal-to-noise ratio, followed by
ARCv2, TMPA, CMORPH, TAMSAT and GSMaP. A similar
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TABLE 1 Inventory of satellite rainfall estimates datasets listed in the literature review or used in the study (upper part of the table)

Period of
Time-scale  availability
Spatial (highest (in brackets,
Dataset Full name Reference resolution resolution)  period used)
Datasets used in the present study (stars denote products which are adjusted with observed rainfall data)
ARC v2 (*) Africa Rainfall Climatology Novella and Thiaw (2013) 0.10° Daily 1983—Present
version 2.0 (1983-2017)
CHIRPS v2 (*) CHIRP with station data Funk ez al. (2015) 0.05° Daily 1981-Present
(1983-2017)
CMORPH Climate Prediction Center Joyce et al. (2004) 0.07° Half-hourly ~ 12/2002—Present
morphing technique (2003-2017)
PERSIANN (*) Precipitation Estimation from Ashouri et al. (2015) 0.25° Daily 1983—Present
Remotely Sensed Information (PERSIANN- (1983-2017)
using Artificial Neural Networks CDR)
TAMSAT / Tropical Applications of Maidment et al. (2017) 0.0375° Daily 1983—Present
TARCAT v3 Meteorology using SATellite data (1983-2017)
and ground-based observations
African Rainfall Climatology And
Time series
TAPEER Tropical Amount of Precipitation Chambon et al. (2013) 1° 6-hourly 10/2011-2016
with an Estimation of Errors (2011-2016)
TMPA 3B42 Tropical Rainfall Measuring Huffman et al. (2007) 0.25° 3-hourly 1998—Present
v7 (%) Mission (TRMM) Multi-satellite (1998-2014)
Precipitation Analysis
Datasets not used in the present study
CHIRP Climate Hazards group InfraRed Funk et al. (2015) 0.05° Daily 1981-Present
Precipitation
CMAP CPC Merged Analysis of Xie and Arkin (1997) 2.5° Pentad 1979-Present
Precipitation
GPCP 1DD Global Precipitation Climatology Adler et al. (2012) 1° Daily 1996—Present
Project one-Degree Daily
GSMaP Global Satellite Mapping of Kubota ez al. (2007) 0.10° Hourly 2002-2010
Precipitation
IMERG Integrated Multi-satellitE Huffman ef al. (2015) 0.10° Half-hourly  03/2014—Present
Retrievals for Global precipitation
measurement
RFE v2 Climate Prediction Center (CPC) Love et al. (2004) 0.10° Daily 2001-Present

African RainFall Estimates

intercomparison, taking into account a smaller number of
datasets but at a finer temporal resolution (daily) was carried
out by Serrat-Capdevila et al. (2016). TMPA was found to
have the smallest bias in Central Africa compared to the other
products, underestimating daily rainfall on average by less
than 10%, and PERSTANN has the smallest median errors of
rainfall amounts when it correctly detects precipitation events.
Maidment et al. (2017) assessed the skill of two versions of
the TAMSAT product over Africa by comparing them with
CHIRP, CHIRPS, ARC v2, RFE v2, TMPA, CMORPH as
well as rain-gauges in five countries. The TAMSAT daily

estimates improve on the detection of rainy days (based on
a 0 mm threshold) but have no more skill than the other
datasets in capturing rainfall amounts. Several studies focused
on a single African subregion or country, e.g. Uganda (Maid-
ment et al., 2012; Diem et al., 2014; 2019), the Zambezi
Basin (Cohen Liechti et al., 2012), West Africa (Gosset et al.,
2013;2018), Angola (Pombo et al., 2015), East Africa (Dinku
et al., 2018), or the Ethiopian Rift Valley (Tesfamariam et al.,
2019), among others.

On the whole, these studies show that (a) there are signif-
icant disparities in the skill of the satellite rainfall estimates,
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FIGURE 1 Data availability in the WatFOR database. (a) Location map and network of stations; (b) variations in the total number of stations

available for each month. In (a), black squares denote stations of the daily database, large red dots stations of the monthly database. Small orange
dots show additional stations having long-term mean monthly records (FAOCLIM and CRC datasets). White triangles are reference stations for
special analyses (see text). Shadings show elevations in metres. MM: Mitumba Mountains [Colour figure can be viewed at wileyonlinelibrary.com].

(b) there is no single best product, the skill of the products
being dependent on the rainfall variable considered, and (c)
the choice of the best product is highly dependent on the
application (Dembélé and Zwart, 2016). Although some prod-
ucts do show recurrent skills or biases, there are important
differences from region to region, and their performance also
depends on the time-scale. This highlights the need for a com-
prehensive assessment over Central Africa, whose climate
conditions are quite different from those of neighbouring
African regions and where based on the few prior studies sig-
nificant biases seem to be found in many satellite products.
Therefore, the present study seeks to assess the skill of seven
different satellite rainfall estimates for Central Africa, by con-
sidering a range of validation statistics and time-scales, from
daily to monthly means and interannual variability. An addi-
tional evaluation is carried out of how the products are able
to document the length of the dry season, which is viewed as
an important parameter for forest dynamics in the context of
climate change (Fu et al., 2013; Boisier et al., 2015).

The analysis considers Central Africa as the region
extending 8°S—8°N, 8-32°E centred on the Congo rain-
forest. This region encloses most of Cameroon and the
Central African Republic (CAR), except their northernmost
parts, Equatorial Guinea, Gabon, the Republic of the Congo
(Congo-Brazzaville), most of DRC (except its southernmost
part), Rwanda, Burundi, and the westernmost parts of Uganda
and Tanzania (Figure 1).

Section 2 presents the satellite and observational datasets
used in the study. The methods and the issues related to
the datasets intercomparison are discussed in section 3. The
results are framed around five aspects: mean annual rainfall
(section 4.1), mean monthly regimes (section 4.2), daily rain-
fall (section 4.3), interannual variations (section 4.4), and dry
season length (section 4.5).

2 |
21 |

DATA
Satellite products

Seven satellite rainfall estimates have been selected
for intercomparison (Table 1). Because of the paucity of
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recent rain-gauge validation data, we prioritized datasets
covering a long period of time (from the 1980s), but other
datasets available over shorter periods (from the late 1990s
or early 2000s) are also included for comparison. They all
have a high resolution in time (at least daily time-scale)
and their spatial resolutions range from 0.0375 to 0.25°.
TAPEER is an exception with its horizontal resolution of
1° square but this 6-hourly dataset is a fairly new product
based on the Megha-Tropiques satellite mission launched in
October 2011, and which has seldom been included in pre-
vious assessment studies dedicated to African precipitation.
The present study should by no means be considered as an
intercomparison of all existing satellite precipitation prod-
ucts. Several datasets, or versions of datasets (e.g. real-time
products against long-term products) are not included. For
instance, we did not use RFE2, an operational product avail-
able since 2001, but did use ARC v2. The latter, available
since 1983, is based on the same algorithm as RFE2 but
uses a subset of the inputs used in RFE2, and a three-hourly
temporal sampling of infrared temperatures as opposed to
the half-hourly sampling used in RFE2 (Novella and Thiaw,
2013). The spatial and temporal resolutions, periods of data
availability and references of the seven products retained are
presented in Table 1. The following description summarizes
the basic methodology followed to obtain these products.
Note that some products (stars in Table 1) include a merging
with gridded rain-gauge observations, generally at a monthly
time-scale.

The ARC v2 product (Novella and Thiaw, 2013) pro-
vides long-term daily rainfall estimates based on a combina-
tion of 3-hourly Meteosat geostationary infrared images and
rain-gauge observations from the Global Telecommunication
Systems (GTS). It uses the GOES Precipitation Index (GPI)
algorithm, i.e. the calculation of the daily fractional cover-
age of cloud-top temperatures below 235 K, multiplied by a
rain-rate constant of 3 mm h~!. Biases are reduced by merging
the satellite estimates with gridded rain-gauge data.

