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Abstract —The authors propose a novel nonlinear time-domain exten-
sion of the well-known frequency-domain surface-impedance method
in computational magnetodynamics. Herein the 1-D eddy-current prob-
lem in a massive conducting region (semi-infinite slab) is considered
via a number of exponentially decreasing trigonometric basis functions
that cover the relevant frequency range of the application at hand. The
resulting nonlinear equations are solved using the Newton-Raphson
method. The method is validated by means of a simple 2-D test case.

I. INTRODUCTION

Surface-impedance boundary conditions (SIBCs) are wide-
ly applied in frequency-domain eddy-current problems for
considering massive conducting regions. The approach is
based on the relation between the tangential components of
the electric and the magnetic field at the surface of the region
and allows to discretize only its surface. Several refinements
concerning mostly the surface curvature [1] but also the ma-
terial saturation [2] have been presented in literature.

The few time-domain extensions proposed to date are most-
ly based on the fast Fourier transform [1, 3], on the iterative
coupling between the main 3-D finite element (FE) model
and a large number of 1-D FE calculations (with classical
nodal basis functions) [4].

The authors proposed recently a linear time-domain ap-
proach based on dedicated basis functions derived from the
analytical frequency-domain solution [5]. This approach is
hereafter extended to saturable regions.

II. 1-D NONLINEAR EDDY-CURRENT PROBLEM IN
SEMI-INFINITE SLAB

The Maxwell equations and constitutive laws relevant in
low-frequency eddy-current problems are:

div b = 0 , curlh = j , curl e = −∂t b , (1 a-c)

j = σ e , h = h(b) , (2 a b)

where the vector fields b, h, j and e are the flux density (or
induction), the magnetic field, the current density and the
electric field, respectively; σ is the conductivity. For linear
isotropic magnetic media, (2b) reduces to h = ν b, the reluc-
tivity ν and permeability µ = 1/ν being constant scalars.

We introduce the magnetic vector potential a in order to
strongly satisfy (1a,c), i.e. b = curl a and e = −∂ta. The
remaining equations in (1-2) lead to the following nonlinear
partial differential equation:

curlh(curl a) = j
s
− σ ∂t a , (3)

where j
s

is the prescribed source current density in a sub-
domain Ωs ⊂ Ω; the current density j = −σ ∂t a is induced
in a conducting domain Ωc.
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A. 1-D eddy-current problem and FE model

We consider now the 1-D eddy-current problem in a semi-
infinite slab (0 ≤ x ≤ ∞), with b(x, t) and h(x, t) parallel
to the z-axis, and j(x, t) and e(x, t) parallel to the y-axis.
The source current density j

s
is zero. With the y-component

of the vector potential a(x, t) denoted by a(x, t), (3) leads to

∂xh(∂xa) = σ ∂ta with a(x =∞, t) = 0 , (4)

where the boundary condition at infinity (x = ∞) ensures
the uniqueness of a(x, t). The flux in the semi-infinite slab
may be imposed via the boundary value a(x = 0, t). Alter-
natively the magnetomotive force may be imposed; which is
easily done at the discrete level, as shown hereafter.

The FE discretisation of (4) by means of N basis func-
tions αi(x), 0 ≤ x < ∞, 1 ≤ i ≤ N , leads to a system
of first-order differential equations in terms of the associated
values of a(x, t). In the linear case (constant ν) and pre-
scribed magnetomotive force, the system of equations reads

[S][A(t)] + [M ] ∂t[A(t)] = [I(t)] , (5)

where the column matrix [A(t)] comprises the N degrees of
freedom of a(x, t); only the first element of the column ma-
trix [I(t)] is non-zero and equals the magnetomotive force;
the elements of [S] and of [M ] are given by

Sij = ν

∫ ∞
0

∂xαi(x) ∂xαj(x) dx , (6)

Mij = σ

∫ ∞
0

αi(x)αj(x) dx . (7)

In the nonlinear case, the nonlinear algebraic equations
that result from the time discretisation of (5) can be solved
by means of the Newton-Raphson scheme. The Jacobian
matrix [J ] and the associated column matrix [H], which is
part of the residue, are given by:

Jij =
∫ ∞

0

d h

d b
∂xαi(x) ∂xαj(x) dx , (8)

Hi =
∫ ∞

0

h(b) ∂xαi(x) dx . (9)

The differential reluctivity d h
d b in (8) can also be written in

terms of ν(b2) and its derivative with respect to b2:

d h

d b
= ν + 2 b2

d ν

d b2
. (10)

The above FE scheme could be carried out with a classical
first-order FE discretisation, i.e. with a truncated interval 0 ≤
x ≤ xmax split up (uniformly or not) into N line segments
and with the basis functions αi(x) associated to all nodes
but the last (considering a(xmax, t) = 0). However, it is far
more efficient to use dedicated basis functions.

