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Abstract: The synaptic vesicle protein 2 (SV2) is involved in synaptic vesicle trafficking. The SV2A 

isoform is the most studied and its implication in epilepsy therapy led to the development of the 

first SV2A PET radiotracer [18F]UCB-H. The objective of this study was to evaluate in vivo, using 

microPET in rats, the specificity of [18F]UCB-H for SV2 isoform A in comparison with the other two 

isoforms (B and C) through a blocking assay. Twenty Sprague Dawley rats were pre-treated either 

with the vehicle, or with specific competitors against SV2A (levetiracetam), SV2B (UCB5203) and 

SV2C (UCB0949). The distribution volume (Vt, Logan plot, t* 15 min) was obtained with a 

population-based input function. The Vt analysis for the entire brain showed statistically significant 

differences between the levetiracetam group and the other groups (p < 0.001), but also between the 

vehicle and the SV2B group (p < 0.05). An in-depth Vt analysis conducted for eight relevant brain 

structures confirmed the statistically significant differences between the levetiracetam group and 

the other groups (p < 0.001) and highlighted the superior and the inferior colliculi along with the 

cortex as regions also displaying statistically significant differences between the vehicle and SV2B 

groups (p < 0.05). These results emphasize the in vivo specificity of [18F]UCB-H for SV2A against 

SV2B and SV2C, confirming that [18F]UCB-H is a suitable radiotracer for in vivo imaging of the SV2A 

proteins with PET. 

Keywords: SV2A; SV2B; SV2C; microPET; [18F]UCB-H; epilepsy; PBIF; distribution volume; 

blocking assay; preclinical imaging 

 

1. Introduction 

The synaptic vesicle protein 2 (SV2) is an integral membrane protein with twelve 

transmembrane domains and three N-glycosylation sites in the intravesicular loop. The SV2 protein 

is ubiquitously present in the nerve terminals of the central and peripheral nervous systems, and in 

several types of endocrine cells [1]. This protein is critical for the adequate functioning of the central 

nervous system, acting as a modulator of synaptic transmission [2,3]. Moreover, it has been associated 

with the pathophysiology of epilepsy [4–6]. 
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Previous studies have identified three SV2 isoforms: SV2A, SV2B and SV2C, characterized by 

different expression levels during rodent brain development [7] and adulthood [8]. While the SV2A 

isoform is present across all brain areas, the SV2C isoform can only be found in specific regions, such 

as the striatum, pallidum, midbrain, brainstem, substantia nigra, and the olfactory bulb [9]. The SV2B 

isoform is particularly present in the cerebral cortex, and the cornu ammonis sub-region of the 

hippocampus [10]. The three isoforms present large similarities in their structure: 65% between 

isoforms A and B, 62% between A and C, and 57% between B and C [8]. 

Of these three isoforms, SV2A is the most investigated. The antiepileptic drug levetiracetam 

(Keppra® ) binds to SV2A, suggesting a role for SV2A in the pathology underlying certain forms of 

epilepsy [11–14]. Several studies have shown a correlation between the brain expression of this 

isoform and the clinical efficacy of this drug [5,13]. 

To investigate the role of SV2A in vivo, in 2013 [18F]UCB-H was presented as an imaging agent 

with a nanomolar affinity for human SV2A [3,15–17]. Since then, other PET radiotracers, such as 

[11C]UCB-J, or [11C]UCB-A, have been synthetized to study this protein [3,18–20] (see Figure 1). These 

PET radiotracers appear to be more specific than [18F]UCB-H (pIC50 = 7.8) [3,16], based on their 

respective affinity measured in vitro, with pIC50 = 8.2 for [11C]UCB-J [18] and pIC50 = 7.9 for [11C]UCB-

A [20]. The three radiotracers have demonstrated potential for use as synaptic density biomarkers 

not only in animals, but also in humans [3,21–23]. However, despite the valuable properties of 

[11C]UCB-J and [11C]UCB-A in assessing brain synaptic density in vivo, their clinical application is 

limited to facilities with a cyclotron due to the short half-life of 11C (20.3 min) compared to the half-

life of 18F (110 min). In addition, the use of a PET radiotracer with a longer half-life (such as 18F) allows 

the evaluation of a greater number of patients per day with just one production. Therefore, different 

fluorine-18-labelled derivatives of UCB-J are currently being developed and characterized, such as 

[18F]SDM-8 [24]. The potential of [18F]UCB-H for detecting variations in SV2A has already been 

demonstrated in vivo [25,26]. Nevertheless, as the actual specificity of [18F]UCB-H for SV2A against 

SV2B and SV2C has never been addressed in vivo, we consider that this point deserves more careful 

evaluation. 

