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Abstract

The Hadamard product of power series has been studied for more than one hundred
years and has become a classical tool in complex analysis. Nonetheless, this product
only concerns functions which are holomorphic near the origin. In 2009, T. Pohlen
studied an extension of this Hadamard product on functions defined on open subsets
of the Riemann sphere, which do not necessarily contain the origin. Using ad-hoc and
explicit constructions, he could define this product thanks to a contour integration
formula. However, his construction is non-symmetric with respect to 0 and ∞.

The first part of this thesis consists in the study of a generalization of Pohlen’s
extended Hadamard product. Using singular homology theory, we introduce more
symmetric cycles and define a generalized Hadamard product which is equivalent to
Pohlen’s product when the functions vanish at infinity. Then, we show that this
generalized Hadamard product is a particular case of a more general phenomenon
called "holomorphic cohomological convolution". We study this convolution in detail
on the multiplicative complex Lie group C∗ and provide a contour integration formula
to compute it.

The second part of the thesis is devoted to the study of holomorphic Paley-Wiener
type theorems due to Polya (in the compact case) and to Méril (in the non-compact
case). These theorems use a contour integration version of the Laplace transform.
Thanks to the theory of enhanced subanalytic sheaves developed by A. D’Agnolo
and M. Kashiwara as well as the enhanced Laplace transform introduced by M.
Kashiwara and P. Schapira, we show that such theorems can be understood from a
cohomological point of view. Under some convex subanalytic conditions, we are even
able to provide stronger Laplace isomorphisms between spaces which are described
by tempered growth conditions.

It appears that these spaces can be linked to certain spaces of analytic func-
tionals. In the non-compact case, we define a convolution product between analytic
functionals and conjecture that it is compatible with the additive version of the pre-
viously studied holomorphic cohomological convolution. Thanks to our results on the
enhanced Laplace transform, we prove the conjecture in the subanalytic case.





Résumé

Le produit d’Hadamard entre séries de puissances entières a été étudié depuis plus de
cent ans et est devenu un outil classique de l’analyse complexe. Néanmoins, ce produit
concerne uniquement les fonctions holomorphes au voisinage de l’origine. En 2009, T.
Pohlen a étudié une extension de ce produit d’Hadamard pour des fonctions définies
sur des ouverts de la sphère de Riemann, qui ne contiennent pas nécessairement
l’origine. En utilisant des constructions ad-hoc et explicites, il a pu définir ce produit
via une intégrale de contour. Cependant, cette construction n’est pas symétrique par
rapport à 0 et ∞.

La première partie de cette thèse consiste en l’étude d’une généralisation du
produit d’Hadamard étendu par Pohlen. Au moyen de la théorie de l’homologie
singulière, nous introduisons des cycles plus symétriques et définissons un produit
d’Hadamard généralisé, équivalent à celui de Pohlen quand les fonctions s’annulent
à l’infini. Nous montrons ensuite que ce produit d’Hadamard généralisé est un cas
particulier d’un phénomène plus général appelé "convolution cohomologique holo-
morphe". Nous étudions en détail cette convolution dans le cas du groupe de Lie
complexe multiplicatif C∗ et fournissons une formule à base d’intégrales de contour
pour la calculer.

La deuxième partie de la thèse est consacrée à l’étude de théorèmes de type
Paley-Wiener holomorphes dus à Polya (dans le cas compact) et à Méril (dans le cas
non compact). Ces théorèmes utilisent une version de la transformation de Laplace
à base d’intégrales de contour. Grâce à la théorie des faisceaux sous-analytiques
enrichis développée par A. D’Agnolo et M. Kashiwara, ainsi qu’à la transformation
de Laplace enrichie introduite par M. Kashiwara et P. Schapira, nous montrons que
ces théorèmes peuvent être compris d’un point de vue cohomologique. Sous certaines
hypothèses de convexité et de sous-analyticité, il est même possible de prouver de
plus forts isomorphismes de Laplace entre des espaces décrits par des conditions de
croissance tempérée.

Ces espaces peuvent être liés à certains espaces de fonctionnelles analytiques. Dans
le cas non compact, nous définissons un produit de convolution entre fonctionnelles
analytiques et conjecturons que ce produit est compatible avec la version additive
de la convolution cohomologique holomorphe précédemment étudiée. Grâce à nos
résultats sur la transformation de Laplace enrichie, nous prouvons cette conjecture
dans le cas sous-analytique.
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Introduction

The easiest possible way one can imagine to define the product of two complex power
series A(z) =

∑+∞
n=0 anz

n and B(z) =
∑+∞

n=0 bnz
n is by setting

(A ? B)(z) =
+∞∑
n=0

anbnz
n.

This operation is called the Hadamard product of A and B (see [42]). Using Tay-
lor representations, it is possible to extend this operation to holomorphic functions
defined in a neighbourhood of the origin. One then has

(f ? g)(z) =
1

2iπ

∫
C(0,r)+

f(ζ)g

(
z

ζ

)
dζ

ζ
,

where C(0, r)+ is a certain positively oriented circle around 0. Highly studied during
the twentieth century, this formula led to interesting developments (see e.g. [29],
[85], [94], [95] and [93]). In 2009, in order to study several problems of universality,
T. Pohlen extended this notion to holomorphic functions defined on open subsets
of the Riemann sphere, which do not necessarily contain the origin (see [86], [87]
and [88]). In this new context, the circle which appears in the above formula is
replaced by a Hadamard cycle, i.e. a curve which verifies specific winding number
conditions related to the holomorphic domain of f and g and which are non-symmetric
with respect to 0 and ∞. Moreover, T. Pohlen assumes that f and g vanish at
infinity. Using singular homology theory and orientation classes, we propose a notion
of generalised Hadamard cycles which itself allows to define a generalised Hadamard
product between functions which do not necessarily vanish at infinity. Using the
functoriality of the construction, we easily prove the classical properties which were
already observed by T. Pohlen. Moreover, our construction is more symmetric and
equivalent to his extended Hadamard product if one adds the vanishing condition at
infinity. However, without this assumption our product is not commutative. As we
have already suspected in our master thesis (see [26]), the good objects to consider
are not holomorphic functions, but equivalence classes of holomorphic functions in
a suitable quotient. Since the Hadamard product is nothing more but a contour-
integration-multiplicative-convolution-formula, it seems natural to relate it to the
usual convolution product of functions/distributions.

For that purpose and aware of the importance of functoriality, we introduce the
general notion of holomorphic cohomological convolution on any complex Lie group



2 INTRODUCTION

(G, µ). Like any convolution, it is defined as the combination of an exterior tensor
product and a push-forward (integration over the fibers of µ). We then study in
detail the case of the multiplicative group C∗. Let S1 and S2 be two proper con-
volvable closed subsets of C∗ such that S1S2 6= C∗ . In this setting, the holomorphic
cohomological convolution gives a morphism

? : H1
S1

(C∗,ΩC∗)⊗H1
S2

(C∗,ΩC∗)→ H1
S1S2

(C∗,ΩC∗),

which can be seen as a bilinear map

? : Ω(C∗ \S1)/Ω(C∗)× Ω(C∗ \S2)/Ω(C∗)→ Ω(C∗ \S1S2)/Ω(C∗).

In the first part of this thesis, the main objective is to present a complete method to
compute this morphism by the mean of contour integration formulas. These results
are summarized in Theorem 2.2.12. Furthermore, if one adds an extra-condition
on S1 and S2 (called strong convolvability), the statement can be simplified and we
shall prove that this bilinear map is given by our generalized Hadamard product (see
Proposition 2.2.17). In particular, this shows how the tools developed by T. Pohlen
naturally appear thanks to a suitable cohomological framework.

The additive group C can be treated in a similar way and it is therefore a natural
question to ask whether this notion could be linked with a contour integration Laplace
transform. In [25], [69] and [70], the authors point out that convolution operators can
be related to certain spaces of analytic functionals, which are themselves isomorphic
to other interesting spaces, described by subexponential growth conditions. For ex-
ample, if K is a proper convex compact subset of C, the Polya-Ehrenpreis-Martineau
theorem, or simply Polya’s theorem (see [75] and [89]) states that

O0(C \K)
P // Exp(K)

O′(K)

C

ee

F

99

is a commutative diagram of topological isomorphisms, where Exp(K) is the space of
entire functions of exponential hK-type (hK being the support function of the convex
K), O0(C \K) ' O(C \K)/O(C) is the space of holomorphic functions defined on
the complementary of K which vanish at infinity and O′(K) is the space of analytic
functionals carried by K. The isomorphisms can be made explicit thanks to the
Fourier-Borel transform F , the Cauchy transform C and the Polya transform P . This
last application is of particular interest for us because by definition,

P(f)(w) =

∫
C(0,r)+

ezwf(z)dz,

where C(0, r)+ is a positively oriented circle which encloses K. By elementary com-
putations, we can show that the convolution of analytic functionals (defined as for
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distributions) is compatible through the Cauchy transform C with the additive holo-
morphic cohomological convolution, which itself verifies the formula

P(f ? g) = P(f)P(g). (1)

Hence, we get a contour integration version of a classical real analysis theorem.

