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Abstract

Background: Despite the successful mapping of genes involved in the determinism of numerous traits, a large part
of the genetic variation remains unexplained. A possible explanation is that the simple models used in many
studies might not properly fit the actual underlying situations. Consequently, various methods have attempted to
deal with the simultaneous mapping of genomic regions, assuming that these regions might interact, leading to a
complex determinism for various traits. Despite some successes, no gold standard methodology has emerged.
Actually, combining several interaction mapping methods might be a better strategy, leading to positive results
over a larger set of situations. Our work is a step in that direction.

Results: We first have demonstrated why aggregating results from several distinct methods might increase the
statistical power while controlling the type I error. We have illustrated the approach using 6 existing methods
(namely: MDR, Boost, BHIT, KNN-MDR, MegaSNPHunter and AntEpiSeeker) on simulated and real data sets. We have
used a very simple aggregation strategy: a majority vote across the best loci combinations identified by the
individual methods. In order to assess the performances of our aggregation approach in problems where most
individual methods tend to fail, we have simulated difficult situations where no marginal effects of individual genes
exist and where genetic heterogeneity is present. we have also demonstrated the use of the strategy on real data,
using a WTCCC dataset on rheumatoid arthritis.
Since we have been using simplistic assumptions to infer the expected power of the aggregation method, the
actual power we estimated from our simulations has turned out to be a bit smaller than theoretically expected.
Results nevertheless have shown that grouping the results of several methods is advantageous in terms of power,
accuracy and type I error control. Furthermore, as more methods should become available in the future, using a
grouping strategy will become more advantageous since adding more methods seems to improve the
performances of the aggregated method.

Conclusions: The aggregation of methods as a tool to detect genetic interactions is a potentially useful addition to
the arsenal used in complex traits analyses.

Keywords: Gene-gene interaction, Epistasis, Single nucleotide polymorphism, Genome-wide association study,
Multi dimensional reduction, K-nearest neighbors
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Background
Major technical advances have made genetic information
from molecular origin easily available to the research
community in the last decades. In this new context,
where very large datasets from the lab are available, the
challenge is progressively shifting from data acquisition
to data management and use. Genetic mapping - the as-
sociation of genetic polymorphisms to phenotypic varia-
tions - is one of the major goals targeted by geneticists,
and strongly benefits from this recent data explosion.
Despite remarkable successes - such as the discoveries
of mutations involved in breast cancers, for example -
we still need new approaches and new strategies to deal
with situations that are more complex. These complex
situations include those where several genes interact,
making the relationship between the genomic pattern
and the corresponding phenotypic variations not easy to
identify. Although researchers have proposed many
methods to tackle this difficult problem, and despite
some successes, no gold standard method is currently
available: some methods might be efficient while other
fail in a set of situations, but the reverse might be true
in another set of situations. Consequently, combining
the performances of various methods seems an appeal-
ing approach. Since a large portion of the genetic deter-
minism underlying many traits of interest in various
organisms, including humans, is still unknown and
uncharacterized, genetic mapping and positional cloning
is a very active field of research [1]. A classical approach
in this field is the use of genome-wide association stud-
ies (GWAS): dense molecular markers maps (most often,
large sets of Single Nucleotide Polymorphisms (SNP),
but not exclusively) are used to scan the whole genome
and associations of markers with the trait of interest are
sought. Although successful in many studies [2], this ap-
proach has not been successful in many other cases,
even when complete genomic information (i.e. sequence
data) was available. Several reasons might explain this
situation, such as a small power to detect effects of mod-
est size or oversimplified statistical models [3]. If in-
creasing the cohorts sizes used for mapping is difficult
or useless, a possible track to tackle this “missing herit-
ability” problem might be to fit more elaborate models,
such as those introducing epistatic or gene-environment
interactions [4, 5]. Genes interactions are interplays be-
tween two or more genes with an impact on the expres-
sion of an organism’s phenotype. They are thought to be
particularly important to discover the genetic architec-
ture underlying some genetic diseases [4, 5]. Conse-
quently, there has been an increased interest in
discovering combinations of markers that are strongly
associated with a phenotype even when each individual
marker has little or even no effect [6]. This approach
faces at least two problems: first, modeling and

identifying every (or even any) interaction is a potentially
very challenging task in today situations where very large
sets of markers (up to several millions) might be avail-
able. Note that large sets of markers are usually neces-
sary in association studies for a complete
characterization of the tested genomic regions. Second,
from a more statistical point of view, fully modeling the
complexity leads to models with a large dimensionality,
leading to the well-known ‘curse of dimensionality’ prob-
lem [7]: in rough words, the accurate estimation of an
increased number of parameters is hampered by the re-
duced sizes of the tested cohorts. Many methods (such
as multifactor dimensionality reduction approach using
K-Nearest Neighbors (KNN-MDR) [7], multifactor di-
mensionality reduction (MDR) [8], MegaSNPHunter [9],
AntEpiSeeker [10], BOolean Operation-based Screening
and Testing (BOOST) [11], Bayesian epistasis associ-
ation mapping (BEAM) [12], BHIT [13], Random forest
(RF) [14], among others) have nevertheless been pro-
posed for detecting such interactions. Despite successes
of these methods to unravel some genetic interactions
[3], no unique method has emerged to detect most of
the interactions so far. Furthermore, the relative perfor-
mances of these methods remain largely unclear and ne-
cessitate more investigations. As a step in that direction,
we propose using a method based on the principle of
the aggregation of experts, where the “experts” would be
a set of popular published methods. In parallel, we high-
light some of the features of the individual methods and
discuss possible aggregation strategies.