CHIRPS (Funk et al., 2015) is another long-term rain-
fall product, which is produced in two steps. The first
step (CHIRP product) uses infrared images with the same
cloud-top temperature threshold as in ARC v2, but calibrates
rainfall estimates using (a) another precipitation estimate
(TMPA, see below), which incorporates radar and microwave
data, over a shorter period of time (2000-2013), and (b) a
long-term high-resolution rain-gauge climatology. In the sec-
ond step, CHIRP estimates are merged with daily rain-gauge
records.

CMORPH (Joyce et al., 2004) is a rainfall estimate
based on passive microwave data from low-orbit satellites.
Motion vectors are determined from half-hourly geostation-
ary infrared images and used to propagate the estimates
obtained from the microwave data. The rainfall estimates are
not merged with any rain-gauge observations.

Royal Meteorological Society

PERSIANN precipitation estimates are obtained by apply-
ing neural network functions to infrared brightness tempera-
ture from the geostationary satellites. The PERSIANN-CDR
long-term product (Ashouri et al., 2015) used in the present
study adjusts the estimates to monthly gridded rain-gauge
data from GPCP.

TAMSAT rainfall products are based on computing
cold-cloud duration (CCD) from Meteosat infrared images
at time steps of 15 and 30 min. Calibration with historical
rain-gauge data is carried out at regional scale and in two
steps: rainfall occurrence is mapped by determining optimal
cloud temperature thresholds, then five-day (pentadal) rainfall
amounts are estimated by a linear regression of CCD against
gauge data. Daily rainfall estimates are obtained by dividing
pentadal accumulations by the pentadal CCD then multiply-
ing by the daily CCD. The TAMSAT rainfall product used
in this study, TARCAT v3.0 (TAMSAT African Rainfall Cli-
matology And Time-series: Maidment et al., 2017), is based
on calibrations which do not change from year to year, and
does not merge any near-real-time rain-gauge observations.
This was in order to have a consistent dataset in time and
space, free from artefacts related to changes in the network of
rain-gauges.

TAPEER is a recently released daily rainfall estimate
which incorporates passive microwave data from several
low-orbit satellites, and infrared data from geostationary
satellites (Chambon et al., 2013). It adapts the standard GPI
criteria to current and local meteorological conditions. The
present study retains a version of TAPEER which includes
data from the Megha-Tropiques SAPHIR microwave sounder,
and a bias correction scheme based on TRMM precipitation
radar climatology (Gosset et al., 2018; Roca et al., 2018). In
Niger and Burkina Faso, TAPEER exhibits very small biases
in the reproduction of the frequency distribution of rain rates
(Gosset et al., 2018).

The TMPA 3B42 product (Huffman et al., 2007) incorpo-
rates precipitation radar and microwave measurements from
the TRMM satellite, which enables us to better evaluate rain-
fall intensity compared to products using solely infrared data.
It combines these data with polar-orbiting and geostation-
ary satellite images to obtain 3-hourly rainfall estimates. The
monthly aggregations of rainfall estimates are then scaled to
match GPCP monthly gauge analyses. Version 7 used in this
study improves upon previous ones by incorporating addi-
tional microwave and infrared data, revising the relationship
between radar reflectivity and rainfall rates, and using better
reference databases for bias correction. We used this product
from 1998 to 2014 in order to avoid any possible temporal
inhomogeneity related to the decommissioning of TRMM.

22 |

Three datasets are used for reference: (a) the WaTFor
database, an in situ monthly and daily station database

Observational rainfall datasets
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TABLE 2 Observed rainfall datasets used for validation

Time-scale Period used

Daily / monthly 1951-2017

Long-term monthly means Various periods

Daily / monthly 1951-2017

Dataset Full name / producer Reference

CRC (%) Centre de Recherches de Bigot et al. (1997),
Climatologie / Université Camberlin et al. (2001)
Bourgogne Franche-Comté

FAOCLIM 2.0 Food and Agriculture FAO (2001)
Organization

GHCN (*) Global Historical Climate Menne et al. (2012),
Network / NOAA Peterson and Vose (1997)

GSOD (*) Global Summary Of the Day / Lott et al. (2008)

NOAA

WorldClim v2 University of California Davis

Fick and Hijmans (2017)

Daily Mainly 1973-2017

Long-term monthly means Representative of the

period 1970-2000

Note: The datasets shown with a star, as well as isolated stations described in the text, are included in the “WaTFor” database.

elaborated for the project, (b) the FAOCLIM long-term
mean monthly station dataset from the FAO (Food and
Agriculture Organization), and (c) the WorldClim long-term
mean monthly gridded dataset, version 2. These datasets are
described below. Other available gridded datasets (e.g. CRU
or GPCC), although they depict interannual variability, were
not retained since they rely on a small number of stations over
Central Africa. Gridded time-series therefore merely reflect
an interpolation of very distant rainfall data, which is all
the more problematic in this region where inter-station cor-
relations steeply decrease with distance (Camberlin et al.,
2011).

In the WaTFor database we first combined rainfall records
from the Global Historical Climate Network (GHCN), Global
Summary Of the Day (GSOD) and Centre de Recherches
de Climatologie (CRC) datasets (see Table 2 for descrip-
tion and references). When combining these data, a careful
selection was made to avoid duplicates, verify and correct
the stations’ geographical coordinates, and check the qual-
ity of the data by a routine detection of outliers. CRC data
mainly come directly from National Meteorological Services
and were supplemented by the GHCN and GSOD data (the
latter consisting of stations reporting in the GTS), in this
order. Careful inspection revealed that raw 24 h GSOD totals
generally lag observations from the National Meteorological
Services by 1 day. The standard practice for daily rainfall is to
record it at 0600 UTC and to assign the total amount to the
preceding day (WMO, 2009). This is apparently not done for
the raw GSOD records, which have therefore been reallocated
to the preceding day.

Additional daily rainfall time-series have been collected
and incorporated in the WaTFor database, namely the sta-
tions of Butembo, northeastern DRC (Sahani et al., 2012),
Kinshasa/Ndjili and Kinshasa/Binza, DRC (Makanzu e al.,
2014), a few stations with shorter records over the central
parts of DRC, the synoptic stations of CAR until the early
2000s (included in global databases but with many gaps:

Ndjendolé and Pérard, 2003) and a number of synoptic sta-
tions and simple rain-gauges in Congo-Brazzaville (Samba
and Nganga, 2012).

Original hourly/sub-hourly rainfall data from six auto-
mated tipping-bucket rain-gauges were also collected and
transformed in daily accumulations. This includes:

1. Two stations in the northern Republic of the Congo
(Pokola and Mokabi), set up by CIRAD (Centre de
coopération internationale en recherche agronomique pour
le développement) and IGE (Institut des Géosciences de
I’Environnement) in March 2016 within two timber forest
plots in the framework of the DynAfFor project (Dynamics
of African Forests).

2. Three stations in the eastern DRC (Idjwi, Tshivanga and
Matanda), as part of the RESIST project (Remote Sensing
and In Situ detection and Tracking of geohazards) coordi-
nated by the Royal Museum for Central Africa in Belgium
(Monsieurs et al., 2018).

3. One station in Gabon, supervised by CNRS (Centre
National de la Recherche Scientifique) at Bakoumba in the
Lékédi Natural Park as part of the Mandrillus project.

Data from these automated stations embrace at least the
year 2016 with extensions to earlier or later years at some sta-
tions. A careful visual and automated inspection of the data
was performed to detect errors. For short periods of time,
some gauges happened to be blocked by fallen debris, which
resulted in rhythmic occurrences of very low amounts. Data
from these periods have been deleted.

