BLOCKCHAIN: A NOVEL APPROACH FOR THE CONSENSUS ALGORITHM USING CONDORCET VOTING PROCEDURE

David Vangulick, PHD candidate University of Liège Pr Bertrand Cornélusse & Pr Damien Ernst University of Liège

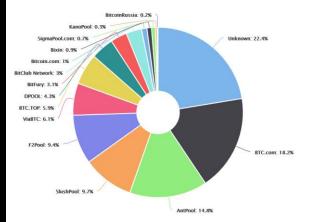
IEEE DAPPCON

AGENDA

- Introduction
- Problem statement
- Concepts of Condorcet miner selection
- Pseudo algorithm
- Conclusion

INTRODUCTION

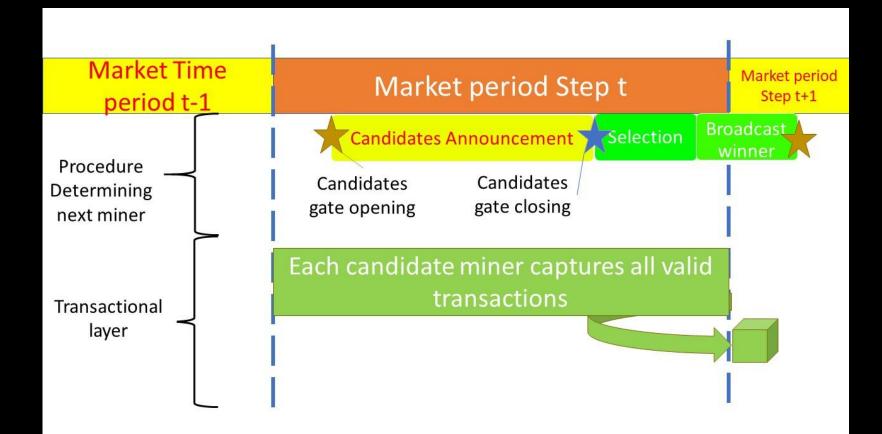
- Blockchain technology allows interested parties to access a common register, the update, and integrity of which are collectively managed in a decentralized manner by a network of actors.
- The consensus protocol ensures a common and unambiguous update of transactions by creating blocks of transactions for which integrity, veracity, and consistency are guaranteed through geographically distributed nodes.

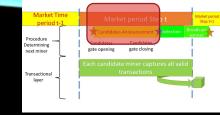

PROBLEMS STATEMENT

- Let's imagine that you want to have an open public blockchain to secure transactions into a block but on a timely regular basis examples of use cases:
 - Energy decentralized exchange like "collective self consumption"
 - Auctioning
 - Sport Bet platform
 - •
- This blockchain needs to be
 - able to reach consensus
 - resistance against Sybill attacks: the system is subverted by forging false identities
 - sustainable = energy consumption of the whole system
 - synchronized : strong guarantee on the time when a block is created

PROBLEMS STATEMENT

- To those requirements, we add a new one: Resistant to Dominance aka Concentration of decision-making power
- The core concept of blockchain technology is decentralization.
- In blockchain, there is no "chief of the staff", but the consensus protocol ensures a good balance between different parties with different interests such as
 - miners,
 - transaction makers,
 - smart contract promoters,
 - etc.



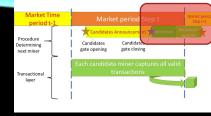

PROBLEMS STATEMENT

	Proof of Work	Proof of Stake
reach consensus		
Sybill attacks resistance	* *	
Sustainable		
Synchronization		
Resistant to Dominance		

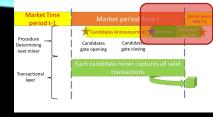


• Candidate announcement is a sort of auction

- Candidate miners place their service offers in the form of voting tokens sent to the previously selected miner (this miner cannot be a candidate for this block anymore). He/she becomes the voting authority
- They may do this for a period of time between two instances called "candidates gate opening" for the launch of the selection and "candidates gate closure" for the end.
- To publish the result, previous miner as voting authority sends a few of all voting tokens he received from candidate to the winner
- There are several possible ways to create a voting token e.g.
 - Created during the Initial Coin Offering (ICO)
 - Created as a reward for a node for its supporting activities or for having use the blockchain for a transaction ...