Methods
Methods of aggregation are not new and have been used
extensively to improve classification [15, 16]. They are a
popular research topic in supervised learning and useful for
constructing good ensembles of classifiers [17]. In our
study, we have used aggregation to combine the results of
various popular gene-gene interactions mapping methods
and assessed the performances of this approach. The idea
of the method is to combine the information from a few
methods in order to create new consensual knowledge [18].
The aggregation of experts, which is an instance of the lar-
ger class of ensemble methods where aggregation is the
technique allowing to combine information from multiple
sources, has been shown to yield more accurate and robust
predictions than individual experts on a variety of classifica-
tion problems [19]. Using this approach, it is often possible
to decrease the amount of redundant data, to filter out
wrong results (false positives and false negatives) and to in-
crease the accuracy of the results [20]. In this paper, we in-
vestigate the aggregation of published gene interactions
mapping methods (described below). As can be found in
the literature, available methods have pros and cons, and
no unique method is uniformly better than the others to
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detect genetic interactions. Our objective was therefore to
obtain a comprehensive method able to detect more true
positive interactions than each individual method by com-
bining the strengths of these individual approaches while
better avoiding false positive results. The very simple idea is
therefore to let each method run independently and finally
propose a final decision based on some consensus obtained
from the individual methods results. An easy example of
such a consensus is the use of the most frequent opinion as
the aggregated expert’s opinion. We have used this ap-
proach in our experiments.
The major objective of the aggregation strategy is thus

to obtain higher detection power than the individual
methods used in the aggregation while conserving an ac-
ceptable type I error. In other words, we want to in-
crease both the sensitivity and the specificity of the
method when compared to individual approaches. We
can obtain, using some assumptions, a rough estimate of
an upper bound for the power as follows. Assume runs
are performed on Q (≥ 2) methods, where each method
has a power pi, i = 1, ..., Q. If we assume that the
methods are independent (the results obtained using
one method gives no indication on what can be expected
from another one; this assumption is discussed below):

� the probabilities pi can be multiplied to model
situations where two or more methods correctly
identify a combination associated to the phenotype,

� it is unlikely that 2 or more independent methods
would identify the same false positive combination,
given that the number of potential combinations is
huge in most practical situations.

Using the second assumption, we will then consider that
an interaction is detected as soon as at least 2 of the Q
methods detect the same combination. Next, if we consider
that 2 results are possible for each method (correct identifi-
cation of a causative combination = 1, incorrect identification
of the causative combination = 0), 2Q situations are possible
for the aggregated expert: (0, 0, ..., 0), (1, 0, ..., 0), ..., (1, 1, ...,
1). Each of these k situations (s1, s2, ..., sQ) has a probability

Pk ¼
Qi¼Q

i¼1 psii � ð1−piÞð1−siÞ and the power of the aggre-
gated method is obtained by summing these Pi over the set
Ω of all situations where at least 2 methods are successful:

P ¼ 1−
Yi¼Q

i¼1
ð1−piÞ−

Xi¼Q

i¼1

pi
1−pi

�
Y j¼Q

j¼1
ð1−pjÞ

¼ 1−
Yi¼Q

i¼1
ð1−piÞ � ð1þ

Xi¼Q

i¼1

pi
1−pi

Þ ð1Þ

The Table 1 illustrates this result in (theoretical) situa-
tions where all the individual methods have the same
power.

In this table, the independence assumption penalizes
the aggregated expert in situations where the number Q
of methods is low and the individual powers are low
(these situations correspond to the grayed cells). On the
other hand, adding methods increases substantially the
power, especially when the individual powers are high.
In most practical situations, methods will not be inde-

pendent and the power gains will differ from the predic-
tions of formula (1). We have performed some simulations
to see the effect of the correlation between the methods re-
sults on the power of the aggregated method: results show
that although the power decreases when the correlation in-
creases, it remains in most cases above the power of indi-
vidual methods (see Additional file 1). In summary, the
performance of the aggregated method will depend on the
individual methods performances, on the number of
methods but also on the correlation between the
methods results. These correlations can be assessed
using simulations, either directly – by counting situa-
tions where methods provide concordant results
above what is expected by chance only – or indirectly
– by comparing the simulations results to what is ex-
pected under the hypothesis of independent methods
(Table 1). A correlation measure could be based on
Cohen’s kappa measure [21]:

k i; jð Þ ¼
# …; 1i;…; 1 j;…
� �þ # …; 0i;…; 0 j;…

� �
−N � pi � pj−N � 1−pið Þ � 1−p j

� �

N−N � pi � pj−N � 1−pið Þ � 1−pj

� �

where #(…, 1i,…, 1j,…) is the number of simulations
where methods i and j simultaneously provide a positive
result, #(…, 0i,…, 0j,…) is the number of simulations
where methods i and j provide a non-positive result, N
is the number of simulations, and pi and pj are the pow-
ers of methods i and j, respectively.
In order to cover a range of situations where aggrega-

tion could be useful (see Table 1), our work is based on
six methods that have been published and used to detect
interacting genetic loci involved in the genetic determin-
ism of a trait. A short description of each of these