 

Figure 1. Chemical structures of [18F]UCB-H, [11C]UCB-J and [11C]UCB-A. 

This paper, therefore, aims to evaluate for the first time the specificity of [18F]UCB-H for the 

SV2A isoform against SV2B and SV2C using microPET imaging in rats, by means of a blocking assay 

between this radiotracer and specific competitors for the three SV2 isoforms. The results will provide 

highly valuable information about the actual potential of [18F]UCB-H as a radiopharmaceutical 

candidate to study the SV2A protein with PET in research or clinical practice. 

2. Results 

Table 1 summarizes the results obtained from the in vitro binding assays. We observe that 

SV2BL presents a high affinity for SV2B (pIC50 = 7.8), but also has an affinity for SV2A similar to 

that of SV2AL (pIC50 = 5.6). 
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Table 1. pIC50 of the competitors used for the different SV2 isoforms. Binding affinities measured for 

human SV2 proteins at 37 °C. Data are presented as mean (n = 3 to 10) from non-linear regression 

analysis of raw data using a sigmoidal dose-response model. Additional data for SV2BL (UCB5203) 

solubility: 0.1 mg/mL, route of administration: ip (suspension in 5% DMSO–1% methyl cellulose in 

water), CEREP @ 10 µM: all targets < 50% inhibition, mouse brain fraction unbound: 37%, mouse brain 

exposure (3 mg/kg, 30–60 min): ~1.8 µM total → 0.66 µM free → ~100 fold IC50 SV2B. Additional data 

for SV2CL (UCB0949) solubility: 0.055 mg/mL, route of administration: ip (suspension in 5% DMSO – 

1% methyl cellulose in water), CEREP @ 10 µM: all targets < 50% inhibition, mouse brain fraction 

unbound: 54%, mouse brain exposure (3 mg/kg, 30–60 min): ~8 µM total → 4.3 µM free → ~270 fold 

IC50 SV2C. 

 Synaptic Vesicle Protein Isoforms 

 SV2A SV2B SV2C 

SV2AL 5.2 -3.1 -3.2 

SV2BL 5.6 7.8 5.5 

SV2CL < 5 5.9 7.8 

In Figure 2, [18F]UCB-H parametric Vt maps are presented for the vehicle group and the three 

pre-treated groups (SV2AL, SV2BL and SV2CL). These pictures highlight a clear reduction of the 

[18F]UCB-H binding throughout the entire brain induced by levetiracetam (SV2AL) pre-treatment at 

10 mg/kg (PET image corresponding to the SV2AL group). 

 

Figure 2. Example of an individual parametric Vt map of [18F]UCB-H binding in rat brain (PET), along 

with the corresponding individual MRI and the overlay of both images (PET + MRI). Rats were pre-

treated 30 min before the 60 min PET acquisition with either vehicle, SV2A competitor (levetiracetam 

[SV2AL] at 10 mg/kg), SV2B competitor (UCB5203 [SV2BL] at 3 mg/kg) and SV2C competitor 

(UCB0949 [SV2CL] at 3 mg/kg). 
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In Figure 3A, we can observe the time activity curves (TACs) corresponding to the four different 

treatments (vehicle, SV2AL, SV2BL and SV2CL), for one of the regions of interest (ROIs): the whole 

brain. The four TACs reveal a high initial uptake of [18F]UCB-H, which peaks around 5 min post-

injection. Subsequently, the radioactivity is quickly washed out of the brain. Some differences can be 

observed in the kinetic of the TAC after pre-treatment with the respective ligands: The highest peak 

activity is observed after pre-treatment with the vehicle and with SV2CL. Interestingly, the pre-

treatments with SV2AL and SV2BL display the same peak of initial uptake. In the case of SV2BL, the 

kinetics of the TAC from 15 to 60 min are similar to the kinetics of the radiotracer after pre-treatment 

with either the vehicle or SV2CL. The TACs for all the ROIs are included in Supplementary Figure S1. 

