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Abstract

Nowadays, Internet actors have to deal with a strong in-
crease in Internet traffic at many levels. One of their main
challenge is building high-speed and efficient networking
solutions. In such a context, kernel-bypass I/O frameworks
have become their preferred answer to the increasing band-
width demands. Many works have been achieved, so far, all
of them claiming to have succeeded in reaching line-rate for
traffic forwarding. However, this claim does not hold for more
complex packet processing. In addition, all those solutions
share common drawbacks on either deployment flexibility or
configurability and user-friendliness.

This is exactly what we tackle in this paper by introduc-
ing mmb, a VPP middlebox plugin. mmb allows, through an
intuitive command-line interface, to easily build stateless and
stateful classification and rewriting middleboxes. mmb makes a
careful use of instruction caching and memory prefetching, in
addition to other techniques used by other high-performance
I/O frameworks. We compare mmb performance with other
performance-enhancing middlebox solutions, such as kernel-
bypass framework, kernel-level optimized approach and other
state-of-the-art solutions for enforcing middleboxes policies
(firewall, NAT, transport-level engineering). We demonstrate
that mmb performs, generally, better than existing solutions,
sustaining a line-rate processing while performing large num-
bers of complex policies.

1 Introduction

Global Internet traffic has constantly increased over the past
decade. In 2017, 17.4 billions of devices have generated more
than 45,000 GB/second Internet traffic. By 2022, the number
of devices connected to IP networks will reach 28.5 billions,
among which 51% will follow a machine to machine (M2M)
communication scheme, and their traffic will attain 150,700
GB/second, with hours peaking up to a x4.8 increase factor.
Following the introduction of of 4K, Ultra-High-Definition
(UHD), or video streaming, Video traffic, which is particularly

delay-sensitive, will account for 82 % of this total [8, 14].
The fixed broadband and the mobile network speed will also
continue to grow, to an average of respectively 75.4 Mbps and
28.5 Mbps.

In parallel, the traditional TCP/IP architecture (i.e., the end-
to-end principle) is becoming outdated in a wide range of
network situations. Indeed, corporate networks [26], WiFi
hotspots, cellular networks [28], but also Tier-1 ASes [12] are
deploying more and more middleboxes in addition to tradi-
tional network hardware. A middlebox is a network device
inspecting, filtering, or even modifying packets that traverse
it. Typically, a middlebox performs actions on a packet that
are different from standard functions of an IP router. Indeed,
middleboxes may be deployed for, e.g., security (IDS, NATs,
firewalls) and network performance (load balancer, WAN op-
timizer).

Internet actors have thus to deal with this double increase at
many levels, and particularly, in building high-speed network-
ing solutions. A wide range of Kernel-bypass I/O frameworks
are available to answer this increasing bandwidth demand, and
the Linux kernel has been striving to stay afloat [6, 16]. Many
of those efforts claims to have succeeded in reaching line-
rate for traffic forwarding, less so for more complex packet
processing (e.g., a firewall with a large number of rules, TCP
options). Moreover, all of them share common drawbacks, on
either deployment flexibility by necessitating expensive hard-
ware or specific OS to maintain reasonable performances, or
configurability and user-friendliness by requiring non-trivial
programming for basic adaptation of common network func-
tions.

In this paper, we want to overcome those limitations by
introducing mmb (Modular MiddleBox), an open-source 1 ex-
tension to the Vector Packet Processing (VPP [24]) high-speed
kernel-bypassing framework. mmb aims at achieving line-rate
forwarding performance while performing a large number of
complex packet manipulation defined by middlebox policies.
It leverages VPP employment of classical and recent advances

1Due to double-blind submission, a link to the source code will be pro-
vided if the paper is accepted.
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in packet processing techniques, such as computation and I/O
batching, Zero-Copy forwarding, low-level parallelism, and
caching efficiency.

Moreover, by implementing combinable generic middle-
box policies, configurable from an intuitive command-line
interface, mmb allows for out-of-the-box middlebox deploy-
ment and easy adaptation. On modern hardware, it is able
to hold baremetal-like performance while running on a vir-
tual machine, thanks to PCIe passthrough technologies (i.e.,
SR-IOV, virtio). Finally, mmb benefits from VPP continuous
development and maintenance.

We conduct a thorough comparison of trending high-
performance packet processing solutions with mmb, for a se-
lection of simple to complex use cases, packet forwarding,
firewall-like packet filtering, packet filtering with stateful flow
tracking, packet filtering with stateful matching and packet
mangling (i.e., NAT), and TCP options filtering and mangling.
We find that, with few hardware restrictions and without the
need to write a single line of code, mmb is able to sustain packet
forwarding at line-rate speed when enforcing a large set of
diverse and complex classification and mangling rules, while
other solutions either perform worse, require specific hard-
ware or OS, necessitate expert-level configuration, or have
inner design limitations that make them inapplicable.

The remainder of this paper is organized as follows: Sec. 2
provides the required background for this paper, focusing on
the VPP framework and its main features employed by mmb;
Sec. 3 introduces mmb by detailing its architecture and im-
portant aspects; Sec. 4 contains the performance evaluation
of mmb. It describes and motivates the selected use cases, in-
troduces the state-of-the-art tools compared to mmb, explains
their configurations, and discusses the results; Sec. 5 positions
mmb with respect to notable high-performance packet proces-
sors; finally, Sec. 6 concludes this paper by summarizing its
main achievements.