- A Condorcet method : an election method that
 - elected = winner all of the head-to-head elections against each of the other candidates.
 - A candidate with this property is called the Condorcet winner.
- One well know draw back: The Condorcet paradox when collective preferences are cyclic


Marie Jean Antoine Nicolas de Caritat (by Jean-Baptise Greuze)

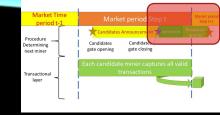
- After the candidate gate closure, the candidates are known
- There is no real physic voters committee by a set of criteria used as "voter"
 - Voter E voting token = number of voting token send by the candidate
 - Voter A for age = age of the last block created by the candidate
 - Voter R for reputation = number of block created by the candidate
 - Voter U with votes for the criterion random
- Specific for the random number creation
 - transparent in order that all nodes can redo the computation and come to the same conclusion and thus avoid manipulation
 - e.g. the ratio between the hash value of their public address divided by the sum of the hashes of the public address of all the candidates.

• To illustrate this, let's say that we have 5 candidates

	George	Henry	John	Richard	Edward
А	45	3	0	1	2
R	0	2	10	27	42
Е	16	5	8	997	59
U	0.78	0.82	0.56	0.67	0.05

Note:

- The values for A R and E are transparent and can be determined by the voting authority
- Here "U" is purely random



Step 1:Tally: We create a pair to pair matrix for each voters (criteria), for instance for "A": (= setting preference)

		George	Henry	John	Richard	Edward
	А	45	3	0	1	2
N	1 ^A	George	Henry	John	Richard	Edward
Ge	orge	0	1	1	1	1
He	enry	-1	0	1	1	1
Jc	ohn	-1	-1	0	-1	-1
Ric	hard	-1	-1	1	0	-1
Edv	ward	-1	-1	1	1	0

 M^U

George

Henry

John

Richard

Edward

- 1

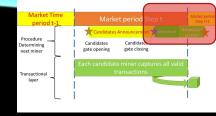
- 1

• We do the same for each voters/criteria

M ^E	George	Henry	John	Richard	Edward
George	0	1	1	-1	-1
Henry	-1	0	-1	-1	-1
John	-1	1	0	-1	-1
Richard	1	1	1	0	1
Edward	1	1	1	-1	0

<i>M</i> ^{<i>R</i>} −	George	Henry	John	Richard	Edward
George	0	-1	-1	-1	-1
Henry	1	0	-1	-1	-1
John	1	1	0	-1	-1
Richard	1	1	1	0	-1
Edward	1	1	1	1	0

	4					
	M ^A	George	Henry	John	Richard	Edward
	George	0	1	1	1	1
	Henry	-1	0	1	1	1
	John	-1	-1	0	-1	-1
	Richard	-1	-1	1	0	-1
	Edward	-1	-1	1	1	0
George	Henry	John	Richard	Edward		
0	-1	1	1	1		
1	0	1	1	1		
-1	-1	0	-1	1		
-1	-1	1	0	1		
1	1	1	1	\cap		

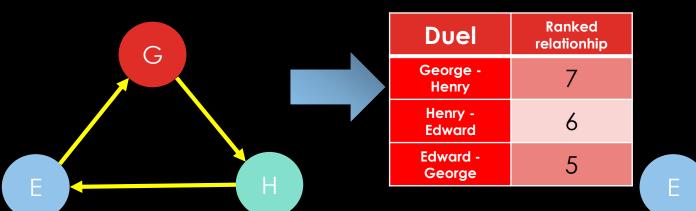


• From these 4 matrix, we build a total vote Matrix

$\mathcal{A}^{tot} = \alpha \mathcal{M}^{\mathcal{E}} + \beta \mathcal{M}^{\mathcal{A}} + \gamma \mathcal{M}^{\mathcal{R}} + \eta \mathcal{M}^{\mathcal{U}}$			Let's pose for the illustration that $\alpha = \gamma = \eta = 1$ $\beta = 2$			
	M ^A	George	Henry	John	Richard	Edward
	George			3		
	Henry					
	John		= 1 * 1	+ 1 *2 + 1* (-1)) + 1 *1	
	Richard					
	Edward					