In addition, the area under each TAC (the AUC) is represented in Figure 3B, where we can observe 

the differences between the [18F]UCB-H uptake after pre-treatment with SV2AL, and after pre-

treatment with the other compounds. 

 

Figure 3. Representative time activity curves (TACs) and AUC (area under each TAC) for the different 

regions of interest (ROIs). (A) TACs extracted from the whole brain as ROI, and normalized by the 

injected activities and the body weight. Lines represent the [18F]UCB-H uptake over a 60 min 

acquisition after pre-treatment with the vehicle, SV2AL, SV2BL, or SV2CL. (B) The bar plots represent 

the AUC in the eight ROIs (mean ± SEM, n = 5). 

Figure 4 presents the mean Vt values for the eight selected brain structures, calculated from the 

previous TACs and the population-based input function (PBIF). Comparing Figures 3B and 4, the 

differences between groups in AUC and in Vt are similar, with the highest value associated to pre-

treatment with the vehicle, and the lowest value for pre-treatment with SV2AL. 
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Figure 4. Vt values for the eight selected brain structures. Bars represent the mean ± SEM (n 

= 5). One-way ANOVA and Scheffe post-hoc tests were performed, with ***p < 0.001 and *p 

< 0.05. 

Table 2 summarizes, for the same regions, the impact on the Vt induced by the blocking 

experiments, expressed as the relative difference in Vt between the vehicle group and the pre-treated 

groups. In the whole brain, mean Vt values of 10.4 ± 0.7, 6.0 ± 0.3, 8.3 ± 0.2 and 9.8 ± 0.3 were obtained 

for the vehicle (control) group, the SV2AL pre-treated group, the SV2BL pre-treated group and the 

SV2CL pre-treated group, respectively. For the eight ROIs, a statistically significant difference was 

observed between the SV2AL pre-treated group and all the other groups (p < 0.001). Furthermore, for 

the whole brain, the cerebral cortex and the inferior and superior colliculus, a statistically significant 

difference was also detected between the vehicle group and the SV2BL pre-treated group (p < 0.05). 

Table 2. Illustration of the impact induced by the blocking experiments, expressed as percentage of 

reduction calculated from the mean Vt values (n = 5) for the eight selected ROIs. 

ROIs 
Vehicle vs. 

SV2AL 

Vehicle vs. 

SV2BL 

Vehicle vs. 

SV2CL 

Whole brain 42.3 19.9 5.6 

Cortex 42.7 21.1 9.1 

Hippocampus 46.8 16.9 2.1 

Inferior colliculus 49.1 23.7 8.5 

Midbrain 46.3 19.1 5.1 

Caudate/Putamen 46.2 20.2 6.2 

Superior colliculus 50.4 23.4 7.6 

Thalamus 45.9 19.7 4.4 

Mean 46.2 20.5 6.1 

SEM 1.0 0.8 0.8 

3. Discussion 

The SV2 protein is critical for the adequate functioning of the central nervous system, acting as 

a modulator of synaptic transmission by priming vesicles in quiescent neurons [4]. The divergent 

roles of the three isoforms which comprise this family have yet to be clarified, although different 

pathologies have been associated with them. As previously stated, the SV2A isoform is associated 

with the physiopathology of epilepsy [5,27]. In contrast, the SV2B isoform is related with prostate 

small cell carcinoma [28] and the SV2C isoform is generally associated with the correct functioning 

of basal ganglia nuclei [9,29,30]. Some studies have evaluated the possible relation between SV2C and 

Parkinson’s disease, as SV2C modulates dopamine release [29,31]. 
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This paper’s goal was to evaluate, for the first time, in vivo the specificity of the [18F]UCB-H 

radiotracer in targeting the SV2A isoform compared to SV2B and SV2C. The relevance of such a study 

stems from the fact that in vivo SV2A quantification can be considered to be an indirect measure of 

the synaptic density [2,3,18], which is a key parameter for fundamental research and for the clinic. 