However, difficulties dramatically increase if one wants to deal with non-compact
closed subsets of C. The adaptation of Polya’s theorem to the non-compact setting
was first done by M. Morimoto in the particular case of half-strips (see [80], [81] and
[82]). In this version, the Polya transform P is computed over the infinite boundary of
a thickening of the half-strip and the integrability is assured by specific subexponential
growth conditions. This result had plenty of consequences (see e.g. [83], [84], [113],
[114], [115], [116] and [117]) in classical complex analysis. In 1978, J.W. De Roever
solved the general case by using much more technical tools (see [99]). According to
him, the functional spaces which appear to be isomorphic with the space of analytic
functionals carried by a non-compact proper convex closed subset S of C are useful
in quantum field mechanics. However, his method does not use a contour integration
over the boundary of Sε for some ε > 0. This issue was definitively solved by A. Méril
in 1983, by adapting the proof of M. Morimoto for general convex subsets (see [77]).
One should nonetheless note that these ideas were not new and were already present
in [71], where A. J. Macintyre studied the holomorphic Laplace transform on convex
cones.

The convolution of non-compactly carried analytic functionals was only studied
in a particular case (see [78]). This is the reason why we take time to develop a gen-
eral definition of such a convolution, by mimicking the distributions’ one. By doing
so, we remark that one has to impose a specific geometric condition on the non-
compact closed subsets, that we call compatibility. Using some properties relative to
convex geometry and asymptotic cones, we can actually prove that the compatibility
and the convolvability conditions are the same. This allows to formulate Conjec-
ture 3.2.30, which asserts that the convolution of analytic functionals is compatible
through the Cauchy transform with the additive holomorphic cohomological convo-
lution morphism. Unfortunately, we were not able to obtain a proof in the general
case.

While trying to solve this conjecture, we felt that we needed a deeper under-
standing of Méril’s theorem and that the cohomological tool could again be the key
point. Furthermore, it seemed that lots of Paley-Wiener-type theorems (see e.g. [31],
[63], [79], [110] and [111]) were similar to Polya’s and Méril’s theorems and we were
willing to believe that all these results could be derived from a unique cohomological
phenomenon.

The Laplace transform had already been studied from a sheaf-theoretic point of
view in [57]. However, the results were only valid for conic sheaves. This work was
extended to the non-conic setting by A. D’Agnolo in [18]. In particular, he explained
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how this abstract transformation allows to get some links with classical real Paley-
Wiener-type theorems (see e.g. [30]). More recently, in [60], M. Kashiwara and P.
Schapira made a full rewriting of the theory of integral transforms with irregular ker-
nel, using the notion of enhanced ind-sheaves introduced in [19]. In particular, they
treated the case of the Laplace transform. More precisely, let V be a n-dimensional
complex vector space and V∗ its complex dual. Let us consider the bordered spaces
V∞ = (V,V) and V∗∞ = (V∗,V∗) where V (resp. V∗) is the projective compactifi-
cation of V (resp V∗). In [60], the authors proved that there is a canonical abstract
isomorphism

EFaV(ΩE
V∞)[n] ' OE

V∗∞ (2)

in Eb(ICV∗∞), where EFaV is the enhanced Fourier-Sato functor and ΩE
V∞ (resp. OE

V∗∞) is
the complex of enhanced holomorphic top-forms on V∞ (resp. enhanced holomorphic
functions on V∗∞). In the second part of this thesis, we remark that (2) can be derived
from a very explicit morphism. Using the Dolbeault complex DbT,•,• of enhanced
distributions, we show that there is a canonical morphism

q!!(µ−〈z,w〉∗p
−1DbT,n,•+n

V∞ )→ DbT,0,•
V∗∞

,

where p : V∞×V∗∞ → V∞ and q : V∞×V∗∞ → V∗∞ are the two projections and
µ−〈z,w〉 is the translation by −〈z, w〉. This morphism encodes the usual positive
Laplace transform of distributions and is equivalent to (2) in Eb(Csub

V∗∞) (a more con-
crete category that can replace Eb(ICV∗∞)). In order to prove this result, we have to
trace back all the steps in the construction of (2), which leads to several morphisms
defined in [52], [56] and [58]. The sketch of this historical compilation is synthesized
in Theorem 5.1.10.

This remark has an immediate application. Let f : V → R be a continuous
function and S be a subanalytic closed subset of V. Let us denote by fS the function
which is equal to f on S and to +∞ on V \S and assume that fS is convex. Under
suitable conditions, we shall show that there is a commutative diagram

Hn
S (V, e−fΩt

V) ∼ // H0(V∗, ef∗S Ot
V∗)

��
ΓS(V, e−f Dbt,n,n

V ) //

OO

Γ(V∗, ef∗S Dbt
V∗)

where f ∗S is the Legendre transform of fS and Dbt,•,• (resp. Ωt,Ot) is the Dolbeault
complex of tempered distributions (resp. complex of tempered holomorphic forms,
functions). Here, the top isomorphism comes from [60] and the bottom one is given
by the positive Laplace transform of distributions.

The second main objective of this thesis consists in explaining how this diagram
allows to obtain holomorphic Paley-Wiener-type theorems. As examples, we show
how the contour integration formulas and the bijectivity of P in Polya’s and Méril’s
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theorems can naturally be obtained through a projective limit of tempered Laplace
isomorphisms. We even get a stronger result than Méril (see Theorem 5.2.20). Then,
introducing the notion of tempered holomorphic cohomological convolution and ap-
plying our previous results, we solve Conjecture 3.2.30 in the subanalytic case. In
particular, (1) is valid in the non-compact subanalytic setting. We hope that this
will convince the reader that the cohomological framework is well-fit to study the
holomorphic convolution and the holomorphic Laplace transform as well as the link
between them.

Let us now briefly resume the content of each chapter.

In chapter 1, we recall the basic mathematical facts that are needed to understand
the rest of the thesis. We particularly highlight the Mittag-Leffler theorem for pro-
jective systems, some remarks about singular homology and winding numbers, usual
constructions on distributional forms, which are highly used in all the next chapters,
and finally some basic facts of convex geometry, especially concerning asymptotic
cones.

In chapter 2, we essentially present the results of [28]. We first start by recalling
the usual definition of the Hadamard product and the extension of T. Pohlen. We
then introduce our generalized Hadamard product and prove the link with Pohlen’s
product. Secondly, we give the general definition of the holomorphic cohomological
convolution and we fully treat the case of C∗ in order to obtain a computable for-
mula. Finally, we explain how this formula can be simplified in the case of strong
convolvability and how it is linked with our generalized Hadamard product. We also
remark that all these considerations can be adapted in the additive setting.

In chapter 3, we introduce the concept of analytic functionals carried by a con-
vex closed subset of C and state Polya’s theorem (in the compact case) and Méril’s
theorem (in the non-compact case). We easily make the link with the additive holo-
morphic cohomological convolution in the compact case. In the non-compact case, we
completely define the notion of convolution of compatible analytic functionals and
then prove that compatibility and convolvability are the same notions. We finish
the chapter by conjecturing that this convolution is compatible with the additive
holomorphic cohomological convolution morphism.

In chapter 4, we set all the tools needed for chapter 5. In particular, we recall in
detail the construction of the category of enhanced subanalytic sheaves on a bordered
space as well as the sheaf-theoretic definition of tempered distributions and tempered
holomorphic forms. We also introduce the key notion of enhanced distributions and
prove important facts related to integration and pullback of such distributions.

In chapter 5, we notably present the results of [27]. We define the enhanced
Laplace transform morphism, explain how it can be derived from the usual Laplace
transform for distributions and remark that it is equivalent to the isomorphism ob-
tained by M. Kashiwara and P. Schapira in [60]. Then, we apply this result to the
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Legendre transform in order to get holomorphic Paley-Wiener-type theorems. Mod-
ulo some subanalytic hypothesis, we explain how to obtain back Polya’s theorem as
well as a stronger version of Méril’s theorem. Finally, we introduce the tempered
holomorphic cohomological convolution and put all the pieces together to solve the
main conjecture in the subanalytic case.

We conclude our thesis by proposing some lines of thought for the future.



Chapter 1

Preliminaries

1.1 Categories and sheaves

For basic category theory, we refer to [14] and [72]. For abelian, triangulated and
derived categories, we refer to [15], [55] and [59]. In this thesis, we follow all the
conventions about Grothendieck universes of [59] and do not write them explicitly.

For sheaf theory, we refer to [16], [35], [49] and [55]. Let us recall some classical
notations that we shall use throughout this text.

