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Abstract Accurate predictions of net ecosystem productivity (NEPc) of forest ecosystems are essential for
climate change decisions and requirements in the context of national forest growth and greenhouse gas
inventories. However, drivers and underlying mechanisms determining NEPc (e.g., climate and nutrients) are
not entirely understood yet, particularly when considering the influence of past periods. Here we explored
the explanatory power of the compensation day (cDOY)—defined as the day of year when winter net carbon
losses are compensated by spring assimilation—for NEPc in 26 forests in Europe, North America, and
Australia, using different NEPc integration methods. We found cDOY to be a particularly powerful predictor
for NEPc of temperate evergreen needleleaf forests (R2 = 0.58) and deciduous broadleaf forests (R2 = 0.68). In
general, the latest cDOY correlated with the lowest NEPc. The explanatory power of cDOY depended on the
integration method for NEPc, forest type, and whether the site had a distinct winter net respiratory carbon
loss or not. The integration methods starting in autumn led to better predictions of NEPc from cDOY then the
classical calendar method starting 1 January. Limited explanatory power of cDOY for NEPc was found for
warmer sites with no distinct winter respiratory loss period. Our findings highlight the importance of the
influence of winter processes and the delayed responses of previous seasons’ climatic conditions on current
year’s NEPc. Such carry-over effects may contain information from climatic conditions, carbon storage levels,
and hydraulic traits of several years back in time.

1. Introduction

Accurate predictions of carbon dioxide (CO2) exchange by forest ecosystems are essential for understanding,
e.g., the role of the forest mitigation in the context of the National Determined Contribution under the Paris
Agreement, as well as for the required estimates of annual carbon (C) budgets to be provided at national or
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international level. Research in the past decades focused on improving these predictions on both annual and
longer (decadal) timescales, e.g., in relation to extreme events [e.g., Baldocchi and Wilson, 2001; Ciais et al.,
2005; Richardson et al., 2009; Rodrigues et al., 2011; Wolf et al., 2013; Wu et al., 2013] and in relation to the
length of the growing seasons or the number of carbon uptake days [e.g., Churkina et al., 2005]. Our study
builds on the current understanding that some critical periods within the current or the past year (e.g., winter
frost and spring drought) may explain the interannual variability of C uptake of forests better than average
conditions over the current year only [Le Maire et al., 2010]. The effects of climatic conditions from previous
seasonal periods on current year’s annual net ecosystem productivity (NEPc) are called carry-over effects and
were quantified, e.g., by Shao et al. [2016], Thomas et al. [2009], and Zielis et al. [2014]. Such carry-over effects
support the influence of specific periods in the past on current year’s NEPc, and their influence have been
demonstrated a long time ago by tree ring analyses, e.g., for Danish forests [Holmsgaard, 1955]. Here we
use positive NEP defined as net C uptake, while negative NEP is a net C release to the atmosphere (NEE is
defined with the opposite sign in Aubinet et al. [2012]). Further, NEPc is defined as the cumulative sum of
NEP fluxes throughout the annual cycle—not necessarily a calendar year—yielding net C flux between the
atmosphere and the forest. To account for the temporal integration of the average NEPc over an annual cycle,
values are expressed in g Cm�2 yr�1, whereas half-hourly NEP measurements are given in g Cm�2 s�1 (as
calculated from μmolm�2 s�1).

1.1. The Concept of cDOY

Following the concept of previous year’s weather conditions influencing current year NEPc, we explored the
information content of cDOY, defined as the day of year when the net carbon losses accumulated during the
wintertime are compensated by net assimilation in spring. The timing of cDOY is assumed to change with cli-
matic conditions of previous periods (of unknown length) and may have a direct impact on the current year
NEPc [Zielis et al., 2014]. Similar approaches were described in literature, e.g., the “zero-crossing time,”wherein
net ecosystem exchange is used to define the time when the forest ecosystem turns from a C source in winter
into a C sink in spring [Gonsamo et al., 2012a; Gonsamo et al., 2012b]. Another approach quantifies the so-
called “start of the carbon uptake period” which is determined by a sharp increase in gross primary produc-
tion (GPP) [Delpierre et al., 2009]. However, these approaches rely on instant net ecosystem exchange rates
only and do not accumulate carbon loss over an entire wintertime, as it is the case of in the cDOY approach.

1.2. Integration Methods for NEPc

Traditionally, NEPc is integrated annually over a time period of the Gregorian calendar year (classical integra-
tion as shown in Figure 1). This is more a practical choice, but it neither reflects any particular connection to
underlying carbon cycle processes nor does it take into account potential carry-over effects on NEPc. As an
example, trees prepare their buds in autumn and thus the predisposition for growth (and thus NEPc) during
the following season is determined in autumn already. Thus, it is important to consider the start and end of
the accumulation period of NEPc. In line with these thoughts, Urbanski et al. [2007] introduced a method
integrating NEPc at Harvard Forest from 28 October to 27 October of the following year (Urbanski integration
in Figure 1), trying to come closer to a more reasonable biological time reference of the annual NEP cycle. This
integration period is similar to the hydrological year as starting on 1 November in the Northern Hemisphere.
Thomas et al. [2009] found that interannual and seasonal variations in carbon and water processes were best
explained when seasonality was defined functionally within hydrological years.

