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Abstract

This paper presents the results of investigations into the flow around a rectangular cylinder with a chord-to-depth ratio equal
to 4. The studies are performed through wind tunnel dynamic pressure measurements along a cross section combined with
two-dimensional Unsteady Reynolds-Averaged Navier-Stokes (urans) and three-dimensional Delayed-Detached Eddy Simulation
(ddes). These experimental and numerical studies are complementary and combining them allows a better understanding of the
unsteady dynamics of the flow. These studies aim mainly at determining the effects of the rectangle incidence and freestream ve-
locity on the variation of the flow topology and the aerodynamic loads, and at assessing the capability of the industrially affordable
urans and ddes approaches to provide a sufficiently accurate estimation of the flow for different incidences. The comparison of
experimental and numerical data is performed using statistics and Dynamic Mode Decomposition. It is shown that the rectangular
cylinder involves complex separation-reattachment phenomena that are highly sensitive to the Reynolds number. In particular, the
time-averaged lift slope clα increases rapidly with the Reynolds number in the range 7.8 × 103 ≤ Re ≤ 1.9 × 104 due to the mod-
ification of the time-averaged vortex strength, thickness and distance from the surface. Additionally, it is shown that both urans
and ddes simulations fail to accurately predict the flow at all the different incidence angles considered. The urans approach is able
to qualitatively estimate the spatio-temporal variations of vortices for incidences below the stall angle α = 4◦. Nonetheless, urans
does not predict stall, while ddes correctly identifies the stall angle observed experimentally.
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1. Introduction

The aerodynamics of detached flows around bluff bodies is of
primary importance in wind engineering. It is needed to under-
stand and control various undesirable wind-induced phenom-
ena, such as vortex induced vibrations of tall towers or long-
span bridge decks (Irwin, 2008; Li et al., 2017), and should be
numerically modeled in a reliable way (Rigo et al., 2018).

Rectangular cylinders are considered as a canonical geome-
try that allows the study of several elongated civil engineering
structures. Despite the simple two-dimensional geometries in-
volved, the flow around bodies of elongated rectangular cross
section are highly complex because of the three-dimensional
nature of turbulence and the unsteady separation and reattach-
ment dynamics characterizing bluff bodies. Rectangular cylin-
ders at zero incidence have been extensively studied, first ex-
perimentally (e.g. Nakaguchi et al., 1968; Nakamura and Mi-
zota, 1975; Washizu et al., 1978; Okajima, 1983; Stokes and
Welsh, 1986) and then numerically (e.g. Tamura et al., 1993;
Yu and Kareem, 1998; Shimada and Ishihara, 2002). These
authors have shown that the flow dynamics around such cross
sections is mainly influenced by the ratio of the chord c to
the deph d of the cross section. In particular, Shimada and
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Ishihara (2002) investigated the impact of the c/d ratio at zero
incidence through Unsteady Reynolds-Average Navier-Stokes
(urans) simulations at Re = 2.2 × 104, this Reynolds number
being defined as Re = U∞d/ν, where U∞ and ν are the freestream
velocity and the kinematic viscosity, repectively. Shimada and
Ishihara (2002) divided the aerodynamic behavior into three
main categories based on the dynamics of the shear layer. For
short cylinders with c/d ≤ 2.8, flow separation occurs at the
leading edges and the rectangular cross section is too short to
allow shear layer reattachment. The flow is thus fully sepa-
rated and vortices are periodically shed from the leading edges
of the cylinder. On rectangular cross sections with a ratio
2.8 < c/d < 6, the shear layer reattaches periodically and vor-
tex shedding occurs from both the leading and trailing edges.
Finally, for longer rectangular cylinders with c/d ≥ 6 , the flow
is able to fully reattach and vortices are shed from the trailing
edges.

In this context, the Benchmark on the Aerodynamics of a
Rectangular Cylinder (barc) (Bartoli et al., 2008) provides ex-
perimental and numerical contributions to the study of a 5:1
rectangular cylinder. Bruno et al. (2014) compared more than
70 studies in terms of bulk parameters, flow and pressure statis-
tics, as well as spanwise correlations. Among the principal con-
clusions, Bruno et al. (2014) reported a narrow distribution of
results obtained for the Strouhal number and the time-averaged
drag coefficient while those collected for the standard deviation
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of the lift coefficient are significantly dispersed. It was argued
that this scattering is caused by the high sensitivity of the flow
along the upper and lower surfaces of the rectangular cylinder
to small differences in the wind tunnel setup and in the sim-
ulation parameters. In particular, the significant effect of the
oncoming flow turbulence level (Shirato et al., 2010; Mariotti
et al., 2016; Ricci et al., 2017) or of the cross-sectional edge
sharpness (Carassale et al., 2014) have been highlighted, and
the impacts of the cfd domain’s spanwise length and grid den-
sity have been demonstrated (Mannini et al., 2011; Bruno et al.,
2012).

Within the framework of the barc, Schewe (2013) investi-
gated experimentally the impact of Reynolds number in the
range between 4 × 103 and 4 × 105 on the aerodynamic co-
efficients. He showed that the Reynolds number has a minor
influence on both the drag coefficient and the Strouhal num-
ber, but significantly impacts the lift coefficient and particularly
the lift curve slope. Schewe (2013) argued that an increase in
the Reynolds number could correspond to an increase in the
turbulence level which would cause a shift downstream of the
time-averaged reattachment point on the lower surface (for a
cylinder at positive angle of attack). This would lead to a mod-
ification of the flow topology that could impact the pressure
coefficient distribution and therefore the lift. The need for the
wind engineering community to capture accurately the slope of
the lift coefficient is obvious: it appears (i) in the calculation of
the critical wind speed in the quasi-steady theory of galloping
and (ii) in the calculation of the buffeting response of structures
subject to turbulent wind flows. More recently, Patruno et al.
(2016) performed urans and Large Eddy Simulations (les) at
three angles of attack. They reported large discrepancies be-
tween urans and les results for the different incidences. More-
over, they showed that urans is not able to correctly estimate the
internal organization of the recirculation bubble, which impacts
the estimation of the spatio-temporal pressure coefficient and
subsequently the load coefficients. Additionally, Mannini et al.
(2017) used pressure and load measurements to investigate the
effects of the incidence, Reynolds number and turbulent inten-
sity on the flow and the subsequent bulk parameters. In particu-
lar, the Reynolds-number dependence of force coefficients and
the effect of the incoming turbulence on the vortex-shedding
mechanism were highlighted. Finally, Cimarelli et al. (2018)
reported the first Direct Numerical Simulation (dns) of the flow
around a 5:1 rectangular cylinder at Re = 3 × 103.

Despite the significant number of studies that have been con-
ducted on the aerodynamics of rectangular cylinders, this topic
is still of interest because of the high sensitivity of the flow to a
number of parameters (Bruno et al., 2014). Additionally, testing
the ability of computationally affordable cfd approaches to pro-
vide sufficiently accurate estimation of such flow remains use-
ful in an industrial perspective. For these reasons, the present
work investigates both experimentally and numerically the flow
around a rectangular cylinder of aspect ratio c/d = 4, i.e., slightly
shorter that in the context of the barc but exhibiting similar
dynamics. The spatio-temporal pressure distribution along a
cross section of the cylinder is acquired by carrying out un-
steady pressure measurements at different incidences and for

7.8 × 103 < Re < 1.9 × 104. The flow is also investigated
through Computational Fluid Dynamics (cfd) using both two-
dimensional urans and three-dimensional Delayed-Detached
Eddy Simulation (ddes) approaches. The comparison of their
predictions is of particular interest for determining if the in-
crease in computational cost required by ddes to circumvent
some of the urans limitations results in a significantly better es-
timation of the flow. The present study extends thus the work of
Patruno et al. (2016) and Mannini et al. (2017), as it considers
a different Reynolds number range, other cfd approaches and
a different cylinder geometry. The objective is two-fold: i) to
determine the effects of the rectangle incidence and freestream
velocity on the variation of the flow topology and the aerody-
namic loads, and ii) to assess the capability of urans and ddes
to provide a sufficiently accurate estimation of the flow and the
subsequent aerodynamic loads for different incidences.

