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Numerical and experimental study of the flow around
a 4:1 rectangular cylinder at moderate Reynolds number
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Abstract

This paper presents the results of investigations into the flow around a rectangular cylinder with a chord-to-depth ratio equal to
4. The studies are performed through wind tunnel dynamic pressure measurements along a cross-section combined with Unsteady
Reynolds-Averaged Navier-Stokes (Urans) and Delayed-Detached Eddy Simulation (ppes). These experimental and numerical
studies are complementary and combining them allows a better understanding of the unsteady dynamics of the flow. The comparison
of experimental and numerical data is performed using statistics and Dynamic Mode Decomposition. It is shown that the rectangular
cylinder involves complex separation-reattachment phenomena that are highly sensitive to the Reynolds number. In particular, the
mean lift slope ¢, increases rapidly with the Reynolds number in the range 7.8 x 10° < Re < 1.9x 10* due to the modification of the
mean vortex strength, thickness and distance from the surface. Additionally, it is shown that both urANs and ppEs simulations fail to
accurately predict the flow at all the different incidence angles considered. The urans approach is able to qualitatively estimate the
spatio-temporal variations of vortices for incidences below the stall angle @ = 4°. Nonetheless, UrRaNs does not predict stall, while

pDEs correctly identifies the stall angle observed experimentally.

Keywords: bluff body, rectangular cylinder, UrANs, DDES, unsteady pressure measurements, aerodynamics.

1. Introduction 2

27
Despite the simple two-dimensional geometries involved, the ,,

flow around bodies of elongated rectangular cross section are ,,
highly complex because of the three-dimensional nature of tur- ,,
bulence and the unsteady separation and reattachment dynamics

characterizing bluff bodies. Rectangular cylinders at zero inci-
dence have been extensively studied, first experimentally (e.g. *
Nakaguchi et al., 1968; Nakamura and Mizota, 1975; Washizu %
et al., 1978; Okajima, 1983; Stokes and Welsh, 1986) and then &
numerically (e.g. Tamura et al., 1993; Yu and Kareem, 1998; %
Shimada and Ishihara, 2002). These authors have shown that %
the flow dynamics around such cross sections is mainly influ- *
enced by the ratio of the chord ¢ to the deph d of the cross *
section. In particular, Shimada and Ishihara (2002) investigated *
the impact of the </u ratio at zero incidence through Unsteady *
Reynolds-Average Navier-Stokes (UrRANs) simulations at Re = *
2.2 x 10%, this Reynolds number being defined as Re = U4/, 42
where U,, and v are the freestream velocity and the kinematic
viscosity, repectively. Shimada and Ishihara (2002) divided the *
aerodynamic behavior into three main categories based on the *
dynamics of the shear layer. For short cylinders with </a < 2.8, *
flow separation occurs at the leading edges and the rectangular
cross section is too short to allow shear layer reattachment. The
flow is thus fully separated and vortices are periodically shed *

from the leading edges of the cylinder. On rectangular cross ~°
51
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sections with a ratio 2.8 < ¢/« < 6, the shear layer reattaches
periodically and vortex shedding occurs from both the leading
and trailing edges. Finally, for longer rectangular cylinders with
¢/la > 6, the flow is able to fully reattach and vortices are shed
from the trailing edges.

In this context, the Benchmark on the Aerodynamics of a
Rectangular Cylinder (Barc) (Bartoli et al., 2008) provides ex-
perimental and numerical contributions to the study of a 5:1
rectangular cylinder. Bruno et al. (2014) compared more than
70 studies in terms of bulk parameters, flow and pressure statis-
tics, as well as spanwise correlations. Among the principal con-
clusions, Bruno et al. (2014) reported a narrow distribution of
results obtained for the Strouhal number and the mean drag co-
efficient while those collected for the standard deviation of the
lift coefficient are significantly dispersed. It was argued that this
scattering is caused by the high sensitivity of the flow along the
upper and lower surfaces of the rectangular cylinder to small
differences in the wind tunnel setup and in the simulation pa-
rameters. Within the framework of the Barc, Schewe (2013)
investigated experimentally the impact of Reynolds number in
the range between 4 x 103 and 4 x 10° on the aerodynamic co-
efficients. He showed that the Reynolds number has a minor
influence on both the drag coefficient and the Strouhal number,
but significantly impacts the lift coefficient and particularly the
lift curve slope. Schewe (2013) argued that an increase in the
Reynolds number could correspond to an increase in the turbu-
lence level which would cause a shift downstream of the mean
reattachment point on the lower surface (for a cylinder at pos-
itive angle of attack). This would lead to a modification of the
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flow topology that could impact the pressure coefficient distri-
bution and therefore the lift. The need for the wind engineer-
ing community to capture accurately the slope of the lift coef-
ficient is obvious: it appears (i) in the calculation of the critical
wind speed in the quasi-steady theory of galloping and (ii) in
the calculation of the buffeting response of structures subject to
turbulent wind flows. More recently, Patruno et al. (2016) per-
formed urans and Large Eddy Simulations (LEs) at three angles
of attack. They reported large discrepancies between uraNs and
LEs results for the different incidences. Moreover, they showed
that URANS is not able to correctly estimate the internal organi-
zation of the recirculation bubble, which impacts the estimation
of the spatio-temporal pressure coefficient and subsequently the
load coefficients. Finally, Mannini et al. (2017) used pressure
and load measurements to investigate the effects of the inci-
dence, Reynolds number and turbulent intensity on the flow andte
the subsequent bulk parameters. In particular, the Reynolds-'1°
number dependence of force coefficients and the effect of the'"
incoming turbulence on the vortex-shedding mechanism were''2
highlighted. 13
As an extension of the studies performed by Patruno et al.'
(2016) and Mannini et al. (2017), the present work investigates!s
both experimentally and numerically the flow around a rect-''
angular cylinder of aspect ratio </« = 4, i.e., slightly shorter"”
that in the context of the Barc but exhibiting similar dynam-'e
ics. The spatio-temporal pressure distribution along a cross sec-1®
tion of the cylinder is acquired by carrying out unsteady pres-'2
sure measurements at different incidences and for 7.8 x 103 <t
Re < 1.9 x 10*. The flow is also investigated through Compu-'22
tational Fluid Dynamics (cFp) using both urans and Delayed-i2:
Detached Eddy Simulation (ppEs) approaches. The objective ofis
the present study is two-fold: i) to determine the effects of theizs
rectangle incidence and freestream velocity on the variation ofizs
the flow topology and the aerodynamic loads, and ii) to assessizz
the capability of urans and ppEs to provide a sufficiently ac-izs
curate estimation of the flow and the subsequent aerodynamicizs
loads for different incidences. 130
131
2. Methodology 1%
133
Sections 2.1 and 2.2 are dedicated to the description of theiss
experiments and the setup of the crp simulations, respectively.1ss
An extensive description of the experimental set-up can beiss
found in Guissart (2017). 187
138
2.1. Experimental approach 139
The measurements are conducted in a Gottingen-type windiso
tunnel whose freestream turbulence intensity is below 2%. The1a
test section is Sm long, 2.5 m wide and 1.8 m high. The maini
Reynolds number studied in the following is Re = 1.1 x 10%,1s
which is based on a freestream velocity U, = 8.3m/s. Fouris
additional freestream velocities are also considered to study theiss
impact of the Reynolds number in the range between 7.8 X 10%1
and 1.9 x 10*. These velocities are U, = 6m/s, 10.6m/s,s
12.8 m/s and 15m/s. 148
The model consists of a hollow rectangular aluminum tube+s
of 2mm thickness and 1 m length. Its cross-section is 8 cm Xiso