More recently, a dynamic integration approach was introduced by Zweifel et al. [2010] in order to relate
continuous stem diameter fluctuations to NEPc. The frequently occurring stem shrinkages induced by winter
frost [Zweifel and Hasler, 2000] made the classical integration approach from 1 January to 31 December inap-
plicable for an unbiased analysis of annual stem growth increments (bark and wood) in relation to NEPc. An
integration over a variable period was therefore proposed (Figure 1), starting with the day when NEPc of the
previous calendar year reached its maximum and ending with the day in the current year when maximum
NEPc was achieved (dynamic integration in Figure 1). Thus, the dynamic year corresponds more closely to
the actual biological cycle, which does not exactly count 365.25 days per year. This dynamic integration
method is appropriate to time series of stem increments and NEPc data from eddy covariance flux measure-
ments. It was concluded that the application of this approach reduces distortion effects on annual sums, due
to apparent interannual variations in carbon losses and stem shrinkages during wintertime [Zweifel et al.,
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2010], i.e., shifts in uptake and loss periods that arbitrarily affect the sums calculated over a fixed calendar
period. We use the terms “year” and “annual” in combination with all three integration methods, for the sake
of readability, being aware that the terms usually are implicitly used for periods of Gregorian calendar years
from 1 January to 31 December.

The way of splitting time series into annual integration periods also changes the potential contribution of
winter carbon losses for the total annual C uptake and the cDOY timing in the following year (Figure 1).
Indeed, the classical integration period splits the net carbon loss of a winter period in two parts, assigning
them to two different NEPc years, while the dynamic (and Urbanski) integration method assigns net carbon
loss for all the winter period entirely to the NEPc of the biological year that will last until the onset of the next
winter period. Accordingly, cDOY changes with the respective integration method (Figure 1) and might have
a different explanatory power for NEPc.

In this study, we used in total 26 eddy covariance forest sites with 25 sites throughout Europe and North
America (Figure 2), and additionally one site from Australia, thus covering a wide range of climatic conditions
(Table 1) to investigate the meaning of cDOY for NEPc and its underlying drivers. We used the cDOY timing as
the key measure associated with the net carbon loss period and related it to climatic conditions and NEPc. We
addressed the following specific objectives: (1) application of three different NEPc integration methods
(classical, Urbanski, and dynamic) in order to calculate and compare the respective cDOYs, (2) identification
of climatic and biological drivers for cDOY across sites and across different years, (3) evaluation of different
cDOY as a predictor for its associated NEPc, and (4) the weight of winter net respiratory losses on current
year’s NEPc.

2. Materials and Methods
2.1. Study Sites

The study is based on carbon dioxide (CO2) flux data from 347 site years from 26 eddy covariance (EC) forest
sites (managed forest not affected by major disturbances like fire or wind throw) within Europe, North
America, and Australia (Table 1 and Figure 2). The selected sites fulfilled the following criteria: (1) at least

Figure 1. Three different methods of integrating net ecosystem productivity (NEPc) over time (real data shown: Hyytiälä,
years 2010 to 2012): Classical integration runs from 1 January to 31 December of each calendar year, “current” is year 2;
Urbanski integration from 28 October of the previous year to the end of 27 October of the current year; Dynamic
integration runs dynamically for every site and for every year from the day of the previous year’s cumulated NEPc maximum
(MAXNEPc ) to the current year’s cumulated NEPc maximum (MAXNEPc (+1)). Net carbon losses occur between MAXNEPc and
the minimum of NEPc of the current year (MAXNEPc). The day of compensation (cDOY) is defined as the day of the year when
MAXNEPc (of the previous year) is crossed by NEPc in the current year. Accordingly, cDOY depends on the integration
method. For the Southern Hemisphere, i.e., for the Australian site AU-Tum, the same cuts were made, one half year later.
The corresponding year started on 1 July and ended on 30 June.
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4 years of continuous EC data, (2) availability of Level 4 (L4) data quality according to the European Fluxes
Database [European Fluxes Database Cluster, 2014] or available from the FluxNet2015 data set (http://flux-
net.fluxdata.org/data/fluxnet2015-dataset/), and (3) available meteorological and forest characteristics data.
The forest vegetation at the sites was classified as deciduous broadleaf forests (DBF, n=7), mixed forest (MF,
n= 3), evergreen needleleaf forests (ENF, n= 13), and evergreen broadleaved forest (EBF, n= 3).

2.2. CO2 Flux Measurements

Half-hourly or hourly CO2 flux data (net ecosystem exchange rates summed up to net ecosystem productivity,
NEP), derived from both open- and closed-path gas analyzers, were downloaded from the FluxNet2015 data
set (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) or in L4 quality from the European Fluxes
Database (http://www.europe-fluxdata.eu/home). These data were already filtered and gap filled (Table 1).
For three sites (CH-DAV, CH-LAE, and PL-TUC, all open-path gas analyzers) our own site-specific processing
was conducted: data were filtered for unfavorable atmospheric conditions such as snow, heavy rain,
and/or dust which increased window dirtiness of the infrared gas analyzer> 70%. For these three individual
sites, the threshold for insufficient nocturnal turbulent mixing of the atmosphere (determined via the friction
velocity u* for mechanical turbulence) was determined with the online EC gap-filling and flux partitioning
tool (Markus Reichstein and Olaf Menzer, http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/) [Reichstein
et al., 2013; Reichstein et al., 2005] and was found to be 0.2m s�1.

