Oxylipins are crucial agents in plant defense mechanisms. While free oxylipins are well studied, roles of esterified oxylipins remain unclear. Esterified oxylipins are structurally diverse metabolites that were found in diverse plant species, suggesting that those may be more ubiquitous that currently thought. Among those, galactolipids containing (dn)OPDA were discovered, firstly in A. thaliana, but also in other plants. Those molecules, named arabidopsides, are highly induced under stress conditions, as it accumulates up to 8 percent of plant lipids, but their precise contributions in plant defense mechanisms are still unknown. Arabidopsides are directly formed in plant chloroplast membranes from galactolipids. Accumulation of arabidopsides in such high quantity in chloroplast membranes may modify their properties. This study aims to understand the impact of arabidopside presence in chloroplast membranes on their properties using biomimetic plant membranes via complementary in silico and in vitro approaches.

Conclusions
Arabidopsides formed under stress have different interfacial properties than non-oxidized galactolipids
Arabidopside interaction with chloroplast lipids is favorable
Arabidopsides A and B are able to permeabilize chloroplast membranes
Arabidopside presence in chloroplast membranes under stress may modify chloroplast structure and functions

Literature
Hisamatsu Y. & al., Tetrahedron Letters, 2003, 44(29), 5553-5556

m.genva@uliege.be

Acknowledgements
The authors thanks the Fond National pour la Recherche Scientifique for their financial support and the FIELD project (supported by the Wallonie-Bruxelles federation)