2

15.6¢

/////////////////////////////////////////////////////////////////

Figure 1: Schematic side view of the mounting apparatus where the rectangular
cylinder is depicted in dark gray, the wooden plate in light gray, and the small
disk represents the point where the reference freestream velocity and static pres-
sure are measured.

2 cm, which corresponds to a chord-to-depth ratio ¢/« = 4. The
cross-section edges are not perfectly sharp and their radius r,
is such that /s = 1.5%. The tube is attached horizontally on
one of its sides with ball bearings on a vertical beam. This
assembly leads to a single degree of freedom in pitch that is
clamped once the desired incidence is imposed. The other side
of the tube is located at a distance of 0.4¢ from the wind tunnel
wall to reduce three-dimensional effects. A wooden plate of
dimensions 15.6¢ x 17.8c is added next to the vertical beam to
reduce as much as possible the impact of the mounting on the
flow around the rectangular cylinder. As depicted in Fig. 1, the
rectangular tube is located relatively far from the edges of the
wooden plate and the boundary effects are thus assumed to be
small.

The pressure is sampled at several pressure taps located on a
cross-section of the rectangular cylinder as depicted in Fig. 2.
This section located at the mid-span of the cylinder is cov-
ered with 36 taps separated by a nominal distance of 5mm
or 6.25% of the chord. Note that after the pressure taps were
drilled manually, their exact location is measured to an accu-
racy of 0.2 mm. In the following, the taps are identified by their
non-dimensional curvilinear abscissa 7 = 7/, r being defined
in Fig. 2. Pressure is measured with a multi-channel Dynamic
PrEssURE MEASUREMENT SysTEM made by TFI and working in
the range +10 hPa to +35 hPa. This transducer measures p—pe,
the difference between the pressure p at a tap and a reference
pressure p., measured at the reference point shown in Fig. 1.
The pressure taps are connected to the pressure transducer by
TraNs CONTINENTAL MANUFACTURING tubes that are 1.34 m long
and have a documented internal diameter of 1.32mm. Each
tube forms a pneumatic line that acts as a filter and causes
amplitude and phase distortions of the unsteady pressure sig-
nal to be measured. Therefore, a correction is applied as a
post-processing step to retrieve the local unsteady pressure at
each tap. In particular, the theoretical correction proposed by
Bergh and Tijdeman (1965) is chosen. The freestream veloc-
ity and static pressure being known, the pressure coefficient
C, = % at each tap location can then be straightforwardly
computed. The pressure distribution is acquired for angles of
attack ranging from —7° to 8°, the incidence angle being set
with an accuracy of 0.2°. The sampling frequency f; is set to
500 Hz and each set of experiments lasts for 60s. Assuming
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Figure 2: Schematic sectional view of the pressure taps located on the rectangu-
lar cylinder and definition of the coordinate r along the cylinder cross-section
surface.

the Strouhal number St = /4/u, = 0.13 (Washizu et al., 1978)
where f is the shedding frequency of the rectangular cylinder,
this sampling frequency corresponds to at least 5 f and each set
contains more than 2 000 shedding cycles.

The pressure coeflicient is first computed from the raw data
and filtered using a Butterworth 12" order band-pass filter with
a frequency band from 10 to 200 Hz. Then, the amplitude and
phase distortions caused by the tube lines on the time response'®
of C, are corrected by applying the method proposed by Bergh™’
and Tijdeman (1965). Note that the sensitivity of the corrected™
pressure to the input parameters required by this method has'™
been studied, and it has been demonstrated that the conclu-*"
sions exposed below are robust to uncertainties associated with™"
them (Guissart, 2017). Aerodynamic loads applied on the rect-**
angle are calculated by integrating the C, distribution along™
the rectangle surfaces. The integration is performed using the®™
trapezoidal rule. This leads to the two-dimensional sectional™
coeflicients of lift ¢;, drag ¢, and pitching moment c,,, the latter™
being computed about the cross section center and defined pos-*
itive nose-up. These three load coefficients are computed based™
on the chord length c. Finally, the Strouhal number is computed™”
through Fourier analysis performed on the lift coefficient. 2o

0

6

7

211

2.2. Computational approaches 212

Two crp simulation tools are used to compute the flow and®"”

aerodynamic loads on the 4:1 cylinder: urans and ppes. The®*
simulations are performed in OPENFOAM®. The implementa-*"

tion characteristics of each model are presented below. e
217

2.2.1. UrANs simulations 218
The chosen urans model is the k — w sst proposed by Menter**®
and Esch (2001) and modified by Menter et al. (2003). A tran-
sient solver for incompressible flow based on the pimpLE al-220
gorithm is used with a non-dimensional time step 2V~/c set tozar
1073, i.e., '/i700™ of a typical shedding cycle. The second orderz
implicit backward Euler scheme is used to advance the equa-22s
tions in time and second order schemes are chosen for spatialze
discretization. In particular, the velocity gradient d;u; is dis-z2s
cretized through a second order, upwind-biased scheme. 226
As depicted in Fig. 3, the computational domain is a squarez7
of dimensions 50c X 50c centered vertically on the centroid ofzes
the rectangular cylinder. The upstream and downstream borderszzs
of this square are respectively distant of 19.5¢ and 30.5¢ fromazo
the rectangle center. These dimensions are similar to those usedzs
in most of the numerical studies performed in the context of thezs»
BARC (Bruno et al., 2014). The mesh is divided into an unstruc-zss
tured and a structured parts. The structured region consists ofzs

3

50c

50c

Figure 3: Computational domain used for the uraNs and ppEs simulations.

a disc of radius 15d centered on the rectangle and the zone of
the wake located downstream of the body. The simulations are
wall-resolved and the first mesh point away from the surface is
set such that y* ~ 0.7 for most of the cells around the rectan-
gle. The grid consists of 140 cells spread along the chord of the
rectangular cylinder, 130 along its depth, 100 cells along the
radius of the circle surrounding the rectangle and 90 cells dis-
cretizing horizontally the wake. It contains 75000 hexahedra
and the grid independence of the results was verified through a
mesh convergence study.