2.3. CO2 Flux Integration

Annual NEPc was integrated with three different methods (Figure 1): classical method: NEPc is integrated
from January 1 to December 31; Urbanski method: NEPc is integrated from 28 October to 27 October 1 year
later [Urbanski et al., 2007]; and dynamic method: integration of NEPc from the DOY with the maximum
seasonal peak of the previous year (typically in fall; MAXNEPc ) to the DOY with MAXNEPc of the current year
(Figure 1). The dynamic integration method led to “annual cycles” ranging from 7 to 16months depending
on year and site; the overall average was 364 days (supporting information Figure S1). For the Southern
Hemisphere site AU-Tum, the year has been shifted half a year forward, i.e., the classical year started with 1
July and the dynamic “integration period” started with the maximum peak (MAXNEPc ) before 1 July. The
Urbanski integration method was not applied for this site.

2.4. Statistical Analyses

Statistical analyses were performed using the statistical software R, version 3.3.1 [R Development Core Team,
2013]. All multiple regression models were based on linear relationships. Adjusted R2 (adjR2) was used for the
quantification of goodness of fit. Analyzed potential drivers for cDOY are listed in Table 1. Their respective
impacts on cDOY were analyzed with multiple regression models based on the inclusion of explaining

Figure 2. Spatial distribution of 25 sites across North America and Europe and one Australian site (not shown). Site abbreviations are listed in Table 1.
ENF = evergreen needleleaf forests, DBF = deciduous broadleaf forests, MF =mixed forests, and EBF = evergreen broadleaf forests.
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variables in a stepwise way. The so-called standardized regression coefficients (β coefficients) were used to
determine the relative importance of variables (var) within the models, ranging between �1 as the highest
negative and +1 as the highest positive correlative importance [Quinn and Keough, 2002]. A β coefficient close
to zero indicates that the variable does not add to the quality of the model.

3. Results
3.1. Compensation of Net Carbon Loss After Wintertime

The day of year when respiratory carbon losses from the previous winter were compensated (cDOY) differed
strongly across sites (Table 2 and Figure 3). cDOY varied from 3 January (AU-TUM/3 July) to 25 July (CA-QFO),
with a mean of 3 May (obtained by averaging all three integration methods, Figure 3). Some sites showed no
or irregular cDOY timings, meaning that they observed no distinct respiratory carbon loss period every year
(Table 2). Evergreen forests (3 × EBF, 13 × ENF) in general had an earlier cDOY (18 April) than deciduous for-
ests (7 ×DBF, June 28). Only nine out of the 26 sites compensated on average their net carbon losses in
the climatologically defined spring calendar months (Mar–May) (Table 2). Six sites compensated before
spring, while eleven compensated after May. The yearly standard deviation of cDOY for individual sites ran-
ged from 6days (DE-HAI, AU-TUM) to more than 50 days (PT-ESP) (Table 2).

Further, cDOY strongly depended on the integration method. In general, the classical integration method led
to a cDOY almost 3weeks earlier than those obtained with the dynamic method (classical: 16 April; dynamic:
10 May). The average cDOY obtained from the Urbanski integration method (5 May) was almost the same as
that from the dynamic method (data now shown). Much less affected were the mean differences (Urbanski
versus classical: �54 g Cm�2 yr�1 and dynamic versus classical: �91 g Cm�2 yr�1) and the standard devia-
tions (Urbanski versus classical: �7 gCm�2 yr�1 and dynamic versus classical: �10 g Cm�2 yr�1) of NEPc
between the different integration methods (see also supporting information figures for each site).

3.2. Drivers of cDOY

Average cDOY was substantially correlated with mean annual air temperature (R2 between 0.4 and 0.45). The
relationship was largely independent of the integration method used (Table 3), and the later cDOYs corre-
sponded to the cooler sites (Figure 3a). Other site characteristics considered (latitude, longitude, altitude, tree
age, nitrogen deposition, tree height, andmean annual precipitation) showedweak (or no) linear relationship
to cDOY and did not improve the stepwise multiple linear regression models to explain cDOY (Table 3).

The meaning of mean annual site temperature (MAT) for cDOY was markedly increased when the pooled
data over all sites were grouped into four forest types (Figure 3a): evergreen needleleaf forest (ENF, all
included), evergreen broadleaf forest (EBF), and mixed forest (MF) showed R2 between 0.64 and 0.99. No sig-
nificant correlation was found between MAT and cDOY for the deciduous broadleaf forests (DBF;
R2 = 0.07, p> 0.05).

In Figure 3b, those sites without a distinct winter respiratory loss period, and thus with no consistent cDOY
timing (Table 2) were removed (all EBF and more than 50% of the ENF sites). All of these sites are evergreen,
with a majority having MAT over 8–10°C; hence, in winter, these sites likely photosynthesize. The remaining
six ENF sites (CA-QFO, CH-DAV, FI-HYY, RU-FYO, SE-NOR, and US-NR1), with a distinct winter respiratory loss
and a latter cDOY, increase to an adjR2 of 0.90 for the linear relationship between MAT and cDOY (Figure 3b).