2 VPP Background

This section aims at providing the required background
for mmb. In particular, it focuses on Vector Packet Processing
(VPP) [7], a 17-year old Cisco-developed technology pro-
viding a high-performance, extensible, feature-rich, packet-
processing stack that runs in user space. It implements a full
network stack and is designed to be customizable. It can run
on I/O frameworks such as DPDK [1], Netmap [25], or Open-
DataPlane (ODP) [23].

VPP leverages techniques such as batch-processing,
Receive-side Scaling (RSS) queues, Zero-Copy by allow-
ing userspace applications to have Direct Memory Access
(DMA) to the memory region used by the NIC, offloading
certain packet processing functions to dedicated hardware,
and I/O batching to reduce the overhead of NIC-initiated inter-
rupts. While those techniques have been implemented in other
kernel-bypassing frameworks (e.g., FastClick [4]) and have

whi le ( n _ l e f t _ f r o m >= 2){
/∗ p r e f e t c h n e x t i t e r a t i o n ∗ /
i f ( PREDICT_TRUE ( n _ l e f t _ f r o m >= 4 ) ) {

v l i b _ p r e f e t c h _ b u f f e r _ h e a d e r ( b [ 2 ] , STORE ) ;
v l i b _ p r e f e t c h _ b u f f e r _ h e a d e r ( b [ 3 ] , STORE ) ;

}

p r o c e s s ( b [ 0 ] ) ;
p r o c e s s ( b [ 1 ] ) ;

b += 2 ;
n e x t += 2 ;
n _ l e f t _ f r o m −= 2 ;

}

/∗ p r o c e s s r e m a i n i n g p a c k e t s ∗ /
whi le ( n _ l e f t _ f r o m > 0){

p r o c e s s ( b [ 0 ] ) ;

b += 1 ;
n e x t += 1 ;
n _ l e f t _ f r o m −= 1 ;

}

Figure 1: VPP Dual-loop.

been shown to drastically improve performances [3], VPP
attempts to surpass it by introducing parallel processing on
multiple CPU cores, to maximise hardware instruction pipelin-
ing, alongside an optimal use of CPU caches to minimize the
memory access bottleneck. To this end, VPP introduces partic-
ular coding practices (e.g.: memory prefetching, cache-fitting
processing nodes, branch prediction) to maximize low-level
parallelism and cache locality.

2.1 Processing Nodes

The VPP packet processing path is based on a directed
forwarding graph architecture. An example of such graph is
shown in Fig. 3, that illustrates the subgraph used by mmb. It is
made of small, modular nodes performing a set of functions
(e.g., dpdk-input, ip4-lookup) to packets, in userspace.
Each node is designed to entirely fit inside the instruction
cache. The graph node dispatcher is responsible for directing
the packet vectors through the graph. This modular architec-
ture enables the development of independent plugins, that
consist in shared libraries loaded at runtime, to plug their own
nodes into the existing VPP forwarding graph, or rearrange it.

2.2 Packet Vectors

Kernel-bypass frameworks usually rely on a classical run-
to-completion approach [4, 20], where each single packet is
processed by each function separately. However, this approach
has a few downsides related to memory access, which is a well-
known bottleneck of software performance [5], ultimately
resulting in reduced throughput.
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First and foremost, the instruction cache hit rate suffers
from continually having to load the different packet process-
ing functions, and even more so when the cache is full. More-
over, when processing a packet, there is no a-priori infor-
mation on the next function to be executed, neither which
portions the packet data will be read. This prevents the es-
tablishment of prefetching strategies, which are efficient in
addressing the memory access bottleneck.

VPP chooses to rely on a per-node batch processing, by sys-
tematically using pre-allocated packet batches (i.e., vectors),
that contains typically up to 256 packets. When a function is
applied to a packets batch, the first packet causes the function
to be loaded in the instruction cache. Then, the following
packets are guaranteed to hit the cache, amortizing the cost
of the initial cache miss over the whole packet vector. More-
over, this approach gives a-priori information on the next
data sections to be read, allowing for efficient prefetching
strategies.

2.3 Low-level Optimization

VPP heavily encourages developers to set up multiple cod-
ing practice in the form of low-level optimizations techniques,
in order to exploit all available hardware optimizations, and
ultimately to improve the framework throughput.

Most VPP packet processing functions are N-loops, which
consists in explicit handling N packets per iteration to increase
the code parallelism. This practice aims at exploiting CPU
hardware pipelining and at amortizing the cost of instruction
cache misses. Fig. 1 shows an example of a dual-loop packet
processing algorithm with data prefetching. By unrolling the
loop, this algorithm allows for subtracting the processing time
of two packets to the fetching time of the two next packets
buffers. VPP authors notes that quad-loops (i.e., N=4) are
only beneficial for small processing functions, because the
introduced space-time trade-off is bounded by the limited size
of instruction L1 caches [24].

VPP also relies on branch prediction by having program-
mers to give hints on the probability of code branches. This
practice benefits, in case of a correct branch prediction, of
avoiding a pipeline reset. Another important practice is allo-
cating N buffers at a time rather than individually, and when
possible, pre-allocating them.