The final WaTFor database comprises 293 stations for the
monthly records and 154 stations for the daily records (mostly
a subset of the monthly network) (Figure 1a). The station den-
sity is highly variable, with the least stations in most of DRC,
especially for the daily records. Some areas of higher densi-
ties of stations are found in southwestern Congo-Brazzaville,
and in the regions bordering eastern DRC (Burundi, Rwanda,
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western Uganda). Although the period retained is 1951-2017,
most stations have much shorter records. For instance, only
57% of the stations have more than 30years of monthly
records. From an average of 200 stations between the 1950s
and the early 1980s for the monthly records (Figure 1b), the
number of stations sharply declines at the beginning of the
1990s, with no more than 35-50 stations in the 2000s. Almost
no data at all are available over large parts of DRC since
the mid-1990s. The daily records exhibit a similar variation,
with at least 60 stations every day in the years 1961-1990,
dropping to about 20 in the mid-2000s but rising to about 30
stations in the mid-2010s.

For evaluating the spatial patterns of long-term monthly
mean precipitation, we also use the FAOCLIM 2.0 global
station database assembled by the Food and Agriculture Orga-
nization (FAQ, 2001). It includes 28,100 stations at the global
scale with climate normals computed over various periods,
most of the time within the period 1961-1990. Stations
located over Central Africa (N =571) have been extracted and
completed by additional ones from the CRC database, mostly
for the eastern part of the region. Ngoundi station, at the bor-
der between Cameroon and CAR, has been removed from the
FAOCLIM data due to faulty data (Ouédraogo et al., 2016).
Altogether, 641 stations are retained for Central Africa, with
a minimum number of 10 years to compute the mean monthly
and annual averages (with 54% of the stations having at least
25 years). Many of these stations are located in relatively
data-void areas in the monthly and daily databases, hence the
importance of considering this additional dataset. As empha-
sized by Fick and Hijmans (2017), adding stations in remote
locations, even if the temporal sampling of the data is imper-
fect, brings a contribution to our climate knowledge which is
much higher than the possible error associated with the small
sample of years or the different period used in computing
mean rainfall.

In addition to the WatFor and FAOCLIM databases which
consist of rain-gauges only, we used the monthly gridded pre-
cipitation data (long-term means) from WorldClim version 2
(Fick and Hijmans, 2017). This database interpolates at an
approximately 1 km? resolution climate station normals from
several datasets (including GHCN and FAOCLIM 2.0) using
a thin-plate smoothing with covariates such as elevation to
produce monthly mean rainfall fields. These fields are rep-
resentative of the period 1970-2000. However, in data-void
areas, they incorporate stations whose climatic averages are
computed over other periods (of at least 10 years) without
exact temporal range information available (Fick and Hij-
mans, 2017). Hence, reservations should be made on the blind
use of this database when it is compared with more recent
data. However, since the network of stations used in construct-
ing this database is much larger than that used in other gridded
products (e.g. Ward et al., 2011), WorldClim can be seen as a
useful tool (though not perfect) to evaluate the spatial patterns
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of satellite products over Central Africa. WorldClim (v1) pre-
cipitation fields were used as a reference by Munzimi et al.
(2015) to assess the skill of TMPA data. Despite the fact that
some of the records incorporated in WorldClim are ancient
(for DRC, many date back to the colonial period), authors
argue that the basin-wide coverage of WorldClim affords a
valuable basis for an intercomparison with satellite products.
Mean annual rainfall from WorldClim compares very well
with Bultot’s map (Bultot, 1971) computed from about 500
rain-gauges in the Congo Basin for the period 1930-1959.

3 | METHODS

The intercomparison between the satellite rainfall estimates
and the reference data is based on standard statistics (Ebert,
2007), namely:

o A bias indicator (BIAS, taken as the mean error).

e The root-mean square error (RMSE, which is the
square-root of the average of squared errors, and hence is
sensitive to outliers).

o Pearson’s correlation coefficient (r, showing how well the
estimates and the observations covariate in time or in
space).

For daily rainfall, correlations are computed using
square-root transformed data in order to reduce the skewness
in the distribution of the daily rainfall amounts. We use three
additional criteria for evaluating daily rainfall occurrence
(Wilks, 2011):

e The probability of detection (POD, or hit rate, which is
the number of correctly detected wet days, receiving at
least 1 mm, divided by the total number of wet days in the
reference dataset).

e The false-alarm ratio (FAR, which is the number of wet
estimates while the day is actually dry, divided by the total
number of wet estimates).

e The Heidke skill score (HSS, a synthetic skill score which
reaches 1 for perfect estimates and is below zero when
estimates are not better than random chance).

Analyses consider both the temporal and spatial patterns.
The following variables are examined: long-term annual and
monthly means, daily variations, interannual variability of
monthly rainfall anomalies, and dry season duration. While
many of these variables are standard when evaluating rainfall
products, dry season duration was additionally investigated
because this variable is key in determining the rainforest
bioclimate (Fu e al., 2013) and it is believed to bring an
added value in evaluating the skill of the products at different
time-scales.
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All the satellite rainfall estimates were re-gridded to
the 0.05° resolution via bilinear interpolation, in order to
enable an intercomparison of the products. Comparisons
with rain-gauge data were carried out by selecting the 0.05°
grid-point nearest to each station. There is a scale mismatch
issue between the point-based rain-gauge data and the grid-
ded precipitation products (Tang et al., 2018). For this reason,
kriging of in situ rainfall observations prior to evaluation is
usually strongly recommended (Roca et al., 2010; Maidment
et al., 2012). No interpolation or kriging of the rain-gauge
data is carried out in this study because interpolation aims at
reducing local noise, but it introduces uncertainty associated
with the interpolation method. This is particularly the case in
Central Africa where available stations are scarce, making the
reliability of kriging or other interpolation disputable. Addi-
tionally, the aim is not to rigorously quantify the local skill
but to compare the skills of different products. Note that sev-
eral other studies, especially in regions showing a low density
of stations, similarly carried out a direct comparison between
rain-gauges and the nearest grid-point (e.g. Buarque et al.,
2011; Scheel et al., 2011; Maussion et al., 2014; Engel et al.,
2017; Wehbe et al., 2017). Engel et al. (2017) also investi-
gated the impact of increasing numbers of stations in grid cells
of varying size.

In order to assess to what extent the scale mismatch
between station and gridded data may affect the skill statis-
tics, a comparison was made between long-term monthly
mean rainfall at all stations having at least 20 years of data
and the nearest WorldClim grid point (re-gridded to 0.05°
resolution). Two hundred and two stations are used in the
comparison. The overall correlation (n =202 X 12 months) is
very high (r=0.98), and the average bias very low (0.2%);
however, there is a substantial RMSE (16.8 mm/month). This
could be partly seen as the error resulting from the spatial
scale mismatch, and it can be used as a rough benchmark
when evaluating the skill scores obtained for the satellite rain-
fall estimates. However, RMSE also includes errors related
to potential mismatches in the time-periods in each dataset,
especially the fact that several records dating back to pre-1983
are included in the WorldClim database. A proper evaluation
of the spatial scale mismatch should involve considering grid
boxes containing several rain-gauges (Monsieurs et al., 2018),
but which in the present case is not possible since only one
grid box meets this requirement.

Another problem is the uneven length of the rain-gauge
time series when analysing the inter-daily or interannual vari-
ability. It was not possible to retain a common period across
all stations, which would have resulted in the loss of either
valuable stations in low-density zones or the loss of all years
since about 1990, which is impractical to validate rainfall
products starting in more recent years. It was decided that the
overall statistics would be computed on all available obser-
vations, similar to the approach adopted in Monsieurs et al.