Let X be a topological space and R a sheaf of rings with finite global homological
dimension. The category of sheaves of R-modules will be noted Mod(R). The asso-
ciated derived category (resp. bounded, bounded below and bounded above derived
category) will be noted D(R) (resp. Db(R),D+(R) and D−(R)).

If U is an open subset of X, we denote by Γ(U,−) the functor of sections on U .
If F is a sheaf, we sometimes write F (U) instead of Γ(U, F ). We also write for short
Hk(U, F ) instead of HkRΓ(U, F ).

Recall that there are five traditional "Grothendieck operations" on sheaves. Two
internals : −⊗R −,HomR(−,−) and three externals : f∗, f−1, f!, if f : X → Y is a
continuous map between topological locally compact spaces. One can as well consider

their derived version : −
L
⊗R −,RHomR(−,−),Rf∗, f

−1 and Rf!. If R = AX with A
a commutative ring (most of the time Z or C), the Poincaré-Verdier duality states
that Rf! has a right adjoint that we shall denote by f !.

Let Z be a locally closed subset of X and F ∈ Mod(R). Let us also write
j : Z → X the inclusion map. We set

FZ = j!j
−1F and ΓZ(F ) = HomR(RZ , F ).

If U is an open subset of X, remark that ΓZ(U, F ) := Γ(U,ΓZ(F )) is the submodule of
sections of F on U which are supported by Z. We denote by Γc(U, F ) the submodule
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of sections on U which are compactly supported. Finally, one can define the sections
of F on Z by setting

Γ(Z, F ) = Γ(Z, j−1F ).

1.2 The Mittag-Leffler theorem

The aim of this section is to recall the Mittag-Leffler theorem for projective systems
and present an important cohomological application. Our main references are [22],
[38] and [55].

Definition 1.2.1. Let G = {Gn, ϕn,p} be a projective system of abelian groups
indexed by N. We say that G verifies the Mittag-Leffler condition if, for any n ∈ N,
the decreasing sequence {ϕn,p(Gp)}p≥n stabilizes at some point.

The category of projective systems of abelian groups indexed by N is an abelian
category with the obvious definition of morphisms. Hence, one can talk about exact
sequences of such projective systems. In general the projective limit functor lim←− is
left exact but not exact. However, thanks to the Mittag-Leffler condition, we get the
following result :

Theorem 1.2.2. Let 0 → G → G′ → G′′ → 0 be an exact sequence of projective
systems of abelian groups indexed by N . Assume that G verifies the Mittag-Leffler
condition, then the sequence

0→ lim←−G→ lim←−G
′ → lim←−G

′′ → 0

is exact.

Now, we consider complexes of such projective systems, that is to say, objects
of the form G• = {Gk, dk} where Gk = {Gk

n, ϕ
k
n,p} is a projective system of abelian

groups for each k ∈ Z and where the morphisms dk and ϕkn,p verify the obvious
compatibility conditions. To G•, one can associate the complex

G•∞ = lim←−G
• = {lim←−G

k, dk}.

Hence, for each k ∈ Z one gets a canonical morphism

φk : Hk(G•∞)→ lim←−
n

Hk(G•n).

In order to get isomorphisms (i.e. switch the projective limit and the cohomologies),
we need again the Mittag-Leffler condition.

Proposition 1.2.3. Assume that Gk verifies the Mittag-Leffler condition for each
k ∈ Z, then φk is surjective for each k ∈ Z .

If moreover the projective system Hk−1(G•) satisfies the Mittag-Leffler condition for
a given k ∈ Z, then φk is bijective.
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From this proposition, we can derive an important corollary :

Corollary 1.2.4 ([55], Proposition 2.7.1). Let X be a topological space and let F be
an object of D+(ZX). Let {Un}n∈N be an increasing sequence of open subsets of X and
{Zn}n∈N a decreasing sequence of closed subsets of X. Set U = ∪nUn and Z = ∩nZn.
Then, for any k ∈ Z, the natural map

φk : Hk
Z(U, F )→ lim←−

n

Hk
Zn

(Un, F )

is surjective.

If moreover the projective system {Hk−1
Zn

(Un, F )}n satisfies the Mittag-Leffler condi-
tion for a given k ∈ Z, then φk is bijective.

1.3 Algebraic topology

Singular homology theorey will be highly used in chapter 2. For classical facts about
this field, we refer to [36], [43] and [76]. Let us nonetheless recall some key points.

1.3.1 Borel-Moore homology and orientation

Definition 1.3.1. Let X be a topological locally compact space and let us write
aX : X → {pt} the canonical map which sends every element of X to a unique point.
We set

ωX = a!
X Z{pt}

and call it the orientation complex of X.

Proposition 1.3.2 ([55], Proposition 3.3.6). If X is a topological manifold of pure
dimension n, ωX is concentrated in degree −n and H−n(ωX) is a locally constant
sheaf with fiber Z.

We denote by orX the sheaf H−n(ωX). Recall that X is orientable if and only if
orX is constant. In that case, an orientation onX is a chosen isomorphism ZX

∼−→ orX .

Definition 1.3.3. Let X be a topological locally compact space. The Borel-Moore
homology (resp. Borel-Moore homology with compact support) of degree k is defined
by

BMHk(X) = H−k(X,ωX)
(
resp. BMHc

k(X) = H−kc (X,ωX)
)
.

If X is homologically locally connected (which is for example the case if X is a
topological manifold), then RΓc(X,ωX) is canonically isomorphic to the complex of
singular chains on X. Hence, BMHc

k(X) is isomorphic to the usual singular homology
group of degree k, Hk(X) (see [16]).



10 CHAPTER 1. PRELIMINARIES

Definition 1.3.4. Let X be an oriented topological manifold of pure dimension n.
The orientation class of X is the class

[X] ∈ BMHn(X) ' H−n(X,ZX [n]) ' H0(X,ZX)

corresponding to the constant section 1 of ZX .

Now, let K be a compact subset of X and consider the two canonical excision
distinguished triangles

RΓX\K(X,ωX)→ RΓ(X,ωX)→ RΓ(K,ωX)
+→

and
RΓc(X\K,ωX)→ RΓc(X,ωX)→ RΓ(K,ωX)

+→ .

The second triangle implies that H−n(K,ωX) is canonically isomorphic to the relative
singular homology group Hn(X,X\K). Hence, we get a sequence of morphisms

BMHn(X)→ H−n(K,ωX)
∼−→ Hn(X,X\K)

and [X] ∈ BMHn(X) induces a relative orientation class [X]K ∈ Hn(X,X\K).

1.3.2 Index of a complex 1-cycle

In this section, we take X = C . Let z ∈ C . We have a relative exact sequence

H2(C)→ H2(C,C \{z})→ H1(C \{z})→ H1(C).

Since C is contractible, H2(C) ' H1(C) ' 0 and one gets a canonical isomorphism

H1(C \{z}) ∼−→ H2(C,C \{z}) ∼−→ Z, (1.1)

where the second arrow is given by the orientation of C.

Definition 1.3.5. Let z ∈ C and c be a complex 1-cycle which avoids z, i.e. an
element of Z1(C \{z}). The index of c at z is the integer which is the image of
[c] ∈ H1(C \{z}) through (1.1). It is noted Ind(c, z).

Remark 1.3.6. There are other classical definitions of Ind(c, z) (see e.g. [98]). For
example, if c is a cycle with C1-regularity, one has

Ind(c, z) =
1

2iπ

∫
c

dζ

ζ − z
.

Informally, one sees that Ind(c, z) counts the number of times that c travels counter-
clockwise around the point z.
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Proposition 1.3.7. Let Ω be a proper open subset of C and let F = C \Ω. There is
a canonical isomorphism

H1(Ω)
∼−→ H0

c (F,ZF )

given by

[c] 7→ (z 7→ Indz(c)) .

Proof. Let us consider the excision distinguished triangle

RΓc(Ω, ωC)→ RΓc(C, ωC)→ RΓc(F, ωC)
+1→ . (1.2)

It induces a long exact sequence

· · · H2(Ω) H2(C) H−2RΓc(F, ωC)

H1(Ω) H1(C) H−1RΓc(F, ωC) · · ·

One has H2(C) ' H1(C) ' {0}. Moreover, if one denotes by j : F → C the inclusion
map, one has j−1ωC ' ZF [2]. Therefore one gets a canonical isomorphism

δ : H0
c (F,ZF )

∼−→ H1(Ω).

Let z ∈ F. Applying (1.2) with C \{z},C and {z}, one gets an isomorphism

δz : Z ' H0
c ({z},Z{z})

∼−→ H1(C \{z}).

Clearly, δ−1
z ([c]) = Indz(c). Moreover, by Proposition 1.3.6 in [55], there is a commu-

tative diagram

H0
c (F,ZF ) δ //

iz
��

H1(Ω)

jz
��

H0
c ({z},Z{z}) δz

// H1(C \{z})

where iz(f) = f(z) and jz([c]) = [c]. Hence, one sees that δ−1([c])(z) = Indz(c). Since
this argument is valid for all z ∈ F , the conclusion follows.