2. Methodology

Sections 2.1 and 2.2 are dedicated to the description of the
experiments and the setup of the cfd simulations, respectively.
Both setups aim at reproducing an unconfined two-dimensional
flow and were designed following the standards and guidelines
suggested in the context of the barc (Bruno et al., 2014) and
detailed in the ercoftac qnet-cfd Knowledge Base Wiki (Bruno
and Salvetti, 2017). An extensive description of the experimen-
tal setup can be found in Guissart (2017).

2.1. Experimental approach

The measurements are conducted in a Göttingen-type wind
tunnel whose freestream turbulence intensity is below 0.2%.
The test section is 5 m long, 2.5 m wide and 1.8 m high. The
main Reynolds number studied in the following is Re = 1.1 ×
104, which is based on a freestream velocity U∞ = 8.3 m/s.
Four additional freestream velocities are also considered to
study the impact of the Reynolds number in the range between
7.8 × 103 and 1.9 × 104. These velocities are U∞ = 6 m/s,
10.6 m/s, 12.8 m/s and 15 m/s.

The model consists of a hollow rectangular aluminum tube of
2 mm thickness and 1 m length. Its cross section is 8 cm × 2 cm,
which corresponds to a chord-to-depth ratio c/d = 4, and leads
to a maximum blockage ratio of 1.7% for the largest angle of
incidence considered. The cross section edges are not perfectly
sharp and their radius rc is such that rc/d = 1.5%. This value
is below the limit of 5% prescribed by the barc to allow com-
parison with simulations performed with a sharp-edged cross-
section (Bartoli et al., 2008). The tube is attached horizontally
on one of its sides with ball bearings on a vertical beam. This
assembly leads to a single degree of freedom in pitch that is
clamped once the desired incidence is imposed. Note that the
alignment of the model with the oncoming flow has been as-
sessed by ensuring that the pressure in the middle of the front
surface of the cylinder indeed corresponds to the largest value
of the stagnation pressure coefficient, as described by Bartoli
et al. (2011). The other side of the tube is located at a distance
of 0.4c from the wind tunnel wall to reduce three-dimensional
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Figure 1: Schematic side view of the mounting apparatus where the rectangular
cylinder is depicted in dark gray, the wooden plate in light gray, and the small
disk represents the point where the reference freestream velocity and static pres-
sure are measured.

effects. A wooden plate of dimensions 15.6c × 17.8c is added
next to the vertical beam to reduce as much as possible the im-
pact of the mounting on the flow around the rectangular cylin-
der. As depicted in Fig. 1, the rectangular tube is located rela-
tively far from the edges of the wooden plate and the bound-
ary effects are thus assumed to be small. Additionally, the
freestream velocity seen by the body of interest is measured
through a Cobra 412 probe from Turbulent Flow Instrumen-
tation (TFI) at different points. These points lie in a plane lo-
cated at a distance of 5.5c upstream of the rectangular cylinder
leading edge. Their distance from the wooden plate and from
the wind tunnel bottom ranges from 1.3c to 10c and from 3.8c
to 8.8c, respectively. The velocities measured at these points lie
within a range of 2%.

The pressure is sampled at several pressure taps located on a
cross section of the rectangular cylinder as depicted in Fig. 2.
This section located at the mid-span of the cylinder is cov-
ered with 36 taps separated by a nominal distance of 5 mm
or 6.25% of the chord. Note that after the pressure taps were
drilled manually, their exact location was measured to an accu-
racy of 0.2 mm. In the following, the taps are identified by their
non-dimensional curvilinear abscissa r = r/c, r being defined
in Fig. 2. Pressure is measured with a multi-channel Dynamic
Pressure Measurement System made by TFI and working in
the range ±10 hPa to ±35 hPa. This transducer measures p−p∞,
the difference between the pressure p at a tap and a reference
pressure p∞ measured at the reference point shown in Fig. 1.
The pressure taps are connected to the pressure transducer by
Trans Continental Manufacturing tubes that are 1.34 m long
and have a documented internal diameter of 1.32 mm. Each
tube forms a pneumatic line that acts as a filter and causes
amplitude and phase distortions of the unsteady pressure sig-
nal to be measured. Therefore, a correction is applied as a
post-processing step to retrieve the local unsteady pressure at
each tap. In particular, the theoretical correction proposed by
Bergh and Tijdeman (1965) is chosen. The freestream veloc-
ity and static pressure being known, the pressure coefficient
Cp =

p−p∞
1/2ρ∞U∞

at each tap location can then be straightforwardly
computed. The pressure distribution is acquired for angles of
attack ranging from −7◦ to 8◦, the incidence angle being set
with an accuracy of 0.2◦. The sampling frequency fs is set to
500 Hz and each set of experiments lasts for 60 s. Assuming

U∞
d = c

4

c

r

r

Figure 2: Schematic sectional view of the pressure taps located on the rectan-
gular cylinder and definition of the coordinate r along the cylinder cross section
surface.

the Strouhal number St = f d/U∞ = 0.13 (Washizu et al., 1978)
where f is the shedding frequency of the rectangular cylinder,
this sampling frequency corresponds to at least 5 f and each set
contains more than 2 000 shedding cycles.

The pressure coefficient is first computed from the raw data
and filtered using a Butterworth 12th order band-pass filter with
a frequency band from 10 to 200 Hz. Then, the amplitude
and phase distortions caused by the tube lines on the time re-
sponse of Cp are corrected by applying the method proposed
by Bergh and Tijdeman (1965). Note that the sensitivity of
the corrected pressure to the input parameters required by this
method has been studied, and it has been demonstrated that the
conclusions exposed below are robust to uncertainties associ-
ated with them (Guissart, 2017). Aerodynamic loads applied
on the rectangle are calculated by integrating the Cp distribu-
tion along the rectangle surfaces. The integration is performed
using the trapezoidal rule. This leads to the two-dimensional
sectional coefficients of lift cl, drag cd and pitching moment cm,
the latter being computed about the center of the cross-section
and defined positive nose-up. These three load coefficients are
computed based on the chord length c. Finally, the Strouhal
number is calculated through Fourier analysis performed on the
lift coefficient.

2.2. Computational approaches
Two cfd simulation tools are used to compute the flow and

aerodynamic loads on the 4:1 cylinder: urans and ddes. The
simulations are performed in OpenFOAM®. The implementa-
tion characteristics of each model are presented below.

2.2.1. urans simulations
The urans simulations are two-dimensional, since, for ex-

ternal flows around bluff bodies, three-dimensional simulations
do not result in a significantly better flow prediction (Mannini
et al., 2010; Shur et al., 2005). The chosen urans model is the
k−ω sst proposed by Menter and Esch (2001) and modified by
Menter et al. (2003). A transient solver for incompressible flow
based on the pimple algorithm is used with a non-dimensional
time step ∆tU∞/c set to 10−3, i.e., 1/1700

th of a typical shedding cy-
cle. The second order implicit backward Euler scheme is used
to advance the equations in time and second order schemes are
chosen for spatial discretization. In particular, the velocity gra-
dient ∂iu j is discretized through a second order, upwind-biased
scheme.

As depicted in Fig. 3 (a), the computational domain is a
square of dimensions 50c × 50c centered vertically on the cen-
troid of the rectangular cylinder. The upstream and downstream
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borders of this square are respectively distant of 19.5c and 30.5c
from the rectangle center. These dimensions are similar to those
used in most of the numerical studies performed in the context
of the barc (Bruno et al., 2014). The mesh is divided into an un-
structured and a structured parts. The structured region consists
of a disc of radius 15d centered on the rectangle and the zone of
the wake located downstream of the body. The simulations are
wall-resolved and the first mesh point away from the surface is
set such that y+ ≈ 0.7 for most of the cells around the rectangle.
The grid, visible in Fig. 3 (b), consists of 140 cells spread along
the chord of the rectangular cylinder, 130 along its depth, 100
cells along the radius of the circle surrounding the rectangle and
90 cells discretizing horizontally the wake. It contains 75 000
hexahedra and the grid independence of the results was verified
through a mesh convergence study.