• From these 4 matrix, we build a total vote Matrix

$\mathcal{M}^{tot} =$	$\mathcal{M}^{tot} = \alpha \mathcal{M}^{\mathcal{E}} + \beta \mathcal{M}^{\mathcal{A}} + \gamma \mathcal{M}^{\mathcal{R}} + \eta \mathcal{M}^{\mathcal{U}}$			Let's pose for the illustration that $\alpha = \gamma = \eta = 1$ $\beta = 2$		
	M ^A	George	Henry	John	Richard	Edward
Step 2	George	0	1	3	1	1
	Henry	-1	0	1	1	1
	John	-3	-1	0	-5	-3
	Richard	-1	-1	5	0	-1
	Edward	-1	-1	3	1	0

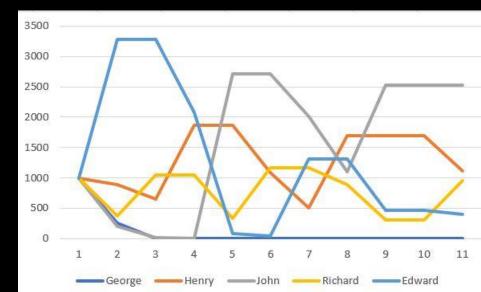

- Step 2; if there is no immediate Condorcet winner
 - Situation 1= there are more than 1 row with only positive or zero values
 => Dictatorial choice
 - Is there a absolute winner regarding reputation between tied candidates?
 - Yes, he is the winner
 - No, looking sequentially for absolute winner between tied candidate for A, E and U
 - Situation 2 = there is no row with only positive or zero values => Tideman procedure (also called ranked pair)
 - This method has been selected because of its characteristics regarding independence to irrelevant alternative and clones (important for Sybill attack resistance)

• The Tideman procedure

- it occurs when there are creation of cycle
- A directed graph is build based on ranked relationship
- If the relationship create a cycle, it is skipped (called skip or lock in the procedure)


6

Note:


• This matrix is illustrative. Obviously the values of α ; γ ; η and β are not the same as the previous illustration

 The selection of the weight for each voter is crucial to avoid Concentration of decision-making power

$$\alpha = \gamma = \eta = \beta = 1$$

$$\alpha = \gamma = \eta = 1$$
 $\beta = 2$

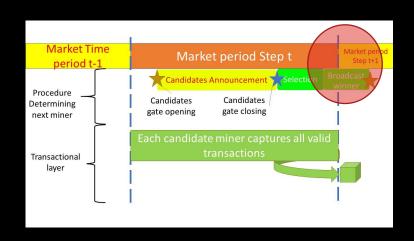
PSEUDO ALGORITHM

- 1. Create the different matrix and compute the total voting matrix
- 2. Check if there is an immediate Condorcet winner
 - \Rightarrow if yes, next miner is found
 - \Rightarrow Else continue

EGE

- 3. Check situation 1 (multiple rows with value ≥ 0 \Rightarrow if yes, apply dictatorial choice = next miner is found
 - \Rightarrow Else continue
- 4. Apply Tideman procedure \Rightarrow Next miner is found

CONCLUSION


	Proof of Work	Proof of Stake	Condorcet
reach consensus			* *
Sybill attacks resistance			
Sustainable			
Synchronization			
Resistant to Dominance			

• Further works

EGE

Issue 1

- There is a risk that information about the winner comes too late to some candidate
- In order to prevent information loss, these nodes will broadcast their own block.

Fork management

• Issue 2: The procedure relies on the previous miner. That's a possible threat.

Multiple voting authorities = others nodes or other previous miner