1.4 Operations on distributional forms

In this section, we recall some classical constructions on manifolds involving distri-
butional forms (see e.g. [21], [24], [37] and [96]). For the sake of simplicity, we
will always assume that the real manifolds are oriented. Hence we do not have to
make a distinction between distributional forms and currents. This assumption is not
restrictive since we will only work with complex manifolds in the main sections.
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1.4.1 Bi-type decomposition

For all r ∈ Z, we denote by Cr∞,M (resp. DbrM) the sheaf of infinitely differentiable
complex differential r-forms (resp. distributional r-forms) on a real manifold M .

Let X be a complex manifold of complex dimension dX and r ∈ Z. Recall that
Cr∞,X admits a decomposition in bi-types

Cr∞,X '
⊕
p+q=r

Cp,q∞,X

which induces a decomposition of the exterior derivative d as

d = ∂ + ∂,

where
∂ : Cp,q∞,X → C

p+1,q
∞,X and ∂ : Cp,q∞,X → C

p,q+1
∞,X .

Similarly, DbrX admits a decomposition in bi-types

DbrX '
⊕
p+q=r

Dbp,qX

and an associated decomposition of the distributional exterior derivative. Moreover,
for any open subset U of X, we have a canonical isomorphism

DbrX(U) ' Γc(U, C2dX−r
∞,X )′

between the space of complex distributional r-forms and the topological dual of the
space of infinitely differentiable complex differential (2dX − r)-forms with compact
support, which induces the similar isomorphism

Dbp,qX (U) ' Γc(U, CdX−p,dX−q∞,X )′.

In the sequel, we denote by Ωp
X the sheaf of holomorphic differential p-forms on X.

Of course, Ωp
X is canonically isomorphic to both the kernel of

∂ : Cp,0∞,X → C
p,1
∞,X

and the kernel of
∂ : Dbp,0X → Db

p,1
X .

We set for short OX = Ω0
X and ΩX = ΩdX

X .

The double complex C•,•∞,X (resp. Db•,•X ) is the infinitely differentiable (resp. distri-
butional) Dolbeault complex of X. By construction, the associated simple complex is
the infinitely differentiable (resp. distributional) de Rham complex C•∞,X (resp. Db•X)
of X. Moreover, we have the following chains of canonical quasi-isomorphisms :

CX ' C•∞,X ' Db
•
X and Ωp

X ' C
p,•
∞,X ' Db

p,•
X ,

which are given by the de Rham and Dolbeault lemmas.
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1.4.2 Integration

Definition 1.4.1. Let M (resp. N) be a real manifold of real dimension dM (resp.
dN) and let f : M → N be a C∞-map. Let also V be an open subset of N and
u ∈ Γ(f−1(V ),DbpM) be a distributional form with f -proper support. The integral of
u along the fibers of f (or the pushforward of u by f), noted

∫
f
u, is an element of

Γ(V,DbdN−dM+p
N ) defined by 〈∫

f

u, ω

〉
= 〈u, f ∗ω〉

for all ω ∈ Γc(V, CdM−p∞,N ). Hence, we get a morphism of sheaves∫
f

: f!Dbp+dMM → Dbp+dNN

for each p ∈ Z .

Now, let f : X → Y be a holomorphic map between complex manifolds of complex
dimension dX and dY . By the same definition, we get integration morphisms∫

f

: f!Dbp+dX ,q+dXX → Dbp+dY ,q+dYY

for all (p, q) ∈ Z2 . Since the pullback f ∗ of differentiable forms commutes with ∂
and ∂, the integration morphisms also commute with ∂ and ∂ and thus give rise to a
morphism of double complex∫

f

: f!Db•+dX ,•+dXX → Db•+dY ,•+dYY .

Hence, by the Dolbeault lemma, we get a morphism∫
f

: Rf!Ω
p+dX
X [dX ]→ Ωp+dY

Y [dY ]

for each p ∈ Z . These morphisms are called the holomorphic integration maps along
the fibers of f .

1.4.3 Pullback

As we explained previously, it is natural to define the pushforward of a distributional
form by duality, using the pullback of differential forms. Conversely, it is not always
possible to define by duality a pullback on distributional forms. It is however a
classical result that it is possible if the application f is a submersion (see e.g. Theorem
11 in [96]).
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Proposition 1.4.2. Let M (resp. N) be a real manifold of real dimension dM (resp.
dN) and let f : M → N be a C∞-submersion. Let V be an open subset of N and let
u ∈ Γ(f−1(V ),DbpM) be a distributional form with f -proper support associated to a
p-form ω. Then

∫
f
u is associated to a dN − dM + p form

∫
f
ω which can be computed

by integrating ω over the fibers of f .

Example 1.4.3. Let p1 : Rk×Rl → Rk be the first projection and consider a top-
form ω = ϕ(x, y)dx ∧ dy on Rk×Rl with p1-proper support. Then∫

p1

ω =

(∫
Rl

ϕ(x, y)dy

)
dx.

Definition 1.4.4. Let f : M → N be a C∞-submersion between real manifolds and
let U be an open subset of M . Let v ∈ Γ(V,DbpN) where V is an open subset of N
such that f(U) ⊂ V. The pullback of v by f is an element f ∗v ∈ Γ(U,DbpM) defined
by

〈f ∗v, ω〉 =

〈
v,

∫
f

ω

〉
for all ω ∈ Γc(U, CdM−p∞,M ). Hence, we get a morphism of sheaves

f ∗ : f−1DbpN → Db
p
M

for each p ∈ Z .

Now, let f : X → Y be a submersive holomorphic map between complex mani-
folds. By the same definition, we get morphisms

f ∗ : f−1Dbp,qY → Db
p,q
X

for all (p, q) ∈ Z2 . Since they commute with ∂ and ∂̄, they give rise to a morphism
of double complex

f ∗ : f−1Db•,•Y → Db
•,•
X .

Hence, by the Dolbeault lemma we get a morphism

f ∗ : f−1Ωp
Y → Ωp

X (1.3)

for each p ∈ Z .

Remark 1.4.5. Note that the morphism (1.3) still exists when f is not a submersion.
Indeed, the pullback of differential forms gives a morphism of double complexes

f ∗ : f−1 C•,•∞,Y → C
•,•
∞,X

which induces the desired morphism in the derived category.
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1.5 Convex geometry

Convex sets will play an essential role in chapters 3 and 5. The following review of
basic convex geometry is made from [2] and [97].

1.5.1 Legendre transform and support functions

Let V be a finite-dimensional real vector space and V ∗ its real dual. Let us note

〈−,−〉 : V × V ∗ → R

the real duality bracket.

Definition 1.5.1. Let f : V → R∪{+∞} be a function.

(i) One says that f is a closed proper convex function on V if its epigraph

{(x, t) ∈ V × R : t ≥ f(x)}

is closed, convex and non-empty.

(ii) One denotes by Conv(V ) the set of closed proper convex functions on V .

(iii) For any f ∈ Conv(V ), one sets dom(f) = f−1(R) and call it the domain of f .
This set is convex and non-empty.

(iv) For any f ∈ Conv(V ), one defines a function f ∗ : V ∗ → R∪{+∞} by setting

f ∗(y) = sup
x∈dom(f)

(〈x, y〉 − f(x)).

It is called the Legendre transform of f . It is an element of Conv(V ∗).

Definition 1.5.2. Let S be a non-empty closed convex subset of V . The support
fonction of S is the function hS : V ∗ → R∪{+∞} defined by

hS(y) = sup
x∈S
〈x, y〉.

Remark 1.5.3. By definition, hS is the Legendre transform of the indicator function
fS : V → R∪{+∞} which is equal to 0 on S and to +∞ on V \S. Hence hS is a
closed proper convex function. Moreover, one can easily check that hS is positively
homogeneous. That is to say

hS(λy) = λhS(y) ∀λ ≥ 0, y ∈ V ∗.

If f ∈ Conv(V ), one can prove that f ∗∗ = f . This allows to obtain the following
characterisation of support functions :
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Theorem 1.5.4 ([97], Theorem 13.2). Let h ∈ Conv(V ∗) be a positively homogeneous
function. Then, there is a non-empty closed convex subset S of V such that h = hS.
The convex S can be explicitly described by

S =
⋂
y∈V ∗
{x ∈ V : 〈x, y〉 ≤ h(y)}.

Definition 1.5.5. The sets {x ∈ V : 〈x, y〉 ≤ hS(y)} are called the supporting
half-spaces of S and the subsets {x ∈ V : 〈x, y〉 = hS(y)} are called the supporting
hyperplanes of S.

Example 1.5.6. Let || · || be a norm on V and || · ||∗ the dual norm on V ∗. Let
B(0, ε) be the open ball of center 0 and radius ε > 0 on V . Then

hB(0,ε)(y) = ε||y||∗

for all y ∈ V ∗.