At walls, the no-slip boundary condition is imposed for the
velocity and a zero-gradient condition is set for the pressure.
Dirichlet conditions are imposed for the turbulent scalars using
the automatic near-wall treatment proposed by Menter and Esch
(2001). At the inlet, the freestream velocity is imposed and the
pressure gradient is set to zero. The value of the turbulent ki-
netic energy k∞ is based on an inlet freestream turbulence in-
tensity of 0.3% and the specific dissipation rate ω∞ is such that
the turbulent eddy viscosity verifies νt = 5× 10−3ν (Menter and
Esch, 2001). The outlet corresponds to a zero-gradient for the
velocity and turbulent scalars, while the pressure is enforced.
Finally, a slip boundary condition is imposed for all variables at
the upper and lower boundaries of the domain, allowing only a
streamwise variation.

2.2.2. ddes simulations
The ddes simulations carried out within the context of the

present work are based on the original formulation of the
Spalart-Allmaras model (Spalart et al., 1997). The setup is very
similar to that of urans, except for a few particular points spe-
cific to ddes.

As for urans simulations, the transient incompressible solver
pimple is selected. For stability purposes, the non-dimensional
time-step is decreased compared to the urans cases and set to
6.25 × 10−4. Similarly to the urans setup, a backward Euler
scheme is chosen for temporal discretization. The same second-
order schemes are also used for spatial discretization, except for
the non-linear advective term, which is discretized with a Lin-
ear Upwind Stabilized Transport (lust) scheme, as suggested
by Patruno et al. (2016).

The two-dimensional computational domain depicted in
Fig. 3 is extruded along the z-direction to obtain a spanwise
length s = c. This dimension has been used in les stud-
ies performed on similar cases (e.g. Yu and Kareem, 1998;
Bruno et al., 2010) and verifies the criterion s/c ≥ 1 suggested
by Tamura et al. (1998). Note however that Mannini et al.
(2011) and Bruno et al. (2012) showed that this common choice
for the span is not sufficient to allow the free development of
large-scale turbulent structures, which could lead to an over-
estimation of the pressure and load coefficients’ second order
statistics. Spalart and Streett (2001) argued that the geometry-
dependent turbulence structures are generated in the “focus re-

50c

50c

19.5c 30.5c

15d

(a) Computational domain used for the urans and ddes simulations. View from
the xy-plane passing through the origin of the adopted reference system.

(b) View of the grid used for the urans simulations.

Figure 3: Computational domain and grid used for the urans and ddes simula-
tions.
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gion” and that the maximum grid spacing ∆0 within that region
is the principal measure of the spatial resolution in ddes. This
region is assumed here to extend up to half a chord downstream
of the rectangular cylinder’s trailing edges and the ddesmesh is
designed to obtain ∆0 = c/64, similarly to Mannini et al. (2011).
The spanwise discretization is ∆z = c/64 and the grid in the x− y
plane has to be modified compared to urans grid to keep the ex-
tent of the “focus region”. In particular, the chord and the depth
of the rectangular cylinder are divided into 200 and 130 cells,
respectively, while 110 cells are spread into the wake. Finally,
a mesh made of 8.2 M cells is obtained.

The boundary conditions for pressure and velocity are the
same as the ones described for urans. As a smooth freestream
flow is assumed, a Dirichlet boundary condition ν̃ = 0 is im-
posed at the inlet while a Neumann condition is set for the out-
let. A slip condition is imposed on the upper and lower bound-
aries. Finally, periodic boundary conditions are adopted on the
two boundaries normal to the extrusion direction.

The ddes results presented below are based on a computed
time window containing 150 non-dimensional time instances,
i.e., roughly 80 shedding cycles. A convergence study showed
that the time-average and standard deviation of the aerodynamic
coefficients converged to within 5% after 150 time instances.
Moreover, the first 100 of the total 250 non-dimensional time
units contained in each ddes simulation were discarded in order
to eliminate the transient response.

2.3. Comparison of the different approaches

The experimental (exp) and numerical results are compared
through usual statistical analysis and via a spatio-temporal
decomposition technique (Dynamic Mode Decomposition, or
dmd).

First and second order statistics are computed on the time
response of the pressure and aerodynamic load coefficients.
The time-averaged values and the corresponding standard de-
viations are respectively denoted by · and ·′. The pressure dis-
tribution of interest corresponds to Cp along the cross section
of the rectangular cylinder. The three-dimensional pressure
distributions calculated by the ddes simulations are first aver-
aged along the z-direction. Note that the second order statistics
resulting from this averaging step are small, which is proba-
bly due to the short span length that does not allow the devel-
opment of large-scale structures (Mannini et al., 2011). First
and second order statistics are then computed on the resulting
〈Cp

ddes (x, t)〉z. Finally, because exp and urans results are two-
dimensional, the corresponding statistics are computed without
this span-averaging step.

The spatio-temporal exp and cfd results are compared us-
ing dmd, a technique proposed by Schmid (2010) that decom-
poses data into single frequency modes φdmdk describing the dy-
namic process. This decomposition technique was preferred to
a phase-average since it by-passes the necessity to determine
a posteriori the phase of each instantaneous measurement in
the shedding period. In dmd, the dynamical flow features are
extracted from a temporal sequence of N snapshots vn equidis-
tant in time, each snapshot being a column vector of M two or

three-dimensional spatial data. In particular, the M × N ma-
trix of snapshots VN

1 = {v1, v2, . . . , vN} is decomposed into the
variable-separated finite sum

VN
1 (x, t) =

K∑
k=1

qdmdk φ
dmd
k exp

(
λdmdk t

)
, (1)

where, φdmdk is the kth spatial mode. The time response is ex-
pressed as qdmdk exp

(
λdmdk t

)
, where qdmd and λdmdk are respectively

the complex amplitude and frequency associated with the kth

mode, while t is the line vector containing the N time-steps.
In the present work, VN

1 consists of both the time response
of the load coefficients and the Cp distribution, Cp being span-
averaged in the context of ddes results. The dmd analysis is
applied to a temporal sequence containing around 270 and 30
shedding cycles, each cycle consisting of 10 and 19 snapshots,
for experimental and ddes results, respectively. Because the
urans results are fully periodic, only one shedding period con-
taining 18 snapshots is considered. dmd is then used to recon-
struct an approximation of the results. To this end, the most
relevant modes φdmdk are selected by descending order of am-
plitude qdmdk and the approximated matrix V̂N

1 is then calculated
from

V̂N
1 =

∑
kthselected mode

qdmdk φ
dmd
k exp

(
=
(
λdmdk

)
t
)
. (2)

The approximated flow dynamics presented in Sec. 3.3.2 is re-
constructed from two modes, corresponding to the time-average
mode and the mode φdmdk associated with the shedding fre-
quency. It is sufficient to obtain second-order statistics com-
puted on the reconstructed data V̂N

1 similar to those computed
on the original data VN

1 , as depicted in Fig. 4.
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Figure 4: Impact of the dmd reconstruction on the second-order statistic of the
pressure coefficient. Results are based on ddes data of the flow around a rectan-
gular cylinder a 2◦ angle of attack. C′p corresponds to the original data, while
Ĉ′p represents the reconstruction using two DMD modes.

3. Results

This section presents and discusses the results obtained ex-
perimentally and numerically. Statistics computed on load and
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pressure coefficients are discussed and compared in Secs. 3.1
and 3.2, respectively. Section 3.3 aims to understand the dy-
namics of the flow by analysing the time response of the pres-
sure distribution. Finally, Sec. 3.4 studies the effects of the
Reynolds number on the flow and the subsequent aerodynamic
loads.