At walls, the no-slip boundary condition is imposed for the
velocity and a zero-gradient condition is set for the pressure.
Dirichlet conditions are imposed for the turbulent scalars using
the automatic near-wall treatment proposed by Menter and Esch
(2001). At the inlet, the freestream velocity is imposed and the
pressure gradient is set to zero. The value of the turbulent ki-
netic energy k. is based on an inlet freestream turbulence in-
tensity of 0.3% and the specific dissipation rate w, is such that
the turbulent eddy viscosity verifies v, = 5 x 1073 (Menter and
Esch, 2001). The outlet corresponds to a zero-gradient for the
velocity and turbulent scalars, while the pressure is enforced.
Finally, a slip boundary condition is imposed for all variables at
the upper and lower boundaries of the domain, allowing only a
streamwise variation.

2.2.2. ppEs simulations

The ppes simulations carried out within the context of the
present work are based on the original formulation of the
Spalart-Allmaras model (Spalart et al., 1997). The setup is very
similar to that of UrRANs, except for a few particular points spe-
cific to DDEs.

As for uraNs simulations, the transient incompressible solver
PIMPLE is selected. For stability purposes, the non-dimensional
time-step is decreased compared to the URANS cases and set to
6.25 x 107*. Similarly to the UrANs setup, a backward Euler
scheme is chosen for temporal discretization. The same second-
order schemes are also used for spatial discretization, except for
the non-linear advective term, which is discretized with a Lin-
ear Upwind Stabilized Transport (LusT) scheme, as suggested
by Patruno et al. (2016).
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The two-dimensional computational domain depicted ines
Fig. 3 is extruded along the z-direction to obtain a spanwisezs:
length s = c¢. This dimension has been used in LEs studieszss
performed on similar cases (e.g. Yu and Kareem, 1998; Brunozs:
et al., 2010) and verifies the criterion */c > 1 suggested byazss
Tamura et al. (1998). Note however that Mannini et al. (2011)296
showed that this common choice for the span is not enoughzor
to allow the free development of large-scale turbulent struc-zss
tures, which could lead to an overestimation of the load coeffi-ze0
cients’ second order statistics. Spalart and Streett (2001) arguedao
that the geometry-dependent turbulence structures are gener-sor
ated in the “focus region” and that the maximum grid spacingse
A within that region is the principal measure of the spatial res-
olution in ppes. This region is assumed here to extend up to halfy
a chord downstream of the rectangular cylinder’s trailing edges
and the ppes mesh is designed to obtain Ay = ¢/e4, similarly to304
Mannini et al. (2011) who demonstrated the strong impact of
this parameter on the results. The spanwise discretization is*”®
Az = ¢/s4 and the grid in the x —y plane has to be modified com-2
pared to urans grid to keep the extent of the “focus region”. In3”
particular, the chord and the depth of the rectangular cylinder3e
are divided into 200 and 130 cells, respectively, while 110 cells
are spread into the wake. Finally, a mesh made of 8.2 M cells is®°
obtained. ant

The boundary conditions for pressure and velocity are thes3'?
same as the ones described for urRaNS. As a smooth freestreamsis
flow is assumed, a Dirichlet boundary condition ¥ = 0 is im-sis
posed at the inlet while a Neumann condition is set for the out-
let. A slip condition is imposed on the upper and lower bound-""
aries. Finally, periodic boundary conditions are adopted on the
two boundaries normal to the extrusion direction. 316

The ppEs results presented below are based on a computeds:z
time window containing 150 non-dimensional time instances,ss
i.e., roughly 80 shedding cycles. A convergence study showedsis
that the mean and standard deviation of the aerodynamic coeffi-
cients converged to within 5% after 150 time instances. More-
over, the first 100 of the total 250 non-dimensional time units
contained in each ppEs simulation were discarded in order tose
eliminate the transient response. a2

323
2.3. Comparison of the different approaches a4

The experimental (Exp) and numerical results are comparedazs
through usual statistical analysis and via a spatio-temporalsss
decomposition technique (Dynamic Mode Decomposition, orsz
DMD). 328

First and second order statistics are computed on the time
response of the pressure and aerodynamic load coefficients.s2
The time-averaged values and the corresponding standard de-ss
viations are respectively denoted by = and . The pressure dis-sa
tribution of interest corresponds to C,, along the cross-sectionsse
of the rectangular cylinder. The three-dimensional pressuresss
distributions calculated by the ppes simulations are first aver-ss
aged along the z-direction. Note that the second order statisticsass
resulting from this averaging step are small, which is proba-ss
bly due to the short span length that does not allow the devel-ss
opment of large-scale structures (Mannini et al., 2011). Firstas
and second order statistics are then computed on the resultingass

0

4

(C,"™ (x,1)).. Finally, because Exp and URANs results are two-
dimensional, the corresponding statistics are computed without
this span-averaging step.

The spatio-temporal Exp and cFp results are compared using
pMD, a technique proposed by Schmid (2010) that decomposes
data into single frequency modes @™ describing the dynamic
process. The dynamical flow features are extracted from a tem-
poral sequence of N snapshots v, equidistant in time, each snap-
shot being a column vector of M two or three-dimensional spa-
tial data. In particular, the M x N matrix of snapshots V) =
{vi,V2,..., vy} is decomposed into the variable-separated finite
sum

K
VY1) = > g exp (4™, (1
k=1

where, ¢ is the k™ spatial mode. The time response is ex-

DMD

pressed as ¢;™ exp (AEMDt), where g™ and ™" are respectively

the complex amplitude and frequency associated with the k™
mode, while t is the line vector containing the N time-steps.
In the present work, V’]V consists of both the time response of
the load coefficients and the C, distribution, C,, being span-
averaged in the context of DpDES results. pmp is then used to re-
construct an approximation of the results. To this end, the most
relevant modes ¢* are selected by descending order of am-

DMD

plitude g}
from

vy =

and the approximated matrix V’lv is then calculated

2,

kselected mode

qZMD ZMD exp (S(AEMD)‘C) ) 2)

DMD

The number of selected modes ¢}™ is chosen to obtain statis-

tics computed on V’lv similar to those computed on V’lv . In the
following, these modes correspond to the mean mode and the

mode @™ associated with the shedding frequency.

3. Results

This section presents and discusses the results obtained ex-
perimentally and numerically. Statistics computed on load and
pressure coefficients are discussed and compared in Secs. 3.1
and 3.2, respectively. Section 3.3 aims to understand the dy-
namics of the flow by analysing the time response of the pres-
sure distribution. Finally, Sec. 3.4 studies the effects of the
Reynolds number on the flow and the subsequent aerodynamic
loads.