3.3. Relationship Between cDOY and NEPc

The 26 sites analyzed in this study included C sink and C source sites (Table 2). The largest net annual respira-
tory loss was at RU-FYO with a consistent average C output of 137 g Cm�2 yr�1. The largest net C uptake was
at AU-Tum with 1007 g Cm�2 yr�1.

Stepwise multivariate analysis showed that cDOY, among the site characteristic variables available, explained
most of NEPc for all integration methods (Table 4). Sites with distinct winter respiratory loss, explained signif-
icantly more of NEPc than all other sites. cDOY obtained from the two integration approaches that initiated
the NEPc year in autumn (Urbanski and dynamic) explained NEPc significantly better (adjR

2 = 0.35 and 0.47)
than cDOY from the classical integration approach (adjR2 = 0.23). When the ENF (Table 4d) and DBF
(Table 4e) sites were analyzed separately (using the dynamic integration), the R2 of the linear regressions
was further improved (R2 of 0.58 and 0.68, respectively).
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Figure 3. Relationship between cDOY (integrated dynamically) and mean annual temperature (MAT) grouped for the four
forest types. (a) All sites included (n = 26) and (b) sites with distinct winter respiratory losses only, i.e., where winter net
respiration loss accounts for more than 10% of the annual net ecosystem productivity and n was> 2 for all integration
methods.

Table 3. Stepwise Multiple Linear Regression Models to Determine the Drivers of the Day of Compensation cDOY for the
Classical, Urbanski, and Dynamic Integration Methoda

Drivers of cDOY R2 Alone 1 Var 2 Vars 3 Vars 4 Vars 5 Vars 6 Vars 7 Vars

Classical Integration Method
MAT 0.4*** �0.63 �0.58 �0.57 �0.58 �0.53 �0.55 �0.48
LAI 0.11 -- 0.25 0.25 0.23 0.13 0.14 0.03
Age 0.06 -- -- 0.03 �0.02 �0.06 �0.03 0.06
Height 0.05 -- -- -- 0.1 0.29 0.27 0.23
N 0.03 -- -- -- -- 0.08 0.07 �0.05
Altitude 0.01 -- -- -- -- -- �0.07 �0.19
MAP 0 -- -- -- -- -- -- 0.37
Total adjR2 -- 0.4*** 0.39*** 0.36** 0.34** 0.17* 0.12* 0.21*

Urbanski Integration Method
MAT 0.45*** �0.67 �0.61 �0.58 �0.59 �0.61 �0.43 �0.5
Height 0.17* -- 0.29 0.29 0.31 0.34 0.35 0.27
MAP 0.1 -- -- 0.21 0.21 0.21 0.28 0.33
Age 0.07 -- -- -- �0.06 �0.09 �0.04 0.06
LAI 0.06 -- -- -- -- �0.01 �0.03 �0.01
N 0.05 -- -- -- -- -- �0.06 �0.12
Altitude 0.01 -- -- -- -- -- -- �0.24
Total adjR2 -- 0.45*** 0.48*** 0.51*** 0.49*** 0.45*** 0.23* 0.21*

Dynamic Integration Method
MAT 0.4*** �0.63 �0.57 �0.57 �0.57 �0.5 �0.43 �0.52
LAI 0.1 -- 0.23 0.23 0.22 0.1 0.01 0.04
Age 0.06 -- -- 0.03 0 �0.06 �0.03 0.1
Height 0.03 -- -- -- 0.06 0.36 0.36 0.24
N 0.03 -- -- -- -- 0.04 �0.02 �0.09
MAP 0.01 -- -- -- -- -- 0.23 0.3
Altitude 0 -- -- -- -- -- -- �0.33
Total adjR2 -- 0.4*** 0.37** 0.34** 0.31** 0.2* 0.2* 0.22*

aThe variables were included one by one in the models (MAT =mean annual air temperature at the top of the eddy
towers; LAI = leaf area index; Age = average age of the mature trees in the stand; Height =maximum tree height;
N =mean annual nitrogen deposition; MAP =mean annual sum of precipitation). The β coefficients (var) indicate the
relative importance of the variable, ranging from �1 (highest importance, negative correlation) to +1 (highest impor-
tance, positive correlation). The first column gives the R2 for individual site characteristics (see Table 1).
*p< 0.05,
**p< 0.01,
***p< 0.001.
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Table 4. Stepwise Multiple Linear Regression Models to Determine the Drivers of Net Ecosystem Productivity NEPc for the Classical (All Sites), Urbanski (All Sites),
and Dynamic Integration Method (All Sites)a

Drivers of NEPc R2 Alone 1 Var 2 Vars 3 Vars 4 Vars 5 Vars 6 Vars 7 Vars 8 Vars

Classical Integration Method (All Sites)b

cDOY 0.23* �0.48 �0.48 �0.39 �0.44 �0.38 �0.36 �0.59 �0.6
MAP 0.22* -- 0.47 0.47 0.41 0.33 0.26 0.45 0.38
MAT 0.14 -- -- 0.14 0.14 0.27 0.25 0.14 0.1
Height 0.05 -- -- -- 0.21 0.24 0.36 0.39 0.33
Altitude 0.04 -- -- -- -- 0.24 0.38 0.38 0.35
Age 0.04 -- -- -- -- -- -0.31 -0.39 -0.38
N 0.02 -- -- -- -- -- -- 0.04 0.07
LAI 0.02 -- -- -- -- -- -- -- 0.21
Total adjR2 -- 0.23* 0.45** 0.47** 0.51** 0.55** 0.61** 0.54 0.57

