
4. Method

4.1 Calculate the LL, HL, LH and HH wavelet coefficients at each scale

• We multiply every other pixel and its surrounding neighbors by the LL, LH, 

HL and HH wavelet filters. As only every other pixel are analyzed, the 

output (LL, LH, HL and HH wavelet coefficients) have half  the size of  the 

input (topographic) data. For the first scale (j), the topographic data is used 

as input. For the subsequent scales, the LL wavelet coefficients are used as 

input. This is done iteratively until there are only 23 by 22 pixels left.

Figure 2. Comparing the topographic signal of  pixel i and its neighbors at scale j (2x pixels) to the LL, HL, LH and HH filters 

yields LL, HL, LH and HH wavelet coefficients at each scale until there are 23 by 22 pixels left (Aristarchus region shown).

4.2 Calculate the wavelet leader coefficients at each scale

• The wavelet leader coefficient for a pixel is the maximum absolute value 

between the LH, HL and HH wavelet coefficients of  this given pixel, its 8 

surrounding neighbors and the pixels in this dyadic cube (dλ) at all finer 

scales. The wavelet leader coefficients are calculated for each scale.

Figure 3. Calculating the wavelet leader coefficients at each spatial scale (Aristarchus region shown).

4.3 Scaling regimes, fractal behavior and Hölder exponent values

• Scaling regimes: we plotted log2S(j,1) versus j (Fig. 4a) for 400 random pixels, 

and calculated the absolute values of  the curvature of  these curves. The 

highest curvature values represent the likeliest scale breaks. S is the structure 

function (Eq. 1), j the scale and q is the order of  S [1]. 

• Fractal behavior: we plotted n(q) (Eq. 2) versus q (for q = -1.5 to 1.5) for each 

scaling regime, and calculated the correlation r between n and its linear 

regression (Fig. 4b). The data is monofractal if  r>0.97, multifractal if  r≤0.97.

• Hölder exponent: if  the data is monofractal, the slope of  n(q) versus q

coincides with the Hölder exponent and characterizes its irregularity. If  the 

data is multifractal, the slope gives the dominant Hölder exponent but does 

not fully represent the fractal properties of  the signal. 

Figure 4. (a) log2S(j,q) versus j for 400 random pixels (where q = 1), the red curve represents the average value. (b) n(q) versus q

for the three scaling regimes identified (solid lines) identified and their linear regression (dashed lines).

3. Data
• We used gridded topographic data from LOLA that has been projected 

into a simple cylindrical projection (PDS3, V1.05) at 1024 ppd (or ~30 

m/pixel), which is the highest spatial resolution currently available for the 

whole Moon. We downloaded individual tiles of  15° in latitude by 30° in 

longitude to obtain data for the whole globe, for a total of  368,640 by 

184,320 pixels. 

• The WLM uses data of  size 2x as input, so we downsampled the global 

dataset to 218 (262,144) pixels to 217 (131,072) pixels. This corresponds to 

a spatial resolution of  728 ppd or ~41 m/pixel.

• Every other pixel and its neighbors are compared to four 2-dimensional 

filters (HH, LL, HL, LH) derived from the scaling (L, or low-pass) and 

wavelet (H, or high-pass) components of  a 3rd order Daubechies wavelet.

Figure 1. Every other pixel of  the global gridded LOLA topographic dataset and its neighbors are compared to four 2-

dimensional filters (HH, LL, HL, LH) derived from the scaling and wavelet components of  a 3rd order Daubechies wavelet.

5. Preliminary results

5.1 Scaling regimes 

• We studied the absolute value of  the curvature of  log2S(j,1) versus j for 

200 random pixels distributed in the highlands and 200 in the maria. 

• For the pixels in the highlands, we observe, that scale breaks occur most 

often at j=3, around j=8 and around j=12 (Fig. 5a). 

• For the pixels in the maria, the scale breaks occur most often around j=9 

(Fig. 5b). 

• Thus, we consider that globally, at the discrete scales we analyzed, three 

scale breaks are observed at j=3, 8 and 12, which correspond to spatial 

resolution of  ~667 m, ~21 km and ~341 km per pixel.

• The smallest scaling regime is consistent with [3] who found that within 

the baselines they investigated (~17 m to ~2.7 km), competing surface 

processes mostly occurs near 1 km. 

Figure 5. Histogram of  the local maxima in the absolute values of  the curvature of  log2S(j,1) versus j for (a) 200 random 

pixels located in the highlands, and (b) 200 random pixels located in the maria.  Local maximas represent the likeliest scale 

breaks. 

• The three scaling regimes for which we calculate the Hölder exponents 

are thus j=3-7 (~667 m–11 km), j=8-11 (~21-171 km), and j=12-14 (341-

1365 km). Interestingly these scaling regimes occur near the transition 

from simple to complex crater diameter (~15-20 km) [4], and the 

transition from complex crater to basin diameter (~140 km) [4].

• We hypothesize that the smallest scaling regime (j=3-7) is characterized by 

the formation of  simple craters, the intermediate (j=8-11) by the 

formation of  complex craters, and the largest (j=12-14) by the formation 

of  impact basins.

5.2 Fractal behavior and value of  the Hölder exponent 

• Preliminary results are available for the Aristarchus region for the smallest 

and intermediate scaling regimes.

• For all pixels in both scaling regimes, the correlation r between n and its 

linear regression is >0.97, suggesting that the surface exhibits a 

monofractal behavior in this region and at these scales.

• At the smallest scaling regime, the Hölder exponents vary between 2.6-

2.8, and at the intermediate scaling regime between 1.1-1.9 (Fig. 6).

Figure 6. Maps of  the LOLA topography and the resulting Hölder exponents values at the smallest scaling regime (from 

2.6 to 2.8, blue to red) and at the intermediate scaling regime (from 1.2 to 1.8, blue to red). The Hölder exponents data is 

shown with transparency over the LOLA topography.

2. Objectives

2.1 Main objective: 

• Use the WLM to study the roughness of  the Moon in 2D using gridded 

topographic data from LOLA.

2.2 Secondary objectives:

• Identify the different scaling regimes present (i.e., at which scales or 

spatial resolution changes in what governs topographic processes occur), 

• Determine whether the data is monofractal or multifractal,

• Determine the value of  the Hölder exponent for each pixel.

1. Introduction

• The roughness of  planetary bodies is commonly studied to identify 

smooth surfaces that would be the best landing sites candidates or to 

identify the geophysical processes that shaped these bodies. 

• The Wavelet Leaders Method (WLM) is a method that allows the 

characterization of  surface roughness both spatially and in frequency, 

unlike most other approaches which focus on either the former or the 

latter. The roughness characterization can be done in 1D using either lines 

of  latitude or lines of  longitude of  data to provide information on them, 

or in 2D using a local spatial analysis centered on each pixel, and thus 

providing a more thorough analysis. 

• The WLM allows the identification of  (1) scaling regimes, (2) the mono-

or multifractal behavior of  the surface, and (3) the value of  the Hölder

exponent for each pixel. 

• The WLM has been rarely used in a planetary science context. It has been 

used to characterize the roughness of  Mars in 1D and in 2D using Mars 

Orbiter Laser Altimeter (MOLA) gridded data in [1]. It has also been used 

in [2] to characterize the roughness of  the Moon in 1D using the Lunar 

Orbiter laser Altimeter (LOLA) gridded data. 
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6. Upcoming work

The calculation of  the fractal behavior and the Hölder exponent values for 

the three scaling regimes identified and the whole Moon are underway.
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