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BACKGROUND & AIMS:
R
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Despite significant advances in the treatment of Crohn’s disease (CD), most patients still develop
stricturing or penetrating complications that require surgical resections. We performed a sys-
tematic review of mechanisms and potential treatments for tissue damage lesions in CD patients.
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METHODS:
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We searched the PubMed, MBASE, and Cochrane databases from September 2016 through July
2017 for full-length articles on CD, fibrosis, damage lesions, mesenchymal stem cells, and/or
treatment. We also searched published conference abstracts and performed manual searches of
all reference lists of relevant articles.
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RESULTS:
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Mechanisms of intestinal damage in patients with CD include fibroblast proliferation and
migration, activation of stellate cells, recruitment of intestinal or extra-intestinal fibroblast, and
cell trans-differentiation. An altered balance of metalloproteinases and tissue inhibitors of
metalloproteinases might contribute to fistula formation. Treatment approaches that reduce
excessive transforming growth factor beta (TGFB) activation might be effective in treating
established intestinal damage. Stem cell therapies have been effective in tissue damage lesions
in CD. Particularly, randomized controlled trials have shown local injections of mesenchymal
stem cells to heal perianal fistulas.
94
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CONCLUSION:

96
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In a systematic review of mechanisms and treatments of bowel wall damage in patients with CD,
we found a need to test drugs that reduce TGFB and increase healing of transmural damage
lesions and to pursue research on local injection of mesenchymal stem cells.
98
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Inflammatory bowel diseases (IBDs) are chronic
inflammatory disorders that comprise Crohn’s

disease (CD) and ulcerative colitis (UC). The incidence
of IBD is rising worldwide, increasing the burden on the
patients and health care system.1 CD is characterized by
periods of clinical remission alternating with periods of
relapse reflected by recurrent clinical symptoms. Per-
sisting inflammation is believed to trigger bowel dam-
age that, over time, culminates in the development of
chronic deep ulcerations, fibrostenotic strictures, ab-
scesses, or fistulae. These complications frequently lead
to an altered intestinal function and represent the main
cause for recurrent surgical resections, which in turn
can lead to disability and impact social or professional
life.2
EV 5.5.0 DTD � YJCGH55952_proof � 1
The recent acknowledgement that CD is a progressive
and destructive disease has led to the development of
new disease indexes, such as the Lemann index
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measuring cumulative bowel damage over time3 and the
IBD Disability Index.4,5 In parallel to this, the treatment
paradigm is currently shifting in CD from pure symptom
control and improvement of quality of life, toward a
blockade of disease progression and the improvement of
long-term disease outcomes by reducing luminal struc-
tural damage, disability, and long-term disease sequelae.

Modifying the natural history of CD remains a major
clinical challenge, and the rate of fibrostenotic and fis-
tulizing complications leading to surgery remains high.2

As currently available CD drugs fail to effectively treat
structural intestinal damage, a better understanding of
the underlying pathophysiology is a necessity to further
allow the identification of new therapeutic targets and
the development of novel treatment options.

Methods

A literature review of the computerized databases
Medline, using PubMed, Embase, and Cochrane, was
conducted between September 2016 and July 2017. To
increase sensitivity, searches using both free text and
MeSH terms were used. MeSH terms included “Crohn’s
disease AND Fibrosis” OR Crohn’s disease AND damage
lesions” OR “Crohn’s disease AND mesenchymal stem
cells” OR “Crohn’s disease AND fibrosis AND treatment”.
Abstracts judged pertinent to the review were identified;
key aspects were recorded; and full-length articles were
selected from relevant abstracts. A secondary bibliog-
raphy was developed from the references cited in the
selected full-length articles, and additional PubMed
searches were performed to expand the concepts
developed in these articles. The number of abstracts
cited by PubMed from January 1960 to July 2017 and
reviewed for pertinence to this review during the pri-
mary and secondary searches was 1406.