Urbanksi Integration Method (All Sites)c

cDOY 0.35** �0.59 �0.7 �0.74 �0.67 �0.64 �0.83 �0.85 �0.85
MAP 0.23* -- 0.38 0.38 0.33 0.31 0.34 0.42 0.37
MAT 0.15 -- -- �0.06 0.06 0.06 0 0.01 �0.01
Altitude 0.05 -- -- -- 0.18 0.24 0.34 0.31 0.29
Age 0.04 -- -- -- -- �0.14 �0.33 �0.33 �0.33
Height 0.03 -- -- -- -- -- 0.45 0.38 0.34
N 0.02 -- -- -- -- -- -- �0.03 �0.01
LAI 0 -- -- -- -- -- -- -- 0.14
Total adjR2 -- 0.35** 0.47** 0.48** 0.5** 0.51** 0.65*** 0.69** 0.71**

Dynamic Integration Method (All Sites)d

cDOY 0.47*** �0.68 0.39 �0.66 �0.6 �0.58 �0.6 �0.84 �0.86
MAP 0.22* -- -0.64 0.39 0.35 0.34 0.23 0.45 0.39
MAT 0.14 -- -- �0.04 0.06 0.05 0.06 0 �0.04
Altitude 0.06 -- -- -- 0.15 0.2 0.29 0.27 0.24
Age 0.04 -- -- -- -- �0.13 �0.25 �0.31 �0.3
Height 0.02 -- -- -- -- -- 0.29 0.38 0.33
N 0.02 -- -- -- -- -- -- 0.01 0.03
LAI 0.01 -- -- -- -- -- -- -- 0.18
Total adjR2 -- 0.47*** 0.62** 0.62*** 0.63*** 0.65*** 0.7*** 0.72** 0.74**

Dynamic Integration Method (ENF Only)e

cDOY 0.58** �0.76 �0.4 �1.03 �1.08 �1.16 �1.09 �1.04 �0.71
MAT 0.17 -- �1.07 �0.4 �0.42 �0.38 �0.36 �0.22 0.43
Age 0.13 -- -- �0.09 �0.11 �0.06 �0.04 �0.2 �0.72
LAI 0.06 -- -- -- 0.35 0.2 0.23 0.15 �0.04
MAP 0.04 -- -- -- -- 0.36 0.36 0.46 0.56
N 0.03 -- -- -- -- -- 0 �0.1 �0.25
Height 0.01 -- -- -- -- -- -- 0.22 0.71
Altitude 0.01 -- -- -- -- -- -- -- 0.53
Total adjR2 -- 0.58** 0.65 0.66** 0.78** 0.87*** 0.87** 0.88* 0.94*

Dynamic Integration Method (DBF Only)f

cDOY 0.68* �0.83 0.37 �0.44 �0.4 �0.37 -- -- --
Altitude 0.53 -- �0.61 0.43 0.44 0.16 -- -- --
Age 0.33 -- -- 0.23 0.22 0.29 -- -- --
LAI 0.27 -- -- -- 0.07 0.24 -- -- --
MAP 0.17 -- -- -- -- 0.38 -- -- --
N 0.11 -- -- -- -- -- -- -- --
MAT 0.03 -- -- -- -- -- -- -- --
Height 0.02 -- -- -- -- -- -- -- --
Total adjR2 -- 0.68* 0.78* 0.81* 0.81 0.86 -- -- --

aThe variables were included one by one in themodels (cDOY = compensation day; MAT =mean annual air temperature at the top of the eddy towers; LAI = leaf
area index; Age = average age of the mature trees in the stand; Height =maximum tree height; N =mean annual nitrogen deposition; MAP =mean annual sum of
precipitation). The β coefficients (var) indicate the relative importance of the variable, ranging from �1 (highest importance, negative correlation) to +1 (highest
importance, positive correlation). The first column gives the R2 for individual site characteristics (see Table 1).

bClassical (all sites).
cUrbanski (all sites).
dDynamic (all sites).
eThe analysis for the dynamic integration for evergreen needleleaf forests (ENF) only.
fThe analysis for the dynamic integration for deciduous broadleaf forests (DBF) only. Other forest types had too low replications (n = 3) for a separate analysis.
*p< 0.05.
**p< 0.01.
***p< 0.001.
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Mean annual temperature (MAT) was the secondary determinant variable of NEPc in stepwise multiple
linear regression models (Table 4). The ranking of site factors, with minor contributions, such as leaf area
index (LAI), mean annual precipitation (MAP), and stand age followed next; however, the ranking depended
on the integration method. An exception was the DBF sites (Table 4e): MAT had no explanatory weight
for NEPc at these sites, in line with the finding that cDOY of these forests was not determined by MAT
(Figure 3).