(2018). A minimum number of 100 daily records and 60
monthly records (5 years of data) was set for a station to be
included in the evaluation. Since the amount of data available
strongly varies between stations, and to have a proper view of
the spatial variations in the skills of the products, an alterna-
tive analysis of interannual variations was conducted in which
correlations between rain-gauge time series and those of the
nearest grid point were computed by randomly selecting 100
times a fixed number of observations (here 30 months) at each
station. Correlations between rain-gauge and satellite esti-
mates (after removing the mean annual cycle) were computed
for each of these 100 samples, for the median correlation to
be evaluated.

For the statistics computed over the whole set of stations
together, a note of caution must also be exerted on the spatial
representativeness of the results. Except for long-term means,
based on a relatively homogenous distribution of stations and
a gridded observation product (WorldClim), statistics com-
puted on the whole dataset (daily and interannual variations)
are somewhat biased towards the western part of the region
(Gabon, Congo-Brazzaville, CAR), and its easternmost part
(around western Uganda).

While it is desirable to use fully independent data in the
evaluation of satellite estimates, as pointed out by Scheel
et al. (2011), the difficulty in tracing back the exact stations
used in the satellite products for the ground calibration and
in the merging process (for some products) is a drawback for
any verification. Most products incorporating ground obser-
vations use GTS stations only which constitute the GSOD
database. However over Central Africa GTS stations show a
very low density and report intermittently. CHIRPS uses more
rain-gauge data, but over countries such as the DRC, the num-
ber of monthly observations incorporated fell to near zero at
the beginning of the 1990s, and remained low in most neigh-
bouring countries over the same period (Funk et al., 2015). In
the present study, an important part of the reference databases
can be considered as independent from the satellite rainfall
estimates which are evaluated. In addition, two strategies are
adopted to evaluate the products against fully independent
data at a daily time-scale. First, in a similar way as in Toté
et al. (2015), a subset of the rain-gauge data is extracted com-
prising (a) all stations not included in the GSOD database,
and (b), for stations included in GSOD, only the days belong-
ing to months for which no GSOD data at all is available.
In total, this subset is made of 83 stations with at least 100
daily records (generally several thousand per station), repre-
senting in all more than 225,000 daily records over the period
1983-2017. These stations (Figure 2) are mainly located in
southern Congo-Brazzaville, in CAR, near the eastern border
of DRC, plus a few stations in central DRC. Since these four
subregions have quite distinct rainfall regimes, they will be
analysed separately (see boxed areas in Figure 2). Second, a
distinct comparison is presented for a recent period of time
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(mainly 2015-2017) using six fully independent automatic
weather stations, to which we added Kinshasa-Binza, from
the Mettelsat network but not included in global databases
and having complete data over these recent years. The sta-
tions constituting this dataset are shown as white circles and
labelled on Figure la. This sample of stations enables a
detailed discussion of the skills and failures of the different
estimates, in terms of rainfall occurrence and intensity, for dif-
ferent climatic environments (bimodal regimes of the lowland
forest for Pokola and Mokabi, and eastern highlands for Idjwi,
Matanda and Tshivanga, single-peak southern hemispherical
regimes for Bakoumba and Kinshasa-Binza).

At the interannual time-scale, it is more difficult to extract
a fully independent subset of data, since no list is avail-
able of the rain-gauge data incorporated in the merged
satellite-rain-gauge products. However, maps of the station
networks or number of stations per grid point are avail-
able for TARCAT (Maidment et al., 2014), CHIRPS (http://
chg.geog.ucsb.edu/data/chirps/, last accessed 25 March 2019)
and GPCC (https://kunden.dwd.de/GPCC/Visualizer, last
accessed 25 March 2019), the latter being used in the
GPCP product, itself merged to obtain the PERSIANN esti-
mates. In all these products, it was found that in south-
ern Congo-Brazzaville only synoptic stations from the GTS
network were incorporated. Over this region, the WaTFor
database comprises a much larger number of stations (24),
among which only seven are included in the GTS. Hence
southern Congo-Brazzaville (see Figure 2 for location of
the subregion) was selected for a detailed evaluation of

interannual variations of monthly rainfall anomalies among
the seven satellite products.

4 | RESULTS AND DISCUSSION

4.1 |

Long-term mean annual rainfall amounts are first analysed,

Mean annual rainfall

using all the available data from each of the seven rainfall
products, and compared to both the WorldClim grid and the
extended FAOCLIM stations (which were preferred to those
of the WaTFor database which contains a smaller number
of stations). Figure 3 shows the spatial patterns and Table 3A
the skill scores of the rainfall products against observed data.
We verified that biases and skills found for each product
are relatively robust and insensitive to the period considered,
by carrying out a similar analysis on temporal subsets, e.g.
2011-2014 which is common to all seven products.

Central Africa shows high rainfall amounts near the Equa-
tor (1,700-2,200 mm/year, Figure 3a), decreasing both north-
ward and southward, as well as east of the Western Rift Valley
(about 30°E). On the whole, all the products replicate this
pattern well: spatial correlations with WorldClim range from
0.60 to 0.92 (N = 140,845 grid points), and from 0.56 to 0.97
with the extended FAOCLIM stations network (N =641).
The overall good matching between the correlations obtained
against WorldClim and FAOCLIM demonstrates that uncer-
tainties related to the interpolation of observed data in World-
Clim do not interfere in the skill scores obtained in Table 3,
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FIGURE 3 (a) Mean annual rainfall from observations (WorldClim), and (b-h) seven satellite rainfall estimates products, based on all years
available. Thin grey lines show the limits of the rainforest. The bottom-left values are the pattern correlations with WorldClim [Colour figure can be
viewed at wileyonlinelibrary.com].

since correlations obtained with non-interpolated data (i.e. increase in the west along the Atlantic coast in northern
FAOCLIM stations) are relatively similar. However, while Gabon and southwestern Cameroon), some products fail to
observed rainfall amounts tend to be relatively even all along  replicate this feature. A much higher rainfall in the east than
the equatorial region (~1,700 to 2,000 mm/year, with a slight ~ in the west is often displayed, especially in ARC, CMORPH
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TABLE 3 Skill scores of long-term mean annual rainfall (A) and mean monthly rainfall (B) from the 7 satellite rainfall estimates products

against observed data (WorldClim and FAOCLIM)

Dataset CHIRPS ARC TARCAT PERSIANN TMPA CMORPH TAPEER
Period 1983-2017  1983-2017  1983-2017  1983-2017 1998-2014  2003-2017  2011-2016
(A) Mean annual rainfall

Bias / WorldClim (mm/year) 14 -56 61 28 =35 713 118

RMSE / WorldClim (mm/year) 142 255 152 202 189 849 340

r / WorldClim 0.91 0.73 0.92 0.82 0.85 0.69 0.60

r/ FAOCLIM 0.97 0.83 0.93 0.82 0.86 0.71 0.56

(B) Mean monthly rainfall

r / WorldClim 0.97 0.91 0.94 0.95 0.94 0.87 0.88

r/ FAOCLIM 0.98 0.90 0.95 0.90 0.91 0.81 0.82

Note: All correlations (r) are significant at P > 99.9%. Number of observations for annual data: 140,845 (WorldClim grid-points) and 641 (FAOCLIM stations).
Number of observations for monthly data: 1,690,140 (WorldClim grid-points—months) and 7,692 (FAOCLIM stations—months). The best skill score is shown in
bold and is underlined, and the next two best ones are in bold. The lowest scores are in italics.