Additionally, we included published conference ab-
stracts and used manual searches for all references
among relevant articles and reviews. Conference ab-
stracts from 2010 to 2016, from United European
Gastroenterology Week, Digestive Disease Week, and the
Congress of the European Crohn’s and Colitis Organisa-
tion were screened. Furthermore, experts in the field
were contacted for information regarding nonpublished
studies.

Pathophysiology of Intestinal Damage in
CD: A Source of New Therapeutic
Targets and Strategies

The pathogenesis of stenoses and fistulizing lesions
may share several common pathways, given their close
clinical association. Transmural lesions and in particular
fibrostenosing strictures, are the consequence of exacer-
bated tissue remodeling, leading to the uncontrolled
production of extracellular matrix (ECM) components,
ultimately resulting in obstructive lesions. More than 95%
REV 5.5.0 DTD � YJCGH55952_proof � 1
of intra-abdominal fistulae seem to develop within or at
the proximal end of a stricture, and appear to traverse the
muscular layer along piercing vessels, suggesting that
mechanical factors (eg, intraluminal pressure) might
contribute to the development of fistulae, even though
prospective evaluations are missing.6

During chronic inflammation in CD, the epithelial and
endothelial barriers are severely disrupted, leading to
the activation of the innate and adaptive immune sys-
tems with release of profibrotic cytokines, growth fac-
tors, and chemokines that together result in the
activation of mesenchymal cells. Once mesenchymal cells
have become activated, they produce profibrotic factors
in turn eliciting excessive ECM deposition and architec-
tural distortion even in the absence of continued
inflammation.7 The main mechanisms involved in
fibrosis and bowel wall damage in CD are represented in
Figure 1.
Role of Epithelial Cells and the Epithelial-to-
Mesenchymal Transition

An increasing amount of research indicates that
injured epithelial cells are critical drivers of fibrogenic
process via the acquisition of a profibrotic phenotype.
Epithelial cells are characterized by an inherent plas-
ticity. The process through which epithelial cells take on
the typical mesenchymal cell morphology is known as
epithelial-to-mesenchymal transition (EMT).8,9 During
this transition, epithelial cells lose typical epithelial fea-
tures and gain mesenchymal morphology, markers, and
function. The transition of epithelial cells to a profibro-
genic phenotype is triggered by the transforming growth
factor b (TGF-b)/SMAD pathway, through the tight
interaction with other signaling pathways including nu-
clear factor-kappa B, bone morphogenetic protein 7
(BMP-7), Wnt, or Notch.9 Overall, multiple other cyto-
kines or growth factors, including insulin-like growth
factor (IGF) 1 and IGF-2, epidermal growth factor,
fibroblast growth factor 2, and tumor necrosis factor a

(TNF-a), but also reactive oxygen species, fibronectin,
and fibrin, may promote EMT. Moreover, animal models
of tissue fibrosis have highlighted the involvement of
new transcriptional factors to the already complex EMT-
inducing system, such as zinc finger E-box-binding
homeobox 1 or Snail.10,11 The integrin aVb6, mainly
expressed by epithelial cells,12 is also an important
in vivo activator of TGF-b in the lung and plays signifi-
cant roles in the development of pulmonary fibrosis.13

Indeed, it has been shown in murine radiation-induced
lung fibrosis that aVb6-mediated TGF-b activation is
required to induce lung fibrosis, and also that an anti-
aVb6 therapy could be effective to prevent fibrosis.