When analyzing individual sites instead of pooled data, the site-specific relationships between cDOY and
NEPc showed a high variability and ranged from not existing to excellent (annual resolution, Table 1 and
Figures 4 and 5). There appeared clear clusters of points (in the scatterplot of cDOY versus NEPc, according

Figure 4. Linear regressions between compensation days (cDOY) and annual sums of net ecosystem productivity (NEPc)
(Table 1) for each site and integration method: (a) classical, (b) Urbanski, and (c) dynamic. Solid regression lines are
shown for R2 ≥ 0.4, broken lines for the rest. The frequency columns at the bottom of each panel indicate the number of site
years occurring at a specific cDOY (color coded for the four forest types).
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Figure 5. Differences betweenmodeled annual net ecosystem productivity (NEPc), as a linear function of cDOY andmeasured NEPc for each site in a leave-one-year-
out cross evaluation for each integration method: (a) Classical, (b) Urbanski, and (c) dynamic. The results are grouped for sites with and without distinct winter net
respiratory losses. The Urbanski method was left out for AU-Tum, there, the “year” begins on 1 July and goes to 30 June one year later.
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to the forest types in Figure 4): evergreen forests (ENF and EBF) had the lowest cDOY with the highest NEPc.
Deciduous broadleaf forest (DBF) had the highest cDOYs with on average lower NEPc. Mixed forest (MF) had
average cDOYs with relatively high NEPc.

The site-specific quality of the relationships between cDOY and NEPc was largely explicable by grouping
the pooled data according to sites with and without a distinct net respiratory carbon loss over wintertime
(Table 2). The separation criterion for the two groups was a net respiration loss of 10% of the annual NEPc
(Table 2). Sites with distinct winter respiration loss had on average a stronger correlation between cDOY
and NEPc (R

2 0.53 versus 0.37; dynamic method) and were on average 4°C cooler than sites with no distinct
winter respiration loss (Tables 1 and 2).

3.4. Quality of NEPc Predictions From cDOY

The quality of NEPc predictions from cDOY were tested by comparing measured and modeled NEPc per site
and year with a leave-one-year-out cross evaluation (Figure 5). There were two very clear results: 1. The
Urbanski and the dynamic integration methods led to distinctly better NEPc prediction than the classical
integration method over the Gregorian/orbital calendar year. 2. The NEPc predictions from cDOY were
stronger for sites with a distinct respiratory carbon loss over wintertime. Thereby, sites where the forest
did not become a C source for a distinct period, and thus did not lose at least 10% of annual NEPc every year,
failed to show a strong prediction of NEPc from cDOY.

4. Discussion

There is increasing evidence that a considerable proportion of the interannual variability of NEPc cannot be
explained by the current year’s climatic variability alone but needs considering previous periods’ weather
factors. Predispositions of growth by the determination of buds in autumn of the past year [Thomas et al.,
2009; Zweifel et al., 2006], carry-over effects on physiology in years following climate extremes [Law et al.,
2002; Thomas et al., 2009; Wu et al., 2012; Zielis et al., 2014], C-storage pools accumulated over several years
[Campioli et al., 2009; Hoch et al., 2003], sapwood-related hydraulic traits [Zweifel et al., 2006], and winter
chilling effects (vernalization) [Cook et al., 2012] are examples of potential causalities between conditions
back in time and the current year NEPc. In order to better understand the intraannual variability of NEPc
and its drivers, we introduced the day of compensation (cDOY), i.e., the day of the current year (typically in
spring) when net carbon losses during wintertime are compensated by carbon assimilation in spring or early
summer (Figure 1). cDOY reflects the complete winter conditions and the related accumulated CO2 losses, in
combination with the onset and rate of CO2 assimilation in spring (Table 2). Therefore, cDOY is not directly
comparable with studies focusing on the onset of GPP or the change in NEP/NEE from a C source to a sink
in spring [Delpierre et al., 2009; Gonsamo et al., 2012a; Gonsamo et al., 2012b] since these approaches do
not account for the amount of accumulated respiratory C losses over wintertime. In the following we discuss
the meaning of cDOY and its impact on the interpretation of NEPc.

4.1. Mean Annual Site Temperature Determining cDOY

The loss of C during wintertime and the respective cDOY was found to be statistically highly independent of
most of the site characteristics like mean annual precipitation, nitrogen deposition, leaf area index, age, or
tree height (Table 3). Only MAT was significantly related to cDOY (R2 about 0.4, pooled data for all sites,
Table 3) particularly when the sites were grouped according to their forest types (R2 up to 0.99, Figure 3, with
one exception, see below).