Proposition 1.5.7. If S1 and S2 are two non-empty closed convex subsets of V , then

hS1+S2 = hS1 + hS2 ,

where
S1 + S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2}

is the Minkowski sum of S1 and S2.

1.5.2 Asymptotic cones and duality

Definition 1.5.8. A subset C of V is a cone if λC ⊂ C for all λ > 0. It is a convex
cone if C + C ⊂ C. It is a proper cone if {0} 6= C 6= V. It is a salient cone if
C ∩ −C ⊂ {0} and it is a pointed cone if C ∩ −C ⊃ {0}.

The polar cone of a cone C ⊂ V , noted C∗, is defined by

C∗ = {y ∈ V ∗ : 〈x, y〉 ≤ 0, ∀x ∈ C}.

It is a cone of V ∗.

The set of the asymptotic directions of a subset of V can be described by a cone.

Definition 1.5.9. Let S be a non-empty subset of V . The asymptotic cone of S,
noted S∞, is the set of vectors d ∈ V such that there is a sequence (tk)k∈N of strictly
positive real numbers and a sequence (xk)k∈N of S such that

lim
k→+∞

tk = +∞ and lim
k→+∞

xk
tk

= d.

Proposition 1.5.10. The asymptotic cone verifies the following properties :
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1. For all non-empty subset S of V , S∞ is a closed pointed cone. If S is convex,
S∞ is a convex cone.

2. If C is a non-empty cone of V , then C∞ = C.

3. A non-empty subset S of V is bounded if and only if S∞ = {0}.

4. If (Si)i∈I is a family of non-empty subsets of V , then(⋂
i∈I

Si

)
∞

⊂
⋂
i∈I

(Si)∞.

If the Si have a non-empty intersection, the inclusion becomes an equality.

5. If S1 and S2 are two non-empty subsets of V , then

S1 ⊂ S2 implies (S1)∞ ⊂ (S2)∞.

6. If S is a non-empty subset of V and x ∈ V , then (x+ S)∞ = S∞.

7. If S is a non-empty closed convex subset of V , then

S∞ = {x ∈ V : x+ S ⊂ S}.

We shall need the important following theorem :

Theorem 1.5.11 ([2], Theorem 2.3.4 and [100], Section 19, Theorem 3.1). If S1 and
S2 are two non-empty closed subsets of V such that

(S1)∞ ∩ −(S2)∞ = {0},

then S1 + S2 is closed and

(S1 + S2)∞ ⊂ (S1)∞ + (S2)∞.

Moreover, the inclusion becomes an equality if S1 and S2 are convex.

Example 1.5.12. Let S be a non-empty closed subset of V and ε > 0. Consider the
thickening Sε = S + B(0, ε) of S for a certain norm on V . Since S ⊂ Sε, one has
S∞ ⊂ (Sε)∞. Moreover, by Theorem 1.5.11, one also has

(Sε)∞ ⊂ S∞ +B(0, ε)∞ = S∞.

Hence S∞ = (Sε)∞.

If C is a closed convex cone of V , then C∗∗ = C. This allows to get a refinement
of Theorem 1.5.4.
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Theorem 1.5.13 ([2], Theorem 2.2.1). Let S be a non-empty closed convex subset
of V . Then dom(hS) is a cone C ⊂ V ∗ such that

(S∗∞)◦ ⊂ C ⊂ S∗∞.

Conversely, if h ∈ Conv(V ∗) is a positively homogeneous function whose domain is
the cone C ⊂ V ∗, then h = hS for a non-empty closed convex subset S of V such that
S∞ = C∗ ⊂ V ∗∗ ' V.

Definition 1.5.14. In the context of Theorem 1.5.13, we say that (h,C) and S are
in convex duality.

Remark 1.5.15. If (h,C) and S are in convex duality, h is actually continuous on
C◦.

Remark 1.5.16. Let V be a complex vector space and V∗ its complex dual. Denote
by 〈−,−〉 : V×V∗ → C the complex duality bracket. Then, all the previous consid-
erations can be transposed into this complex case by replacing everywhere V (resp.
V ∗) by V (resp. V∗) and 〈x, y〉 with x ∈ V, y ∈ V ∗ by <〈z, w〉 with z ∈ V, w ∈ V∗ .



Chapter 2

Holomorphic cohomological
convolution

2.1 Motivation : The Hadamard product

2.1.1 Classical definition

Definition 2.1.1. Let A(z) =
∑+∞

n=0 anz
n and B(z) =

∑+∞
n=0 bnz

n be two formal
power series with complex coefficients. The Hadamard product of A and B is the
formal power series A ? B defined by

(A ? B)(z) =
+∞∑
n=0

anbnz
n.

Remark 2.1.2. If rA (resp. rB) is the radius of convergence of A (resp. B), it is
clear (for instance by using the root test) that the radius of convergence rA?B of A?B
is greater or equal than rA · rB.

This classical definition appeared for the first time in [42]. It has then been actively
studied in [3], [44], [89] and [105]. These authors notably remarked the following fact.
If f (resp. g) is a holomorphic function defined by A (resp. B) on the disk D(0, rA)
(resp. D(0, rB)) and if r ∈ (0, rA), then

+∞∑
n=0

anbnz
n =

+∞∑
n=0

(
1

2iπ

∫
C(0,r)+

f(ζ)

ζn+1
dζ

)
bnz

n

=
1

2iπ

∫
C(0,r)+

f(ζ)

(
+∞∑
n=0

bn

(
z

ζ

)n)
dζ

ζ

=
1

2iπ

∫
C(0,r)+

f(ζ)g

(
z

ζ

)
dζ

ζ
,

for any z ∈ D(0, r · rB).
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Using this integral representation, it is easy to define the Hadamard product
between holomorphic functions defined on open subsets of C containing the origin
(see e.g. [85] for some applications).

2.1.2 Extension of T. Pohlen

In his thesis [88] (see also [87]), Timo Pohlen introduced the more general notion of
Hadamard product for holomorphic functions defined on open subsets of the Riemann
sphere P = C∪{∞} which do not necessarily contain the origin. This new definition
led to interesting applications, (e.g. [86] and [70]). In this section, we shall recall the
construction and the results of T. Pohlen.

Definition 2.1.3. Let P be the Riemann sphere equipped with its canonical structure
of complex manifold. Let Ω be an open subset of P. One sets

H(Ω) = {f ∈ O(Ω) : f(∞) = 0}

if ∞ ∈ Ω and H(Ω) = O(Ω) otherwise.

Definition 2.1.4. We set M = (P×P)\{(0,∞), (∞, 0)} and extend the complex
multiplication continuously as a map · : M → P . We then have

∞ · a = a · ∞ =∞

if a ∈ P is not equal to zero. If A,B are subsets of P such that A×B ⊂M , one sets

A ·B = {a · b : a ∈ A, b ∈ B}.

One also extends the inversion z 7→ z−1 continuously from C∗ to P by setting 0−1 =∞
and ∞−1 = 0. If S ⊂ P, one sets

S−1 = {z : z−1 ∈ S}.

For the rest of the thesis, we shall often drop the point and write the multiplication
as a concatenation.

Definition 2.1.5. Two open subsets Ω1,Ω2 ⊂ P are called star-eligible if

1. Ω1 and Ω2 are proper subsets of P,

2. (P \Ω1)× (P \Ω2) ⊂M,

3. (P \Ω1)(P \Ω2) 6= P .

In this case, the star product of Ω1 and Ω2, noted Ω1 ? Ω2, is defined by

Ω1 ? Ω2 = P \((P \Ω1)(P \Ω2)).

Recall Definition 1.3.5. For any cycle c in C, one sets Ind(c,∞) = 0.
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Definition 2.1.6. Let Ω be a non-empty open subset of P, K be a non-empty com-
pact subset of Ω and c be a cycle in Ω\(K ∪ {0} ∪ {∞}). If ∞ /∈ K and

Ind(c, z) =

{
1 if z ∈ K
0 if z ∈ P \Ω

,

then c is called a Cauchy cycle for K in Ω. If ∞ ∈ Ω and

Ind(c, z) =

{
0 if z ∈ K
−1 if z ∈ P \Ω

,

then c is called a anti-Cauchy cycle for K in Ω.

In [88], Lemma 2.3.1, T. Pohlen refers to ad hoc explicit constructions which en-
sure that Cauchy and anti-Cauchy cycles always exist for any Ω and any K. However,
one can notice that Proposition 1.3.7 easily gives this existence.

Let Ω1 and Ω2 be two star-eligible open subsets of P. Note that, if z ∈ Ω1 ? Ω2,
then z(P \Ω2)−1 is a closed subset of Ω1.