3 Modular Middlebox

mmb (Modular MiddleBox) is a VPP extension that per-
forms stateless and stateful classification, and rewriting. It
achieves stateless packet matching based on any combina-
tion of constraints on network or transport protocol fields,
stateful TCP and UDP flow matching, packet mangling,
packet dropping and bidirectional mapping. mmb is partly
protocol-agnostic by allowing to match and rewrite fields

Figure 2: mmb processing path.

Figure 3: VPP forwarding graph with mmb nodes.

ip4-payload, udp-payload, and tcp-opt, and allows for
on-the-fly configuration.

Sec. 3.1 provides a global overview of mmb, while Sec. 3.2
and Sec. 3.3 focus on mmb nodes for classification and rewrit-
ing operations.

3.1 General Overview
Following the VPP architecture (see Sec. 2), mmb

forwarding graph consists in two nodes, a classifica-
tion (e.g., ip4-mmb-classify) and a rewrite node (e.g.,
ip4-mmb-rewrite), as shown in Fig. 3. When mmb is enabled,
its nodes are connected to the processing graph. If IPv6 is
available, the IPv6 variants of those two nodes can also be con-
nected to the IPv6 forwarding graph. The classification node
is placed right after the ip4-input (or ip6-input) node,
that validates the IP4 header checksum, verifies its length and
discards packets with expired TTLs.

Depending on the outcome of the classification step, that
can either be drop, miss, or match, packets are forwarded re-
spectively to the error-drop node which will discard them,
to ip4-lookup, the node responsible for the Forwarding In-
formation Base (FIB) lookups, that then dispatches packets
to the corresponding processing path, or the mmb-rewrite
node, applying modification rules to packets.
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Figure 4: mmb command-line interface syntax.

Overall, mmb consists in three processing paths that can each
be traversed or not by packet vectors, depending on the input
policies. A fast path, which relies on VPP bounded index hash
tables and implements the mask-based matching operation
using binary operators, is shown in Fig. 5. This path is enabled
when a rule without any TCP option is entered. Moreover,
it restricts the conditions to == (isequal). The stateful flow
matching is using this fast path. A first slow path for rules
that uses complex conditions (6=, <, >, ≤, ≥), and a second
slow path for the linked list parsing required when classifying
based on TCP options as well as when rewriting them.

The main goal of mmb is to be easily configurable, and to
allow defining a wide range of middlebox policies by combin-
ing rules, defined by using commands with a generic seman-
tic [11, 13], at high-speed. To this end, we define a grammar
(see Fig. 4) that can be used to build a packet processing mid-
dlebox directly from a command-line interface. For example,
building a middlebox that rewrites TCP port 80 to port 443 is
done as follows:

vpp# mmb add tcp−dport 80 mod tcp−dport 443

Here is another example of a middlebox stripping all options
but MSS and WSCALE if the packet contains the timestamp
option:

vpp# mmb add tcp−opt−timestamp strip ! tcp−opt−mss strip ! tcp
−opt−wscale

A full usage of the command-line interface with examples is
provided with mmb source code.1

3.2 Classification Node
mmb packet processing is displayed in Fig. 2. The classi-

fication node is an extension to VPP classification module,
that consists in four distinct steps: a mask-based constraint
matching step, an index lookup pool, a complex matching
step and a connection table.

The mask-based matching determines if each packet satis-
fies constraints on fixed offset fields. For this, we create one
classification table per packet mask (e.g., per combination
of fields in the match constraint), sized from 16 bytes to at
most 80 consecutive bytes. We create one key for a given
table per value for its associated packet mask. For each table,

Algorithm 1 Matching operation

function MATCH(pkt, mask, key, skip, chunks)
res← (pkt[skip] & mask[0])⊕ key[0]
switch chunks do

case 5
res← res | ((pkt[skip+4] & mask[4])⊕ key[4])

case 4
res← res | ((pkt[skip+3] & mask[3])⊕ key[3])

case 3
res← res | ((pkt[skip+2] & mask[2])⊕ key[2])

case 2
res← res | ((pkt[skip+1] & mask[1])⊕ key[1])

case 1
break

default
abort()

if zero_byte_mask(res) = 0xffff then
return 1

else
return 0

the search for a key matching a given packet is a hash-based
search performed in constant time.

The matching operation consists of two binary operations
(AND and XOR), as shown in Fig. 5.1, which are applied to
consecutive chunks of 16 bytes, starting from the first non-
zero byte in the mask. Each results are OR’ed into a 16-byte
variable, that is compared to zero to verify if the matching op-
eration was successful. This operation is illustrated in Alg. 1.

Then, for each packet that matched at least one mask-key
combination, mmb checks if an additional matching is needed,
with a constant-time lookup, and performs it. Additional
matching is necessary for constraints on linked-list based
fields such as TCP options.

Finally, each packet is matched to a connection table via its
5-tuple. The connection tables keep track of every connection
that matched at least one stateful rule, and implements a flag
tracking and a timeout mechanism without interruptions. This
allows, for example, for reflexive policies. Both TCP and UDP
are handled by the connection table.