3.1. Statistics on the load coefficients and Strouhal number

Figure 4 shows the aerodynamic coefficients and the Strouhal
number as a function of the incidence  at Re = 1.1 x 10*.
Experimental results reported by Nakamura and Mizota (1975)
and Washizu et al. (1978) are also depicted for comparison.
Note that these authors specified only a range of Reynolds num-
bers, which are respectively 10* < Re < 10° and 2x10* < Re <
3.3 % 10°, and not a precise value.

Figure 4a plots the mean lift coefficient as a function of the
angle of attack. In particular, ¢,*" clearly exhibits a linear in-
crease with @ from —4° to 4°. In this linear region, the slope
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¢, is approximately 2.1z. For |a| > 5°, the absolute mean
lift coeflicient decreases and the rectangular cylinder is stalled.
The mean drag coefficient is depicted in Fig. 4b. The varia-
tion of ¢, exhibits a classical parabolic variation for absolute
angles lower than 4°. For higher incidence, as the rectangular
cylinder is stalled (decrease of lift), the increase in drag satu-
rates. Finally, as shown in Fig. 4c, the variation of the mean
pitching moment about the center of the rectangular cylinder
exhibits a linear decrease for incidence |@| < 2°. The corre-
sponding slope is Cy." ~ —0.357. This linear behavior is fol-
lowed by a saturation. For |a| > 5°, the absolute ¢,,”*" decreases
slightly again. Finally, the Strouhal number is shown in Fig. 4d.
For —3° < @ < 3°, St™" is nearly constant and equal to 0.134.
Then, for increasing incidence, St*™*" decreases linearly to reach
St** = 0.116 for @ = 8°.

The mean aerodynamic coefficients are compared to exper-
imental results available in the literature. The slope ¢/, is
relatively close to the value reported by Washizu et al. (1978)
(¢io = 2.3m) but very different from the result of Nakamura and
Mizota (1975) (¢;, = 3.37 ). As mentioned in Sec. 1 and later
illustrated in Sec. 3.4, the mean lift slope can be very sensitive
to the Reynolds number. However, as the Reynolds number
associated with these works from the literature is not known
precisely, no conclusion can be drawn. The stall angle is sim-
ilar for the three sets of results. However, the post-stall de-
crease in ¢; is higher for the results presented by Nakamura and
Mizota (1975) and even higher for the experiments carried out
by Washizu et al. (1978). The mean drag ¢, at zero incidence
is identical for the two studies from the literature. However,
this value is higher by 0.1 compared to ¢,". For incidences
la| < 4°, the parabolic shape exhibited by the curve ¢; is
similar to the one obtained by Washizu et al. (1978), but the re-
sults reported by Nakamura and Mizota (1975) show a stronger
increase of the drag with the incidence. Some of those dis-
crepancies can be explained by the difference in the load acqui-
sition process, as Nakamura and Mizota (1975) and Washizu
et al. (1978) used strain-gauges which include the friction drag
to measure the forces. As shown by Carassale et al. (2014)
and Wang and Gu (2015), rounded cross-section corners lead
to a decrease of the drag. Therefore, another source of discrep-
ancy could be the sharpness of the model edges. Moreover,
the number of pressure tabs available along the front and rear
surfaces might be insufficient to obtain sufficient accurate drag
estimates. Finally, the variation of ¢,,*" with @ is comparable to
the results reported by Nakamura and Mizota (1975). In partic-
ular, the slope in the linear part of the curves and the saturation
behavior are similar.

Figure 4 also compares the mean load coefficients and the
Strouhal number obtained experimentally and numerically. In
particular, Fig. 4a shows that the mean lift coefficient ¢;”*™
increases linearly with the angle of attack @ until @ = 3°. Be-
yond this value, the lift coefficient keeps increasing, but at a
decreasing rate. The discrepancies with the experimental curve
¢/" are very large as both the UraNs estimated slope ¢, and the
behavior in the post-stall region differ dramatically. The slope
T s equal to 3.9 which is nearly twice the measured one.
This slope is also very different from the result documented by

—o— EXP
—e— URANS
05— DDES

0.75

—o— Washizu

T 0.25

—e— Nakamura

—0.25
-0.5

0.45
0.4

L 035
0.3

0.25

0.2

0.075

0.05

0.025

—0.025

-0.05

—0.075

0.145
0.14
0.135
0.13

St [-]

0.125
0.12
0.115

Figure 4: Mean of the aerodynamic coefficients (a, b and c) and Strouhal num-
ber (d) obtained experimentally and by crp as a function of the angle of attack
at Re = 1.1 x 10%. Experimental results of Nakamura and Mizota (1975) and
Washizu et al. (1978) from direct load measurements are included for compar-
ison.
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Washizu et al. (1978). However, for incidences lower than 2°,4s3
™ is similar to the results presented by Nakamura and Mi-sss
zota (1975). Additionally, the behavior for angles of attackass
higher than 3° is not correctly captured by the urRANs model,sss
as the lift curve does not exhibit any stall region for the con-
sidered range of incidences but only a monotonic increase at
a decreasing rate. The ¢,;”*" curve shown in Fig. 4b exhibits”
the expected quadratic behavior. The most visible discrepancy ™
is the constant shift up of ¢;"**** compared to ¢,*". However,”
as discussed previously, it is preferable to compare ¢;"**** with*’
the results documented by Nakamura and Mizota (1975) and
Washizu et al. (1978), for which the discrepancies are lower.*
In particular, for incidences lower than 2°, ¢,”**" approximates*®
fairly accurately the literature results. For larger angles of at-4¢
tack, URANS simulations overestimate the mean drag coefficient,«s
this overestimation increasing with incidence. The dependencesss
of the mean moment coefficient ¢,,"*™ on @ in Fig. 4c is inssr
agreement with the experimental results. Finally, as shown in«ss
Fig. 4d, the Strouhal number exhibits an initial linear decreasese
until @ = 3°, followed by a second faster linear decrease. Com-470
pared to the experimental results, the UrRANS Strouhal is higher
at all angles of incidence. Nonetheless, a modification of thes
slope at @ = 3° is also observed experimentally, although the+s
value of the slopes differs quantitatively. 474
The ppEs predictions are an improvement upon the URANS es-+75
timates but discrepancies with the experimental results still re-+7
main. Figure 4a shows that the slope ¢, ™ ~ 4.5 is even higher«
than the already too high slope calculated by urans. Nonethe-+7
less, ppes simulations lead to a better behavior of ¢; for inci-+7
dence angles higher than 2°. In particular, a stall region charac-4
terized by a decrease in lift is captured but the estimated lift is<s
still too high compared to the experimental results. Moreover,sz
Fig. 4b shows that ppes simulations lead to a better estimationsss
of ¢, than urans for incidence angles higher than 2°. As shownass
in Fig. 4c, the mean pitching moment coeflicient c,,”™ is esti-sss
mated with reasonable accuracy compared to the experimentalsss
measurements. Finally, as depicted in Fig. 4d, the estimationss
of the Strouhal number is also improved by the use of DDEs, al-sss
though the plateau observed in Exp results for 0° < @ < 3° is4ss
not perfectly captured. 490
In conclusion, the urRaNs approach is not able to estimate c;o1
with a reasonable accuracy, neither to accurately predict thess:
stall angle. Nevertheless, it demonstrates a reasonable abilitysss
to estimate the drag below the stall angle and it provides ansss
accurate estimation of the mean pitching moment. DDEs yields«ss
better predictions for incidence angles in the stall region. Thesss
stall angle is correctly captured and the estimated lift is closerssr
to the experimental values for post-stall incidences. However,s
the estimation of ¢, ™ is even worse than the URANS results.os
In order to explain these discrepancies, the next sections ana-soo
lyze the pressure coefficient distributions C,, obtained experi-sot
mentally and numerically. 502
503
3.2. Statistics on the pressure coefficient 504