Definition 2.1.7. Let z ∈ (Ω1 ? Ω2)\{0,∞}. A Hadamard cycle for z(P \Ω2)−1 in
Ω1 is a cycle c in Ω1\(z(P \Ω2)−1 ∪ {0} ∪ {∞}) which satisfies the condition given in
the table

PPPPPPPPPPΩ2

Ω1 0,∞ ∞ 0

0,∞ cc+ or acc− acc− cc+ cc
∞ acc− acc− / /
0 cc+ / cc+ /

acc / / /

This table should be understood in the following way : The elements in the first row
and the first column tell which of these elements are in Ω1 and Ω2 respectively. The
abbreviation cc (resp. acc) means that c is a Cauchy (resp. anti-Cauchy) cycle for
z(P \Ω2)−1 in Ω1. The abbreviation cc+ (resp. acc−) means that c is a Cauchy (resp.
anti-Cauchy) cycle with the extra condition Ind(c, 0) = 1 (resp. Ind(c, 0) = −1). A
"/" means that this case cannot occur.

One can now extend the standard Hadamard product.
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Definition 2.1.8. Let f1 ∈ H(Ω1) and f2 ∈ H(Ω2). For each z ∈ (Ω1 ? Ω2)\{0,∞}
one sets

(f1 ? f2)(z) =
1

2iπ

∫
cz

f1(ζ)f2

(
z

ζ

)
dζ

ζ
,

where cz is a Hadamard cycle for z(P \Ω2)−1 in Ω1. One can check that this integral
does not depend on the chosen Hadamard cycle (see Lemma 3.4.2 in [88]). The
function f1 ? f2 is called the Hadamard product of f1 and f2.

0
•

P \Ω1

>

>

z(P \Ω2)−1

Figure 2.1: A Hadamard cycle for z(P \Ω2)−1 in Ω1, in the case where 0,∞ ∈ Ω1 and
∞ ∈ Ω2, 0 /∈ Ω2.

Proposition 2.1.9 ([88], Lemma 3.4.5 and Proposition 3.6.4). The Hadamard prod-
uct f1 ?f2 can be continuously extended to Ω1 ?Ω2. If 0 ∈ Ω1 ?Ω2 (resp. ∞ ∈ Ω1 ?Ω2),
one has (f1 ? f2)(0) = f1(0)f2(0) (resp. (f1 ? f2)(∞) = 0). Moreover, f1 ? f2 is an
element of H(Ω1 ? Ω2).

Proposition 2.1.10 ([88], Proposition 3.6.1). The Hadamard product is commuta-
tive.

In all this framework, the hypothesis f(∞) = 0, when ∞ ∈ Ω, is highly used. In
the next section, we shall provide a more general definition of Hadamard cycles and
Hadamard product, based on singular homology theory, which does not require the
vanishing condition at infinity.

2.1.3 Generalized Hadamard product

To introduce our definition of generalized Hadamard cycles, we have to be in the same
setting as T. Pohlen. However, looking at Definition 2.1.5, we find it more natural to
start with closed subsets instead of open ones.
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Definition 2.1.11. Two closed subsets S1 and S2 of P are star-eligible if S1, S2 and
S1S2 are proper and if S1 × S2 ⊂M.

For the rest of the section we fix S1 and S2, two star-eligible closed subsets of P.
If z ∈ C∗ \S1S2, S1 is a compact subset of P \zS−1

2 and, thus, a compact subset of
P \(zS−1

2 ∪ ({0,∞}\S1)). Moreover, one has

(P \(zS−1
2 ∪ ({0,∞}\S1)))\S1 = P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞}).

Let z ∈ C∗ \S1S2.

Definition 2.1.12. A generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1))

is a representative c of the class in H1(P \(S1∪zS−1
2 ∪{0}∪{∞})) which is the image

of

−[P \(zS−1
2 ∪({0,∞}\S1))]S1∈H2(P \(zS−1

2 ∪({0,∞}\S1)),P \(S1∪zS−1
2 ∪{0}∪{∞}))

by the canonical map

H2(P \(zS−1
2 ∪ ({0,∞}\S1)),P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞}))

��
H1(P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞})).

Our aim is now to define a product

O(P \S1)×O(P \S2)→ O(C∗ \S1S2)

which generalizes the extended Hadamard product of T. Pohlen.

Definition 2.1.13. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). For each z ∈ C∗ \S1S2 we
set

(f1 ? f2)(z) =
1

2iπ

∫
cz

f1(ζ)f2

(
z

ζ

)
dζ

ζ
,

where cz is a generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1)). Since

two generalized Hadamard cycles are homologous, the definition does not depend on
the chosen generalized Hadamard cycle. The function f1 ? f2 is called the generalized
Hadamard product of f1 and f2.
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0
•

S1

>

>

zS−1
2

Figure 2.2: A generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1)), in the case

where 0,∞ /∈ S1 and 0 ∈ S2,∞ /∈ S2.

Lemma 2.1.14. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). For each compact subset K
of C∗ \S1S2, there is a cycle cK in P \(S1 ∪KS−1

2 ∪ {0} ∪ {∞}) such that

(f1 ? f2)(z) =
1

2iπ

∫
cK

f1(ζ)f2

(
z

ζ

)
dζ

ζ
,

for all z ∈ K.

Proof. There is a relative orientation class [P \(KS−1
2 ∪ ({0,∞}\S1))]S1 in

H2(P \(KS−1
2 ∪ ({0,∞}\S1)),P \(S1 ∪KS−1

2 ∪ {0} ∪ {∞})).

We choose cK to be a representative of the class in H1(P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞}))

which is the image of −[P \(KS−1
2 ∪ ({0,∞}\S1))]S1 by the canonical map

H2(P \(KS−1
2 ∪ ({0,∞}\S1)),P \(S1 ∪KS−1

2 ∪ {0} ∪ {∞}))

��
H1(P \(S1 ∪KS−1

2 ∪ {0} ∪ {∞})).

For each z ∈ K, there is a canonical commutative diagram
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H2(P \(KS−1
2 ∪ ({0,∞}\S1)),P \(S1 ∪KS−1

2 ∪ {0} ∪ {∞}))

++

��

H1(P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞}))

��
H1(P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞}))

H2(P \(zS−1
2 ∪ ({0,∞}\S1)),P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞}))

33

.

Obviously, [P \(zS−1
2 ∪ ({0,∞}\S1))]S1 is the image of [P \(KS−1

2 ∪ ({0,∞}\S1))]S1

by the left vertical map. Therefore, by the commutativity of the diagram, one can
deduce that cK is a generalized Hadamard cycle for S1 in P \(zS−1

2 ∪ ({0,∞}\S1)),
for all z ∈ K. Hence the conclusion.

Proposition 2.1.15. The generalized Hadamard product is a well-defined map

O(P \S1)×O(P \S2)→ O(C∗ \S1S2).

Proof. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). We have to check that f1 ? f2 is
holomorphic on C∗ \S1S2. Since it is a local property, it is enough to prove that
f1 ? f2 is holomorphic on any small open disk D ⊂ C∗ \S1S2. Let D be such a disk.
By Lemma 2.1.14 there is a cycle cD such that

(f1 ? f2)(z) =
1

2iπ

∫
cD

f1(ζ)f2

(
z

ζ

)
dζ

ζ

for all z ∈ D. We conclude by derivation under the integral sign.

We shall now prove that our product is a good generalization of the extended
Hadamard product of T. Pohlen. By doing so, the reader shall see why we chose such
a sign convention in Definition 2.1.12.

Proposition 2.1.16. Let f1 ∈ H(P \S1) and f2 ∈ H(P \S2). Let z ∈ C∗ \S1S2. Let
cz be a generalized Hadamard cycle for S1 in P \(zS−1

2 ∪ ({0,∞}\S1)) and dz be a
Hadamard cycle for zS−1

2 in P \S1. Then,

1

2iπ

∫
cz

f1(ζ)f2

(
z

ζ

)
dζ

ζ
=

1

2iπ

∫
dz

f1(ζ)f2

(
z

ζ

)
dζ

ζ
.

Proof. We treat the case where 0,∞ /∈ S1 and 0 ∈ S2,∞ /∈ S2 and leave the other
ones to the reader. By construction, it is clear that cz verifies

Ind(cz, w) =

{
0 if w ∈ zS−1

2 ∪ {0}
−1 if w ∈ S1.
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Let c′z be a cycle P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞}) such that

Ind(c′z, w) =

{
0 if w ∈ zS−1

2 ∪ S1

−1 if w = 0.

Since dz is acc−, it is clear, by Proposition 1.3.7, that dz is homologous to cz + c′z in
P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞}). We then have∫
cz

f1(ζ)f2

(
z

ζ

)
dζ

ζ
=

∫
dz

f1(ζ)f2

(
z

ζ

)
dζ

ζ
−
∫
c′z

f1(ζ)f2

(
z

ζ

)
dζ

ζ
.