3.1. Statistics of the load coefficients and Strouhal number

Figure 5 shows the aerodynamic coefficients and the Strouhal
number as a function of the incidence α at Re = 1.1 × 104.
Experimental results reported by Nakamura and Mizota (1975)
and Washizu et al. (1978) are also depicted for comparison.
Note that these authors specified only a range of Reynolds num-
bers, which are respectively 104 ≤ Re ≤ 105 and 2×104 ≤ Re ≤
3.3 × 105, and not a precise value.

Figure 5 (a) plots the time-averaged lift coefficient as a func-
tion of the angle of attack. In particular, cl

exp clearly exhibits
a linear increase with α from −4◦ to 4◦. In this linear region,
the slope cl

exp
α is approximately 2.1π. For |α| > 5◦, the abso-

lute time-averaged lift coefficient decreases and the rectangu-
lar cylinder is stalled. The time-averaged drag coefficient is
depicted in Fig. 5 (b). The variation of cd

exp exhibits a clas-
sical parabolic variation for absolute angles lower than 4◦. For
higher incidence, as the rectangular cylinder is stalled (decrease
of lift), the increase in drag saturates. Finally, as shown in
Fig. 5 (c), the variation of the time-averaged pitching moment
about the center of the rectangular cylinder exhibits a linear
decrease for incidence |α| ≤ 2◦. The corresponding slope is
cm
exp
α ≈ −0.35π. This linear behavior is followed by a sat-

uration. For |α| > 5◦, the absolute cm
exp decreases slightly

again. Finally, the Strouhal number is shown in Fig. 5 (d). For
−3◦ < α < 3◦, Stexp is nearly constant and equal to 0.134.
Then, for increasing incidence, Stexp decreases linearly to reach
Stexp = 0.116 for α = 8◦.

The time-averaged aerodynamic coefficients are compared to
experimental results available in the literature. The slope cl

exp
α

is relatively close to the value reported by Washizu et al. (1978)
(clα = 2.3π) but very different from the result of Nakamura and
Mizota (1975) (clα = 3.3π ). As mentioned in Sec. 1 and later
illustrated in Sec. 3.4, the time-averaged lift slope can be very
sensitive to the Reynolds number. However, as the Reynolds
number associated with these works from the literature is not
known precisely, no conclusion can be drawn. The stall angle
is similar for the three sets of results. However, the post-stall
decrease in cl is higher for the results presented by Nakamura
and Mizota (1975) and even higher for the experiments carried
out by Washizu et al. (1978). The time-averaged drag cd at zero
incidence is identical for the two studies from the literature.
However, this value is higher by 0.1 compared to cd

exp. It should
be emphasized that the experimental drag values are calculated
by integrating the pressure distribution around the cylinder and
not obtained from a direct force measurement. However, the
limited number of pressure taps available along the front and
rear surfaces does not allow for sufficiently accurate drag esti-
mates. This has been checked by first sub-sampling the urans
pressure distribution retaining only values at the pressure tap
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Figure 5: Time-averaged aerodynamic coefficients ( (a), (b) and (c) ) and
Strouhal number (d) obtained experimentally and by cfd as a function of the
angle of attack at Re = 1.1 × 104. Experimental results of Nakamura and
Mizota (1975) and Washizu et al. (1978) from direct load measurements are
included for comparison.
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locations, and then applying the integration scheme used to cal-
culated cl

exp and cd
exp to the sampled data (note that this proce-

dure also showed that the number of pressure taps is sufficient
to provide an accurate estimation of cl). For incidences |α| < 4◦,
the parabolic shape exhibited by the curve cd

exp is similar to the
one obtained by Washizu et al. (1978), but the results reported
by Nakamura and Mizota (1975) show a stronger increase of the
drag with the incidence. Finally, the variation of cm

exp with α
is comparable to the results reported by Nakamura and Mizota
(1975). In particular, the slope in the linear part of the curves
and the saturation behavior are similar.

Figure 5 also compares the time-averaged load coefficients
and the Strouhal number obtained experimentally and numeri-
cally. In particular, Fig. 5 (a) shows that the time-averaged lift
coefficient cl

urans increases linearly with the angle of attack α
until α = 3◦. Beyond this value, the lift coefficient keeps in-
creasing, but at a decreasing rate. The discrepancies with the
experimental curve cl

exp are very large as both the urans esti-
mated slope clα and the behavior in the post-stall region dif-
fer dramatically. The slope cl

urans
α is equal to 3.9π which is

nearly twice the measured one. This slope is also very dif-
ferent from the result documented by Washizu et al. (1978).
However, for incidences lower than 2◦, cl

urans
α is similar to the

results presented by Nakamura and Mizota (1975). Addition-
ally, the behavior for angles of attack higher than 3◦ is not cor-
rectly captured by the urans model, as the lift curve does not
exhibit any stall region for the considered range of incidences
but only a monotonic increase at a decreasing rate. The cd

urans

curve shown in Fig. 5 (b) exhibits the expected quadratic be-
havior. The most visible discrepancy is the constant shift up of
cd
urans compared to cd

exp. However, as discussed previously, it
is preferable to compare cd

urans with the results documented
by Nakamura and Mizota (1975) and Washizu et al. (1978),
for which the discrepancies are lower. In particular, for in-
cidences lower than 2◦, cd

urans approximates fairly accurately
the literature results. For larger angles of attack, urans sim-
ulations overestimate the time-averaged drag coefficient, this
overestimation increasing with incidence. The dependence of
the time-averaged moment coefficient cm

urans on α in Fig. 5 (c)
is in agreement with the experimental results. Finally, as shown
in Fig. 5 (d), the Strouhal number exhibits an initial linear de-
crease until α = 3◦, followed by a second faster linear decrease.
Compared to the experimental results, the urans Strouhal is
higher at all angles of incidence. Nonetheless, a modification
of the slope at α = 3◦ is also observed experimentally, although
the value of the slopes differs quantitatively.

The ddes predictions are an improvement upon the urans es-
timates but discrepancies with the experimental results still re-
main. Figure 5 (a) shows that the slope cl

ddes
α ≈ 4.5π is even

higher than the already too high slope calculated by urans.
Nonetheless, ddes simulations lead to a better behavior of cl

for incidence angles higher than 2◦. In particular, a stall re-
gion characterized by a decrease in lift is captured but the esti-
mated lift is still too high compared to the experimental results.
Moreover, Fig. 5 (b) shows that ddes simulations lead to a bet-
ter estimation of cd than urans for incidence angles higher than
2◦. As shown in Fig. 5 (c), the time-averaged pitching moment

coefficient cm
ddes is estimated with reasonable accuracy com-

pared to the experimental measurements. Finally, as depicted
in Fig. 5 (d), the estimation of the Strouhal number is also im-
proved by the use of ddes, although the plateau observed in exp
results for 0◦ < α < 3◦ is not perfectly captured.

In conclusion, the urans approach is not able to estimate cl

with a reasonable accuracy, neither to accurately predict the
stall angle. Nevertheless, it demonstrates a reasonable abil-
ity to estimate the drag below the stall angle and it provides
an accurate estimation of the time-averaged pitching moment.
ddes yields better predictions for incidence angles in the stall
region. The stall angle is correctly captured and the estimated
lift is closer to the experimental values for post-stall incidences.
However, the estimation of cl

ddes
α is even worse than the urans

results. In order to explain these discrepancies, the next sec-
tions analyze the pressure coefficient distributions Cp obtained
experimentally and numerically.

3.2. Statistics of the pressure coefficient

The discrepancies between the simulated and experimental
aerodynamic loads presented in the previous section are ex-
plained here by means of a statistical analysis of the pressure
distribution. First, the experimental Cp distribution is presented
for several angles of attack for Re = 1.1 × 104. Then, the com-
parison with the simulation results (urans and ddes) is carried
out.