and TAPEER, as reflected in their relatively lower pattern
correlations with observations compared to other products
(Table 3A). The eastern maximum, near the Mitumba moun-
tains (27-28°E) is systematically overestimated and amounts
to the west tend to be underestimated in ARC and TAPEER.
These differences between the rainfall products have already
been noted by Washington et al. (2013) and Awange et al.
(2016). Some biases in the west could be related to a larger
proportion of warm rains near the coast (resulting in an
underestimation by the satellite products, especially ARC and
PERSIANN, which rely on infrared images). In the rest of
Central Africa warm rains are uncommon (Kodama et al.,
2009). The overestimation of mean rainfall in eastern DRC
by all products could be related to deep convection yielding
lower than expected rainfall amounts as a possible result of
inefficient rain processes (McCollum et al., 2000; Jackson
et al., 2009), or to non-precipitating anvil clouds, as strati-
form rains evolving from deep convective clouds account for
an unusually low fraction of total rainfall in eastern Central
Africa (Schumacher and Houze, 2003). In CMORPH, a sys-
tematic wet bias appears (Table 3A and Figure 3) which is a
well-known feature of this product for several parts of Africa
(e.g. Habib et al., 2012; Awange et al., 2016) and is related
to the fact that CMORPH is not merged with in situ rainfall
observations. TARCAT and CHIRPS show the highest cor-
relations with observations. CHIRPS has the smallest bias
and RMSE (Table 3A). TMPA also exhibits very good skills,
closely followed by PERSIANN. TAPEER displays the low-
est skill in terms of pattern correlation, due to the initially
coarse spatial resolution of this product, although the bias is
moderate, and the north—south gradients are well reproduced.
These contrasted skills between the satellite rainfall products
are in line with Negrén Juarez et al. (2009) who found that
discrepancies between the mean annual rainfall patterns of

different global datasets were much larger over the Congo
Basin than over the Amazon Basin. Note that the pattern cor-
relations over the subset period 2011-2014 (not shown) are
very similar to those obtained from the full sets. These corre-
lations are only marginally lower for most datasets, reflecting
the fact that an average computed over 4 years is slightly less
robust, but the ranking of the seven products is unaffected.

4.2 |

In order to examine how well the products replicate the sea-
sonal cycle of rainfall, spatially averaged rainfall regimes are
computed over the five Central African subregions located
on Figure 2, using all grid-points within a given subregion
for both the satellite products and WorldClim. These subre-
gions document the three main rainfall regimes found over
Central Africa, as defined by Dezfuli (2017), as well as
the more subtle east—west variations. A unimodal regime is
found in the Central African Republic (CAR, Figure 4a),
showing a single, long rainy season with maximum rain-
fall from August to October, and a dry season centred on
December—February (3 months below 50 mm). This seasonal
pattern is well reproduced by all products. By contrast, south-
ern Congo-Brazzaville (Figure 4c) exhibits high rainfall dur-
ing the austral summer (above 100 mm from October to May),
with peaks in November and April, and a very dry period
from June to September. Most rainfall products replicate this
pattern, although CMORPH overestimates rainfall amounts
during the wet season and tends to produce higher rainfall in
April than in November, in contrast to observation.

The three other subregions are closer to the Equa-
tor and display clear bimodal regimes with maxima in
April and October, and minima around January and July.
These are generally well reproduced by the satellite rainfall

Mean monthly rainfall regimes
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products. In Gabon and southern Cameroon (Figure 4b), the
boreal autumn season is wetter than the boreal spring sea-
son. CMORPH overestimates the boreal spring season, and
TAPEER and ARC underestimate the boreal autumn rainy
season. TAPEER and ARC slightly underestimate rainfall,
especially in the second half of the year. The bimodal regimes
of Central DRC (Figure 4d) are those where CMORPH over-
estimation is most pronounced (+40 to 70%), but the seasonal
pattern is correct. Finally, the region around the Western Rift
Valley (eastern DRC and western Uganda, Figure 4e) shows
quite symmetrical rainy seasons, with slightly lower amounts
than in central DRC. The bimodal pattern is well replicated
by most products. CMORPH and TAPEER distinguish them-
selves by a systematic overestimation. Most other products
display a small overestimation of the boreal autumn rainy
season.

As a more general assessment, for Central Africa as a
whole, correlations are computed between WorldClim and
each product by considering mean monthly precipitation
at all grid-points and months taken together (Table 3B).
This enables a joint spatial and seasonal assessment of the
climatology of the seven products. Very high correlations
(from 0.87 to 0.97) are found for all products. This shows
that on the whole the combined spatial and seasonal pat-
terns of rainfall are well reproduced by the satellite rainfall
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(a—e) Mean monthly precipitation regimes averaged over the five subregions shown in Figure 2 [Colour figure can be viewed at

estimates. CHIRPS leads, followed by PERSIANN, TARCAT
and TMPA. Despite its low initial resolution, TAPEER has a
correlation only marginally lower, close to CMORPH. This
indicates a very good representation of the seasonal cycle in
TAPEER, compensating for biases in the mean annual rain-
fall distribution. The bottom part of Table 3B shows that when
substituting the extended FAOCLIM dataset to WorldClim
(and now considering only those grid points where a FAO-
CLIM station is located), we obtain very similar correlations
despite the smaller number of observations. This indicates
that the above ranking of the skills of the satellite products is
robust.

On the whole, these results show that monthly rainfall
regimes are relatively well reproduced by most products.

4.3 | Daily rainfall

As a complementary and more severe test on rainfall prod-
ucts we now consider daily rainfall amounts, by comparing
them to observations at all available stations together (WaT-
For database, 154 stations). Skill scores are computed over
the whole period of data availability (“full period”, Figure 5)
and over the sub-period 2011-2014 (common to all satellite
products). This enables us to verify that differences in prod-
ucts skills are not an artefact of the time sampling. Like for
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FIGURE 5

Skill scores of daily satellite rainfall estimates compared to station observations, based on all the data available (full period, white

leftside bars), on data for the sub-period 2011-2014 (common to all satellite products, green central bars), and on non-GSOD stations only (full
period, red rightside bars, see text). (a) Bias, (b) RMSE, (c) correlation coefficient. Correlations are based on square-root transformed daily rainfall

amounts [Colour figure can be viewed at wileyonlinelibrary.com].

the climatology, small differences are usually found between
the full period and the shorter one, suggesting that results are
temporally robust.

Biases confirm the findings based on annual rain-
fall. They are generally small and positive (between +0.3
and 4+ 0.6 mm/day). CMORPH singularizes by having much
larger positive biases (+1.4 mm/day over the full period, i.e.
about a third of the regional rainfall average). RMSE is a
much more stringent test statistic, since it depends on the
capacity to replicate the chronology of daily rainfall events
and their intensity. Large errors are found for all products
(RMSE generally between 11 and 13 mm/day). This partly
results from the fact that gridded data are compared to point
rainfall measurements, which show logically higher extremes.
CMORPH has the highest RMSE, and TMPA has the low-
est, but the difference barely exceeds 2 mm. Skill scores
do not strongly change over the short period (2011-2014)
except for ARC (Figure 5). Reasons for this strange behaviour
have not been clearly found in the documentation, but by
scrutinizing the data it appears that in the recent years raw
GTS (GSOD) station data are directly allocated to the cor-
responding grid point, while for earlier years these data are
interpolated to a 0.1° grid (Novella and Thiaw, 2013). This

evidently raises skill scores over the recent sub-period and
suggests that temporal inhomogeneities may exist in this
product. Daily correlations also show that the performance
of the products is relatively low, although all coefficients
are highly significant (P=99.9%) due to the huge num-
ber of records used in the comparison (ranging from over
58,000 for TAPEER to 521,000 for CHIRPS). The low cor-
relations (except for ARC over the period 2011-2014, for
the reason exposed above) are partly due to the scale mis-
match between the gridded products and the station data.
However, the ranking of the seven products, for the com-
plete period, is instructive. TMPA displays the highest cor-
relations, followed by CMORPH, TARCAT and ARC (with
the above reservations). CHIRPS has slightly lower correla-
tions. Similar assessments were carried out for timespans of
between two and 30 days (not shown). As expected, correla-
tions tend to increase as longer time-scales are considered.
CHIRPS’ performance, the poorest for the single-day eval-
uation, is found to rise faster than other products do with
increasing time-scales (from a timespan of 14 days, it super-
sedes all other products except TMPA). On the contrary,
TARCAT’s performance only slowly improves with longer
time-scales.
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TABLE 4 Correlation coefficients between daily rainfall (square-root transformed) at independent rain-gauges and at the nearest grid point

of the 7 satellite products, for 4 subregions of Central Africa

N CHIRPS ARC

CAR 15,777 0.36 0.43
(621)

southern 105,028 0.30 0.35

CONGO-BRAZZAV  (4018)

central DRC 16,270 0.28 0.38
(14,865)

eastern DRC 48,400 0.30 0.37
(2049)