Moreover, by the residue theorem,

−
∫
c′z

f1(ζ)f2

(
z

ζ

)
dζ

ζ
= 2iπResζ=0

(
f1(ζ)

ζ
f2

(
z

ζ

))
= 2iπ lim

ζ→0

(
f1(ζ)f2

(
z

ζ

))
= 2iπf1(0)f2(∞) = 0.

Hence the conclusion.

Remark 2.1.17. Of course, the generalized Hadamard product is no longer commu-
tative if the functions do not vanish at infinity. For example, let S1 and S2 be as in
the proof of the previous proposition. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). By a
similar computation, one sees that

f1 ? f2 − f2 ? f1 = f1(0)f2(∞).

Despite the lack of commutativity, the generalized Hadamard cycles are more sym-
metric with respect to 0 and ∞. In the next section, we shall explain how one can
define a convolution between 1-forms which have (not necessarily isolated) singulari-
ties at 0 and ∞. Generalized Hadamard cycles are key ingredients to compute such
a convolution (see also Section 2.2.3). Moreover, the commutativity will eventually
be obtained thanks to quotient spaces that naturally occur in this context.

2.2 Holomorphic cohomological convolution

The concept of holomorphic cohomological convolution has originally been introduced
in our master thesis [26]. We will first recall its definition and then fully treat the
case of C∗ to understand the link with the (generalized) Hadamard product.

2.2.1 General definition

Definition 2.2.1. Let (G, µ) be a locally compact complex Lie group of complex
dimension n. Two closed subsets S1 and S2 of G are said to be convolvable if S1×S2

is µ-proper, i.e. if
(S1 × S2) ∩ µ−1(K)

is a compact subset of G×G for any compact subset K of G.
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Remark 2.2.2. A proper map on a locally compact topological space is universally
closed, in particular closed (see e.g. [12]). Hence, if S1 and S2 are convolvable closed
subsets of G, then µ|S1×S2 is a proper map and S1 + S2 = µ|S1×S2(S1 × S2) is closed.

Recall Sections 1.4.2 and 1.4.3.

Definition 2.2.3. Two distributional 2n-forms u1 and u2 of G are convolvable if
the support S1 of u1 and the support S2 of u2 are convolvable. In that case, the
convolution product of u1 and u2 is a distributional 2n-form on G defined by

u1 ? u2 =

∫
µ

(u1 � u2) :=

∫
µ

(p∗1u1 ∧ p∗2u2),

where p1, p2 : G×G→ G are the two canonical projections.

Remark 2.2.4. By choosing a Haar form ν on G, one can define the convolution
product of two distributions by means of the isomorphism DbG ' Db2n

G given by ν
(see e.g. [21]).

Remark 2.2.5. If we define

φ : G×G→ G×G and ψ : G×G→ G×G

by setting φ(g1, g2) = (g1, µ(g1, g2)) and ψ(g1, g2) = (g1, µ(g−1
1 , g2)), we see that φ and

ψ are reciprocal biholomorphic bijections and that the diagram

G×G
φ

∼ //

µ
##

G×G

p2
{{

G

is commutative. This shows in particular that µ is a surjective submersion and
that the preceding procedure allows us also to define the convolution product of
2n-differential forms.

Let S1 and S2 be two convolvable closed subsets of G. By construction, the convo-
lution of distributions on G is the composition of the external product of distributions

ΓS1(G,Db2n
G )⊗ ΓS2(G,Db2n

G )→ ΓS1×S2(G×G,Db4n
G×G)

and the map ∫
µ

: ΓS1×S2(G×G,Db4n
G×G)→ Γµ(S1×S2)(G,Db2n

G )

induced by the holomorphic integration map along the fibers of µ∫
µ

: Γµ−proper(G×G,Db4n
G×G)→ Γ(G,Db2n

G )

and the fact that S1 and S2 are convolvable if and only if S1 × S2 is µ-proper. It is
thus natural to define the convolution of cohomology classes of holomorphic forms on
G as follows :
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Definition 2.2.6. Let S1 and S2 be two convolvable closed subsets of G. Consider
the external product morphisms

RΓS1(G,Ω
p+n
G )[n]⊗ RΓS2(G,Ω

q+n
G )[n]→ RΓS1×S2(G×G,Ω

p+q+2n
G×G )[2n]

and the morphisms∫
µ

: RΓS1×S2(G×G,Ω
p+q+2n
G×G )[2n]→ RΓµ(S1×S2)(G,Ω

p+q+n
G )[n].

induced by the holomorphic integration map and the fact that S1 × S2 is µ-proper.
By composition, these morphisms give derived category morphisms

?(G,µ) : RΓS1(G,Ω
p+n
G )[n]⊗ RΓS2(G,Ω

q+n
G )[n]→ RΓµ(S1×S2)(G,Ω

p+q+n
G )[n],

that we call the holomorphic convolution morphisms of G. Going to cohomology
groups, these morphisms give rise to the morphisms

?(G,µ) : Hr+n
S1

(G,Ωp+n
G )⊗Hs+n

S2
(G,Ωq+n

G )→ Hr+s+n
µ(S1×S2)(G,Ω

p+q+n
G ),

that we call the holomorphic cohomological convolution morphisms of G.

Remark 2.2.7. Consider the diagram

Hn
S1

(G,ΩG)⊗Hn
S2

(G,ΩG) // Hn
µ(S1×S2)(G,ΩG)

ΓS1(G,Db2n
G )⊗ ΓS2(G,Db2n

G ) //

OO

Γµ(S1×S2)(G,Db2n
G )

OO

where the vertical arrows are given by the Dolbeault complex of ΩG and the top (resp.
the bottom) horizontal arrow is given by the holomorphic cohomological morphism
of G with p = q = r = s = 0 (resp. the convolution product of distributions).
Obviously, by the definitions, this diagram is commutative. This remark will allow
to perform explicit computations in the next section.

2.2.2 Multiplicative convolution on C∗

In this section, we will consider the case where the group G is the group C∗ formed
by the set of non-zero complex numbers endowed with the complex multiplication
(noted as a concatenation). We will assume that S1, S2 are convolvable proper closed
subsets of C∗ (remark that this means that S1 ∩KS−1

2 is compact for any compact
subset K of C∗) such that S1S2 is also a proper subset of C∗ and we will show how
to compute the holomorphic cohomological convolution morphism

? : H1
S1

(C∗,ΩC∗)⊗H1
S2

(C∗,ΩC∗)→ H1
S1S2

(C∗,ΩC∗) (2.1)

by means of path integral formulas.

In order to lighten the notations, we will write Ω(U) instead of ΩC∗(U) if U is an
open subset of C∗.
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Proposition 2.2.8. Let S be a proper closed subset of C∗, then there is a canonical
isomorphism

Hr
S(C∗,ΩC∗) '

{
Ω(C∗ \S)/Ω(C∗) if r = 1,

0 otherwise.

Proof. Consider the following distinguished triangle, obtained by excision :

RΓS(C∗,ΩC∗)→ RΓ(C∗,ΩC∗)→ RΓ(C∗ \S,ΩC∗)
+1→ .

It induces a long exact sequence :

0 H0
S(C∗,ΩC∗) H0(C∗,ΩC∗) H0(C∗ \S,ΩC∗)

H1
S(C∗,ΩC∗) H1(C∗,ΩC∗) H1(C∗ \S,ΩC∗) · · ·

Since C1,•
∞,C∗ is a soft resolution of ΩC∗ , one gets

RΓ(U,ΩC∗) ' Γ(U, C1,•
∞,C∗)

for all open subset U of C∗ . Therefore, using the fact that ∂̄ is globally surjective,
one deduces that RΓ(C∗,ΩC∗) and RΓ(C∗ \S,ΩC∗) are concentrated in degree 0. This
shows that Hr

S(C∗,ΩC∗) ' 0 for all r ≥ 2. If r = 0, it is clear that H0
S(C∗,ΩC∗) ' 0.

Indeed, a holomorphic function supported by a proper closed subset of C∗ admits an
identical zero and is thus equal to 0 by the identity theorem. Hence, the long exact
sequence becomes

0→ Ω(C∗)→ Ω(C∗ \S)→ H1
S(C∗,ΩC∗)→ 0

and the conclusion follows.

Thanks to this proposition, one can see that (2.1) can be interpreted as a bilinear
map

? : Ω(C∗ \S1)/Ω(C∗)× Ω(C∗ \S2)/Ω(C∗)→ Ω(C∗ \S1S2)/Ω(C∗).

Now, let ω1 ∈ Ω(C∗ \S1) and ω2 ∈ Ω(C∗ \S2) be two given holomorphic forms. Ideally,
we would like to obtain a formula of the form

[ω1] ? [ω2] = [ω]

where ω is a holomorphic form on C∗ \S1S2 which can be computed from ω1 and ω2

by some path integral.