3.2.1. Experimental results
Figure 6 depicts the time-average and standard deviation of

Cp
exp for angles of attack in the range 0◦ ≤ α ≤ 6◦. The dis-

tributions along the upper and lower surfaces of the rectangu-
lar cylinder are represented by plain and dashed lines, respec-
tively. For the sake of clarity, Cp is not depicted along the
upstream face but it exhibits the expected parabolic behavior
around Cp = 1.

At zero incidence, the distribution of Cp
exp

is nearly identi-
cal for the upper and lower surfaces. Starting from the leading
edges of the cylinder, the pressure is almost constant with only
a very weak decrease over the first half of the upper and lower
surfaces. It then increases rapidly but smoothly until the rear
side of the rectangular cylinder. The start of this pressure recov-
ery is located at around r = 0.5. This location corresponds to
the core of a vortex referred to as the main vortex by Bruno et al.
(2010) and appearing along both the upper and lower sides. In
particular, this main vortex is enclosed in a time-averaged sepa-
ration bubble extending from the leading edge of the cylinder to
the point where the time-averaged free shear layer impinges on
the surface and the flow reattaches. The maximum of Cp along
the upper and lower surfaces is located at a distance 0.94c from
the leading edges. As shown by Robertson et al. (1975, 1978)
and illustrated in Sec. 3.2.2, this location correlates with the
point where the time-averaged flow reattachment occurs (Man-
nini et al., 2017), i.e. the end of the main vortex

For non-zero incidences, increasing the angle of attack ex-
tends the plateau region on the upper surface further down-
stream and reduces the magnitude of the pressure recovery. Ad-
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Figure 6: Time-average (a) and standard deviation ( (b) and (c) ) of the pressure
coefficient Cp along the surface of the rectangle, obtained experimentally at
Re = 1.1 × 104 for different angles of attack. The vertical gray lines represent
the leading and trailing edges and the coordinate r is defined in Fig. 2.

ditionally, the pressure intensity of the Cp
exp

plateau region re-
mains more or less the same for small angles of attack. As these
changes in the pressure distribution can be related to changes in
the time-averaged flow structures, this shows that the main vor-
tex core moves downstream on the upper surface as α increases.
Moreover, as Cp

exp
does not exhibit a local maximum near the

trailing edge of the cylinder, it is possible that the time-averaged
flow does not reattach along the upper surface for α ≥ 2◦. At
α = 4◦, the suction in the nearly constant Cp region slightly
decreases, which corresponds to the end of the linear region of
the cl

exp curve shown in Fig. 5 (a). At α = 6◦, the distribu-
tion of Cp

exp
is nearly flat over the entire upper surface and its

magnitude is significantly reduced compared to lower angles of
attack. This is typical for a post-stall angle and explains the
decrease of the time-averaged lift coefficient cl

exp. The oppo-
site behavior is observed on the lower surface. The extent of
the plateau region and the corresponding suction decrease with
increasing angle of attack. Moreover, the pressure recovery is
more abrupt and reaches a maximum value that increases and
whose location moves upstream with α. This behavior suggests
that the time-averaged reattachment point moves upstream with
increasing angle, while the time-averaged separation bubble ly-
ing along the lower surface shortens.

The second order statistic C′p represents the temporal varia-
tion around Cp. Therefore, a high standard deviation along a
particular region is representative of unsteady flow separation.
As depicted in Fig. 6 (b), the distribution of C′p

exp along the up-
per surface can be divided into two main parts: a region with
low standard deviation from the leading edge to r ≈ 0.6, fol-
lowed by rapid increase and large values of C′p up to the trailing
edge. The standard deviation reaches a maximum in this second
region. Increasing the incidence extends the first region further
downstream and moves the location of the maximum C′p closer
to the trailing edge. The value of this maximum also increases
until α = 4◦, and then decreases for post-stall angles of attack.
The same two regions are also present on the lower surface, as
shown in Fig. 6 (c). Increasing the angle of attack has however
the opposite effects.

3.2.2. Comparison between experimental and cfd results
Figure 7 depicts the Cp distributions obtained through urans

and ddes. Experimental results are also shown for comparison
purposes. The streamlines of the time-averaged flow obtained
by urans and ddes are also depicted (note that the DDES results
are also span-averaged).

As shown in Fig. 7 (a) for 0◦ angle of attack, two symmet-
ric vortices denoted AU and AL lie along the upper and lower
surfaces, respectively. The flow reattachment point is located
at a distance 0.92c from the leading edge for urans and 0.94c
for ddes. A distribution similar to Cp

exp
is obtained with urans.

The main difference is a shift down of Cp
urans

compared to the
experimental distribution. Moreover, the numerically computed
pressure recovery begins slightly further from the leading edge
and the suction minimum occurs slightly downstream. These
differences can be explained by discrepancies in the estimation
of the averaged flow features. In particular, it seems that the
urans vortex core of AU and AL and the reattachment points
are located slightly downstream compared to the presumed ex-
perimental locations. As shown by Wang and Gu (2015), this
could be explained by the sharpness of the lower edge of the
experimental model compared to the numerical geometry. On
the other hand, the shape of Cp

ddes
significantly differs from
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Figure 7: Streamlines of the time-averaged flow calculated by cfd and time-averaged pressure coefficient Cp along the surface of the rectangle, obtained by urans,
ddes and experimentally (exp) at Re = 1.1× 104 for different angles of attack (the physical quantities related to ddes are also span-averaged). Plain and dashed lines
correspond to the upper and lower surfaces, respectively. The light gray disk corresponds to the main vortex core and the dark gray one to the reattachment point.
The red line represents the principal axis of the main vortex. 9



Cp
exp

. In particular, the plateau region is followed by a zone
where the suction increases before the pressure recovery and
the pressure recovery begins at a location much further down-
stream than for other results. These discrepancies are caused
by differences in the shape of the time- and span-averaged vor-
tices AU and AL. As shown by the streamlines, the time- and
span-averaged vortex cores are located further downstream than
for urans, which delays the pressure recovery. Additionally,
the vortices are more tilted than for other cfd results. There-
fore, the curvature of the time- and span-averaged streamlines
is more important below the vortex cores, which explains the
suction peak at r = 0.75. Finally, the averaged streamlines can
be compared to the literature results. The urans streamlines are
similar to the experimental results obtained by Mizota (1981)
for a similar case. In particular, the reattachment of the flow
occurs at the same location. However, this experimental study
reports a slightly thinner vortex with a core located at r ≈ 0.53,
i.e., slightly further upstream than for urans. Conversely, the
time- and span-averaged streamlines computed with ddes are
very different as the principal axis of the main vortex is too
tilted and its core is located too far downstream.

At larger angles of attack, vortex AU grows and moves down-
stream, as seen in Figs. 7 (b) to 7 (d) (α = 2◦, 4◦ and 6◦).
From α = 2◦ the flow does not reattach along the upper sur-
face, and for α ≥ 4◦, vortex AU wraps around the trailing edge.
Conversely, vortex AL shrinks and is located further upstream,
so that the reattachment point moves forward. This behavior
is consistent with the conclusions drawn in Sec. 3.2.1. The
time-averaged pressure distribution along the lower surface es-
timated by urans is similar to Cp

exp
, despite an underestima-

tion of the suction due to vortex AL for α > 2◦. On the other
hand, Cp

ddes
is very different from the experimental results, as

the pressure recovery begins significantly downstream. This
shift is due to the reattachment point and the vortex core of AL

that are estimated too far downstream. The numerically com-
puted Cp along the upper surface is very different from Cp

exp
.