Table 1 Aggregated power as a function of the individual methods
power pi (assumed identical) and the number Q of methods

pi Q = 2 Q = 3 Q = 4 Q = 5 Q = 6

0.1 0.010 0.028 0.052 0.081 0.114
0.2 0.040 0.104 0.181 0.263 0.345
0.3 0.090 0.216 0.348 0.472 0.580
0.4 0.160 0.352 0.525 0.663 0.767
0.5 0.250 0.500 0.687 0.812 0.891
0.6 0.360 0.648 0.821 0.913 0.959
0.7 0.490 0.784 0.916 0.969 0.989

Aggregated power
pi Q = 2 Q = 3 Q = 4 Q = 5 Q = 6

0.1 0.010 0.028 0.052 0.081 0.114
0.2 0.040 0.104 0.181 0.263 0.345
0.3 0.090 0.216 0.348 0.472 0.580
0.4 0.160 0.352 0.525 0.663 0.767
0.5 0.250 0.500 0.687 0.812 0.891
0.6 0.360 0.648 0.821 0.913 0.959
0.7 0.490 0.784 0.916 0.969 0.989

Aggregated power

Highlighted cells correspond to situations where the aggregated method has
lower power than the individual ones. Individual methods are assumed to
be independent
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methods is given below, and details can be found in the
corresponding publications:

1- MDR: The Multi-Dimensional Reduction (MDR)
method is designed to replace large dimension prob-
lems with reduced dimension ones, allowing to make
inferences based on a smaller set of variables [8].

2- KNN-MDR is an approach combining K-Nearest
Neighbors (KNN) and Multi Dimensional Reduc-
tion (MDR) for detecting gene-gene interactions as
a possible alternative, especially when the number
of involved determinants is high [7].

3- BOOST (Boolean Operation-based Screening and
Testing), is a two-stage method (screening and test-
ing) using Boolean coding to improve the computa-
tional performances [11].

4- MegaSNPHunter (MSH) uses a hierarchical
learning approach to discover multi-SNP interac-
tions [9].

5- AntEpiSeeker (AES) is an heuristic algorithm derived
from the generic Ant Colony Optimization family [10].

6- BHIT uses a Bayesian model for the detection of
high-order interactions among genetic variants in
genome-wide association studies [13].

Although other methods, such as support vector ma-
chines (f.e. [22, 23]), neural networks (f.e. [24, 25]), deci-
sion trees (f.e. [26]), random forests (f.e. [27, 28]) among
others, have been developed and could be used in the
aggregation, we limited ourselves to the methods de-
scribed above. A first reason for this choice is that using
only 6 methods should allow to see the benefits from
the aggregation strategy, as shown above, while limiting
the computer load. Another reason for the choice of
these 6 methods is that they mostly cover the panel of
the available search strategies: parametric (BHIT) and
non-parametric (the others), exhaustive searches (MDR
and BOOST), stochastic search (MegaSNPHunter),
heuristic approach (AntEpiSeeker). Furthermore, they
have been applied successfully to real datasets and soft-
ware is available for each of these methods.
Since we wanted to assess the performances of the ag-

gregation method and compare them to the results of
the individual methods, we have performed simulations.
We now describe these simulations.

Simulations
One of the aims of our study was to assess the perfor-
mances of the methods to unravel gene-gene (or
gene-environment) interactions in the absence of large
marginal effects. The reason for that choice was that
many methods are able to detect such large marginal ef-
fects and to infer interactions within a limited set of loci
selected on that basis. Accordingly, we wanted to devise

an approach that is able to detect interactions even in
the absence of marginal effects. For that reason, efforts
have been devoted to generate datasets with interacting
genes in the absence of significant marginal effects. Note
that this is not a restriction on the use of the aggregation
strategy: the presence of marginal effects is likely to in-
crease the power of the individual methods, and conse-
quently to have a positive influence on the power of the
aggregated method. We simply put ourselves in a diffi-
cult situation where improvements were needed. Fur-
thermore, heterogeneity between samples has been
shown to be a major source for the non-reproducibility
of significant signals [29]. We have modeled heterogen-
eity by associating penetrances (i.e. Pen = probabilities of
a phenotype given a genotype) to the multi-locus geno-
types underlying the simulated binary trait. Conse-
quently, individuals carrying the causal alleles could be
affected (with a probability equal to Pen) or not.
The process can be split into 4 steps:

1. Genotypes generation (see Fig. 1).
(1) Genotyping data from a study on Crohn disease

in Caucasians [30] has been obtained for 197
individuals.

(2) SNPs spanning a genomic region on
chromosome 9 (HSA9) have been extracted,
and, to decrease the computational
requirements of the simulations, a subset of
2000 informative markers has been selected for
our simulations. In order to recover a large part
of the information lost in subselecting markers,
only markers with a MAF > 0.3 and no missing
genotypes have been selected. Subsequent tests
(Hardy-Weinberg equilibrium, recovery of a
significant linkage disequilibrium) have been
carried on to validate the finally used subset
(data not shown).