Before discussing the results obtained during these blocking experiments, we have to address 

some general considerations. Firstly, the results presented issue from the microPET imaging 

technique. Like many other microPET cameras, the Focus120 used during this work has a spatial 

resolution of 1.5 mm, at best hampering the study of brain structures of small size due to the partial 

volume effect [32,33]. Secondly, the rat brain distributions of the three SV2 protein isoforms [7–9] 

indicate that almost all major brain structures express at least two SV2 protein isoforms. SV2A, the 

most extensively studied, is ubiquitously distributed [1,8]. Like SV2A, SV2B can be found in almost 

all the rat brain structures with few subtle differential expressions in some hippocampal 

substructures like CA3 and the dentate gyrus, along with the reticular nucleus of the thalamus and 

some small areas in the brain stem [8,9,34]. Unfortunately, these regions are far too small to be 

correctly quantified with microPET. Janz and Sudhof showed that unlike SV2A and SV2B, the SV2C 

protein is characterized by much more restricted localization in brain regions considered to be 

evolutionarily well preserved in rats: The olfactory bulb, the striatum, the substantia nigra, and some 

nuclei in the pons and the medulla oblongata [9]. As we can see, it is impossible to find well defined 

brain structures for in vivo microPET quantification in which one of the three isoforms is uniquely or 

even mostly expressed. Another important point is that we do not have a clear picture of the 

respective proportions of each isoform present in the main rat brain structures. All these 

considerations will have to be taken into account in the following discussion. Accordingly, we have 

decided to select eight major ROIs to ensure robust in vivo quantification with microPET: Whole 

brain, cortex, hippocampus, inferior colliculus, superior colliculus, midbrain, caudate putamen and 

thalamus. 

The [18F]UCB-H Vt values obtained during this study for the vehicle pre-treated group, 

calculated using the PBIF [35] were in good agreement with those previously published for rats 

[35,36]. This is important in order to establish the consistency of the proposed methodology. The 

blocking experiments realized with SV2AL at 10 mg/kg demonstrated a clear significant competition 

(46.2%) between levetiracetam and [18F]UCB-H in eight selected ROIs. These values are of the same 

order of magnitude as those previously reported in rats [36]. According to the potency of 

levetiracetam for SV2A against SV2B and SV2C (Table 2), we can conclude that SV2A is one of the 

main target of [18F]UCB-H in vivo in rats. 

After performing a blocking experiment with SV2CL at 3 mg/kg, we obtained TACs with similar 

peaks and kinetics to the TAC corresponding to pre-treatment with the vehicle, in all ROIs. The 

quantification of the radiotracer uptake, using the Vt, highlighted no statistically significant in vivo 

competition between SV2CL and [18F]UCB-H in any of the eight selected ROIs. From this we can infer 

that SV2CL pre-treatment has either no impact or an impact of very small size. The population used 

(n = 5) is not sufficient to demonstrate an effect of small size (f = 0.10), but is optimal to detect medium 

(f = 0.25) and large effect sizes (f = 0.5). Another important point is that a highly potent SV2C 

competitor like UCB0949 (pIC50 of 7.8) was unable to modify [18F]UCB-H binding in brain structures 

with a high expression of SV2C, like the midbrain or the caudate/putamen [9]. The reduction 

measured in these regions was of the same order of magnitude as that found in the other structures. 

These considerations support the theory that SV2C does not seem to be the main target of [18F]UCB-

H in rats. 

The pre-treatment with SV2BL at 3 mg/kg resulted in a TAC with a peak as high as that obtained 

after pre-treatment with SV2AL. However, it features kinetics which are similar to those obtained 

after pre-treatment with the vehicle or SV2CL. This lower peak could be attributed to an initial non-

specific binding of SV2BL to the SV2A protein, for which it presents an affinity which is similar to that 

of SV2AL, with a pIC50 = 5.6. After the peak, the SV2BL TAC follows a similar shape and level to those 

of pre-treatment with the vehicle and SV2CL, indicating a washing out effect of this fraction of non-

specific binding of SV2BL to the SV2A protein. In order to confirm this hypothesis, a similar 
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experiment with a SV2BL with a lower affinity for SV2A should be performed. However, the SV2BL 

used in this paper is currently the only one available. In addition to the previous analysis, we 

evaluated the changes in Vt after pre-treatment with SV2BL. In these results, we can observe a 

consistent mean reduction of 20.5% of the Vt values in the eight selected ROIs. The SV2BL is 

characterized by a pIC50 of 7.8 for the SV2B isoform. Such a highly potent competitor is expected to 

effectively impede the binding of any radioligand to the SV2B isoform. If SV2B was the main target 

for [18F]UCB-H, the blocking induced with this highly efficient SV2BL would have been very 

pronounced and much higher than the 20% measured. In order to explain the 20% reduction of 

[18F]UCB-H Vt values, we have to take into account that SV2BL also presents some potency for SV2A. 