Aside the role of EMT in fibrogenesis, studies have
shown that CD-associated intestinal fistula might also be
influenced by EMT.14 In a study investigating intestinal
and perianal fistulae from CD and non-CD patients,
0 September 2018 � 3:08 pm � ce OB
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Figure 1. Pathophysiology of transmural lesions in Crohn’s disease. Fibrosis progression (red) and fistula formation (brown),
and repair (green). ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; IEC, intestinal epithelial cell; IL,
interleukin; MMPs, matrix metalloproteases; MSCs, mesenchymal stem cells; TC, transitional cells; TGF-b, transforming
growth factor b; TIMPs, tissue inhibitors of metalloproteinases; TNF-a, tumor necrosis factor a.
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epithelialization of the fistula tract was found in a sub-
fraction of patients. Interestingly, a novel cell type, called
transitional cells (TCs), carrying mesenchymal or
myofibroblast-like features, has been described,15 sug-
gesting epithelial-to-mesenchymal transformation.16

These TCs express both epithelial cell markers such as
cytokeratin-8 and cytokeratin-20 and mesenchymal
markers such as vimentin and a-smooth muscle actin
(SMA). High expression levels of Slug, TGF-b, and b6-
integrin were also observed in TCs, and interleukin
(IL-13) may play a central role in EMT during fistula
formation.16

Role of Mesenchymal Cells

Mesenchymal cells can be considered the key exec-
utor of fibrogenesis given their role as potent inducer of
ECM-protein production. Several cell populations may
serve as precursors of myofibroblasts in CD. Increased
proliferation and migration of resident fibroblasts, as
well as the recruitment of bone marrow–derived fi-
broblasts, stellate cells, or pericytes, comprises different
REV 5.5.0 DTD � YJCGH55952_proof � 1
sources of myofibroblasts in intestinal fibrosis. In
addition, cellular transdifferentiation or EMT and
endothelial-to-mesenchymal transition further contrib-
utes to the enlargement of the pool of myofibroblasts
(Figure 1).17 In the intestine, there are 3 main types of
resident mesenchymal cells, including smooth muscle
cells, fibroblasts, and subepithelial myofibroblasts, a
subtype of stromal cells located under the epithelial
layer that communicate in a paracrine fashion with
surrounding cells, and which play important roles in the
mucosal regeneration, repair, and fibrosis.17 In the in-
testine of patients with CD, myofibroblast activation can
be modulated by the combined action of a wide variety
of inflammatory factors, such as TNF-a, interferon
gamma, TGF-b1, IGF-1, platelet-derived growth factor,
connective tissue growth factor [CTGF], IGFI/II, basic
fibroblast growth factor, IL-1b, IL-6, and IL-13 secreted
by immune and nonimmune cells. The main mediator
promoting fibrogenesis is TGF-b, exerting pleiotropic
functions, such as the overexpression of a-SMA,
contraction of myofibroblasts, or the excessive accu-
mulation of ECM.
0 September 2018 � 3:08 pm � ce OB
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TGF-b1 signals mainly by a canonical SMAD-based
pathway, supported by evidence demonstrating the ef-
fect of the disruption of the TGF-b/SMAD signaling
pathway on reduced fibrosis, either by the loss of SMAD3
or the increase of the expression of the inhibitory SMAD
(SMAD7). In CD patients, it has been suggested that
activation of an integrin expressed on muscle cells, aVb3,
could increase TGF-b1 levels in intestinal strictures.18

Studies have explored smooth muscle cells isolated
from CD strictures and normal resection margin as well
as from the colon of rats after 42 days of chronic 2,4,6-
trinitrobenzene sulfonic acid–induced colitis. They
showed that latent TGF-b1 was activated by the aVb3
arginylglycylaspartic acid domain in human and rat in-
testinal smooth muscle cells.

A variety of mediators including damage-associated
molecular patterns, DNA, RNA, adenosine triphosphate,
high mobility group box 1 protein, microvesicles, frag-
ments of ECM molecules as well as the Indian hedgehog
(Ihh) and the Wnt/b-catenin pathways have been iden-
tified to contribute to the complexity and dynamics of
myofibroblast activation.19 Furthermore, the intestinal
microbiota has been revealed to be crucially involved in
the development and progression of intestinal fibrosis or
fistula formation in IBD and the interaction between
pathogen-associated molecular patterns and pattern
recognition receptors, such as Toll-like receptors, is
currently considered a possible crucial event in myofi-
broblast activation.20