(3) Since many different individuals are needed in the
simulations, we have used a trick similar to [6] to
generate new individuals based on the few (i.e.
197) available genotypes: each individual genotype
was chopped into 10 SNP windows, leading to
200 windows. Consequently, each window has
(maximum) 197 different 10-loci genotypes. We
then built each simulated individual genotype by
randomly sampling one of the 197 possible 10-
loci genotype for each of the 200 windows and
concatenating the 200 10-loci genotypes into a
new complete genotype with 2000 markers. This
technique allows for 197200 potentially different
individuals while conserving some LD.

2. Phenotypes generation (see Fig. 2).
(4) 2 SNP were randomly chosen as having an

effect on the simulated phenotype (although not
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a limitation of the method, we restricted our
study to 2-SNP interactions). Note that, since
SNP selection was random, SNP could be linked
or not.

(5) Selected SNP genotypes were used to generate
the binary phenotypes. The details of the
algorithm are given in [7], but, in summary,
after generating 2-locus penetrances (Pen)

leading to approximately no marginal effect, a
uniformly distributed random number R is sam-
pled between 0 and 1 and compared to the
penetrance Pen of the simulated 2-locus geno-
type: if R < Pen, the simulated individual is sup-
posed to be a case (1). If not, it is a control (0)

(6) One SNP out of 2 consecutive SNPs was then
randomly discarded, leaving 1000 markers

Fig. 1 Genotypes generation using a real dataset. Simulated genotypes are a concatenation of 200 windows, containing 10 SNP each, obtained
from real individuals genotypes

Fig. 2 QTL (Q1, Q2) used as a basis to generate the interaction. In this example, QTL Q1 has been discarded, but QTL Q2 is still present in the
final genotyping dataset. The phenotype is defined using the penetrance function corresponding to this 2 SNP
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genotypes for the analyses. The rationale of this
selection is that causative mutations might
nowadays be present or not in the genotyped
variants. This will also be the case in our
simulations (see Fig. 2).

3. Statistics computation and significance assessment.
(7) The genotypes and corresponding phenotypes

were then studied using all 6 methods.
a. KNN-MDR splits the 1000 SNP into 100

windows of 10 consecutive markers and
measures the association between each
combination of 1 (100 tests) or 2 (4950
tests) windows with the phenotype using
balanced accuracy [7]. Among all possible
combinations, the one considered as optimal
is the one containing both causative SNP
(see Fig. 3).

b. The other approaches use their own
statistics to rank the tested combinations
associations with the phenotype from
strongest to weakest (see [8–11, 13] for
details).

(8) We assessed significance using 100
permutations of the phenotypes for each
simulation. Permutation of the phenotypes with
respect to the genotypes breaks the potential
relationship between phenotypes and genotypes.
Accordingly, analyses on permuted data
correspond to analyses under the null
hypothesis of no association. We kept the
highest value of the statistic obtained in each
permutation to build the distribution under the
null hypothesis, and then compared the
statistics obtained with the real (i. e. non
permuted) data to this distribution to obtain a
p-value for the tested combinations. Although

this number of permutations is too low for
routine work, it was used to reduce the
computing burden and help us to discriminate
between results clearly non-significant (i.e. p >
0.05) and those potentially significant (i.e. p <
0.05). When a higher precision was needed for
the p-values (see below for real data), an adapta-
tive permutations scheme was used, in which
windows not reaching a pre-determined p-
value threshold are progressively abandoned
in the permutations scheme since these
windows are very unlikely to finally reach a
significant result [31].

4. Aggregation of the results.
(9) After completing the simulation and the

permutations for each method, we performed
a majority vote among the obtained optimal
combinations. If one combination obtained
the majority, it became the aggregated
method’s chosen combination. When no
majority could be obtained, the aggregated
method failed to obtain a solution (see
simulation in Table 2 as an example).

Note that the combinations mentioned in this section
correspond to KNN-MDR windows combinations. Since
the 5 other methods report combinations of SNP, these
combinations of SNP are mapped to the corresponding
combinations of windows before performing the major-
ity votes.
In each simulation, we generated genotypes and phe-

notypes to obtain 500 cases and 500 controls and ana-
lyzed the simulated data using the approach described
above.
This whole process was repeated 1000 times in order

to obtain an accurate estimator of the corrected power,

Fig. 3 An example with 20 SNP (represented by squares) partitioned into 4 groups (represented by the colours) of 5 SNP. The causative SNP are
marked with a star. All combinations of 1 or 2 groups are shown, those bearing a causative SNP are marked with a small arrow, and the optimal
with the 2 causative SNP with a big arrow
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where the “corrected power” is estimated as the propor-
tion of situations where the methods (including the “ag-
gregated expert”) correctly identify the causative
combination. Table 2 illustrates the decision scheme
using the 6 individual methods and the aggregation
method on the few first simulations.