SV2BL has a pIC50 of 5.6, which is of the same order of magnitude as that of levetiracetam. Thus, the 

SV2BL ligand has some affinity for SV2A, which could lead to partial blocking of SV2A. Hence, the 

20% reduction observed is most likely linked to SV2A blocking induced by SV2BL. Accordingly, we 

can conclude that SV2B does not seem to be the main target of [18F]UCB-H in vivo in rats. 

We are aware that the respective affinities of SV2BL and SV2CL are a problem for the 

interpretation of the data, but we have to consider that today UCB5203 and UCB0949 are the only 

compounds that can be used for this purpose. 

4. Materials and Methods 

4.1. Animals 

Twenty male Sprague Dawley CD rats (five weeks old) were used, bred by Janvier Laboratories 

(France). The animals were housed in pairs for three weeks under standard 12:12 h light/dark 

conditions, maintaining room temperature at 22 °C, and humidity at approximately 50%. Standard 

pellet food and water were provided ad libitum. 

The experimental procedures and protocols used in this investigation (“Synap-SV2A project” 

files 14-1753 and 13-1573) were reviewed and approved by the Institutional Animal Care and Use 

Committee of the University of Liege, according to the Helsinki declaration, and conducted in 

accordance with the European guidelines for care of laboratory animals (2010/63/EU). Moreover, the 

Animal Research Reporting In Vivo Experiments (ARRIVE) guidelines [37] were followed as closely 

as possible to confer a minimal intrinsic quality to the study. 

4.2. Radiopharmaceutical Production and Drugs 

[18F]UCB-H was produced through one-step radiolabeling of a pyridyliodonium precursor. This 

method provides 34% ± 2% of injectable [18F]UCB-H (uncorrected radiochemical yield) from up to 

285 GBq (7.7 Ci) of [18F]fluoride (specific activity of 815 ± 185 GBq/μmol and measured purity of 99.8 

± 0.5 wt %); this has previously been reported in Warnier et al. [17]. 

The ligand for the SV2A isoform (SV2AL) was purchased as an injectable solution (levetiracetam, 

Keppra® , UCB Pharma S.A. Brussels, Belgium). At the present time, there are no commercially 

available specific ligands for the other two SV2 isoforms (SV2B and SV2C). The competitors used 

were obtained from UCB Pharma s.a.: UCB5203 for SV2B (SV2BL, MW: 236.238g/mol) and UCB0949 

for the SV2C (SV2CL, MW: 281.197g/mol). The information on these compounds was supplied by 

UCB Pharma s.a. The respective affinities for the different SV2 isoforms are presented in Table 2. 

The competitors were prepared daily in a vehicle composed of distilled water containing 1% 

methyl cellulose (viscosity: 15 cP, Sigma-Aldrich, Overijse, Belgium) and 5% dimethyl sulphoxide 

(DMSO, Sigma-Aldrich, Belgium). The concentrations differed depending on the product 

specifications and their respective pharmacokinetics, provided by UCB Pharma s.a. The dosing used 

was 10 mg/kg for SV2AL, 3 mg/kg for SV2BL, and 3 mg/kg for SV2CL. All solutions were administered 

through the intraperitoneal (i.p.) route in a total volume of 1 mL per kg of body weight. The animals 

used as a control group (vehicle) received an equal volume of vehicle through the same route of 

administration. 

4.3. In Vitro Binding Assays 
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Reagents and reference compounds used were of analytical grade and obtained from various 

commercial sources. All cell culture reagents were obtained from Invitrogen (Merelbeke, Belgium). 

Radioligands (3H-UCB30889, 1184 GBq/mmol; 3H-UCB1418435, 925 GBq/mmol; and 3H-UCB101275-

1, 1110–1480 GBq/mmol) were obtained from G.E Healthcare, Amersham, UK (now Perkin Elmer, 

Zaventem, Belgium) and reference compounds (levetiracetam, UCB108649-1 and UCB101275-1) were 

custom synthesized and stored according to manufacturer’s recommendations. Test and reference 

compounds were dissolved in 100% DMSO or H2O to give 1 or 10 mM stock solution. The final DMSO 

concentration in assays was 0.1% unless otherwise stated. 