Aside from excessive ECM accumulation, a dysregu-
lation of matrix metalloproteinases (MMPs) and their
inhibitors, tissue inhibitors of metalloproteinases
(TIMPs), during active intestinal inflammation, by which
myofibroblasts regulate tissue regeneration in IBD, has
been reported. More specifically, myofibroblasts isolated
from the inflamed intestine were shown to be able to
express MMP-1, MMP-2, and MMP-3, as well as TIMP-1.
Increased expression levels of these proteases were
observed in cells isolated from fibrotic areas.21 Early
in vitro studies demonstrated that stimulation of myofi-
broblasts with TNF-a, a well-known IBD key player,
induced the expression of TIMP-1, MMP-1, and MMP-3,
and the secretion of type I and IV collagen.22

In a previous study in CD patients with fistulizing
disease, a strong expression of MMP-3 and MMP-9 was
observed in CD fistula independently of the stage of
inflammation. Increased expression levels of MMP-3 and
MMP-9 were detected in mononuclear cells, granulocytes
and fibroblasts. Furthermore, supernatant of untreated
CD fistula colonic lamina propria fibroblasts showed
significantly elevated MMP-13 expression levels
compared with nonfistula colonic lamina propria fibro-
blasts. In addition, the expression of TIMP-1, TIMP-2, and
TIMP-3 was low around CD fistula.23 Altogether, these
observations suggest that an altered balance in MMP and
TIMP expression levels might critically contribute to
fistula formation.
REV 5.5.0 DTD � YJCGH55952_proof � 1
Interaction Between Epithelial and
Mesenchymal Cells

It is obvious that cells do not operate in isolation, but
rather that their interaction is important. Recent
experimental studies and clinical observations suggest
that an altered crosstalk between colonic epithelial cells
and adjacent subepithelial myofibroblasts may play an
important role in the pathogenesis of ECM remodeling
and inflammation associated fibrosis.24 In in vitro
studies on colonic epithelial cells, proinflammatory cy-
tokines (IL-1a, TNF-a, interferon gamma) were shown
to induce TGF-b and TIMP-1 expression. Moreover, the
conditioned medium isolated from these cultures
stimulated synthesis of MMP-9 and type I collagen and
also suppressed the migration of subepithelial myofi-
broblasts.24 The concept of epithelial to mesenchymal
interaction has been shown in the context of idiopathic
pulmonary fibrosis between alveolar epithelial cells and
alveolar fibroblasts.25 Indeed, repetitive cycles of
epithelial injury and death stimulated the activation,
proliferation, migration and differentiation of fibro-
blasts to myofibroblasts, through synthesis of TGF-b,
CTGF, sonic hedgehog (Shh), and prostaglandin E2,
resulting in excessive ECM deposition. In turn, these
activated fibroblasts induced alveolar epithelial cell
injury and death by producing angiotensin II and
reactive oxygen species, therefore creating a cycle of
profibrotic epithelial cell-fibroblast interactions.26 All
this evidence in idiopathic pulmonary fibrosis suggests
a decisive involvement of the epithelial-fibroblast in-
teractions in the progression of organ fibrosis that could
also concern intestinal fibrosis.
Involvement of Mesenchymal Stem Cells in the
Fibrotic Processes

Mesenchymal stem cells (MSCs) are pluripotent cells
derived from stromal tissue such as bone marrow or
adipose tissue (AT). They may migrate to the intestine
and they exhibit multilineage differentiation capacity and
may mediate immunomodulatory, anti-inflammatory,
and regenerative properties.27 MSCs can directly influ-
ence the fate and function of many distinct leukocyte
populations, primarily through the action of soluble
mediators. Lanzoni et al28 demonstrated that intestinal-
derived MSCs are able to induce differentiation and
organization of intestinal epithelial Caco-2 cells in
3-dimensional collagen cultures. The potential role of
these MSCs has also been studied in several experimental
models of fibrosis in the lungs,29 peritoneum,30 skin,31

kidneys,31 and gastrointestinal tract.32 These MSCs act
through several distinct mechanisms including inter-
fering with TGF-b1 pathway, secreting hepatocyte
growth factor (HGF), decreasing collagen deposition, and
modifying secretion of various MMPs and TIMPs.29–40
0 September 2018 � 3:08 pm � ce OB
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Existing and New Treatments as
Potential Candidates for Tissue
Damage Lesions in CD