TARCAT

PERSIANN TMPA CMORPH  TAPEER
0.44 0.64 0.56 *

0.36 0.58 0.54 0.50

0.40 * * *

0.35 0.44 0.44 0.47

Note: N is the maximal (and minimal) number of daily records, which varies according to the number of records available both in the satellite estimates and at the
stations. Stars denote that less than 600 daily records are available (typically for TAPEER which documents the period 2011-2016 only). The highest correlation for
each subregion is shown in bold and is underlined, and the next one or two highest are in bold. The lowest correlation is in italics. All the correlations are significant

at the 99% level.

As mentioned in section 3, the above comparison has
limitations due to the fact that some products, for calibrat-
ing satellite estimates, use monthly, pentadal and sometimes
daily data from various sources, mostly stations from the
GTS, which are incorporated in the WaTFor database used as
reference. Two additional analyses are therefore performed
using independent data, which however do not cover the
whole of Central Africa. The first one retains rainfall stations
belonging to the national meteorological networks (mainly
in CAR, Congo-Brazzaville and DRC), but whose data were
not available in the GTS and therefore were not merged with
the satellite estimates to obtain rainfall products. The second
one considers automatic weather stations implemented in the
framework of various projects, and which are not included
in the national meteorological networks. These indepen-
dent data enable a more detailed diagnostic of the satellite
estimates skills.

On Figure 5, the same statistics as above have been com-
puted for the subset of data independent from the GSOD
database (red bars). Only little change is found for the mean
bias. For RMSE, while ARC was showing good performance
in the full database over the recent period, this product when
confronted with fully independent data is now showing
the largest error, as expected from above. RMSE slightly
decreases for all other products, which is likely related to
changes in the spatial sampling between the full and the inde-
pendent datasets, but apart from ARC, their ranking is close
to that obtained from the full dataset. CMORPH still has the
highest error, and TMPA has the lowest one. TMPA also per-
forms best in terms of correlation coefficients, well distancing
ARC, whose correlation is now much lower when GSOD
data are eliminated from the validating data. CMORPH and
TAPEER also perform well and stand very close to TMPA,
while the lower performance of CHIRPS is confirmed. A
small reduction compared to the full dataset is found in all
products which merge rain-gauge observations (except ARC)

while they should have increased as the sole result of the
different spatial sampling if we consider that CMOPRH and
TAPEER, the only products which do not merge rain-gauge
observations, have slightly higher correlations than in the full
database.

Subregional assessments are presented in Table 4, for
four of the five subregions formerly identified (Figure 2).
Indeed, Gabon is not retained because it has too little inde-
pendent data. Note also that for central DRC the lack of recent
rain-gauge data prevents the evaluation of TMPA, CMORPH
and TAPEER. All correlations are highly significant, but
some differences are found between the products. A notable
feature is that TMPA recurrently shows the highest correla-
tion with observations (for the subregions where it can be
evaluated). CHIRPS systematically has the lowest correla-
tion. CMORPH generally displays quite high correlations,
and TARCAT and PERSIANN are more uneven, perform-
ing well in central DRC and CAR, but less so in southern
Congo-Brazzaville and eastern DRC.

Finally, we consider the set of automatic weather stations
over the recent period (2015-2017, 20162017 or 2012-2017
depending on stations). Table 5 shows at each station the
skill statistics of the seven satellite products. TMPA evalua-
tion was done only at two stations (Bakoumba and Kinshasa)
because the time series used did not extend beyond 2014.
However, for these two stations TMPA stands out by its
high scores compared to other products (highest correlation,
low false-alarm ratio and highest Heidke skill scores). It is
noteworthy that the products, except TMPA, perform dif-
ferently depending on the location and criteria. In northern
Congo-Brazzaville (Pokola and Mokabi), TARCAT shows
some of the best scores for both rainfall intensity (correlation)
and rainfall occurrence (low FAR and high HSS). At stations
located in eastern DRC, scores are generally lower for most
rainfall products, likely due to the mountainous terrain and
related high spatial rainfall variability where stations show
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TABLE 5 Skill scores of daily rainfall at seven independent stations

Station Location CHIRPS ARC TARCAT PERSIANN TMPA CMORPH TAPEER
R

POKOLA N Congo 0.39 0.53 0.57 0.46 & 0.53 0.59
MOKABI N Congo 0.44 0.58 0.67 0.46 * 0.61 0.58
TSHIVANGA E DRC 0.46 0.46 0.33 0.55 < 0.56 0.49
MATANDA E DRC 0.33 0.40 0.28 0.39 * 0.44 0.49
IDJWI E DRC 0.44 0.51 0.44 0.47 < 0.52 0.47
BAKOUMBA Gabon 0.44 0.53 0.60 0.51 0.72 0.59 0.55
KINSHASA/BINZA W DRC 0.49 0.71 0.58 0.51 0.72 0.61 0.57
POD

POKOLA N Congo 0.69 0.79 0.70 0.89 & 0.79 0.91
MOKABI N Congo 0.76 0.81 0.74 0.91 * 0.86 0.93
TSHIVANGA E DRC 0.70 0.76 0.52 0.93 < 0.77 0.99
MATANDA E DRC 0.62 0.73 0.54 0.90 * 0.74 0.97
IDJWI E DRC 0.66 0.76 0.57 0.83 & 0.76 0.98
BAKOUMBA Gabon 0.73 0.79 0.69 0.90 0.86 0.83 0.89
KINSHASA/BINZA W DRC 0.74 0.88 0.68 0.91 0.85 0.83 0.88
FAR

POKOLA N Congo 0.47 0.43 0.34 0.59 & 0.44 0.49
MOKABI N Congo 0.47 0.42 0.29 0.57 * 0.44 0.48
TSHIVANGA E DRC 0.36 0.42 0.33 0.43 < 0.39 0.57
MATANDA E DRC 0.43 0.44 0.43 0.49 * 0.39 0.46
IDJWI E DRC 0.41 0.42 0.35 0.50 < 0.47 0.66
BAKOUMBA Gabon 0.39 0.34 0.27 0.50 0.34 0.40 0.45
KINSHASA/BINZA W DRC 0.47 0.40 0.36 0.57 0.31 0.40 0.49
HSS

POKOLA N Congo 0.37 0.46 0.52 0.25 & 0.45 0.44
MOKABI N Congo 0.41 0.50 0.60 0.29 * 0.49 0.43
TSHIVANGA E DRC 0.45 0.40 0.38 0.43 < 0.44 0.14
MATANDA E DRC 0.29 0.32 0.27 0.26 * 0.40 0.17
IDJWI E DRC 0.41 0.45 0.43 0.35 < 0.38 0.09
BAKOUMBA Gabon 0.46 0.55 0.56 0.37 0.59 0.50 0.46
KINSHASA/BINZA W DRC 0.46 0.59 0.54 0.36 0.66 0.57 0.47

Note: All the correlations are significant at the 99% level. Data are for 2012-2017 (Bakoumba, Kinshasa), 2015-2017 (Matanda) and 2016-2017 (Pokola, Mokabi,
Tshivanga, Idjwi). Statistics are not computed if less than 200 observations are available. Bold figures show the product which displays the best skill.
Abbreviations: FAR, False-alarm ratio; HSS, Heidke skill score; POD, Probability of detection of wet days; R, Correlation coefficient (including wet and dry days
computed on square-root transformed daily rainfall).

low spatial representativeness, introducing large uncertainties
in the products’ validation (Monsieurs et al., 2018). At these
stations, scores are also relatively similar across the prod-
ucts, except for TAPEER which show poor HSS. This is
related to its initial spatial resolution (1° square), which does
not adequately resolve the spatial variations in daily rainfall

over this region. The high POD values for TAPEER are
also related to the spatial smoothing associated with its low
resolution, hence many actual dry days are incorrectly consid-
ered as wet (see the high FAR). CMORPH, despite showing
large biases in mean monthly rainfall (section 4.1) displays
relatively high daily correlations, including at rain-gauges
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of the eastern highland region. This is suggestive of the
importance of microwave data in estimating rainfall amounts
at short time-scales, especially over highland areas.