461

2

The discrepancies between the simulated and experimentalsos
aerodynamic loads presented in the previous section are ex-sos
plained here by means of a statistical analysis of the pressureso

6

distribution. First, the experimental C,, distribution is presented
for several angles of attack for Re = 1.1 x 10*. Then, the com-
parison with the simulation results (URANs and DDEs) is carried
out.

3.2.1. Experimental results

Figure 5 depicts the mean and standard deviation of C,"™" for
angles of attack in the range 0° < @ < 6°. The distributions
along the upper and lower surfaces of the rectangular cylinder
are represented by plain and dashed lines, respectively. For the
sake of clarity, E,, is not depicted along the upstream face but it
exhibits the expected parabolic behavior around Ep =1.

At zero incidence, the distribution of EPEXP is nearly identi-
cal for the upper and lower surfaces. Starting from the leading
edges of the cylinder, the pressure is almost constant with only
a very weak decrease over the first half of the upper and lower
surfaces. It then increases rapidly but smoothly until the rear
side of the rectangular cylinder. The start of this pressure recov-
ery is located at around 7 = 0.5. This location corresponds to
the core of a vortex referred to as the main vortex by Bruno et al.
(2010) and appearing along both the upper and lower sides. In
particular, this main vortex is enclosed in a mean separation
bubble extending from the leading edge of the cylinder to the
point where the mean free shear layer impinges on the surface
and the flow reattaches. The maximum of fp along the upper
and lower surfaces is located at a distance 0.94c¢ from the lead-
ing edges. As shown by Robertson et al. (1975, 1978) and illus-
trated in Sec. 3.2.2, this location correlates with the point where
the mean flow reattachment occurs (Mannini et al., 2017), i.e.
the end of the main vortex

For non-zero incidences, increasing the angle of attack ex-
tends the plateau region on the upper surface further down-
stream and reduces the magnitude of the pressure recovery. Ad-
ditionally, the pressure intensity of the EPEXP plateau region re-
mains more or less the same for small angles of attack. As these
changes in the pressure distribution can be related to changes in
the mean flow structures, this shows that the main vortex core
moves downstream on the upper surface as « increases. More-
over, as fpm does not exhibit a local maximum near the trail-
ing edge of the cylinder, it is possible that the mean flow does
not reattach along the upper surface for @ > 2°. Ata = 4°,
the suction in the nearly constant E,, region slightly decreases,
which corresponds to the end of the linear region of the ¢;""
curve shown in Fig. 4a. At @ = 6°, the distribution of a,m
is nearly flat over the entire upper surface and its magnitude is
significantly reduced compared to lower angles of attack. This
is typical for a post-stall angle and explains the decrease of the
mean lift coefficient ¢;"*". The opposite behavior is observed
on the lower surface. The extent of the plateau region and the
corresponding suction decrease with increasing angle of attack.
Moreover, the pressure recovery is more abrupt and reaches a
maximum value that increases and whose location moves up-
stream with @. This behavior suggests that the mean reattach-
ment point moves upstream with increasing angle, while the
mean separation bubble lying along the lower surface shortens.

The second order statistic C), represents the temporal varia-
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Figure 5: Mean (a) and standard deviation (b and c) of the pressure coefficientssg
C,, along the rectangle surface obtained experimentally at Re = 1.1 X 104 for559
different angles of attack. The vertical gray lines represent the leading and

trailing edges and the coordinate 7 is defined in Fig. 2. 560

561

562

tion around Ep. Therefore, a high standard deviation along a%?
particular region is representative of unsteady flow separation.se
As depicted in Fig. 5b, the distribution of C),"" along the upperses
surface can be divided into two main parts: a region with lowses
standard deviation from the leading edge to 7 ~ 0.6, followedss
by rapid increase and large values of C, up to the trailing edge.se
The standard deviation reaches a maximum in this second re-5
gion. Increasing the incidence extends the first region furthersw
downstream and moves the location of the maximum C;, closers™
to the trailing edge. The value of this maximum also increasess?
until @ = 4°, and then decreases for post-stall angles of attack.szs

7

The same two regions are also present on the lower surface, as
shown in Fig. 5c. Increasing the angle of attack has however
the opposite effects.

3.2.2. Comparison between experimental and c¥p results

Figure 6 depicts the E,, distributions obtained through URANS
and ppes. Experimental results are also shown for comparison
purposes. The streamlines of the mean flow obtained by URANS
and ppEs are also depicted.

As shown in Fig. 6a for 0° angle of attack, two symmetric
vortices denoted Ay and Ay lie along the upper and lower sur-
faces, respectively. The flow reattachment point is located at a
distance 0.92¢ from the leading Ed,%(ep for urans and 0.94¢ for
ppes. A distribution similar to C,,  is obtained with URANs.