Several existing drug and cell therapies have been
assessed in animal or human models of pathological
fibrosis, including in the intestine. These potential
treatments for tissue damage lesions are summarized in
Table 1 and their potential site of action on fibrosis and
tissue damage pathophysiology is represented in
Figure 2.
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Existing Small Molecules

Tranilast. Tranilast is an antiallergic agent that blocks
the release of chemical mediators such as histamine and
prostaglandins from mast cells, and inhibits TGF-b-
induced ECM production and transformation of epithelial
cells.33–35 It has been shown that tranilast, aside from its
role in EMT, has antifibrotic actions in an experimental
model of diabetic rats by reducing TGF-b activity.
Furthermore, it was capable to inhibit fibroproliferative
airway changes and was beneficial in preventing bron-
chiolitis obliterans after lung transplantation in a rat
model of heterotopic tracheal transplantation.35

A case report on a patient with inflammatory endo-
bronchial stenosis that was successfully treated by tra-
nilast further corroborated the therapeutic efficacy of
long-term tranilast administration.36 In CD, Oshitani
et al37 evaluated the drug in 24 patients with non-
symptomatic intestinal strictures. Patients were
followed-up prospectively after being allocated either to
200-mg tranilast 3 times daily or to the control group not
receiving the agent. The primary study endpoint was the
development of symptomatic strictures requiring endo-
scopic balloon dilatation, which was performed in 1 pa-
tient in the tranilast group and in 5 patients in the
control group (P ¼ .0034). However, the observed
change in stricture diameter during the follow-up period
was not significantly different between both groups.

Spironolactone. Spironolactone is a competitive aldo-
sterone receptor antagonist that is commonly used as an
antifibrotic medication in heart patients, and has proven
to be protective in several rodent models of fibrosis.38

Johnson et al39 have shown that spironolactone medi-
ated antifibrotic actions in isolated human colonic myo-
fibroblasts and repressed TGF-b–mediated induction of
profibrotic genes and proteins. The same group recently
reported, that spironolactone treatment blocked TGF-
b–induced profibrotic gene expression, including fibro-
nectin, and a-SMA protein production in a novel model of
human intestinal organoids.40

Pirfenidone. Pirfenidone is an orally bioavailable
small molecule that exhibits well-documented anti-
fibrotic and anti-inflammatory properties in a variety of
animal and in vitro models in different organs, including
fibrosis of the lungs, kidneys, heart, liver, and skin.41
REV 5.5.0 DTD � YJCGH55952_proof � 1
Meier et al42 have investigated the impact of pirfeni-
done treatment on development of fibrosis in a mouse
model of intestinal fibrosis. After administration of pir-
fenidone, a significantly decreased collagen layer thick-
ness was revealed as compared with control. In intestinal
fibroblasts TGF-b and MMP-9 were significantly
decreased after treatment with pirfenidone as confirmed
by real-time polymerase chain reaction and by Western
blotting.

Cilengitide. Li et al18 showed that increased activa-
tion of TGF-b1 in human CD patients and in TNBS-
induced colitis caused increased collagen production
and that fibrosis could be inhibited by cilengitide, an
arginylglycylaspartic acid–containing aVb3 integrin
inhibitor.