The importance of air and soil temperatures for the recovery of trees from the inactive physiological winter
dormancy back into a physiologically active status is well documented [Baldocchi et al., 2005] and covers
issues such as rehydration of tissues [Koike, 1990; Lundmark et al., 1988; Suni et al., 2003; Zweifel et al.,
2000], bud burst [Basler and Körner, 2014], assimilation [Monson et al., 2011a], flowering [Cook et al., 2012],
length of the vegetation/growth period [Aurela et al., 2004; Baldocchi and Wilson, 2001; Churkina et al.,
2005; Monson et al., 2011a], growth [Zweifel et al., 2010], and probably many more. All these processes are,
finally, determining cDOY with different weights, since they are influencing quantities and timing of ecosys-
tem respiration and assimilation, explaining the influence of MAT on cDOY well.
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4.1.1. One Exception: The Deciduous Broadleaf Forests
There was one exception from the generally close relationship between MAT and cDOY: MAT had no impact
on cDOY for deciduous broadleaf forests (DBF, n= 7) (Figure 3), but cDOY had a high explanatory power for
NEPc, particularly with the dynamic integration method (Table 4e). This finding was unchanged when
considering DBF filtering for those sites with a distinct winter respiratory carbon loss of more than 10% of
the annual NEPc (Figure 3b, negative sign = respiratory loss/positive NEPc). Overall, this means that cDOY
is strongly forest type specific and that cDOY includes information not covered by the site characteristics
investigated and thus offers a new dimension in interpreting NEPc. This seems to be particularly true for
the DBF sites. The seven DBF forests included in this study (IT-COL, US-MMS, DE-HAI, US-HA1, US-WCR,
DK-SOR, and US-UMB) consisted of beech (Fagus sylvatica), maple (Acer spp.), oak (Quercus spp.), ash
(Fraxinus spp.), basswood (Tilia americana), and sourwood trees (Oxydendrum arboreum). We suggest two
potential explanations why the cDOY of these forests does not depend on MAT. First, (i) the group of DBF
sites might still be too heterogeneous in terms of their species composition to show a concise MAT-cDOY
relationship. The limited number of replications (n= 7) for this group does, however, not allow for further
differentiations. And second, (ii) cDOY reflects processes which are indeed independent of MAT for this
forest type, e.g., due to biological predispositions of water and carbon storage which have their origin
before the time period investigated [Keenan et al., 2012; Urbanski et al., 2007; Zielis et al., 2014; Zweifel
et al., 2010], or due to genetic predispositions which determine the regulation of physiological activity
independently of temperature [Basler and Körner, 2014], or in a way that positive and negative temperature
effects level each other off. A convincing chain of arguments for the second explanation was recently
brought up by Cook et al. [2012]. They showed that increasing temperatures during winter and spring
induce opposite effects in certain species. Warmer winter conditions can lead to an insufficient vernalization,
i.e., chilling requirements that must be met before a plant is able to respond to spring warming, which in
turn leads to a delayed initiation of phenological processes in spring despite the positive effect of increased
spring temperatures. Further, for beech trees Basler and Körner [2014] recently reported a codetermination
of beech bud burst by the photoperiod and, therefore, a partial decoupling from temperature. Such a partial
decoupling from temperature in terms of physiological processes could be, in terms of physiological
processes, a species-specific explanation for a predisposition disturbing the generally valid relationship
between MAT and cDOY. The effect of climate change on the relationship between cDOY and NEP might
thus also depend on species-specific physiological responses and acclimation potentials. It is however
difficult to understand how heterotrophic respiration (RH) in the soil is triggered by the mentioned tree
physiological processes. Apart from temperature, RH might be stimulated by rhizosphere processes such
as root exudates and mycorrhiza, which in turn might be more closely coupled to the tree physiological
status in DBF. Further field studies are needed to test this hypothesis.

4.2. Timing of cDOY

In general, evergreen forests (EBF and ENF) had earlier cDOYs than the deciduous forests, and mixed forests
with evergreen and deciduous species were in between (Figure 4). Photosynthesis of evergreens during
winter varies with climatic region, but can be substantial. Thus, the early cDOYs of the evergreens may be
explained by the ability of evergreen trees to start earlier in the season with assimilation [Richardson et al.,
2010] or even maintain it during mild winters [Pallardy, 2010]. Photosynthetic capacity can be attained after
just a few days of sufficient environmental conditions [Ottander et al., 1995; Ottander and Oquist, 1991; Suni
et al., 2003].

Forest types, excepting DBF, and cDOY are both found to be linked to MAT (Figure 3 and Table 3). Evergreen
broadleaf forest (EBF), for instance, grows at relatively warm sites and do not have a consistently occurring
winter respiratory carbon loss period and thus show no consistently cDOY timings in each year (Figure 3).
Typical examples are the eucalypt sites in Australia and Portugal (Table 2 and supporting information
Figure S AU-TUM and S PT-ESP). These sites show an almost full year growth period or at least do not turn
into C sources once every year, and the cDOYs, which can hardly occur, happen thus hardly any year. At
the other end of the biological scale appear the deciduous broadleaf tree sites (DBF) with the latest cDOYs
(Figure 4) at the generally cooler sites (Figure 3). The existence of a cold season is the main reason for forming
a deciduous canopy. Deciduous forests need more time in spring for bud burst and leaf flushing, for the
development of the photosynthetic apparatus, and for the onset of photosynthetic activity [Basler and
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Körner, 2014; Epron et al., 1996; Jurik, 1986; Koike, 1990; Reich et al., 1991]. The evergreen needleleaf forests
(ENF) have the widest temporal range for cDOY (Figure 4), again in line with the widest range of occurring
MAT (Figure 3a).

4.3. Strengths and Limitations of cDOY to Predict NEPc

The explanatory power of cDOY as a predictor of NEPc was strongly depending on whether the site had a net
carbon respiratory loss higher than 10% of the annual NEPc or not (Figures 4 and 5). For sites with a distinct
net carbon loss over wintertime (Figure 5a) the estimated annual NEPc from cDOY reached accuracies of
�75 g Cm�2 yr�1 which are comparable to some of the most successful (but much more complex) NEP
models [Keenan et al., 2012]. For the other sites without a distinct winter respiratory loss, the standard
deviation between modeled and measured NEPc was a factor 2 to 3 higher (Figure 5b), which leads to the
conclusion that cDOY is of limited explanatory power in these cases. This could be explained partly by the
large variation in winter photosynthesis in temperate evergreens, and by the fact that evergreen needleleaf
species grow in some of the harshest conditions, such as the western U.S. where summer drought is the norm
[Law and Waring, 2015].