The main difference is a shift down of E,,URANS compared to the
experimental distribution. Moreover, the numerically computed
pressure recovery begins slightly further from the leading edge
and the suction minimum occurs slightly downstream. These
differences can be explained by discrepancies in the estimation
of the mean flow features. In particular, it seems that the UrRANS
vortex core of Ay and Ay and the reattachment points are lo-
cated slightly downstream compared to the presumed experi-
mental locations. As shown by Wang and Gu (2015), this could
be explained by the sharpness of the lower edge of the exper-
imental model compared to the numerical geometry. On the
other hand, the shape of GPDDES significantly differs from a,m.
In particular, the plateau region is followed by a zone where the
suction increases before the pressure recovery and the pressure
recovery begins at a location much further downstream than for
other results. These discrepancies are caused by differences in
the shape of the mean vortices Ay and A;. As shown by the
streamlines, the mean vortex cores are located further down-
stream than for urans, which delays the pressure recovery. Ad-
ditionally, the vortices are more tilted than for other crp results.
Therefore, the curvature of the mean streamlines is more im-
portant below the vortex cores, which explains the suction peak
at ¥ = 0.75. Finally, the mean streamlines can be compared
to the literature results. The URANs streamlines are similar to
the experimental results obtained by Mizota (1981) for a sim-
ilar case. In particular, the reattachment of the flow occurs at
the same location. However, this experimental study reports
a slightly thinner vortex with a core located at 7 ~ 0.53, i.e.,
slightly further upstream than for urans. Conversely, the mean
streamlines computed with ppes are very different as the prin-
cipal axis of the main vortex is too tilted and its core is located
too far downstream.

At larger angles of attack, vortex Ay grows and moves down-
stream, as seen in Figs. 6b to 6d (@ = 2°, 4° and 6°). From
a = 2° the flow does not reattach along the upper surface,
and for @ > 4°, vortex Ay wraps around the trailing edge.
Conversely, vortex Ay shrinks and is located further upstream,
so that the reattachment point moves forward. This behavior
is consistent with the conclusions drawn in Sec. 3.2.1. The
mean pressure distribution along the lower surface estimated
by URANS is similar to 6;“, despite an underestimation of the

DDES

suction due to vortex Ay for @ > 2°. On the other hand, Ep is
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Figure 6: Streamlines of the mean flow calculated by crp and mean pressure coefficient C,, along the rectangle surface obtained by urans, ppEs and experimentally
(exp) at Re = 1.1 x 10* for different angles of attack. Plain and dashed lines correspond to the upper and lower surface, respectively. The light gray disk corresponds
to the main vortex core and the dark gray one to the reattachment point. The red line represents the principal axis of the main vortex.
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very different from the experimental results, as the pressure re-es
covery begins significantly downstream. This shift is due to thegy,
reattachment point and the vortex core of A, that are estimatedgs,
too far downstream. The numerically computed Ep along thegy

upper surface is very different from EPEXP. The suction inten-es
sity is largely overestimated, which causes the overestimationess
of ¢; discussed in Sec. 3.1. Nonetheless, for 2° < a < 4°, thess
global shape of E,,E’“’ along the upper surface is correctly pre-sss
dicted by urans. In particular, the pressure recovery and thussss
the location of the core of vortex Ay are falrly well estimated.es7
For 2° < @ < 6°, the pressure recovery of C along the up-ese
per surface exhibits a non-monotonous behav10r just before thesss
trailing edge. This modification in the trend of Ep is causedsso
by a small counter-rotating vortex highlighted by Mannini et al.es
(2017) which cannot be detected experimentally because of thess
limited number of pressure taps. At @ = 6°, the flow along thesss
upper surface is better estimated by ppes, as Fig. 6d shows ae
decrease of the suction intensity compared to 4° (Fig. 6¢). Thises
decrease in suction is also observed for C » (see Sec. 3.2.1)ess
and causes a decrease of the lift for incidence angles higheres
than the stall angle. Moreover, the 6 ™ distribution is nearlyess
flat, which is also the case for the eﬁ)erlmental results. Con-ss
versely, the suction intensity of C is similar for 4° and 6°.es0
Therefore, ¢;"**** does not decrease for @ > 4° and URANS is notest
able to predict the stall angle. 652
For the sake of conciseness, the standard deviations of C,es
obtained through crp are not shown. Nonetheless, the compar-ss
ison between numerical and experimental results demonstratessss

that the general shapes of C), depicted in Fig. 5 are overall re-
trieved as long as the chordwise location of the vortex core is°%®
accurately captured. However, the amplitude of C), is largelyss
overestimated by crp. Moreover, URANS results show a non-es
physical minimum of C),. These two aspects were also reportedes
by Patruno et al. (2016). 660
661

3.3. Spatio-temporal pressure coefficient and flow dynamics %

This section aims to better understand the dynamics of the::j
flow by analyzing the time response of the pressure d1str1bu-
tion. Both experimental and numerical results are considered” -
and their respective C, values are compared over a sheddmg .
cycle in Sec. 3.3.1. The flow dynamics is then described m e
Sec. 3.3.2.

669

670
3.3.1. Comparison between experimental and cFp results

The experimental and numerical C, are compared through

671

672
their respective approximation C,, which is obtained from ag,

reconstruction based on the first two pmMp modes, as explained,,,
in Sec. 2.3. The spatio-temporal variation of E; is shown fory,;
a = 0° and 2° in Figs. 7 and 8. They depict 6‘; at four differenters
phases ¢ = ‘/r, where t and T are the time and the sheddingers
period, respectively. The beginning of a cycle, i.e., ¢ = 0, cor-ezs
responds to the minimum of ¢;*. The figures also show theer
URANS streamlines of the original flow field corresponding toeso
each phase. 681

Figure 7 presents the results for 0° of incidence. As the flowes:
field is symmetrical, the accuracy of the shedding phenomenonsss

9

obtained numerically is assessed by comparing the variation
of E;EXP and E;CFD along the upper surface only. The dynam-
ics along the lower surface is very similar but distant in time
by half a cycle. One can first observe that the uraNns simula-
tion predicts better than ppes the variation of pressure, despite a
consistent larger suction on the entire upper and lower surfaces.
Additionally, the pressure recovery starts very slightly further
downstream at ¢ = 0.25 and ¢ = 0.5. As already observed for
the mean flow, ppEs results display much larger discrepancies
with a larger suction peak and a pressure recovery displaced
downstream. This is due to a larger and more tilted vortex A!,
whose core is located further downstream. Finally, the numeri-
cal results show larger variations in time, explaining the larger
standard deviation obtained with cFp.

For larger angles of attack (Fig. 8 for @ = 2°), the uraNs pre-
dictions are qualitatively more similar to the experimental re-
sults than the DDES estimates, but the quantitative discrepancies
increase with the incidence angle. This is especially the case on
the upper surface where suction is highly overestimated. On the
other hand, ppEs results show larger qualitative and quantitative
discrepancies. The better qualitative agreement between URANS
and experiments, especially regarding the chordwise location of
the vortex cores and of the reattachment points, indicates that
URANS also provides a better representation of the flow dynam-
ics at larger angles of attack. However, at @ = 6° (not shown
here), significant discrepancies appears between UrRANs and ex-
perimental results along the upper surface and URANS is not able
to correctly predict the flow above the rectangular cylinder.