Newly Developed Small Molecules

Peroxisome Proliferator–Activated Receptor Gamma
Agonists. Peroxisome proliferator–activated receptor
gamma (PPAR-g) is a member of ligand-activated tran-
scription factors of nuclear hormone receptor super-
family, which present pleiotropic effects on lipid
metabolism, inflammation, and cell proliferation.43

Stimulation of PPAR-g with specific ligands down-
regulates the CTGF expression, promoting TGF-induced
synthesis of collagen.44 Along this, experimental studies
have shown that PPAR-g agonists attenuate fibrosis in
various organs including the lungs, kidneys, pancreas,
liver, and intestine. These antifibrotic effects are abol-
ished by the use of PPAR-g selective antagonists.45–47

Concerning intestinal inflammation, the antifibrotic ef-
fect of a novel aminosalicyate analog able to activate
PPAR-g, named GED-0507-34, was evaluated in mice
with colonic fibrosis induced by dextran sulfate sodium
administration.48 GED-0507-34 improved macroscopic
and microscopic intestinal lesions and reduced the pro-
fibrotic gene expression of a-SMA, collagen, and fibro-
nectin. It also reduced the main TGF-b/SMAD pathway
components and inhibited TGF-b–induced activation of
both fibroblast and intestinal epithelial cell lines. Finally,
GED-0507-34 treatment also reduced the TGF-b expres-
sion in primary human intestinal fibroblasts isolated
from 1 UC patient.

Rho-Associated Protein Kinase Inhibitors. Holvoet
et al49 showed that rho-associated protein kinases
(ROCKs), which play multiple roles in TGF-b1–induced
myofibroblast activation, could be therapeutic targets.
They evaluated the effects of a locally acting ROCK in-
hibitor, named AMA0825 (a highly selective inhibitor of
ROCK 1 and ROCK 2), on intestinal fibrosis using mouse
models of fibrosis (dextran sulfate sodium and adoptive
T cell transfer), and biopsy cultures from CD patients.
ROCK inhibition reversed established fibrosis by inhib-
iting myofibroblast accumulation, expression of profi-
brotic factors, and accumulation of fibrotic tissue without
affecting clinical disease activity and histological
inflammation in 2 mouse models of fibrosis. Moreover
0 September 2018 � 3:08 pm � ce OB



Table 1. Studies Evaluating Potential Treatment Options for Intestinal Damage in Crohn’s Disease

Molecule Mechanism of Action Study Design n Efficacy Q10Safety

Tranilast37 Antiallergic agent inhibited
chemical mediators and
TGF-b release

Case control 24 CD patients with small
bowel strictures

There was less hydrostatic
balloon dilatation in tranilast
group
(P ¼ .003).

Reduced white blood cell
count in 1 patient
receiving tranilast

Spironolactone39 Competitive aldosterone
receptor antagonist

Intestinal model of fibrosis using
human intestinal organoids

NA Spironolactone repressed
induction of the fibronectin 1
and a-SMA proteins genes.

NA

GED-0507-3448 PPAR-g modulator DSS colitis mice model 110 mice GED-0507-34 downregulates
colonic expression of a-SMA,
type I–III collagen, TGF-b,
SMAD3, IL-13, and CTGF.

NA

Cilengitide18 aVb3 integrin inhibitor Intestine cells from ileal/
ileocolonic resection

18 CD patients with
stricturing lesions

Cilengitide decreased TGF-b1-
activation and collagen
production.

NA

AMA082549 Highly selective inhibitor of
ROCK 1 and ROCK 2

Mouse models of fibrosis (DSS
and adoptive T cell transfer)

NA AMA0825 reversed myofibroblast
accumulation, expression of
profibrotic factors, and
accumulation of fibrotic tissue
in 2 mouse models of fibrosis.

NA

Biopsy cultures from CD patients ROCK inhibitor reduced activation
of myocardin-related
transcription factor and p38
mitogen-activated protein
kinase, and increased
autophagy in fibroblasts, in
intestinal fibrosis from stenotic
CD biopsies.