Real data
Analyses using real data have been performed on a
Rheumatoid arthritis (RA) genotype dataset involving
1999 cases and 1504 controls obtained from WTCCC
[32]. Genotypes from the Affymetrix GeneChip 500 K
Mapping Array Set have been filtered using the usual
quality controls tests on DNA quality (percentage of ge-
notyped marker for any given individual above 90%),
markers quality (percentage of genotyped individuals for
any given marker above 90%), genotypes frequencies
(markers with a p-value below a Bonferroni adjusted 5%
threshold under the hypothesis of Hardy-Weinberg equi-
librium in the controls cohort have been discarded).
Missing genotypes for the GeneChip markers have been
imputed using impute2 software [33]. This procedure
led to 312,583 SNP to be analyzed for the 2 cohorts.
Working with such a large panel remains quite challen-
ging for several of the methods we have been using in
this study. Therefore, we decided to reduce the number
of SNP to about 52,000 by roughly considering the SNP
with the highest MAF in each window of 6 successive
SNP. Of course, in future studies, when more perfor-
mant methods will be available (such as KNN-MDR,
among others), the complete set of SNP could be con-
sidered again. Alternatively, after targeting some regions
with this reduced set of SNP, the discarded SNP could
be reintroduced in order to refine the location of the re-
gions of interest.

Next, we used each method described above on this
dataset as follows:

� MDR tested all combinations of 2 SNP (i.e. more
than 1,350,000,000 combinations) and sorted the
results by decreasing balanced accuracies. To obtain
significance, we used a Bonferroni correction as is
done in the MDR package: we kept the first 5000
highest balanced accuracy results, and used the
corresponding 5000 combinations to perform the
permutations. The number of permutations was
conservatively based on the total number of tests,
leading to a corrected p-value equal to 3.698225×
10− 11. This necessitated to perform 1011

permutations.
� KNN-MDR has been used first on 1000-SNP win-

dows, leading to 1326 tests involving 2 windows.
Using an adaptative permutations scheme as is
done in [7], and progressively decreasing the win-
dows sizes, we ended up with a set of 33 win-
dows containing 50 SNP each. Finally, a MDR
approach was performed involving all combina-
tions of 2 SNP from this set of 1650 SNP (i.e.
1,360,425 combinations).

� MegaSNPHunter has been used with the same
parameters and using the same approach as has
been done in a previous GWAS study [9], and the
results have been sorted by decreasing χ2 values. To
obtain significance, we performed a Bonferroni
correction for the first 5000 results, similarly to
what has been done for MDR.

� AntEpiSeeker has also been used with the same
parameters and using the same approach as been
done in a previous GWAS study [10], and the 5000
larger χ2 were kept to perform the simulations as
done in MDR.

Table 2 A sketch of the results from ten simulations

Causative SNP are given by their location in the list (between 1 and 1000). Detected combinations are shown as a number representing one of the 5050
combinations. Empty cells correspond to the situations where no significant combination was found. The correct solutions are written in red and the ‘-‘correspond
to failures of the aggregation (no majority)
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� BOOST has also been used with the same
parameters and using the same approach as as been
done in a previous GWAS study [11], with the
results sorted by decreasing values of Kirkwood
superposition approximation (KSA). To obtain
significance, we performed a Bonferroni correction
for the first 5000 results, and then used the same
permutations approach as for the other methods.

Results
Results on simulated data
Power
Figure 4 shows the estimations of the corrected power
as a function of the number of simulations. After a few
hundreds simulations, the estimations stabilize and the
relative ranking of the methods in terms of corrected
power becomes fixed. The aggregation method is more
powerful than any of the 6 other methods in our simula-
tions. Another more detailed representation of the re-
sults is provided in Fig. 5. Since the representation of
more than 5 simultaneous methods is difficult and of no
visual help, we have omitted the results involving Mega-
SNPHunter in the figure (the results with the 6 methods
are provided in the Additional file 2).
In the setting used to obtain the Fig. 5 results (i.e.

using 5 individual methods), the highest empirical power

(0.664) is obtained for the aggregation expert involving
the 5 methods. The power of the individual methods
used in the theoretical predictions obtained using (1) are
the empirical powers of these methods, explaining why
these are equivalent in the two graphs. It can also be ob-
served that all powers of the aggregated methods involv-
ing only two methods are higher than expected. When
three methods are involved, the powers are sometimes
higher, sometimes lower than expected under independ-
ence. For four or five methods, the powers are con-
stantly lower than expected, although higher than for
any individual method when the five individual methods
are aggregated (and even higher for six methods, 0.678,
as mentioned on Fig. 4).
Figure 6 shows the number of simulations (within the

1000 simulations) where only one method or combin-
ation of methods discovered the proper combination.

False positive rates
A second incentive for using aggregation is that false
positive rates are likely to decline due to the use of a
majority vote among parallel results: false positive results
obtained using one method might disappear when using
a different method, with a different rationale. In our
work, we have assessed two different kinds of false posi-
tive results:

Fig. 4 Estimations of the corrected power for the 6 individual methods and the aggregation method. The 100 first simulations lack estimators
stability and are not shown. Final powers are 0.628, 0.530, 0.549, 0.293, 0.419, 0.186 and 0.678 for KNN, MDR, Boost, AntEpiSeeker, BHIT,
MegaSNPHunter and the aggregation method, respectively
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� Either the methods identified an incorrect
combination (note that these incorrect results are
not included in the previous results on “corrected”
power), generating an incorrect positive result.