Besides the importance of the winter net respiratory C loss, the forest type had a strong influence on the
predictive power of cDOY on NEPc. Pooled data reached an R2 of 0.47 (dynamic integration) for the linear
regression between cDOY and NEPc (Table 4), whereas the grouped data for ENF (R2 = 0.58, dynamic integra-
tion, Table 4e) and DBF (R2 = 0.68, dynamic integration, Table 4d) were much higher. This again indicates that
the information content of cDOY, i.e., the net effect of winter and spring processes, depends on the forest
type and the respective species composition (Figure 4). Both winter respiratory loss and vegetation type
are related to temperature and therefore linked to each other (Figure 3). It is therefore not surprising that
besides cDOY as the variable with the highest explanatory power for NEPc, mean annual temperature
appeared as the second best driver in our stepwise multiple regression analyses (Table 4). The addition of
other site factors, namely precipitation, age, or LAI improved the multiple regressions further. Generally,
the goodness of fit between cDOY and NEPc increased with the timing of later cDOYs and with decreasing
air temperatures (Table 4).

We conclude that lower mean annual temperatures lead to generally more pronounced winter net respira-
tory losses and it appears plausible that this is linked to later cDOYs. This is also in line with studies analyzing
the onset of forests as a C sink in relation to winter and spring temperatures [Baldocchi et al., 2005; Cook et al.,
2012;Delpierre et al., 2009;Monson et al., 2011b]. Or the other way around, the warmer the site the less distinct
the carbon loss period may be the earlier cDOY happens and the less likely the influence of cDOY on annual
carbon uptake. Furthermore, we conclude that latter cDOYs are linked to lower annual NEPc, and thus, the
influence of cDOY on the annual NEPc increases with its timing.

cDOYs of deciduous broadleaf forests (DBF) showed the highest prediction quality for NEPc (Table 4e) despite
the fact that the respective cDOY did not correlate with mean annual temperature (Figure 3) nor other site
variables like for other forests types (Table 4d) or the pooled data (Tables 4a–4c). Sites at higher altitudes
(e.g., US-NR1 and US-Me2) experience large interannual variation in the physiological active period, for
example, 45 days at US-Me2 [Thomas et al., 2009], and studies in the mountains of the western U.S. have
shown declining snowpack for decades and its correlation with warm temperature anomalies. Further at
US-NR1, longer growing seasons were correlated with low snow water equivalent and resulted in less annual
net carbon uptake [Hu et al., 2010]. Overall, such processes may confound an explanatory power of MAT for
cDOY and NEPc in certain cases; however, we found no generally convincing explanation for the relationship
between cDOY (its not found drivers) and NEPc. Even when not understanding why DBF sites appear as a
special case, we conclude that cDOY timing must in general depend on variables (eventually beyond the
ones we analyzed) containing information about the site and its past (climatic) history, including genetic
predispositions leading to this high predictive power for NEPc.

In summary, there are many indications for winter effects on NEPc of forests and related to it on the cDOY
timing. The compensation day (cDOY) is suggested to capture air temperature and intrinsic forest type-
dependent differences, leading to a specific date in the first part of the calendar year, with a high explanatory
power for the upcoming annual NEPc values of the entire year for forest sites under distinct respiratory net
carbon losses during wintertime.
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4.4. Starting the NEPc Year in Autumn

Three different ways of integrating NEP over a year were applied: the static “classical” calendar-year method
(1 January to 31 December), the static “Urbanski”method (28 October to 27 October), and the more process-
oriented “dynamic” method, defining the “biological” year as the period between two annual NEPc peaks.
There appeared distinctly better fits between cDOY and NEPc for the two methods starting the NEPc year
in autumn (Table 4). The classical method performed generally worse for all types of analyses (Tables 3
and 4 and Figure 5). The additional gain of predictive quality for the dynamic method over the static
Urbanski method was relatively small. This means that it is important to include the complete autumn and
winter period before the actual C sink period for interpreting NEPc, but doing so with a static approach
captures more or less the same information as when doing so with the site- and year-specific dynamic
method (which can be more labor intensive to deal with).

4.5. Conclusions

The compensation day cDOY reflects processes, which take place before the net C-sink period begins in
forests in spring and early summer. The fact that cDOY explains more of NEPc when starting the NEPc year
in autumn shows that the (autumn-winter) period already before 1 January plays an important role for the
following NEPc performance. cDOY analysis takes seasonal and interannual variations of the carbon cycle
dynamics into account and is therefore suggested to take up carry-over effects of climate and carbon storage
in temperate forests [Keenan et al., 2012; Urbanski et al., 2007; Zielis et al., 2014; Zweifel et al., 2010]. Such
carry-over effects seem to be less important in forests with no distinct winter net respiratory loss of C (C loss
less than 10% of annual NEPc). This is in line with the finding that cDOY gains explanatory power for NEPc at
sites with distinct winter respiratory C losses. The fact that biological processes, occurring before the annual
net assimilation period begins, are able to explain more than 50% of the annual NEPc should change our view
on the drivers of NEPc. Weather conditions during the main assimilation period of a forest seem to tell only
half the story of the annual NEPc. Thus, an accurate NEPc interpretation additionally needs to include the
conditions that affected a forest before this period.
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