On the whole these results highlight significant spatial
variations in the skills displayed by the different products,
as a result of varying rainfall regimes and scales of rainfall
systems. They also reveal that products showing biases in
long-term mean rainfall (like CMORPH) can be efficient at
reproducing the timing of daily rainfall.

4.4 | Interannual variability

Because satellite rainfall estimates are often used to map
trends and study teleconnections, it is important to assess
how well interannual variability is reproduced by the
selected rainfall estimates. To that end, we first use
de-seasonalised monthly rainfall anomalies (zero mean
and unit standard-deviation). Given the unequal number
of observations available at each station, correlations are
computed (for each station separately) by extracting 100 ran-
dom samples of 30 observations and computing the median
correlation (section 3). The five subregions are considered,
and results summarized in box-plots. An overall correlation
analysis is also carried out for the whole of Central Africa,
using all rain-gauges together, provided that at least 60
monthly observations (5 years) per station are available. The
southern Congo-Brazzaville subregion, where a large enough
number of independent stations is available, is retained
for further study.

Figure 6 shows for each product the correlations with
observed rainfall anomalies. Correlations are spatially quite
variable, therefore a summary by subregion is provided in
Figure 7. Central DRC tends to exhibit the lowest skills
for all products (the lack of enough rain-gauge data since
the late 1990s prevents qualifying CMORPH, TAPEER and
TMPA skill over this subregion). Only CHIRPS (0.46) and
PERSIANN (0.36) have median correlations significant at
P>98%. ARC and TARCAT show almost no skill. By con-
trast, Gabon—southern Cameroon shows high correlations,
with CHIRPS leading (median: 0.72, and very little disper-
sion), followed by PERSIANN, ARC and TARCAT, the latter
two just above the 98% significance level for their median
correlation (other products could not be tested). Over eastern
DRC and nearby Uganda and Burundi, most products are rel-
atively skilful (Figures 6 and 7), except ARC and moreover
TARCAT. This region is where the difference between sta-
tions (i.e. the spatial variability of correlation levels) tends
to be the smallest, although correlations are not exception-
ally high (medians between 0.31 and 0.61). Over south-
ern Congo-Brazzaville, correlations do not strongly differ
between the seven products (with TMPA leading), but there is
a very wide range between stations, which will be discussed
below. Similar spatial variations apply to the CAR subregion.

On the whole, this regional analysis of skill at interan-
nual time-scale indicates that TMPA (based on the available
information) is the best rainfall product. It is followed by
CHIRPS, which over the longer period 1983-2017 has the
best skills, though it shows over most subregions large differ-
ences between stations. ARC and TARCAT perform poorly.

The overall correlations between monthly rainfall anoma-
lies over Central Africa as a whole (using all stations and
all years) are all highly significant (P=99.9%), but quite
moderate, and confirm the above results. CHIRPS has the
highest coefficient (0.56) closely followed by TMPA (0.55).
CMORPH and PERSIANN also show relatively high corre-
lations (0.48). Despite the lower initial spatial resolution of
TAPEER, the correlation remains fair (0.45). ARC is slightly
less skilful (0.41), and TARCAT closes the list (r=0.31).
This ranking is very different from that obtained at daily
time-scale, possibly related to the difference in the prod-
ucts’ gauge calibration procedure at varying spatio-temporal
aggregation levels.

Because at the scale of Central Africa it is difficult to
distinguish the stations which were used to calibrate some
of the satellite products from independent stations, we focus
on southern Congo-Brazzaville (including nearby DRC
stations), a subregion where data availability is fair and inde-
pendent stations are available. Only three rainfall products,
CHIRPS, TARCAT and PERSIANN, were considered, cov-
ering the period 1983-2017. The four other products were
excluded because they cover a shorter period over which the
number of available, non-synoptic rain-gauges is too small
(and for ARC, because of the temporal heterogeneity found
in the daily data). A set of 24 stations mainly obtained from
Meétéorologie Nationale du Congo in Brazzaville is used for
validation (Figure 8). Among these stations, seven are synop-
tic stations included in the GTS network (named on Figure 8),
and to the best of our knowledge, the rest of the stations are
not used in the construction of the satellite rainfall estimates.
Most stations have 15 years or more of data, and a minimum
requirement of at least 5 years of monthly observations was
set. On the whole, with the exception of Makabana, synoptic
stations tend to obtain higher correlations than other sta-
tions (Figure 8), a reflection of the fact that some data from
these stations (although incomplete) are used in the merg-
ing process for the three products under scrutiny. CHIRPS
shows slightly higher correlations than PERSIANN for GTS
stations, with Brazzaville and Kinshasa having the highest
values, at 0.71 and 0.64, respectively. This was expected
given that these two stations have the largest number of GTS
records. For the independent stations, PERSIANN tends to
get slightly higher median correlations than CHIRPS, but
like for CHIRPS, the range is wide, from 0.55 at Madingou,
a station southwest of Mouyondzi, to less than 0.1 at some
nearby rain-gauges. TARCAT has the lowest scores but, with
some exceptions, its scores for GTS stations are about the
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FIGURE 6 Correlation between interannual monthly rainfall anomalies at rain-gauges and satellite rainfall estimates (all years available

between 1983 and 2017). Values correspond to the median of 100 correlations computed from an ensemble of 100 samples of 30 monthly

observations randomly selected from the records available at each station. A minimum number of 5 years of data (60 months) was required for a

station to be used. A few negative correlations are set to zero. Correlations above 0.38 are statistically significant at the 98% confidence level

(one-tailed test) [Colour figure can be viewed at wileyonlinelibrary.com].

same as those obtained for the independent stations, which
can be explained by the fact that GTS data serve only in the
calibration over large regions and are not incorporated per se
in the product.

4.5 |

As afinal analysis, a tentative assessment is carried out which
focuses on the length of the dry season. Although this is

Dry season length

an important climate variable for rainforest environments,
it is rarely considered when evaluating the skill of rain-
fall products. A preliminary test is carried out here for the
Kinshasa-Binza station (DRC). This station, located in the
southern Congo subregion, has a unimodal rainfall regime
with a dry season (often locally and appropriately called
“non-rainy season”) in boreal summer (June—September).
Kinshasa-Binza offers a long uninterrupted daily time-series
over the period 1983-2017 which enables the computation
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[Colour figure can be viewed at wileyonlinelibrary.com].

of the dry season onset and cessation dates, thus the dry
season length.