� Either they identified a combination when no
effect had been simulated (i.e. found a “false
positive” result).

To test the first type of incorrect results, we have used
the same set of simulations as for the power results and
counted the number of false positives for each scenario.
The combination identified as the most significant, if
any, was taken as the solution for each of the methods,
and the one with a majority vote, if any, for the aggre-
gated method. The results are reported in Fig. 7.
For the second definition, we have simulated 200 situ-

ations where no SNP was involved to generate the
phenotype. Results are reported in Fig. 8.
We carried out a second set of 500 simulations. In

these analyses, we kept up to the 5 most significant
combinations to see whether checking more than “the
best” combination allows improving the (corrected)

power without harming too much the false positives
rate. Figures 9 and 10 present the results of these
simulations.

Correlation
Correlations between the methods results have been
computed using the Cohen’s Kappa approach described
above. The results are presented in Table 3. The correla-
tions have been computed for each combination of 2
methods, and for 1 to 5 kept top-ranked markers combi-
nations. We have assessed the significance of these mea-
sures by permuting 1000 times the results (success or
failure) for each method and computing the correspond-
ing values of kappa. For all combinations of methods and
sets of markers combinations, no permuted kappa reached
the value obtained with the real data, indicating that all
p-values are lower than 0.001. Consequently, even when
the methods show a slight agreement (κ < 0.200), the
methods are very significantly correlated.

Results on WTCCC data
Performing genome-wide interaction association studies
with several methods on the RA dataset remains a chal-
lenge, even after pruning the dataset as described in a
previous section. Each of the methods discovered a large
number of potential interactions when using the 5%
threshold and the correction procedures described in
the Methods section (ranging from 1805 for MSH to
3808 for MDR). In total, 1306 significant 2-SNP interac-
tions were discovered by at least 2 methods: 12 by the 5
methods, 19 by 4 methods (see Table 4), 476 by 3
methods and 799 by 2 methods only (see Additional
file 3 for a complete list). To obtain a ranked list of inter-
actions, and although many sorting criteria could be used,
we computed the rank of each interaction among the sig-
nificant interactions of each method (the most significant
interaction found using a given method was ranked 1 for
that method, the second was ranked 2, etc. Interactions

Fig. 5 Power (in ‰) of 5 individual methods (KNN, MDR, BOOST, AntEpiSeeker, BHIT) and of the 26 possible combinations of aggregated
methods. The left diagram shows the results obtained in the simulations, while the right diagram shows the expected results under the
hypothesis of methods independence. Note that the latter does not necessarily correspond to a majority vote

Fig. 6 Specific positive results for each (combination of) method(s)
in 1000 simulations. The numbers denote the number of simulations
where the corresponding (set of) method(s) was the only one to
indicate the correct combination

Abo Alchamlat and Farnir BMC Bioinformatics          (2018) 19:445 Page 9 of 15



not present in the list of the given method were
ranked (N + 1), where N is the number of significant
interactions for that method). We then summed up
the ranks obtained by each significant pair of SNP and
sorted the list according to this sum (the smallest sum
corresponding to the “best” interaction). The results
for the 31 interactions detected by at least 4 methods
are reported in Table 4.
In total, the 31 2-SNP interactions detected by at least

4 methods involve 47 distinct SNP (36 SNP are involved
in only one interaction, 10 are involved twice and 1 is
present in 6 interactions, see Table 4). Some interactions
(12 out of 31) involve SNP on the same chromosome,
while 19 involve SNP on distinct chromosomes. For
intra-chromosomal interactions, the distance between
the SNP ranged from very small (2 are smaller than
50 kb), to very large (2 are larger than 10 Mb). This
shows that the methods potentially reported interactions
involving close regions, such as upstream regulatory re-
gions of genes, as well as much more distant ones, in-
cluding regions located on different chromosomes.

Several of these interactions have already been reported
in previous analyses (see Table 4), while others are new,
to our knowledge (for example on chromosome 3), or
might potentially be echoes of other more significant
ones.
Figure 11 provides another view of the results from

this analysis (a Additional file 3 gives a more complete
version of the results). On this figure, chromosomes are
reported with a dimension approximatively proportional
to their physical size, interacting sites are signaled
through dashes corresponding to the location of the
interacting SNP on the chromosome and the detected
inter-chromosomal interactions are reported using the
dashed lines within the circle.

Discussion
The detection of genetic interactions is a notoriously dif-
ficult task, and, although numerous papers have been
published in the field, a lot of work remains to be done
to propose methodological advances allowing obtaining
reliable and reproducible significant results in many
gene-mapping studies. Our work aims to be a step in
that direction.
A first difficulty is the statistical power issue to detect