3.3.2. Flow dynamics

The relatively good qualitative agreement between URANS and
experimental results suggests that URANS is better at represent-
ing the flow dynamics for @ < 6°. Therefore, the dynamic phe-
nomena can be qualitatively understood by analyzing the flow
computed by urans. In particular, Figs. 9 and 10 show the vari-
ation of the flow around a rectangular cylinder at 0° and 2° of
incidence during a shedding cycle.

At 0° of incidence, the flow topology above and below the
horizontal symmetry axis of the rectangle is identical but oc-
curs at times distant by half a shedding period. Therefore, the
entire dynamics is described by the time response of the flow
above the upper surface for 0 < ¢ < 0.5, and then by the flow
below the lower surface, starting back at ¢ = 0. At ¢ = 0, and
as depicted by streamlines in Fig. 9a, a large clockwise rotating
vortex, called vortex A{,, lies along the upper surface. The vor-
ticity plot shows that the free shear layer does not impinge on
the rear part of the upper surface, although the flow reattaches.
Instead, it extends in the wake up to a zone of low pressure cor-
responding to a previously shed vortex denoted D?,, as depicted
in Fig. 9b. As shown in Fig. 9c, vortex Ab is then convected
downstream while the free shear layer moves closer to the sur-
face. A clockwise rotating zone lies along the rear part of the
upper surface and rolls around the upper trailing edge of the
cylinder, forming a small vortex denoted B(l)J‘ While vortex A%]
is being stretched and convected downstream, a new vortex A%]
forms at the leading edge of the cylinder. The emergence of
this vortex is recognizable by the drop in pressure coefficient
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Figure 7: Distribution of the pressure coefficient reconstructed from the first two pmp modes at four different phases of the shedding cycle for the flow around a
rectangular cylinder at @ = 0° and Re = 1.1 x 10*. Plain lines correspond to the upper surface. The streamlines of the original flow field obtained from UraNs are

also represented for easier interpretation.

near the leading edge shown in Fig. 9f. Vortex A%] then grows,ees
pushing vortex Ab further downstream (lower part of Figs. 9aess
and 9b), where AY = A}, and A] = A}. At the same time,oo
the free shear layer impinges on the upper rear corner, feed-or
ing vortex BY, (= BY), which also grows and starts to detachre
from the rear surface. As depicted in Figs. 9c and 9d, wherezos
Dg = D%}, vortices A}/ and B% eventually merge into a singleros
vortex D};, which is shed into the wake. Only vortex A7, re-ros
mains on the upper surface. Finally, vortices Afj and D}j areros
convected downstream and a new cycle resumes. 707

Figure 10a shows an overview of the flow at an incidence of "
2°. A large clockwise rotating vortex called vortex Ab covers:):
nearly the entire upper surface at ¢ = 0 (Figs. 10a and 10b). The
free shear layer follows the upper part of vortex Ab and extends”

10

into the wake until the location of a vortex called A?]. More-
over, a small counter-clockwise vorticity zone lies at the upper
trailing edge indicating the presence of a vortex called B(L),. The
same phase shows the emergence of a conter-clockwise rotat-
ing vortex called AIL at the leading edge of the lower surface.
Moreover, another vortex called A(Z and previously generated
at the leading edge is still visible on the rear part of the lower
surface. The free shear layer along vortices A(Z and Ai im-
pinges on the rear part of the lower surface. This shear layer
extends further downstream, rolling around the lower trailing
edge and feeding the counter-clockwise rotating vortex Bg be-
hind the rectangle. As shown in Figs. 10c and 10d, vortex Ab
elongates downstream while the upper shear layer impinges the
upper trailing edge and vortex B% is dissipated. On the lower
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Figure 8: Distribution of the pressure coefficient reconstructed from the first two pmp modes at four different phases of the shedding cycle for the flow around a
rectangular cylinder at @ = 2° and Re = 1.1 x 10*. Plain and dashed lines correspond to the upper and lower surface, respectively. The streamlines of the original
flow field obtained from URANs are also represented for easier interpretation.
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Figure 9: Evolution within a vortex shedding cycle of the flow around a rectangular cylinder at 0° and Re = 1.1 x 10* obtained by urans. Left column: streamlines
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surface, vortices Ai is convected downstream while vortex Ag731
and Bg merge into a single vortex called Dg which is shed intorz2
the wake. At ¢ = 0.5 (Figs. 10e and 10f), a new vortex A%]m
forms at the upper leading edge. The upper shear layer rollszs
around vortex A}] and the upper trailing edge, impinging thezss
rear surface. Along the lower surface, vortex A}d is convectedrss
downstream and the free shear layer moves further away fromzs
the surface. Simultaneously, a counter-clockwise vorticity zonerss
starts to form and grows into a vortex Bi at the lower trailingzss
edge. This vortex appears clearly in Figs. 10g and 10h corre-74
sponding to ¢ = 0.75. At this stage, vortex A'L lies alone onzai
the lower surface. A counter-clockwise rotating vortical zone

grows at the trailing edge of the upper surface and forms a7
small vortex Bb while vortex A%] keeps growing. Simultane-7+
ously, vortex Ab becomes weaker as it extends progressively7+
from the rear part of the upper surface into the wake. Vortex™s
Ab is finally completely shed at the end of the cycle (see vortex™¢
A?, in Figs. 10a and 10b). 747

748
To summarize, the main dynamics consists for both cases inzs
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the emergence of a vortex at the leading edge. This vortex
grows and is convected downstream along the surface until it
reaches the rear part of the cylinder and is shed into the wake.
However, at 0° of incidence, the vortex generated at the leading
edge merges with another vortex that has grown at the trailing
edge. The merged vortex is then shed into the wake. For an
incidence of 2°, the dynamics of the flow structures is similar
along the lower surface. However, it differs along the upper
surface where the vortex generated at the leading edge is con-
vected and shed into the wake without merging with the vortex
that has appeared at the trailing edge.

3.4. Reynolds number effects

This section studies the effects of the Reynolds number on
the flow by analyzing the changes in the mean lift coefficient,
its slope and in the statistics of the pressure coefficient.