These dates were obtained by adapting the method used by
Liebmann and Marengo (2001), Camberlin and Diop (2003)
and Dunning et al. (2016) to determine wet season onset and
cessation dates. Reference should be made to these publica-
tions for a full description of the method. To summarize, it
consists in computing accumulated daily rainfall anomalies,
for each year separately. Anomalies are differences between
actual daily rainfall and the long-term daily mean. However,
in the present study, after a careful testing, a coefficient of 0.7
was applied to this long-term daily mean value, in order to
account for the overall wetness of the local climate. The max-
imum value of the accumulated anomalies during the period
of time following the average peak of the rainy season denotes
the beginning of the dry season, and the minimum value dur-
ing the period of time preceding the average peak of the next
rainy season denotes the end of the dry season. This method
is more robust than simply considering the length of consec-
utive dry days, since in equatorial regions occasional showers
often occur during the dry season yet they do not imply that
the rainy season has started. Then, the dry season length is
computed as the difference between the cessation date and the

onset date, plus 1 day. The time series obtained from the satel-
lite estimates (Figure 9) are dotted with several missing years,
since even a few missing days prevent us from computing
the onset and cessation dates. Table 6 provides the dry sea-
son mean duration for each estimate and its correlation with
observations.

The observed duration of the dry season at Kinshasa
ranges between 116 and 183 days, with an average of 151 days
(Table 6 and Figure 9). This is slightly more than the duration
found on the map published by Bultot (1971), about 120 days,
as a probable result of the different method used, but very
close to the average duration for nearby Brazzaville (about
160 days, based on “potentially useful rainy season”: Samba
et al., 1999). Almost all products have their mean dry sea-
son duration within 6 days of the observed mean duration.
The interannual variability (standard deviation in Table 6)
is generally slightly lower than that observed. TARCAT sin-
gularizes by a dry season which is bit too short, mainly
because the dry season cessation comes on average 11 days
too early. Correlation coefficients between observations and
satellite products are all significant at P>90% except for
ARC and TARCAT. CHIRPS, PERSIANN and TMPA exhibit
the largest and most significant correlation values. However,
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FIGURE 8

(a—c) Local correlations between interannual variations of monthly observed rainfall anomalies and satellite rainfall estimates

over the period 1983-2017, for the southern Congo-Brazzaville subregion. Synoptic stations included in the GTS network are named. Right panels:

Box-plots of the correlation coefficients, shown separately for GTS stations and fully independent stations

Figure 9 also shows that there are only a few years (except
for instance in 2015 and 2016) where all the products capture
the right duration. Despite the very short length of records,
TAPEER displays promising skills.

We compared these results to those obtained using alter-
native definitions of the dry season onset and cessation (Bom-
bardi et al., 2019). The bias in TARCAT (too short dry
season) is recurrently found whatever the methodology used
to define the dry season. Using an agronomic definition of
the dry season, it is confirmed that TMPA duration exhibits
the best correlation with observed duration. However, the
performance of other products varies much more (not shown).

This preliminary analysis of the dry season length reveals
that this variable is not easily reproduced by satellite esti-
mates, since it combines interannual variability of seasonal
rainfall and the chronology of individual rainfall events.
Yet, many estimates demonstrate usable skill, although a
comparison with a larger number of stations would be
necessary in order to rank the products according to their
performance.

5 | CONCLUSION

The performance of seven satellite rainfall estimates over
Central Africa was evaluated by comparing them to
rain-gauge observations, using an ad hoc dataset compris-
ing partly not publicly available daily and monthly data
as well as long-term averages, both gridded and at station
scale. Different metrics and time-scales were considered,
from mean annual rainfall fields to seasonal regimes, daily
rainfall amounts, interannual variations of monthly anoma-
lies. The skill of the products for dry season length monitoring
was also tested. Noticeable differences are found in the per-
formance of the seven products, related to their respective
rainfall estimation algorithm which in some cases includes
rain-gauge observations for data merging or calibration, yet
at varying time-scales. The analysis was carried out over the
period 1983-2017, or shorter periods depending on the satel-
lite product availability. Care was exerted in verifying that
results were not sensitive to the period investigated and to
the number of observations. When possible, a differentiation
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TABLE 6 Statistics on dry season length at Kinshasa-Binza (DRC)

Mean Standard

length deviation Number Correlation

(days) (days) of years with observation P-value
OBSERVATION 151 18.6 35
CHIRPS 145 134 35 0.44 .008
ARC 146 18.4 31 0.21 240
TARCAT 137 13.5 21 0.05 .819
PERSIANN 146 124 28 0.60 .001
TMPA 151 14.2 17 0.72 .001
CMORPH 153 12.5 15 0.47 078
TAPEER 151 11.0 5 (0.97) (.007)

was made between independent stations and those used in the
merging process with the satellite data.
The main findings are as follows:

1. There is an overall good reproduction of the mean rainfall
regimes and the spatial patterns of mean annual rainfall,
though some discrepancies exist in the longitudinal dis-
tribution of rainfall along the Equator from Gabon to the
eastern DRC: several products show much higher precipi-
tation in the east than in the west, whereas higher amounts
are found in the observations along the Atlantic Ocean
coastline.

2. Products like CMORPH which do not incorporate
rain-gauge observations show, as expected, the largest
systematic biases, but this does not mean that they perform
badly in terms of rainfall variability.

3. Though not the best performing product, TAPEER has rea-
sonable skills, despite its lower spatial resolution. A longer
period of record will confirm its potentialities.

4. At the daily time-scale, TMPA is the best product (quite
consistently over the different parts of Central Africa) and
CMORPH ranks second (except for the systematic biases),
although over central DRC among the four available prod-
ucts for the period of data availability, TARCAT performs
best. More generally TARCAT is amongst the best prod-
ucts in terms of rain event detection. As emphasized by
Dinku ez al. (2018) for East Africa, this may be explained
by the fact that TARCAT uses local calibration to select
cold-cloud duration thresholds.

5. At the interannual time-scale, CHIRPS and TMPA
perform best, although when compared against fully
independent stations (southern Congo-Brazzaville) PER-
SIANN has comparable skills. TARCAT has the lowest
correlations with observations. Interannual variations in
all products should be taken with caution, especially given
that rainfall exhibits a much weaker spatial coherence than
in other parts of Africa (Camberlin et al., 2011).
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6. A tentative study of dry season length temporal variabil-
ity indicated that it is a difficult variable to reproduce, and
correlations with observations are moderate only. Unfor-
tunately, there is a lack of daily records for a thorough val-
idation, and algorithms based on daily data are demanding
(no gaps allowed).

Discrepancies between the satellite rainfall products and
their different subregional skills arise from various origins.
Besides the fact that some satellite products are merged
with in situ data, use them for calibration only or do not
use ground observations at all, part of the discrepancies are
related to the characteristics and physics of precipitation
and the nature of the satellite data (infrared, radar, pas-
sive microwave). At a daily time-scale, the incorporation of
microwave data markedly enhances skills, especially over
highland areas where the relationship between cold clouds
and rainfall amounts deteriorates, making the input from
microwave data more decisive. In the lowlands however, the
spatially varying calibration adopted in TARCAT enhances
rain detection. At an interannual time-scale, whatever the
product, skills tend to be higher in Western Central Africa, a
subregion which shows larger and spatially more consistent
interannual rainfall variability, as a result of slightly stronger
teleconnections with Atlantic Ocean sea-surface temperature
(Nicholson and Dezfuli, 2013).

It is difficult from these results to infer any definitive con-
clusion on the capacity of the various products to properly
document long-term trends over the region. The virtual lack of
rain-gauge observations in most of DRC since the early 1990s,
added to the high spatial variability in interannual rainfall
anomalies over Central Africa, should make users of merged
satellite—rain-gauge products over this region very careful. In
particular, inconsistencies found in the ARC product should
refrain from using it to document trends. Further improve-
ments of satellite rainfall estimates could gain from the use of
remote-sensed soil moisture data, as demonstrated over West
Africa (Pellarin et al., 2013).
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