If a packet matches at least one rule with a drop target,
it is immediately forwarded to the error-drop node. If the
packet matches only non-drop rules, it is forwarded to the
mmb-rewrite node, and if the packet does not match any
rule, it is handed to the next non-mmb node, ip4-lookup.

3.3 Rewrite Node
The mmb-rewrite node consists in two operations: a mask-

based rewrite step that works on the fixed offset fields, simi-
larly to the first step of the classification node, and a complex
rewrite step for linked-list based fields.
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ResultClassi f . = (Packet & Mask) ⊕ Key (1)

ResultRewrite = (Packet & Mask) | Key (2)

Figure 5: Binary operations for packet classification and
rewrite.

To perform the rewrite operation, or application of targets,
we build a target mask and a target key when the rule is added.
The rewrite is then performed with two binary operations
(AND and OR), as shown in Fig. 5.2.

mmb allows to perform packet mangling by defining, for
any rule, a set of static and dynamic targets. Static targets
consists in setting a user-defined value to a chosen field. In
the case of TCP options, targets may also define an option
strip or an addition. Dynamic targets allows for setting a
different value, within a predefined value range or random,
on a per-connection basis.

4 Performance

In this section, we evaluate mmb performances. We describe
and motivate the selected use cases, introduce the state-of-the-
art kernel-bypass frameworks and other tools that we compare
to and we explain how we configured them. Finally, we dis-
cuss the obtained results.

4.1 Testbed Description

The testbed consists of three machines with Intel Xeon
CPU E5-2620 v4 @ 2.10GHz, 8 Cores, 16 Threads, 32GB
RAM, running Debian 9.0 with 4.9 kernels. Two of these
machines play the role of Traffic Generators (TGs), while
one is the Device Under Test (DUT). An additional machine
with Intel Xeon CPU E5-2630 v3 @ 2.40GHz 8 Cores, 16
Threads, 16GB RAM, running Ubuntu Server 18.04.1 with
4.15 kernel, is used as alternative DUT for experiments requir-
ing a more recent kernel. Each machine is equipped with a
Intel XL710 2x40GB QSFP+ NIC with Receive-Side Scaling
enabled (RSS) connected to a Huawei CE6800 switch using
one port each for TGs and both for the DUT.

The DUT runs VPP 18.10, DPDK 18.08 with 10 1-GB
huge pages, and a kvm/QEMU 2.8.1 hypervisor with a Ubuntu
18.04 guest. The TGs run iperf3 [27], nginx 1.10.3 and wrk
4.0.2.

The DUTs are configured to maximize their performances.
The scaling governor is set to run the CPU at the maximum
frequency. 7 cores out of 8 (14 threads) are isolated from the
kernel scheduler to make sure that no other tasks is being run
on the same physical CPU, and pinned to the process under
test. We enable adaptive-ticks CPUs to omit unnecessary
scheduling-clock ticks for CPUs with only one runnable task,

(a) Direct (b) Indirect

(c) PCI Passthrough (d) Bridged

Figure 6: Measurement Setups. TG = Traffic Generator. DUT
= Device Under Test. Plain arrows are physical connections,
Dotted arrows are bridge networks and the machine sur-
rounded by dots is a virtual machine.

which we ensure by setting the CPU affinity for VPP, and we
enable Read-Copy-Update (RCU) callback offloading.

We configured our testbed into four different setups: A
direct client-to-server communication setup, shown in Fig. 6a,
that is used to evaluate bandwidth baselines and rule out
sender-bounded experiments. An indirect setup, Fig. 6b, in
which the DUT forwards traffic between sender and receiver
by running code on its host OS. A PCI passthrough setup,
Fig. 6c, allowing the hypervisor to directly connect a PCI
device, in our case the NIC, with a guest OS. Finally, a bridged
setup, Fig. 6d, where the guest OS interfaces are connected
to the host OS interfaces using two bridges.

PCI passthrough relies on hardware virtualization, which
is made available by Intel Virtualization Technology for Di-
rected I/O (Intel VT-d), and on I/O translation, which is pro-
vided by Input-Output Memory Management Unit (IOMMU),
in order to allow guest virtual machines to directly use PCI
devices. We also evaluated the virtio KVM I/O virtualization
driver, which allows DPDK to have fast virtual access to PCI
devices, and although more difficult to configure properly,
virtio does not show significant differences in performance.
We did not evaluate Single Root-I/O Virtualization (SR-IOV),
but we expect it to performs similarly.

As mentioned above, we generate traffic using both iperf
and wrk with nginx. Given that iperf relies on a single TCP
connection, it is bounded to a single CPU, and we have to
make sure that we measure the performance of the DUT and
not the TGs. To this end, we run a single pair of iperf client-
server using the direct setup, and we add iperf client-server
pairs until the bandwidth reaches the maximum capacity. We
found that at least 3 iperf client-server pairs are needed to
allow us to reach a consistent 37.7 Gbps bandwidth, which is
the closest that iperf can get to the maximum capacity of the
NICs. We arbitrarily choose to use 7 iperf pairs for the rest of
the experiments. This experiment aims at analyzing the effect
of a small amount of large flows, whose processing cannot be
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distributed on all available DUT CPUs.
The wrk+nginx traffic generators consists in one TG run-

ning nginx, hosting files of different size (1KB, 2KB, 4KB,
8KB, 16KB, 32KB, 64KB, 128KB, and 256KB), and the other
TG running 32 wrk threads, each opening 128 connections
and transferring the same file. We notice that, when trans-
ferring files from 1 KB to 32 KB, the bandwidth is linearly
increasing. Starting from 32-KB files, the bandwidth reaches
a threshold that holds for experiments transferring files from
64 KB to 256 KB. We arbitrarily choose to transfer the 128KB
file for all wrk+nginx experiments. At line-rate, wrk generates
an average of 35,780 requests/sec.