The mean lift coefficient ¢,"*" is represented for @ = 2° and
a = 4° and several Reynolds numbers in Fig. 11, that also de-
picts the lift slope ¢;5" calculated between @ = 0° and 2°. Fig-

ure 11 illustrates that an increase of the Reynolds number in
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Figure 10: Evolution within a vortex shedding cycle of the flow around a rectangular cylinder at 2° and Re = 1.1 x 10* obtained by uraNs. Left column: streamlines
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the range considered here leads to a significant increase of therss
slope ¢, In particular, increasing the Reynolds number fromseo
7.7 x 10% to 1.9 x 10* leads to a relative increase of 45% of thes
slope. This is consistent with the results reported by Schewez.
(2013) for a 5:1 rectangular cylinder. More precisely, Schewerss
(2013) showed a significant increase of ¢;, when increasing thee
Reynolds number in the ranges Re < 10* and Re > 2x 103, andsss
a slight decrease within 2 X 10* < Re < 10°. In particular, anss
increase of 63% of the mean lift slope at @ = 0° was reportedrer
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when the Reynolds number increases from 6 x 10° to 6 x 10%.
Figure 12 depicts the mean and the standard deviation of the
experimental pressure coefficient obtained at 2° of incidence for
three Reynolds numbers. The main variation with the Reynolds
number lies in the pressure magnitude: the mean suction is
slightly larger on the upper surface and lower on the first and
last third of the lower surface (Fig. 12a). Moreover, larger fluc-
tuations, i.e., larger C’, are observed at higher Reynolds num-
ber (Figs. 12b and 12c¢). However, the general shape of both the
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Figure 11: Mean lift coefficient and its slope depending on Reynolds number.

mean and standard deviation does not change with the Reynolds
number. In particular, the location of the maximum and mini-
mum a,m and C),"" remains constant. Finally, the mean pres-
sure recovery appears to begin at the same chordwise location
T.

The changes in the magnitude of the pressure distribution,
and thus the higher lift, could possibly originate in the verti-
cal displacement of the vortex cores. This could also be linked
to an increase/decrease of the vortex strength and/or thickness.
Conversely, the Reynolds number does not impact the chord-
wise location of the two vortices as the locations of the pres-
sure recovery along the upper and lower surfaces are constant.
Moreover, using the correlation of the reattachment point with
the maximum 6,,, these results indicate that the reattachment
point on the lower surface does not move when the Reynolds
number is increased, which is also supported by the location of
the maximum of C), not being modified by Re. These results are
in contradiction to the mechanism proposed by Schewe (2013)
who suggested that the modification in the turbulence level as-
sociated with a change of the Reynolds number induces a modi-
fication of the flow structure along the lower surface of the rect-
angle. More precisely, Schewe (2013) argued that an increase
of the Reynolds number should result in a reattachment point
located further upstream. The shape and curvature of the mean
vortex A located on the lower side of the rectangular cylinder
would thus be modified. The subsequent change in the mean
pressure distribution would cause an increase of the mean lift.
The present results are not consistent with the mechanism pro-sos
posed by Schewe (2013) but rather suggest that the lift increaseso
is related to a vertical displacement of the vortex core and/or ansos
increase in the vortex strength/thickness. 809
810
811

4. Conclusions
812

The flow around a 4:1 rectangular cylinder at several an-®"
gles of attack has been studied numerically and experimentally.®'
In particular, dynamic pressure measurements have been per-*'°
formed to obtain the time response of the pressure coefficient?'®
C, along a cross-section of the cylinder. The pressure distri-s:7
bution was used to compute and study the aerodynamic loadssts

14

[ —0.6

8
£
=}
w0
g
[o
o
=}
X
s &
0 | | | |
0.25 0.5 0.75 1
T[]
(b)
—e— Re = 7.7 x 103
€ 02|« Re=14x104
E —=— Re=1.9 x 10*
2015 5
g
g
- 0.1
X
sa 0.05
0 | | | |
0.25 0.5 0.75 1
T[]

Figure 12: Mean and standard deviation of C,*** at @ = 2° depending on
Reynolds number.

on the body and to analyze the flow dynamics. The sensitiv-
ity of the solution on the Reynolds number has been quan-
tified by considering different Reynolds numbers ranging be-
tween 7.8 x 10 and 1.9 x 10*. Additionally, uraNs simulations
based on the k — w ssT turbulence model and ppEs simulations
based on the Spalart-Allmaras model have been performed. The
pressure distribution along the cross-section of the cylinder re-
sulting from numerical computations has been compared to the
experimental results through statistical analysis and a modal de-
composition method, namely pmp. Moreover, numerical results
have been used to visualize key flow structures.

Large discrepancies between numerical and experimental re-
sults have been highlighted. In particular, the mean suction in-
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tensity along the upper surface is largely overestimated by bothszo
UraNs and ppes for all the incidence angles considered. This871
results in an overestimation of the lift coefficient for non-zero,,,
angles of attack. Conversely, the drag coefficient is capturedss
with satisfying accuracy by both urans and ppes. The high sen-%
sitivity of the pressure on the flow structures explains the ratherzzz
poor numerical results. Although ppes should provide a moreg,,
accurate representation of turbulence, uraNs has been found toss
perform better for incidences below the stall angle. In partic-*°
ular, URANS gives a better approximation of the experimentalZZ?
pressure coeflicient distribution, both in terms of statistics andgg,
time response. However, the stall angle is correctly estimatedsss
by pDES but not by urans. More precisely, the decrease in suc-***
tion intensity along the upper surface appearing for @ > 4° iS:ZZ
only captured by ppes. Nonetheless, the reattaching flow alongss;
the lower surface is better approximated by URANs, also for in-sss

cidences higher than the stall angle. :22

The pwmp filtering that has been applied to the numerical andso
experimental spatio-temporal pressure coefficient has demon-2
strated that URANS is able to correctly approximate the dynam-iZj
ics of pressure at the wall for incidence angles lower than 4°
The analysis of the urans results has subsequently enabled thesss
description of the flow dynamics. In particular, at @ = 0°, it has®”’
been shown that vortices emerge and grow both at the leadingzzz
and trailing edges. The leading edge vortex is convected down-g,
stream where it merges with the vortex that has grown at theeo
trailing edge. The resulting vortex is then shed into the wake.*®
For incidence angles 0° < o < 4°, the flow dynamics along thezzj
lower surface is similar. However, along the upper surface, thegos
vortex generated at the leading edge is convected and shed intoses
the wake without merging with the trailing edge vortex that iSzz;
dissipated.

909
Finally, similarly to what was reported by Schewe (2013), a®"°
Reynolds number increase from 7.8 x 10° to 1.9 x 10* has been’ !
shown to impact the mean lift slope ¢;, that strongly increases.,,
The pressure measurements have demonstrated that an increasest«
in Reynolds number causes an increase/decrease of the suction®'®
along the upper/lower surfaces, respectively. This results in anZ:
increase of the mean lift coefficient. Unlike the mechanism pro-g,,
posed by Schewe (2013), the present results suggest that thiser
increase is not due to an expansion of the mean recirculation®
. . 21

bubble lying along the lower surface. It is argued that the mod-222
ification in the mean pressure and the resulting variation of theszs
mean lift slope are rather due to a modification of the means+
vortex strength, thickness and/or distance of its core from the®
926

surface. o7
928
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