epistatic interactions: even if epistatic effects are not ne-
cessarily more tenuous than main effects, the number of
tested hypotheses increases at least quadratically, making
multiple testing corrections potentially more penalizing.
Therefore, strategies allowing obtaining reasonable
power in such studies are desirable. This is one of the
features of the approach we propose in this paper. As
shown in the Methods and the Results sections, aggrega-
tion strategies provide some potential increases in the
detection power. Even if the power increases in the
current study were rather modest, it has been shown
that adding more methods in the aggregation should po-
tentially increase the overall power. In our study, the
theoretical expectations are supported by the simulation
results (e.g. Fig. 5), with an improved power of the
method aggregating the results of the 5 underlying
methods with respect to the individual methods and to
the methods aggregating less methods, although admit-
tedly smaller than expected under the hypothesis of
methods independence. Note that the property of inde-
pendence mentioned here means that the probability of
finding a positive result for one method does not depend
on the findings of another method: although this might
be arguable for ‘easy to find’ interactions, this might be
more plausible for less ‘visible’ interactions, especially
when distinct methods rest on very different approaches.
Nevertheless, in our study, although we have used
methods covering various methodologies (multi-dimen-
sional reduction (MDR, KNN-MDR), exhaustive search
(BOOST), empirical (AntEpiSeeker) and Bayesian

Fig. 7 Number of incorrect positive results in 1000 simulations at
the 5% threshold. A result is an incorrect positive result when the
most significant combination (if any) does not correspond to the
simulated combination. The number of incorrect positive results falls
to 47 when MegaSNPHunter results are added

Fig. 8 Number of simulations providing false positive results
(significance threshold = 5%) in a set of 200 simulations. An
approximate 95% confidence interval for the number N of false
positive results is [4; 15]
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(BHIT) approaches) and potentially hard to find interac-
tions (small marginal effects, potentially heterogeneous
situations, see the simulations description), we obtained
significant correlations between the methods results
(Table 3). Although the way these correlations affect the
power is not completely clear, the global effect was a re-
duction of the obtained power increase compared to the
expectation. This is also what was observed in a set of

simulations involving correlated methods with known
correlation structure (see Supplementary file 4).
Reproducibility is another problem in mapping studies.

At least three reasons are at the root of this problem: a first
reason is that many published results are probably false
positives, partly due to improper correction for multiple
testing. Another reason is that not every method is equally
likely to detect any type of interaction, making detection

Fig. 9 Powers (in ‰) of 5 individual methods (KNN, MDR, BOOST, AntEpiSeeker, BHIT) and of the 26 possible combinations of aggregated
methods when the number of kept significant combinations varies from 1 (top left) to 5 (bottom right)

Fig. 10 False positive rates (in ‰) of 5 individual methods (KNN, MDR, BOOST, AntEpiSeeker, BHIT) and of the 26 possible combinations of
aggregated methods when the number of kept significant combinations varies from 1 (top left) to 5 (bottom right)
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not only a function of the variants to be highlighted, but
also of the used method. And finally, and more fundamen-
tally, it is to be expected that many phenotypes are under
the control of many genes with intricate interaction net-
works. Consequently, involved interactions in one dataset,
or even in subsets, might differ, increasing the heterogen-
eity of the underlying genetics and making detection of
these interactions more complicated. Our approach is of
interest for the two first problems. We have indeed shown
that aggregating the positive results of various methods
helps to control the false positive rates: false positives pro-
duced by one of the methods are not necessarily produced
by the other used methods, and will most of the time be
discarded from the final results (Figs. 7 and 8). On the other
hand, positive results produced by a majority of methods
will pop up, allowing combining the detection skills of sev-
eral methods rather than only considering separately indi-
vidual methods results. The definition of the majority
might be important: although we have used a very simple
approach to define the majority in our analyses, other
schemes are possible. For example, we could weight each
method differently in the majority calculation to better ac-
count for each method characteristics, with the weights in-
ferred using regression techniques or simulations.
Aside of these interesting properties, some difficulties

have to be mentioned. An obvious disadvantage of the
aggregation strategy is that several methods have to be
mastered, installed on the computer facilities and run.
This of courses increases the total computing time,
which might be an issue when large datasets are consid-
ered. A possible solution would be to use the nowadays

largely available parallel resources offered in most re-
search centers. Using several nodes to perform the tasks
(run the programs implementing the various strategies,
run the permutations when needed, etc.) in parallel
should lead to a non-significant increase of the total ob-
served run time, with a minor penalty due to the soft-
ware implementation of this parallelization strategy. So,
affordability of the aggregation strategy is a question
about the affordability and applicability of the various in-
dividual methods, but not on the affordability and ap-
plicability of the aggregation strategy itself: extra efforts
needed by the aggregation are really minor compared to
the computational burden and needed user experience
associated to the various methods.
Since more and more methods are becoming available

in the context of ‘big data’, increasing the number of al-
gorithms that can be tested and integrated in the aggre-
gation should become more and more feasible in the
coming years. Furthermore, improvements in the cur-
rently available methods are also possible. For example,
Van Lishout et al. (2015) [41] analyzed ~ 106 SNP on
thousands individuals in 1 day on a 256 core cluster
using MB-MDR! This was made possible by algorithmic
improvements in the MB-MDR methodology and tech-
nical availability of large computers clusters. These evo-
lutions should make aggregation a viable approach for
large problems in the short term.
Another difficulty is the aggregation itself: the ranking