For both iperf and wrk+nginx traffic generation, the ex-
periments last for 20 seconds and omit the first second, to
avoid transient effects. Packets are sized according to Ether-
net MTU. All NICs distributes packets to the RX rings by
hashing both IP addresses and ports. Each experiment result
is averaged over ten runs for bandwidth measurements, and a
thousand runs for RTT and CPU measurements.

4.2 Experiments

The experiments consist in comparing mmb to trending high-
speed packet processors: FastClick [4], XDP [16], and ipta-
bles [2]. We evaluate two Linux kernel versions (i.e., 4.9 and
4.15) for both mmb and iptables because they exhibit significant
performance differences. Below, we describe the compared
tools.

FastClick [4] is a packet processor framework based on the
Click modular router [21]. It comes with multi-queue support,
zero-copy forwarding, I/O and computation batching, and
integrates both DPDK [1] and Netmap [25].It emerged from
the analysis and integration of the best ideas of previous work
such as RouteBricks [10] and DoubleClick [20], plus a few
additional performance improvements. It also greatly eases
the writing of Click configurations, as the framework can
handle some level of parallelization automatically, without
requiring the user to allocate resources manually as in the
other Click-based frameworks.

eXpress Data Path (XDP) [16] is a high-performance pro-
grammable kernel packet processor for Linux. It does not
replace the TCP-IP stack, but rather adds an extra filtering
step based on extended Berkeley Packet Filters (eBPF). The
latters are able to perform stateless lookups, flow lookups, and
flow state tracking. The main use cases of XDP are pre-stack
DDoS filtering, forwarding, load balancing, and flow moni-
toring. There is a proposal for the migration of Linux iptables
to eBPF/XDP-based filtering [6, 19]. We point out that it is
possible to use XDP alongside VPP and mmb. Because eBPFs
are introduced in the 4.14 kernel, we only evaluated XDP on
the Ubuntu Server 18.04 DUT.

iptables is the builtin Linux firewall application [2]. It
relies on netfilter, the kernel packet filtering framework,
which consists in multiple filtering hooks (NF_IP_LOCAL_IN,

Figure 7: Forwarding baselines. TGs are running iperf. In
indirect setup, DUT is forwarding packets through either VPP,
FastClick, kernel 4.9 or 4.15. In PCI passthrough and bridged
setups, DUT is running VPP.

NF_IP_FORWARD, NF_IP_LOCAL_OUT) positioned strategi-
cally in the networking stack, that are triggered by packets as
they progress in the stack. However, the filtering is performed
sequentially and the packets that matches drop rules are not
necessarily dropped immediately and might stay longer in the
processing pipe. iptables also comes with a connection track-
ing system (conntrack), implemented on top of netfilter.

The following use cases are considered for comparing the
performances of mmb to FastClick, XDP, and iptables: packet
forwarding, firewall-like packet filtering, packet filtering with
stateful flow tracking, packet filtering with stateful matching
and packet mangling (i.e., NAT), and TCP options filtering
and mangling. We also report additional results showing the
limitations of mmb matching algorithm, and an analysis of its
CPU time.

4.3 Results
4.3.1 Forwarding

We first evaluate the TG bottleneck, by running both exper-
iments using the direct setup. We obtain 37.7 Gbps with both
iperf and wrk with nginx. Then, we evaluate VPP, FastClick,
and kernel forwarding baselines for the indirect setup, and
the VPP forwarding baseline for the PCI passthrough and
bridged setups. The results are displayed in Fig. 7.

We observe that VPP, FastClick, and Linux kernel 4.15
forward packets at more than 99% of the direct baseline. The
Linux kernel 4.9 performs substantially worse, forwarding
only at 24.8 Gbps. We conducted additional analyses and
ruled out unfortunate queue balancing, CPU loads, and RX
input hash methods as the causes of this difference.

When running VPP, both the indirect and PCI passthrough
setups reach the direct baseline. Both setups continue to be-
have similarly in following experiments. We note that this
advocates in favor of mmb deployment flexibility and from
now on, we report a single result that stands for both setups.
Unsurprisingly, the bridged performs very poorly at 3.6 Gbps,
emphasizing so the importance of direct I/O.
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Figure 8: RTT with 10K firewall rules.

4.3.2 Firewall

We configure mmb as a firewall and compare it to a FastClick
firewall configuration, an XDP-based firewall, and the kernel
forwarding with iptables filtering, to evaluate their applica-
bility to a basic firewall-like packet filtering use case. To this
end, a generator of random firewall rules is used. Rules clas-
sify packets based exclusively on five-tuples, to enable tools
with mask-based hash classification approaches (e.g., mmb and
XDP) to only use one single table. We ensure that no rules are
matching the traffic from the TGs. We generate a new set of
rules for every experiment. In the real world, these middlebox
policies can be used as a firewall as well as DDoS protection
measures. We inject these rules to mmb as stateless rules.