Cell lines generated at UCB Biopharma were human embryonic kidney (HEK) 293 cells expressing 

human SV2A, SV2B or SV2C proteins. Cells were cultured in Dulbecco’s Modified Eagle medium. The 

culture medium was supplemented with foetal bovine serum (FBS, 10%), 2 mM L-glutamine, 50 to 100 

U/mL penicillin, 50 to 100 µg/mL streptomycin, and 200 µg/mL hygromycin B. Cells were grown at 37 

°C with 95% air. Confluent cells were detached by 10 min incubation at 37 °C in phosphate buffered 

saline (PBS) containing 0.02% EDTA. Culture flasks were washed with 15 mL of ice-cold PBS. The cell 

suspension was centrifuged at 1500× g for 10 min at 4 °C. The pellet was homogenized in 15 mM Tris-

HCl buffer (pH 7.5) containing 2 mM MgCl2, 0.3 mM EDTA, and 1 mM EGTA (buffer A) using a 

glass/teflon homogenizer. The crude homogenate was subjected to a freeze and thaw cycle in liquid 

nitrogen and DNAse (1 µL/mL) was then added. The homogenate was further incubated for 10 min at 

25 °C before being centrifuged at 40,000× g for 25 min at 4 °C. The pellet was re-suspended in buffer A 

and washed once under the same conditions. The final crude membrane pellet was re-suspended at a 

protein concentration of 1–3 mg/mL in 7.5 mM Tris-HCl buffer (pH 7.5 at 25 °C) containing 250 mM 

sucrose and stored in liquid nitrogen until use. 

Membranes were incubated in binding buffer (see Table 3) containing test compound or positive 

control in the presence of the radioligand. The non-specific binding (NSB) was defined as the residual 

binding observed in the presence of a high concentration (1000 fold its Ki) of a specific unlabeled 

reference compound. Membrane-bound and free radioligands were separated by rapid filtration 

through glass fiber filters (GF/C). Samples and filters were rinsed using at least 6 mL of washing buffer. 

The entire filtration procedure did not exceed 10 s per sample. The radioactivity trapped on the filters 

was counted by liquid scintillation in a β-counter. To determine the affinity of a compound for a given 

target, competition curves were performed with at least 10 concentrations of compound spanning at 

least 5 log units. 

Table 3. Details of the in vitro binding assay determination. Percentage of inhibition was calculated 

as follows: % INHIBITION = 100 − [((BI − NSB)/(B0 − NSB)) × 100], where B0 and BI represent the 

binding observed in the absence and presence of the test compound, respectively (dpm), NSB is the 

radioligand non-specific binding (dpm). Raw data were analyzed by non-linear regression using 

XLfitTM (IDBS, London, Great Britain) according to the following generic equation: B = NSB + [(B0 − 

NSB)/(1 + (((10X)/(10−pIC50))nH))], where B is the radioligand bound in the presence of the unlabeled 

compound (dpm), NSB is the radioligand non-specific binding (dpm), B0 is the radioligand bound in 

the absence of unlabeled compound (dpm), X is the concentration of unlabeled compound (log M), 

pIC50 is the concentration of unlabeled compound that inhibits the radioligand specific binding by 

50% (−log M), and nH is the Hill coefficient. 

In Vitro 

Binding Details 
hSV2A Assay hSV2B hSV2C 

Binding buffer 50 mM Tris-HCl (pH7.4) containing 2 mM MgCl2 

Filtration buffer Ice-cold 50 mM Tris-HCl (pH 7.4) 

Incubation time 120 min at 37 °C in 0.5 mL 120 min at 37 °C in 0.5 mL 120 min at 37 °C in 0.2 mL 

Radioligand 3H-UCB30889 (4 nM) 3H-UCB1418435 (8 nM) 3H-UCB101275-1 (20 nM) 
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Proteins 
75–125 µg 

HEK293 membranes 

2–5 µg 

HEK293 membranes 

40–60 µg 

HEK293 membranes 

Blocking drug 
Levetiracetam 

(1 mM) 

UCB108649-2 

(10 µM) 

UCB101275-1 

(100 µM) 

4.4. PET Acquisitions 

The animals (n = 5 per group) were anesthetized using 4% isoflurane in air at a flow rate of 1 

L/min during induction and 1.5% to 2% isoflurane in air at 0.6 L/min during maintenance. Respiration 

rate and rectal temperature were continuously measured using a physiological monitoring system 

(Minerve, France). The temperature was maintained at 37 ± 0.5 °C using an air warming system. 