B. Dedicated basis functions

The sinusoidal steady-state analytical solution of (4) at
frequency f (pulsation ω = 2πf ) with boundary condition



a(x = 0, t) = â cos(ωt+ φ) is given by

a(x, t) = â e−x/δ cos(x/δ − ωt− φ) (11)

= â cos(ωt+ φ) e−x/δ cos(x/δ)

+ â sin(ωt+ φ) e−x/δ sin(x/δ) , (12)

with δ the skin depth and φ an arbitrary phase angle.
This motivates the following choice of basis functions [5].

For a given nonlinear time-domain problem, a set of skin
depths δk can be preset accounting for the frequency content
of the magnetic fields, the level of saturation and the accu-
racy required. The corresponding n pairs of basis functions
αck(x) and αsk(x), 0 ≤ k ≤ n, thus read:

αc1(x) = e−x/δ1 cos(x/δ1) , (13)

αck(x) = e−x/δk cos(x/δk)− αc1(x) , 2 ≤ k ≤ n , (14)

αsk(x) = e−x/δk sin(x/δk) , 1 ≤ k ≤ n . (15)

Note that all basis functions vanish at the boundary x = 0
except the first one, i.e. αc1(x = 0) = 1.

The matrix [M ] can be evaluated analytically (assuming σ
constant), and so can [S] in the linear case [5]. In the general
nonlinear case, one has to resort to numerical integration for
evaluating [J ] and [H] at each NR-iteration.

III. INTEGRATION IN FE MODEL

The application of the linear 1-D eddy current model to a
massive conducting region Ωm in a 2-D or 3-D FE model is
discussed in [5]. The extension to a saturable region Ωm will
be elaborated in detail in the full paper.

For 2-D FE models, using the one-component magnetic
vector potential and classical first-order triangular elements,
N = 2n degrees of freedom are associated to each node on
the boundary of Ωm. The first of theseN degrees of freedom
(with basis function αc1(x), equal to 1 at the boundary x =
0) ensures the link between the vector potential outside Ωm
and inside the abstracted region Ωm.

IV. APPLICATION EXAMPLE

We consider a steel cylinder (circular cross-section with
radius R equal to 10 cm; σ = 2 106 S/m, ν(b2) = 100 +
10 exp(1.8 b2) with b in T and ν in m/H) placed inside an
inductor (rectangular cross-section coil) with imposed sinu-
soidal current (50 Hz, amplitude 6000 At). Only one quarter
of the geometry is modeled (see Fig. 1). A transformation
method is used to account for the extension of space to in-
finity. A classical FE model with a very fine discretisation
of the cylinder near its surface provides an accurate refer-
ence solution. Two typical flux patterns obtained are shown
in Fig. 1. When using the SIBC, only the mesh outside the
cylinder is effectively considered.

Figure 1. Flux pattern (in phase with imposed sinusoidal current) with skin
depth equal to 0.5 (left) and 0.1 (right) times the radius of the cylinder

We adopt a low order approximation of the SIBC with
f1 = 50 kHz and further discrete frequencies being odd mul-
tiples of f1, i.e. fk/f1 = 2k − 1 with 1 ≤ k ≤ n. The
skin depths are thus related as δk/δ1 = 1/

√
2k − 1 with

ν = 674 m/H which corresponds to b = 1.5 T.
The induction at the point of the surface of the conducting

cylinder closest to the inductor is depicted in Fig. 2. Fig. 3
shows the induction at a point halfway between the cylin-
der and the inductor. An excellent agreement is observed
between the flux waveforms obtained with the reference FE
model and the SIBC approach with n = 3. Even though in
both cases, the approximation improves clearly with n, more
terms are needed for increasing the precision at the surface
of the cylinder.
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Figure 2. Induction waveform obtained with reference model and the SIBC
approach (n = 1, 3, 5) at the surface of the cylinder
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Figure 3. Induction waveform obtained with reference model and the SIBC
approach (n = 1, 2, 3) at a point between the cylinder and the inductor
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