For XDP, we build a simplistic five-tuple firewall. We use a
BPF hash map with five-tuples as keys, and use it to store the
type of rule (i.e., accept or drop) and the count of accepted
and dropped packets. Every time a packet is received, an
eBPF will check for an entry in the map corresponding to the
current packet. If it is found, then the related drop counter is
incremented and the packet dropped. Otherwise, the packet
passes.

When the DUT is running iptables, we inject the rules to
the FORWARD chain.

For FastClick, we use an IPFilter element that will drop
packets matching a rule (i.e., none in our test), and will pass
them to the routing table otherwise. As IPFilter elements
can only support up to 216 rules, we have to chain several
of those to support more rules. The click-fastclassifier
post-processing tool was not used. While it moderately im-
proves performance, it takes a huge amount of time and RAM
to optimize the configuration, and makes it static (i.e., pre-
venting so live reconfiguration).

The bandwidth results are shown in Fig. 9a and 9d. It shows
that XDP and VPP with mmb on a 4.15 kernel, keep a constant
forwarding rate, regardless of the number of rules. Both are
performing very close to the direct baseline, at the exception
of XDP on iperf-generated traffic, that has a large standard
deviation (not represented in this figure) which we believe
is the effect of unfortunate CPU distribution. This effect is
not present with wrk traffic, because it generates more flows,
whose processing distributes better on multiqueue systems.
The mmb firewall on a 4.9 kernel shows signs of rule count
dependent performance, but we believe this is rather due to
the kernel.

iptables on a 4.15 kernel surprisingly sustains a line-rate
bandwidth until 1,000 rules are inputted, while iptables on
4.9 kernel performance decreases already with very few rules.

FastClick performance decreases even more quickly with
the number of rules (no data is depicted for more than 10,000
rules because the slow processing stalls the TGs). This is
due to the implementation of the IPFilter element that, as
already noted, is not designed for a large number of rules.
On the contrary to mmb and XDP that use a O(1) hash-based
approach to match packets to rules, FastClick uses a binary
search which requires O(log2 n) comparisons. Moreover, the
matching code has bad cache locality, further contributing to
the performance drop.

This experiment indicates that the mmb mask-based fast
path, when relying on a single table, has a very limited impact
on the maximum achievable bandwidth of the forwarding
device, regardless on the number of rules.

In Fig. 8, we display the average RTT distribution for the
same use case, with 10,000 rules. It shows that all DPDK-
based I/Os, plus XDP, have an average RTT under 1 ms. At
the microsecond scale, mmb on a 4.15 kernel performs better
with an average RTT of 327 µs, against 562 µs for XDP and
771 µs for FastClick.

4.3.3 Stateful

Next, we confront the chosen tools to the packet filter-
ing with stateful flow tracking use case. We generate sets of
rules matching on the received packets five-tuple, similarly
to the previous experiment. In addition to that, we input a
static set of rules to guarantee that all traffic from the TGs
is matched, to enable flow tracking capabilities of the tested
tools, and quantify the inducted performance overhead. In the
real world, this type of middlebox policies can be used for
private network-initiated reflexive ACLs.

We inject these rules to mmb as stateful rules in order to
have every packet matching at least one rule to add an entry
to the connection table. All packets, matching or not, are also
checked against the opened connections, whose states are
updated when needed.

For FastClick, we use an IPRewriter element for connec-
tion tracking. Each packet goes through that element when
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(a) Firewall 5-tuple filtering, iperf (b) Stateful matching, iperf (c) NAT

(d) Firewall 5-tuple filtering, wrk+nginx (e) Stateful matching, wrk+nginx
(f) TCP Options matching. VPP+mmb on a DUT
running a Linux kernel version 4.15.

Figure 9: Performances in indirect setup. direct baseline traffic does not traverse the DUT.

leaving the middlebox, triggering the creation of a new flow
entry if it is a flow first packet. Packets also go through that
element just after entering the middlebox. If a packet matches
an existing flow, it is passed directly to the routing table rather
than to the IPFilter. IPRewriter is not thread-safe and
will only recognize a return packet as belonging to a flow
if it is processed on the same core that created the flow en-
try. As Receive-Side-Scaling cannot enforce that, we use one
IPRewriter per core and keep separate flow state for both
directions.

iptables is configured as a stateful firewall by enabling
conntrack, the iptables netfilter-based connection tracking
module, and injecting rules to the FORWARD chain.

With XDP, we build a stateful flow tracker using three dif-
ferent BPF hash maps. One for connections tracking, one for
three-tuple matching rules and one for five-tuple matching
rules. We ensure that all operations are as simple as possible
to avoid unnecessary processing overhead. The five-tuple map
is filled with the randomly generated rules, and the three-tuple
map with the static rules. Both maps are used to filter pack-
ets and add entries to the tracking map. The tracking map
contains the list of forwarded flows that matched at least one
rule, with hashes of the five-tuples as keys. This map also
stores various pieces flow information such as flow times-
tamps, TCP state, packet counters, and involved interfaces.
Since a full TCP state machine is superfluous for this use case,

we implement a simplified version by observing all TCP flags
sent from both ends of every connection, which is enough to
differentiate transient from idle connections.