MicroPET scans were performed with a Siemens FOCUS 120 microPET (Siemens, Knoxville, TN, 

USA). The animals were anesthetized and pre-treated i.p. with vehicle, SV2AL, SV2BL, or SV2CL. 

Thirty minutes later, they were installed in the microPET scanner and [18F]UCB-H was injected via 

the lateral tail vein (44.7 ± 3 MBq, 0.55 mL), simultaneously starting a 60 min emission scan, in list 

mode. Finally, a 10 min transmission scan was performed in a single event acquisition mode, using a 
57Co source. The acquired data were then reframed as follows: 6 × 5 s, 6 × 10 s, 3 × 20 s, 5 × 30 s, 5 × 60 

s, 8 × 150 s, and 6 × 300 s. For each frame, a total of 95 trans-axial slices were obtained using Fourier 

rebining (FORE), followed by 2D ramp filtered backprojection (FBP), in 256 × 256 matrix. The slice 

thickness was 0.796 mm and the in-slice pixel size was 0.433 mm. 

Immediately after the PET acquisition, the anesthetized rats were transferred into a 9.4 Tesla 

MRI horizontal bore system (Agilent Technologies, Palo Alto, CA, USA), with a 72 mm inner 

diameter volumetric coil (Rapid Biomedical GmbH, Würzurg, Germany). Anatomical T2-weighted 

brain images were obtained using a fast spin echo multi-slice sequence with the following 

parameters: TR = 2000 ms, TE = 40 ms, matrix = 256 × 256, FOV = 45 × 45 mm, 30 contiguous slices of 

thickness = 0.80 mm and in-plane voxel size = 0.176 × 0.176 mm. 

4.5. Imaging Data Processing 

PMOD software (Version 3.6, PMOD Technologies, Zurich, Switzerland) was used to process 

the imaging data. The structural MRI images were firstly co-registered to the corresponding PET 

images, and subsequently spatially normalized into the PMOD MRI T2 template. Finally, the inverse 

normalization parameters were calculated and applied to the PMOD rat brain atlas to bring it in the 

individual PET space. From this atlas, eight relevant regions of interest (ROIs) were chosen according 

to their differential expression of SV2A, SV2B and SV2C: whole brain, cortex, caudate/putamen, 

hippocampus, inferior colliculus, superior colliculus, midbrain and thalamus. 

Individual time-activity curves (TACs) were extracted for each ROIs and normalized by the 

body weight and the injected dose of radiotracer to be expressed as standardized uptake value (SUV). 

A population-based input function (PBIF) published by our laboratory [35] was used to avoid arterial 

blood sampling during the acquisitions. The distribution volume (Vt), was determined by Logan plot 

kinetic modelling using the TACs and the PBIF. The equilibration time (t*) was fixed at 15 min 

(starting point of the range used in the multi-linear regression analysis). 

4.6. Statistical Analysis 

The results are presented as mean (Vt) ± standard error of the mean (SEM). All the data were 

tested for normal distribution with Levene’s test for homogeneity, and with a Kolmogorov–Smirnov 

test for normality. Data were analyzed using one-way analysis of variance (ANOVA) followed by 

Scheffe post-hoc tests. 

All statistical analyses were performed with the statistics software Statistica 12 (Statsoft, France) 

and GraphPad Prism (version 6, GraphPad software, Inc., San Diego, CA, USA). The critical level of 

statistical significance was always set at p < 0.05. 
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5. Conclusions 

For the first time, the specificity of a radiopharmaceutical compound for the three SV2 protein 

isoforms was assessed in vivo, in rats. The results obtained clearly indicated that SV2A was the main 

target of [18F]UCB-H, and confirmed that [18F]UCB-H is a suitable radiotracer for in vivo imaging of 

the SV2A proteins with PET. Consequently, [18F]UCB-H is an interesting candidate to study SV2A-

associated pathologies. 

Supplementary Materials: The following are available online. Figure S1: TACs extracted from the eight ROIs, 

and normalized by the injected activities and the body weight. Lines represent the [18F]UCB-H uptake over a 60 

min acquisition after pre-treatment with the vehicle, SV2AL, SV2BL, or SV2CL (mean ± SEM; n = 5). 
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