CD, Crohn’s disease; CTGF, connective tissue growth factor; DSS, dextran sulfate sodium; NA, not applicable; PPAR, peroxisome proliferator–activated receptor; ROCK, rho-associated protein kinases; SMA, smooth muscle
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Figure 2. Potential treatment options for intestinal damage in Crohn’s disease and their mechanisms of action. Several
molecules have multiple mechanisms of action. Only the most prominent has been highlighted. BMP-7, bone morphogenetic
protein 7; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; HGF, hepatocyte growth factor; IL, interleukin;
MMPs, matrix metalloproteases; MSCs, mesenchymal stem cells; PPAR, peroxisome proliferator–activated receptor; TGF-b,
transforming growth factor b; TNF-a, tumor necrosis factor a.
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ROCK inhibition reversed intestinal fibrosis from stenotic
CD biopsies, by reducing TGF-b1–induced activation of
myocardin-related transcription factor and p38 mitogen-
activated protein kinase, and by increasing autophagy in
fibroblasts.

Recombinant Factors and Biologics

BMP7 and HGF. EMT can be reverted by the admin-
istration of BMP-7 and HGF.50 In a mouse model of
chronic renal injury, it has been shown that systemic
administration of recombinant human BMP-7 reverses
TGF-b1–induced EMT and leads to repair of severely
damaged renal tubular epithelial cells, in association
with reversal of chronic renal injury.50 HGF is also a
potent antifibrotic cytokine that blocks tubular epithelial
to EMT. It has been reported in human kidney epithelial
cells that HGF blocks EMT by antagonizing TGF-b1’s ac-
tion via upregulating SMAD transcriptional co-repressor
SnoN expression.50
REV 5.5.0 DTD � YJCGH55952_proof � 1
Anti-MMP-9 Antibody. C3M, an MMP-9 degradation
product of type III collagen, have been shown to be
associated with penetrating CD and differentiated pene-
trating CD from other CD subgroups and healthy control
subjects.51 Goffin et al51 have recently assessed the effect
of MMP-9 inhibition in the heterotopic transplant mouse
model of intestinal fibrosis by using anti-MMP-9 anti-
body treatment, CALY-001. Compared with isotype
control–treated group, the anti-MMP-9 antibody–treated
mice presented only partially obstructed intestinal
lumen, with a collagen layer only slightly thicker than
that observed in freshly isolated intestinal samples.
Quantification of collagen-specific amino acid hydroxy-
proline confirmed lower collagen amounts in grafts from
mice treated with anti-MMP-9 antibodies compared with
those treated with isotype control.

Anti-aVb6 Monoclonal Antibodies. Hahm et al52

showed that anti-aVb6 monoclonal antibodies were
able to inhibit accumulation of activated fibroblasts and
deposition of interstitial collagen matrix in a renal
0 September 2018 � 3:08 pm � ce OB
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fibrosis model in Alport mice. Madala et al13 showed that
inhibition of the b6 integrin led to a significant effect on
the pleural thickening and lung function decline
observed in pulmonary fibrosis of TGF transgenic mice.
STX-100, a humanized monoclonal antibody against aV-
b6 integrin is currently tested in a phase 2 trial in idio-
pathic pulmonary fibrosis (NCT01371305).
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MSC Therapy

As highlighted in a previous paragraph, recent
studies demonstrate the potential of MSCs to be used
as a new therapeutic strategy to address chronic
inflammation–associated tissue damage, including
fibrosis. Autologous and allogeneic MSCs have been
tested in clinical trials in 2 different modalities: local
injections of MSCs to treat fistulizing CD and intrave-
nous infusion to treat luminal inflammation.53