Results are displayed in Fig. 9b and 9e. As in the previous
experiment, mmb on a 4.15 kernel and XDP have constant
line-rate performances. iptables on a 4.15 also shows sim-
ilar performance than for the stateless firewall experiment,
while iptables kernel 4.9 with conntrack performs worse
than without it.

FastClick performs better than for the stateless case, be-
cause the costly filtering step is done only for the first packet
of each flow (but in both directions). Its performance is still
significantly lower than that of mmb or XDP, however.

4.3.4 NAT

The NAT experiment consists in DUT running a Source
Network Address Translation (SNAT) with port translation.
The straightforward way to configure mmb as a SNAT, with
200.0.0.1 as the globally routable address, relies on the single
following rule:

vpp# mmb add−stateful ip−saddr 10.0.0.0/24 ip−proto tcp tcp−
syn shuffle tcp−sport mod ip−saddr 200.0.0.1

For FastClick, we use IPRewriter elements to implement
the SNAT. When a packet leaves the DUT towards the server,
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it goes through an IPRewriter which will rewrite its source
address and port, adding a new flow entry if necessary. The
port is chosen in a range that depends on the processing core
so that on the return path, the packets can be dispatched to
the same core for the reverse transformation using a simple
match on the destination port.

As shown in Fig. 9c, the average bandwidth of traffic cross-
ing an mmb NAT is equals to the direct baseline. mmb performs
1 and 2.5 Gbps worse on a 4.9 kernel, which we believe is
directly caused by a constant kernel overhead, observed on all
other use cases. FastClick performance is very similar. While
the Click configuration for the NAT also comprises a slow
IPFilter element, it is used only on the return path, and
contains just one rule per core. The NAT performance is thus
better than the one of the stateful firewall.

4.3.5 TCP Options

Finally, we evaluate the performance of traffic engineering
policies that matches and mangle TCP Options. The process-
ing of TCP Option, or IPv6 Extension Headers, is more com-
plex because it requires linked list parsing for every packet.
Because any ingress middlebox is able to strip or add TCP
Options, the presence and order of TCP Options in a TCP
packet is not known a-priori. This forbids mmb to exploit a
rule-defined or connection-defined mask-based approach for
parsing TCP options. For this use case, we inject rules that
match on random value of random TCP Options. We do not
mangle TCP options because it would disrupt TCP and affect
its performance. However, because the linked list parsing is
done once, we predict that mangling option do not increase
substantially the processing time.

FastClick is not tested against this use case because none
of the distributed elements is able to match on variable-offset
TCP options. We would have to write new elements for TCP
option parsing and mangling, which would require a signifi-
cant amount of code.

XDP is also not tested against this use case because eBPF
brings limitations explained in the next section, which are
exceeded by the task of implementing complex packet man-
gling.

The bandwidth measurement results, displayed in Fig. 9f,
indicates that the threshold of injected TCP Options-based
classification rules to sustain line-rate packet forwarding, for
traffic generated with iperf, and wrk with nginx, are respec-
tively 100 and 150. This difference is explained by the high
CPU-time requirements of this use case, that we investigate
in Sec. 4.3.7, which makes it benefits from multi-core pro-
cessing.

4.3.6 Limitations

We conducted an additional experiment on the firewall use
case to quantify the performance gain of mmb mask-based

Figure 10: Stability limit of mmb mask-based matching.
FastClick 5t is the firewall matching on 5-tuples. FastClick is
the firewall matching on random rules.

approach (see 3.2). In this scenario, each inputted rule is
deliberately generated to match on a different combination
of five fields, in order to force the use of one table for each
single rule. The results are shown in Fig. 10.

It shows a clear limit of 26 combinations of fields for line-
rate processing, after which the performances start to diminish.
With more than 40 combinations, performances drop signifi-
cantly faster. We explain it by the limited size of the cache that
is too small to hold all prefetched hash tables to avoid cache
miss. We advocate that this limitation is largely sufficient for
a realistic usage.

XDP runs almost at line rate for both firewall (Fig. 9a and
Fig. 9d) and stateful (Fig. 9b and Fig. 9e) use cases, which
makes it a good alternative to mmb. But, although very good,
it introduces some limitations and restrictions. Indeed, the
in-kernel eBPF verifier is a static code analyzer that walks
BPF programs instruction per instruction, and validates them.
Moreover, stack space in BPF programs is limited to only 512
bytes which means that any program must terminate quickly
and will only call a fixed number of kernel functions. As a
consequence, larger programs or programs that contain loops
will be rejected, which provides security and reliability for
the kernel but can be a drag on developers.

While FastClick does not support large numbers of rules,
we observe that its matching algorithm, based on a decision
tree, is not affected much by the number of combinations of
fields it is matching on, and it can sustain 35 Gbps up to 200
rules with different masks. The performance is even slightly
better than the one for the five-tuple firewall, since there is
more variety in the rules. E.g., if a packet is a TCP packet, all
rules for other protocols (ICMP, UDP, etc.) can be ruled out
with a single comparison of the IP protocol field.