of the interesting interactions is performed based on their
significance. This leads to at least two problems: first, pro-
viding a clear ranking might be difficult; for example,
when permutations are used, several interactions might
easily end up with the same significance, making subse-
quent ranking almost arbitrary. Next, the most interesting
combinations might not necessarily be the best-ranked
ones even when an unambiguous ranking is available. Al-
though this point clearly deserves more investigations,
one possible crude approach, used in this study, was to in-
corporate more than the top-ranked combinations in the
aggregation. Figures 9 and 10 show that this simple strat-
egy has some merits, increasing the power while still con-
trolling for the number of false positives when the
number of kept top combinations increases from 1 to 5.
Our simulations modelled complex situations, with

weak (or no) marginal effects and genetic heterogeneity.
Such complex situations are not required to resort to ag-
gregation, but our objective was to show the method
performances in settings where individual are not able
to systematically discover the simulated interactions.
In view of the main characteristics of our strategy, it

was important to test the approach on real datasets to
check whether new clues could result from our analyses.
Our results on the WTCCC Rheumatoid Arthritis data
provides new information on potential new candidate

Table 3 Cohen kappa coefficients for all combinations of
methods using the approach given above

Cohen k 1 region 2 regions 3 regions 4 regions 5 regions

KNN-MDR 0.587 0.537 0.518 0.515 0.511

KNN-BOOST 0.485 0.459 0.502 0.493 0.486

KNN-AES 0.244 0.230 0.246 0.247 0.245

KNN-BHIT 0.177 0.186 0.192 0.200 0.203

KNN-MSH 0.179 0.159 0.152 0.147 0.156

MDR-BOOST 0.608 0.512 0.497 0.507 0.469

MDR-AES 0.354 0.357 0.353 0.349 0.345

MDR-BHIT 0.238 0.255 0.263 0.270 0.275

MDR-MSH 0.208 0.174 0.156 0.155 0.170

BOOST-AES 0.343 0.287 0.277 0.287 0.283

BOOST-BHIT 0.319 0.308 0.287 0.298 0.299

BOOST-MSH 0.195 0.166 0.161 0.158 0.162

AES-BHIT 0.443 0.418 0.406 0.388 0.386

AES-MSH 0.468 0.454 0.415 0.415 0.431

BHIT-MSH 0.312 0.301 0.302 0.308 0.290

These coefficients are estimators based on the set of 500 simulations used to
create Figs. 7 and 8
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regions. As shown in Table 4, we rediscovered several
previously reported associations and interactions in our
study. Furthermore, interactions between previously
identified genes and other new genes or regulatory re-
gions have also been highlighted, which can possibly
provide new and useful information on the molecular
mechanisms leading to RA. Finally, entirely new interac-
tions are also found significant in our study, which
might point to new target genes to be investigated in fu-
ture RA studies, although their biological relevance is
obviously not clear at this stage.
Figure 11 provides a view of the significant results at

the chromosome level. This Figure and Table 4 show
that some interactions involve SNP on 2 distinct

chromosomes while other involve (sometimes closely)
linked SNP. Although this might make biological sense
(for example, regulatory regions might be close to the
genes they influence; alternatively, very close markers
could actually define haplotypes that are associated to
the trait, a situation which is a special case of interac-
tions that could probably be better flagged using
haplotype-based methods), a potential bias of our
method has to be mentioned. Indeed, BOOST tends to
detect much more internal interactions than interactions
between different chromosomes segments [11]. In our
analyses, we also noted that less interactions involving
closely linked SNP were detected when BOOST was re-
moved from the aggregation (data not shown).

Table 4 List of the significantly interacting SNP in the WTCCC RA data [7, 9, 34–40]

The 31 2-SNP interactions found significant by at least 4 methods. The corresponding SNP names and positions are also reported. Ref 1 and Ref 2 (when any)
refer to previous studies where the corresponding SNP were already reported. Gene 1 and Gene 2 (when any) are reported when the corresponding SNP are
located in a gene (in intronic, exonic or UTR regions). The methods for which the SNP were reported as significant are indicated by a colored cell. Furthermore, 3
rankings are also reported: the first one is the one used to rank the interactions in the Table and is described in the text. The second is the balanced accuracy
computed by KNN-MDR. The third one is the rank of the average rank of the interaction computed over the methods for which this interaction was significant

Abo Alchamlat and Farnir BMC Bioinformatics          (2018) 19:445 Page 13 of 15



Consequently, adding other (maybe less biased?)
methods and/or somehow relaxing the majority vote cri-
terion might allow to uncover (and maybe also exclude)
other combinations.

Conclusions
In summary, the aggregation of methods is an approach
with interesting features for detecting epistatic interac-
tions. Integrating the results of parallel methods should
increase the corrected power, making aggregation more
powerful than the individual methods while controlling
the false positives rate. We also have demonstrated the
feasibility of using such methodology on real
genome-wide datasets, providing potential new insights
in complex traits analyses.

Additional files

Additional file 1: Some simulations results using a known correlation
structure between the individual methods. (DOCX 25 kb)

Additional file 2: The results of 6 individual methods and the
aggregation method on the 1000 simulations by taking the first
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Additional file 3: List of the significantly interacting SNP in the WTCCC
RA data for the results found by every method. (XLSX 164 kb)

Additional file 4: The results of 6 individual methods and the
aggregation method on the 500 simulations by taking the first 5
significant combinations. (XLSX 177 kb)
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