The suction intensity is largely overestimated, which causes the
overestimation of cl discussed in Sec. 3.1. Nonetheless, for
2◦ ≤ α ≤ 4◦, the global shape of Cp

exp
along the upper sur-

face is correctly predicted by urans. In particular, the pressure
recovery and thus the location of the core of vortex AU are fairly
well estimated. For 2◦ ≤ α ≤ 6◦, the pressure recovery of Cp

cfd

along the upper surface exhibits a non-monotonous behavior
just before the trailing edge. This modification in the trend of
Cp is caused by a small counter-rotating vortex highlighted by
Mannini et al. (2017) which cannot be detected experimentally
because of the limited number of pressure taps. At α = 6◦,
the flow along the upper surface is better estimated by ddes, as
Fig. 7 (d) shows a decrease of the suction intensity compared
to 4◦ (Fig. 7 (c)). This decrease in suction is also observed for
Cp
exp

(see Sec. 3.2.1) and causes a decrease of the lift for inci-
dence angles higher than the stall angle. Moreover, the Cp

ddes

distribution is nearly flat, which is also the case for the exper-
imental results. Conversely, the suction intensity of Cp

urans
is

similar for 4◦ and 6◦. Therefore, cl
urans does not decrease for

α > 4◦ and urans is not able to predict the stall angle.

The standard deviations of Cp obtained through cfd are
shown in Fig. 8. The comparison between numerical and ex-
perimental results demonstrates that the general shapes of C′p
depicted in Fig. 6 are overall retrieved as long as the chordwise
location of the vortex core is accurately captured. However, the
amplitude of C′p is largely overestimated by cfd, which is prob-
ably due to the fact that the span is not long enough to allow the
loss of correlation of Cp and the free development of spanwise
structures (Mannini et al., 2011). Moreover, urans results show
a non-physical minimum of C′p. These two aspects were also
reported by Patruno et al. (2016).

3.3. Spatio-temporal pressure coefficient and flow dynamics

This section aims to better understand the dynamics of the
flow by analyzing the time response of the pressure distribu-
tion. Both experimental and numerical results are considered
and their respective Cp values are compared over a shedding
cycle in Sec. 3.3.1. The flow dynamics is then described in
Sec. 3.3.2.

3.3.1. Comparison between experimental and cfd results
The experimental and numerical Cp are compared through

their respective approximation Ĉp, which is obtained from a
reconstruction based on the first two dmd modes, as explained
in Sec. 2.3. The spatio-temporal variation of Ĉp is shown for
α = 0◦ and 2◦ in Figs. 9 and 10. They depict Ĉp at four differ-
ent phases ϕ = t/T, where t and T are the time and the shedding
period, respectively. The beginning of a cycle, i.e., ϕ = 0, cor-
responds to the minimum of ĉl

exp. The figures also show the
urans streamlines of the original flow field corresponding to
each phase.

Figure 9 presents the results for 0◦ of incidence. As the flow
field is symmetrical, the accuracy of the shedding phenomenon
obtained numerically is assessed by comparing the variation of
Ĉp
exp

and Ĉp
cfd

along the upper surface only. The dynamics
along the lower surface is very similar but distant in time by half
a cycle. One can first observe that the urans simulation predicts
better than ddes the variation of pressure, despite a consistent
larger suction on the entire upper and lower surfaces. Addi-
tionally, the pressure recovery starts very slightly further down-
stream at ϕ = 0.25 and ϕ = 0.5. As already observed for the
time- and span-averaged flow, ddes results display much larger
discrepancies with a larger suction peak and a pressure recovery
displaced downstream. This is due to a larger and more tilted
vortex A1

U , whose core is located further downstream. Finally,
the numerical results show larger variations in time, explaining
the larger standard deviation obtained with cfd.

For larger angles of attack (Fig. 10 for α = 2◦), the urans pre-
dictions are qualitatively more similar to the experimental re-
sults than the ddes estimates, but the quantitative discrepancies
increase with the incidence angle. This is especially the case on
the upper surface where suction is highly overestimated. On the
other hand, ddes results show larger qualitative and quantitative
discrepancies. The better qualitative agreement between urans
and experiments, especially regarding the chordwise location of
the vortex cores and of the reattachment points, indicates that
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Figure 8: Standard-deviation of the pressure coefficient Cp along the surface
of the rectangle, obtained by urans, ddes and experimentally (exp) at Re =

1.1×104 for different angles of attack. Plain and dashed lines correspond to the
upper and lower surfaces, respectively.

urans also provides a better representation of the flow dynam-
ics at larger angles of attack. However, at α = 6◦ (not shown
here), significant discrepancies appears between urans and ex-
perimental results along the upper surface and urans is not able
to correctly predict the flow above the rectangular cylinder.

3.3.2. Flow dynamics
The relatively good qualitative agreement between urans and

experimental results suggests that urans is better than ddes at
representing the flow dynamics for α < 6◦. Therefore, the dy-
namic phenomena can be qualitatively understood by analyzing
the flow computed by urans. In particular, Figs. 11 and 12 show
the variation of the flow around a rectangular cylinder at 0◦ and
2◦ of incidence during a shedding cycle.

At 0◦ of incidence, the flow topology above and below the
horizontal symmetry axis of the rectangle is identical but oc-
curs at times distant by half a shedding period. Therefore, the
entire dynamics is described by the time response of the flow
above the upper surface for 0 ≤ ϕ ≤ 0.5, and then by the flow
below the lower surface, starting back at ϕ = 0. At ϕ = 0, and as
depicted by streamlines in Fig. 11 (a), a large clockwise rotat-
ing vortex, called vortex A1

U , lies along the upper surface. The
non-dimensional vorticity plot shows that the free shear layer
does not impinge on the rear part of the upper surface, although
the flow reattaches. Instead, it extends in the wake up to a zone
of low pressure corresponding to a previously shed vortex de-
noted D0

U , as depicted in Fig. 11 (b). As shown in Fig. 11 (c),
vortex A1

U is then convected downstream while the free shear
layer moves closer to the surface. A clockwise rotating zone
lies along the rear part of the upper surface and rolls around
the upper trailing edge of the cylinder, forming a small vor-
tex denoted B0

U . While vortex A1
U is being stretched and con-

vected downstream, a new vortex A2
U forms at the leading edge

of the cylinder. The emergence of this vortex is recognizable
by the drop in pressure coefficient near the leading edge shown
in Fig. 11 (f). Vortex A2

U then grows, pushing vortex A1
U fur-

ther downstream (lower part of Figs. 11 (a) and 11 (b)), where
A0

L = A1
U and A1

L = A2
U . At the same time, the free shear layer

impinges on the upper rear corner, feeding vortex B0
U (= B0

L),
which also grows and starts to detach from the rear surface. As
depicted in Figs. 11 (c) and 11 (d), where D0

L = D1
U , vortices A1

U
and B0

U eventually merge into a single vortex D1
U , which is shed

into the wake. Only vortex A2
U remains on the upper surface.

Finally, vortices A2
U and D1

U are convected downstream and a
new cycle resumes.

Figure 12 (a) shows an overview of the flow at an incidence
of 2◦. A large clockwise rotating vortex called vortex A1

U
covers nearly the entire upper surface at ϕ = 0 (Figs. 12 (a)
and 12 (b)). The free shear layer follows the upper part of vor-
tex A1

U and extends into the wake until the location of a vor-
tex called A0

U . Moreover, a small counter-clockwise vorticity
zone lies at the upper trailing edge indicating the presence of a
vortex called B0

U . The same phase shows the emergence of a
conter-clockwise rotating vortex called A1

L at the leading edge
of the lower surface. Moreover, another vortex called A0

L and
previously generated at the leading edge is still visible on the
rear part of the lower surface. The free shear layer along vor-
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Ĉ
p
[−

]

exp
urans
ddes

(c) ϕ = 0.5 and ĉl
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Figure 9: Distribution of the pressure coefficient reconstructed from the first two dmd modes at four different phases of the shedding cycle for the flow around a
rectangular cylinder at α = 0◦ and Re = 1.1 × 104. Plain lines correspond to the upper surface. The streamlines of the original flow field obtained from urans are
also represented for easier interpretation.

tices A0
L and A1

L impinges on the rear part of the lower surface.
This shear layer extends further downstream, rolling around
the lower trailing edge and feeding the counter-clockwise ro-
tating vortex B0

L behind the rectangle. As shown in Figs. 12 (c)
and 12 (d), vortex A1

U elongates downstream while the upper
shear layer impinges the upper trailing edge and vortex B0

U
is dissipated. On the lower surface, vortices A1

L is convected
downstream while vortex A0

L and B0
L merge into a single vortex

called D0
L which is shed into the wake. At ϕ = 0.5 (Figs. 12 (e)

and 12 (f)), a new vortex A2
U forms at the upper leading edge.