4.3.7 CPU time

We measured the cost in CPU cycles of packet processing,
which is available through VPP API, for four extreme use
cases: respectively a firewall with 100K rules, a flow tracker
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Figure 11: CPU clock cycles per packet. fw is a 5-tuples
firewall with 100K rules, stateful is a flow tracker with 100K
rules and one guaranteed match, NAT is a source NAT, tcp-
opts is a TCP option classifier and rewriter with 100 rules.

with a 100K rules and a guaranteed match, a source NAT and a
transport-level engineering middlebox that parses and modify
TCP options that contains 100 rules. The result, presented in
Fig. 11, shows that, for the first three experiments, performing
combinations of packet filtering, stateful tracking, and packet
mangling rules, mmb is able to maintain a low rate of CPU
cycles per packet. In particular, packet filtering and flow track-
ing consume less CPU time, respectively 96 and 135, than the
rest of VPP IP processing path (ip4-input,ip4-lookup, and
ip4-rewrite), whose execution requires an average of 155
CPU cycles per packet. Finally, packet classification based on
TCP Options consumes the most CPU time, i.e., 836 clocks
per packet. We remind that this experiment is an extreme
use case that corresponds to the most complex task that can
be performed by mmb while sustaining line-rate forwarding.
Moreover, realistic use cases are not likely to require as many
different policies.

5 Related Work

Over the years, numerous works have been proposed for
fast and efficient packet processing. Among others, one can
cite iptables [2] (the built-in Linux firewall application),
PF_RING [9] (a software I/O framework that modifies the
socket API to avoid buffer reallocation and bypass unneces-
sary kernel functionalities to improve the performances of
packet capture from those of libpcap), PacketShader [15] (a
GPU-accelerated software router framework, that perform
I/O batching and kernel bypass) and eXpress Data Path
(XDP) [16], a high-performance programmable kernel packet
processor for Linux.

The more specific mOS [17] is a networking stack for build-
ing stateful middleboxes. Its ambition is to provide a high-

performance general-purpose flow management mechanism.
It comes with an API to allow for building middleboxes ap-
plications requiring flow state tracking such as stateful NATs,
or payload reassembly such as NIDS/NIPS and L7 proto-
col analyzers. mOS is based on mTCP [18], a parallelizable
userspace TCP/IP stack.

The Click modular router is a flexible router frame-
work [21]. It was not specifically designed for high-speed
packet processing as it relies on the Linux kernel via sys-
tem calls for certain tasks, leading so into an increase in
processing time. Further, on the contrary to mmb, Click re-
quires the user to write C++ classes to build new function-
alities. Click has been extended over the years to overcome
its limitations. RouteBricks [10] brings hardware multiqueue
support to Click, and introduce an architecture for parallel
execution of router functionalities as a first step towards fast
modular software routers. DoubleClick [20] integrates Pack-
etShader I/O batching and computation batching. Moreover,
it also takes advantage of the non-uniform memory access
(NUMA) CPU architecture. FastClick [4] comes with multi-
queue support, zero-copy forwarding, I/O and computation
batching, and integrates both DPDK [1] (user-level packet
I/O framework) and Netmap [25] (one of the earliest user-
level packet I/O framework). FastClick comes with a wide
variety of elements, and is able to implement more diverse
policies than mmb. Moreover, one of FastClick key point is
the ease of writing new Click configurations. However, the
process of choosing and building a suited element pipeline
still require substantial effort and expertise. MiddleClick [3]
further enhances FastClick with flow-processing capabilities.
It comes, among others, with an optional middlebox-oriented
TCP stack. Moreover, MiddleClick speeds up NFV chains by
factorizing tasks such as classification, which is done only
once for a whole service chain, and can be offloaded to hard-
ware. Finally, ClickNP [22] is an FPGA-based packet process-
ing framework whose abstraction mimics Click. ClickNP is
supposed to improve parallelism, and shows extreme perfor-
mance improvement with more than 200 MPps, but it requires
dedicated expensive hardware.

This paper has shown that VPP with mmb performs better
than those state of the art solutions for fast packet middlebox
processing.

6 Conclusion

For now ten years, we observe that middleboxes have be-
come more and more popular at every floor of the network
(corporate, mobile networks, tier-1 ASes). Those middleboxes
have to deal, also, with an increasing Internet traffic, meaning
that they have to process packets at very high rate.

This paper introduced mmb (Modular Middlebox), a high-
performance modular middlebox, implemented as a VPP plu-
gin. mmb can be used to deploy out-of-the box middleboxes
and to easily and intuitively configure custom policies through
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its command-line interface, on the contrary to state-of-the-art
solutions usually requiring dedicated hardware, specific OS
or non-trivial programming.

We compared mmb to other trending high-speed packet pro-
cessors (FastClick, XDP, iptables) and demonstrated, through
several use cases, that mmb is able to sustain packet forwarding
at line-rate speed when applying a large number of diverse
and complex classification and mangling rules. mmb is open
source and freely available.1

In the near future, we would like to push further the mmb
development. In particular, we are interested in Layer-7 pay-
load reassembly and generic application-level matching and
mangling rules.
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