Local perianal injections of autologous or allogeneic
AT-MSCs or bone marrow MSCs have shown some effi-
cacy and reassuring safety in several phase I, II, and III
trials.54–56 Until now, more than 200 CD patients with
refractory fistulas have been treated with local injections
of MSCs, resulting in complete response in more than
half of these.54,55 However, only 2 randomized controlled
trials demonstrated the superiority of autologous and
allogeneic MSCs over placebo. The first study, a phase II
multicenter, randomized, controlled trial, evaluated stem
cell–based therapy with expanded AT-MSCs in 49 pa-
tients with complex perianal fistulas.57 Patients with
complex perianal fistulas were randomly assigned to
intralesional treatment with fibrin glue or fibrin glue
plus 20 million AT-MSCs. At 8 weeks, fistula healing was
observed in 71% of patients who received AT-MSCs in
addition to fibrin glue, compared with 16% of patients
who received fibrin glue alone (relative risk for healing,
4.43; 95% confidence interval, 1.74–11.27). At 1-year
follow-up, the recurrence rate in patients treated with
AT-MSCs was 18%. Importantly, among the 49 patients
included, 35 had complex perianal fistulae with a cryp-
toglandular origin and only 14 patients had CD, but the
proportion of patients with healing was similar in CD and
non-CD subgroups. Over the long term, with a mean
follow-up of 38 months, among the 12 patients with a
complete fistula closure, 7 remained free of recurrence.
Only 1 adverse event unrelated to the original treatment
was reported.58 The second trial was a randomized
double-blind, parallel-group, placebo-controlled study,
conducted in 49 hospitals in 7 European countries and
Israel.56 A total of 212 CD patients with refractory
complex perianal fistulas were randomly assigned to
receive a single intralesional injection of 120 million
allogeneic AT-MSCs (Cx601) or placebo. A significantly
greater proportion of patients treated with Cx601 vs
placebo achieved combined remission at week 24,
defined by clinical assessment of closure of all treated
external openings and absence of collections >2 cm
REV 5.5.0 DTD � YJCGH55952_proof � 1
confirmed by magnetic resonance imaging (53 of 107
[49.5%] vs 36 of 105 [34.3%]; P ¼ .024). A higher pro-
portion of placebo vs Cx601 patients experienced
treatment-related adverse events, mostly anal abscesses
and proctalgia. Recently, authors reported efficacy and
safety of patients treated with Cx601 vs placebo 1 year
after AT-MSCs administration.59 A significantly greater
proportion of patients receiving Cx601 vs placebo ach-
ieved combined remission (56.3% vs 38.6%; P ¼ .010)
and clinical remission (59.2% vs 41.6%; P ¼ .013) at
week 52. Rates and types of treatment-related adverse
events were similar in both groups (20.4% for Cx601 vs
26.5% for placebo). All these results underline that
autologous and allogeneic MSCs administration repre-
sents an effective and safe therapy for complex fistulas in
CD that failed to respond to conventional or biological
treatments.

A lower number of trials have been performed with
intravenous injections of MSCs.60,61 These trials have
provided conflicting results. No data are currently
available reporting on the specific effect of intravenous
MSCs injection on stricturing or fistulizing CD. Similarly,
there is no trial available investigating the efficacy of
local MSCs injection in CD lesions other than perianal
fistulae, such as intestinal strictures or chronic unhealed
ulcers.

Conclusion

Persistent high rates of stricturing and fistulizing
complications leading to significant bowel damage, sur-
gical resection, and disability in CD patients may lead
physicians to modify their management of CD. There is
an urgent need to develop novel medical treatment op-
tions to stop and reverse profibrotic mechanisms, to
improve transmural damage lesions and change the
chronic progressive disease course. Several small mole-
cules, recombinant factors, monoclonal antibodies, or
MSC therapies targeting TGF-b1–induced pathways, ECM
deposition, and EMT are currently tested in animal
models and clinical trials. Among these, tranilast, PPAR-g
agonists, rho kinase inhibitors, and especially MSC ther-
apy have provided interesting results in CD patients with
irreversible damage lesions, and thus represent the most
promising and available therapies that could be evalu-
ated in the near future in clinical trials. They may
represent the future treatment of stricturing and fistul-
izing CD.
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