The upper shear layer rolls around vortex A1
U and the upper

trailing edge, impinging the rear surface. Along the lower sur-
face, vortex A1

L is convected downstream and the free shear
layer moves further away from the surface. Simultaneously, a

counter-clockwise vorticity zone starts to form and grows into a
vortex B1

L at the lower trailing edge. This vortex appears clearly
in Figs. 12 (g) and 12 (h) corresponding to ϕ = 0.75. At this
stage, vortex A1

L lies alone on the lower surface. A counter-
clockwise rotating vortical zone grows at the trailing edge of
the upper surface and forms a small vortex B1

U while vortex A2
U

keeps growing. Simultaneously, vortex A1
U becomes weaker as

it extends progressively from the rear part of the upper surface
into the wake. Vortex A1

U is finally completely shed at the end
of the cycle (see vortex A0

U in Figs. 12 (a) and 12 (b)).

To summarize, the main dynamics consists for both cases in
the emergence of a vortex at the leading edge. This vortex
grows and is convected downstream along the surface until it
reaches the rear part of the cylinder and is shed into the wake.
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exp

= 0.

Figure 10: Distribution of the pressure coefficient reconstructed from the first two dmd modes at four different phases of the shedding cycle for the flow around a
rectangular cylinder at α = 2◦ and Re = 1.1 × 104. Plain and dashed lines correspond to the upper and lower surface, respectively. The streamlines of the original
flow field obtained from urans are also represented for easier interpretation.
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Figure 11: Evolution within a vortex shedding cycle of the flow around a rectangular cylinder at 0◦ and Re = 1.1× 104 obtained by urans. Left column: streamlines
and non-dimensional vorticity (clockwise in blue and counter-clockwise in red). Right column: pressure coefficient Cp (high pressure in red and low pressure in
blue) and associated iso-contours.

However, at 0◦ of incidence, the vortex generated at the leading
edge merges with another vortex that has grown at the trailing
edge. The merged vortex is then shed into the wake. For an
incidence of 2◦, the dynamics of the flow structures is similar
along the lower surface. However, it differs along the upper
surface where the vortex generated at the leading edge is con-
vected and shed into the wake without merging with the vortex
that has appeared at the trailing edge.

3.4. Reynolds number effects
This section studies the effects of the Reynolds number on

the flow by analyzing the changes in the time-averaged lift co-
efficient, its slope and in the statistics of the pressure coeffi-
cient. Similarly to Mannini et al. (2010), urans-based simu-
lations have been found to not accurately reproduce Reynolds
number effects. The following analysis thus relies only on ex-
perimental results.

The time-averaged lift coefficient cl
exp is represented for α =

2◦ and α = 4◦ and several Reynolds numbers in Fig. 13, that
also depicts the lift slope cl

exp
α calculated between α = 0◦ and 2◦.

Figure 13 illustrates that an increase of the Reynolds number in
the range considered here leads to a significant increase of the
slope cl

exp
α . In particular, increasing the Reynolds number from

7.7 × 103 to 1.9 × 104 leads to a relative increase of 45% of the
slope. This is consistent with the results reported by Schewe
(2013) for a 5:1 rectangular cylinder. More precisely, Schewe
(2013) showed a significant increase of clα when increasing the
Reynolds number in the ranges Re < 104 and Re > 2×105, and
a slight decrease within 2 × 104 < Re < 105. In particular, an
increase of 63% of the time-averaged lift slope at α = 0◦ was
reported when the Reynolds number increases from 6 × 103 to
6 × 104.

Figure 14 depicts the time-average and the standard devi-
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Figure 12: Evolution within a vortex shedding cycle of the flow around a rectangular cylinder at 2◦ and Re = 1.1× 104 obtained by urans. Left column: streamlines
and non-dimensional vorticity (clockwise in blue and counter-clockwise in red). Right column: pressure coefficient Cp (high pressure in red and low pressure in
blue) and associated iso-contours.

ation of the experimental pressure coefficient obtained at 2◦

of incidence for three Reynolds numbers. The main variation
with the Reynolds number lies in the pressure magnitude: the
time-averaged suction is slightly larger on the upper surface and
lower on the first and last third of the lower surface (Fig. 14 (a)).
Moreover, larger fluctuations, i.e., larger C′p, are observed at

higher Reynolds number (Figs. 14 (b) and 14 (c)). However, the
general shape of both the time-average and standard deviation
does not change with the Reynolds number. In particular, the lo-
cation of the maximum and minimum Cp

exp
and C′p

exp remains
constant. Finally, the time-average pressure recovery appears
to begin at the same chordwise location r.
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Figure 13: Time-averaged lift coefficient and its slope depending on Reynolds
number.

The changes in the magnitude of the pressure distribution,
and thus the higher lift, could possibly originate in the verti-
cal displacement of the vortex cores. This could also be linked
to an increase/decrease of the vortex strength and/or thickness.
Conversely, the Reynolds number does not impact the chord-
wise location of the two vortices as the locations of the pres-
sure recovery along the upper and lower surfaces are constant.
Moreover, using the correlation of the reattachment point with
the maximum Cp, these results indicate that the reattachment
point on the lower surface does not move when the Reynolds
number is increased, which is also supported by the location
of the maximum of C′p not being modified by Re. These re-
sults are in contradiction to the mechanism proposed by Schewe
(2013) who suggested that the modification in the turbulence
level associated with a change of the Reynolds number induces
a modification of the flow structure along the lower surface of
the rectangle. More precisely, Schewe (2013) argued that an
increase of the Reynolds number should result in a reattach-
ment point located further upstream. The shape and curvature
of the time-averaged vortex AL located on the lower side of the
rectangular cylinder would thus be modified. The subsequent
change in the time-averaged pressure distribution would cause
an increase of the time-averaged lift. The present results are
not consistent with the mechanism proposed by Schewe (2013)
but rather suggest that the lift increase is related to a vertical
displacement of the vortex core and/or an increase in the vortex
strength/thickness.

4. Conclusions

The flow around a 4:1 rectangular cylinder at several an-
gles of attack has been studied numerically and experimentally.
In particular, dynamic pressure measurements have been per-
formed to obtain the time response of the pressure coefficient
Cp along a cross section of the cylinder. The pressure distri-
bution was used to compute and study the aerodynamic loads
on the body and to analyze the flow dynamics. The sensitiv-
ity of the solution on the Reynolds number has been quan-
tified by considering different Reynolds numbers ranging be-
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Figure 14: Time-averaged and standard deviation of Cp
exp at α = 2◦ depending

on Reynolds number.

tween 7.8 × 103 and 1.9 × 104. Additionally, urans simulations
based on the k − ω sst turbulence model and ddes simulations
based on the Spalart-Allmaras model have been performed. The
pressure distribution along the cross section of the cylinder re-
sulting from numerical computations has been compared to the
experimental results through statistical analysis and a modal de-
composition method, namely dmd. Moreover, numerical results
have been used to visualize key flow structures.

Large discrepancies between numerical and experimental re-
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sults have been highlighted. In particular, the averaged suction
intensity along the upper surface is largely overestimated by
both urans and ddes for all the incidence angles considered.
This results in an overestimation of the lift coefficient for non-
zero angles of attack. Conversely, the drag coefficient is cap-
tured with satisfying accuracy by both urans and ddes. The
high sensitivity of the pressure on the flow structures explains
the rather poor numerical results. Although ddes should pro-
vide a more accurate representation of turbulence, urans has
been found to perform better for incidences below the stall an-
gle. In particular, urans gives a better approximation of the
experimental pressure coefficient distribution, both in terms of
statistics and time response. However, the stall angle is cor-
rectly estimated by ddes but not by urans. More precisely, the
decrease in suction intensity along the upper surface appearing
for α > 4◦ is only captured by ddes. Nonetheless, the reat-
taching flow along the lower surface is better approximated by
urans, also for incidences higher than the stall angle.

The dmd filtering that has been applied to the numerical and
experimental spatio-temporal pressure coefficient has demon-
strated that urans is able to correctly approximate the dynam-
ics of pressure at the wall for incidence angles lower than 4◦.
The analysis of the urans results has subsequently enabled the
description of the flow dynamics. In particular, at α = 0◦, it has
been shown that vortices emerge and grow both at the leading
and trailing edges. The leading edge vortex is convected down-
stream where it merges with the vortex that has grown at the
trailing edge. The resulting vortex is then shed into the wake.
For incidence angles 0◦ < α ≤ 4◦, the flow dynamics along the
lower surface is similar. However, along the upper surface, the
vortex generated at the leading edge is convected and shed into
the wake without merging with the trailing edge vortex that is
dissipated.

Finally, similarly to what was reported by Schewe (2013), a
Reynolds number increase from 7.8× 103 to 1.9× 104 has been
shown to impact the time-averaged lift slope clα that strongly
increases. The pressure measurements have demonstrated that
an increase in Reynolds number causes an increase/decrease of
the suction along the upper/lower surfaces, respectively. This
results in an increase of the time-averaged lift coefficient. Un-
like the mechanism proposed by Schewe (2013), the present re-
sults suggest that this increase is not due to an expansion of the
time-averaged recirculation bubble lying along the lower sur-
face. It is argued that the modification in the time-averaged
pressure and the resulting variation of the time-averaged lift
slope are rather due to a modification of the time-averaged vor-
tex strength, thickness and/or distance of its core from the sur-
face.
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Mannini, C., Šoda, A., Schewe, G., 2011. Numerical investigation on the three-
dimensional unsteady flow past a 5:1 rectangular cylinder. Journal of Wind
Engineering and Industrial Aerodynamics 99, 469–482.

Mariotti, A., Salvetti, M.V., Shoeibi Omrani, P., Witteveen, J.A.S., 2016.
Stochastic analysis of the impact of freestream conditions on the aerody-
namics of a rectangular 5:1 cylinder. Computers & Fluids 136, 170–192.

Menter, F., Esch, T., 2001. Elements of industrial heat transfer predictions, in:
16th Brazilian Congress of Mechanical Engineering (COBEM), pp. 26–30.

Menter, F.R., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience
with the SST turbulence model. Turbulence, heat and mass transfer 4, 625–
632.

Mizota, T. & Okajima, A., 1981. Experimental studies of unsteady flows around
rectangular prisms, in: Proceedings of the Japan Society of Civil Engineers,
pp. 49–57.

Nakaguchi, H., Hashimoto, K., Muto, S., 1968. An experimental study on
aerodynamic drag of rectangular cylinders. The Journal of the Japan Society
of Aeronautical Engineering 16, 1–5.

Nakamura, Y., Mizota, T., 1975. Torsional flutter of rectangular prisms. Journal
of Engineering Mechanics 101.

Okajima, A., 1983. Flow around a rectangular cylinder with a section of various
width/height ratios. Wind Engineers, JAWE 1983, 1–19.

Patruno, L., Ricci, M., de Miranda, S., Ubertini, F., 2016. Numerical simulation
of a 5:1 rectangular cylinder at non-null angles of attack. Journal of Wind
Engineering and Industrial Aerodynamics 151, 146–157.

17

http://www.kbwiki.ercoftac.org/w/index.php/Abstr:UFR_2-15
http://www.kbwiki.ercoftac.org/w/index.php/Abstr:UFR_2-15


Ricci, M., Patruno, L., de Miranda, S., Ubertini, F., 2017. Flow field around a
5:1 rectangular cylinder using les: Influence of inflow turbulence conditions,
spanwise domain size and their interaction. Computers & Fluids 149, 181 –
193.

Rigo, F., Denoël, V., Andrianne, T., 2018. Vortex induced vibrations of rectan-
gular cylinders arranged on a grid. Journal of Wind Engineering and Indus-
trial Aerodynamics 177, 327 – 339.

Robertson, J.M., Cermak, J.E., Nayak, S.K., 1975. A Reynolds-number effect
in flow past prismatic bodies. Mechanics Research Communications 2, 279–
282.

Robertson, J.M., Wedding, J.B., Peterka, J.A., Cermak, J.E., 1978. Wall pres-
sures of separation-reattachment flow on a square prism in uniform flow.
Journal of Wind Engineering and Industrial Aerodynamics 2, 345–359.

Schewe, G., 2013. Reynolds-number-effects in flow around a rectangular cylin-
der with aspect ratio 1:5. Journal of Fluids and Structures 39, 15–26.

Schmid, P.J., 2010. Dynamic mode decomposition of numerical and experi-
mental data. Journal of Fluid Mechanics 656, 5–28.

Shimada, K., Ishihara, T., 2002. Application of a modified k − ε model to
the prediction of aerodynamic characteristics of rectangular cross-section
cylinders. Journal of fluids and structures 16, 465–485.

Shirato, H., Sato, Y., Sasaki, O., Van Bao, D., 2010. Coherent structure of
surface pressures on 2-D rectangular cylinders, in: Proceedings of the Fifth
International Symposium on Computational Wind Engineering, Chapel Hill,
North Carolina, USA.

Shur, M., Spalart, P.R., Squires, K.D., Strelets, M., Travin, A., 2005. Three-
dimensionality in reynolds-averaged navier-stokes solutions around two-
dimensional geometries. AIAA Journal 43, 1230–1242.

Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R., others, 1997. Comments
on the feasibility of LES for wings, and on a hybrid RANS/LES approach.
Advances in DNS/LES 1, 4–8.

Spalart, P.R., Streett, C., 2001. Young-Person’ s Guide to Detached-Eddy Sim-
ulation Grids. Technical Report. National Aeronautics and Space Adminis-
tration, Langley Research Center.

Stokes, A.N., Welsh, M.C., 1986. Flow-resonant sound interaction in a duct
containing a plate, II: Square leading edge. Journal of Sound and Vibration
104, 55–73.

Tamura, T., Itoh, Y., Kuwahara, K., 1993. Computational separated-reattaching
flows around a rectangular cylinder. Journal of Wind Engineering and In-
dustrial Aerodynamics 50, 9–18.

Tamura, T., Miyagi, T., Kitagishi, T., 1998. Numerical prediction of unsteady
pressures on a square cylinder with various corner shapes. Journal of Wind
Engineering and Industrial Aerodynamics 74-76, 531–542.

Wang, X., Gu, M., 2015. Experimental investigation of Reynolds number ef-
fects on 2d rectangular prisms with various side ratios and rounded corners.
Wind and Structures, An International Journal 21, 183–202.

Washizu, K., Ohya, A., Otsuki, Y., Fujii, K., 1978. Aeroelastic instability of
rectangular cylinders in a heaving mode. Journal of Sound and Vibration 59,
195–210.

Yu, D., Kareem, A., 1998. Parametric study of flow around rectangular prisms
using LES. Journal of Wind Engineering and Industrial Aerodynamics 77-
78, 653–662.

18


	Introduction
	Methodology
	Experimental approach
	Computational approaches
	urans simulations
	ddes simulations

	Comparison of the different approaches

	Results
	Statistics of the load coefficients and Strouhal number
	Statistics of the pressure coefficient
	Experimental results
	Comparison between experimental and cfd results

	Spatio-temporal pressure coefficient and flow dynamics
	Comparison between experimental and cfd results
	Flow dynamics

	Reynolds number effects

	Conclusions