It is in general not possible to find such a nice formula. However, we shall show
that for any relatively compact open subset U of C∗ and any open neighbourhood V
of S1S2 in C∗, there is a holomorphic form ω on U \ V which can be computed from
ω1 and ω2 by some path integral and which is such that

[ω] ∈ Ω(U\V )/Ω(U) ' H1
V ∩U(U,ΩC∗)
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coincides with the image of [ω1] ? [ω2] by the canonical restriction morphism

H1
S1S2

(C∗,ΩC∗)→ H1
V ∩U(U,ΩC∗).

Thanks to the next lemma, this is in fact sufficient to completely compute [ω1] ? [ω2].

Lemma 2.2.9. Let S be a closed subset of C∗. Then

H1
S(C∗,ΩC∗) ' lim←−

U∈Urc,V ∈VS

H1
V ∩U(U,ΩC∗)

where Urc denotes the set of relatively compact open subsets of C∗ ordered by ⊂ and
VS denotes the set of open neighbourhoods of S in C∗ ordered by ⊃.

Proof. This follows from Corollary 1.2.4.

To be able to specify the kind of path integral we need, let us first introduce the
following definition :

Definition 2.2.10. Let F and G be two closed subsets of C∗ which have a compact
intersection and let W be an open neighbourhood of F ∩ G. A relative Hadamard
cycle for F with respect to G in W is a relative 1-cycle

c ∈ Z1(W \ F, (W \ F ) ∩ (W \G))

such that its class
[c] ∈ H1(W \ F, (W \ F ) ∩ (W \G))

is the image of the relative orientation class

[W ]F∩G ∈ H2(W,W \ (F ∩G))

by the Mayer-Vietoris morphism

H2(W,W \ (F ∩G))→ H1(W \ F, (W \ F ) ∩ (W \G))

associated with the decomposition

(W,W \ (F ∩G)) = ((W \ F ) ∪W, (W \ F ) ∪ (W \G)).

Remark 2.2.11. Let c ∈ Z1(W \ F, (W \ F ) ∩ (W \ G)) such that the associated
class [c] ∈ H1(W \ F, (W \ F ) ∩ (W \G)) is the image of [W ]F∩G by the sequence of
canonical maps

H2(W,W \ (F ∩G))→ H1(W \ (F ∩G))

= H1((W \ F ) ∪ (W \G))

→ H1((W \ F ) ∪ (W \G),W \G)

→ H1(W \ F, (W \ F ) ∩ (W \G)).

By construction, c is a relative Hadamard cycle for F with respect to G in W .
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W

GF

W

GF

Figure 2.3: On the left, in grey, the boundary of a representative of [W ]F∩G. On the right,
in grey, a piece of this boundary which is a relative Hadamard cycle for F with respect to
G in W .

With this definition at hand, we can now state the main result of this section.

Theorem 2.2.12. Let S1 and S2 be two convolvable proper closed subsets of C∗ such
that S1S2 6= C∗ and let us consider ω1 = f1dz (resp. ω2 = f2dz) with f1 ∈ O(C∗ \S1)
(resp. f2 ∈ O(C∗ \S2)). Fix a relatively compact open subset U of C∗ and an open
neighbourhood V of S1S2 in C∗. Then, the image of

[ω1] ? [ω2] ∈ Ω(C∗ \S1S2)/Ω(C∗) ' H1
S1S2

(C∗,ΩC∗)

in
Ω(U \ V )/Ω(U) ' H1

V ∩U(U,ΩC∗)

is the class of the form ω = fdz ∈ Ω(U \ V ) where

f(z) =

∫
c

f1(ζ)f2

(
z

ζ

)
dζ

ζ

and c is a relative Hadamard cycle for S1 with respect to US−1
2 in C∗ \(U \ V )S−1

2 .

Lemma 2.2.13. Let S1 and S2 be two convolvable closed subsets of C∗ and let W be
a fundamental system of compact neighbourhoods of 1 in C∗. Then

1. The set SW1 = WS1 (resp. SW2 = WS2, SW1 SW2 = W 2S1S2) is a closed neigh-
bourhood of S1 (resp. S2, S1S2) in C∗ for any W ∈ W.

2. The closed subsets SW1 et SW2 are convolvable in C∗ for any W ∈ W.

3. One has
⋂
W∈W S

W
1 = S1,

⋂
W∈W S

W
2 = S2 and

⋂
W∈W S

W
1 SW2 = S1S2.

4. In particular, if S1 and S2 are two convolvable proper closed subsets of C∗ such
that S1S2 6= C∗, if U is a relatively compact open subset of C∗ and if V is an
open neighbourhood of S1S2 in C∗, then there is W ∈ W such that SW1 and
SW2 are convolvable proper closed subsets of C∗ such that SW1 SW2 6= C∗ and
SW1 SW2 ∩ U ⊂ V .
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Proof. (1) This follows from the fact that FK is closed in C∗ if F (resp. K) is closed
(resp. compact) in C∗ and from the fact that zW is a neighbourhood of z for all z ∈ C
and all W ∈ W .
(2) This follows from the inclusion

SW1 ∩K(SW2 )−1 = WS1 ∩KW−1S−1
2 ⊂ W (S1 ∩KW−2S−1

2 )

which is satisfied for any compact subset K of C∗.
(3) This is clear since for any closed subset F of C∗ and any z 6∈ F there is W ∈ W
such that zW−1 ∩ F = ∅.
(4) By contradiction, assume that

SW1 SW2 ∩ U ∩ (C∗ \V ) 6= ∅

for all W ∈ W . Then, by compactness,⋂
W∈W

(SW1 SW2 ∩ U ∩ (C∗ \V )) = S1S2 ∩ U ∩ (C∗ \V ) 6= ∅,

but this contradicts the fact that S1S2 ∩ U ⊂ V .

Lemma 2.2.14. Let S be a proper closed subset of C∗ and let ω ∈ Ω(C∗ \S). Assume
that ω admits an infinitely differentiable extension to C∗ and denote by ω such an
extension. Then [ω], seen as an element of H1

S(C∗,ΩC∗), is the image of

[∂ω] ∈ H1(ΓS(C∗, C1,•
∞,C∗))

by the canonical morphism obtained by applying H1 to the composition in the derived
category of the canonical morphism

ΓS(C∗, C1,•
∞,C∗)→ RΓS(C∗, C1,•

∞,C∗)

and the inverse of the canonical isomorphism

RΓS(C∗,ΩC∗)
∼−→ RΓS(C∗, C1,•

∞,C∗).

Proof. It follows from the distinguished triangle

RΓS(C∗,ΩC∗)→ RΓ(C∗,ΩC∗)→ RΓ(C∗ \S,ΩC∗)
+1→

that RΓS(C∗,ΩC∗) is canonically isomorphic to the mapping cone M(ρS) of the re-
striction morphism

ρS : C1,•
∞,C∗(C

∗)→ C1,•
∞,C∗(C

∗ \S)

shifted by −1. We know that M(ρS)[−1] is a complex concentrated in degrees 0, 1
and 2 of the form

C1,0
∞,C∗(C

∗)→ C1,1
∞,C∗(C

∗)⊕ C1,0
∞,C∗(C

∗ \S)→ C1,1
∞,C∗(C

∗ \S)
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where the differentials in degree 0 and 1 are given by the matrices(
∂
−ρS

)
and

(
−ρS −∂

)
.

What we have to show is that (
∂ω
0

)
and

(
0
ω

)
are two 1-cycles of this complex which are in the same cohomology class. This is
clear since (

∂
−ρS

)
ω +

(
0
ω

)
=

(
∂ω
0

)
.

Proof of Theorem 2.2.12. Let U and V be as in the statement of the theorem. Thanks
to Lemma 2.2.13, we know that it is possible to find a closed neighbourhood S1 of S1

and a closed neighbourhood S2 of S2 in C∗ such that S1 and S2 are convolvable and

S1S2 ∩ U ⊂ V.

Let f
1
(resp. f

2
) be an infinitely differentiable function on C∗ which coincides with

f1 (resp. f2) on C∗ \S1 (resp. C∗ \S2) and set

ω1 = f
1
(z) dz and ω2 = f

2
(z) dz.

It follows from Lemma 2.2.14 that the image of

[ω1] ∈ Ω(C∗ \S1)/Ω(C∗) ' H1
S1

(C∗,ΩC∗)

by the canonical morphism

H1
S1

(C∗,ΩC∗)→ H1
S1

(C∗,ΩC∗)

is the same as the image of

[∂ω1] ∈ H1(ΓS1
(C∗, C(1,•)

∞,C∗))

by the canonical morphism

H1(ΓS1
(C∗, C(1,•)

∞,C∗))→ H1
S1

(C∗,ΩC∗)

considered in this lemma. A similar conclusion is true for the image of

[ω2] ∈ Ω(C∗ \S2)/Ω(C∗) ' H1
S2

(C∗,ΩC∗)

in H1
S2

(C∗,ΩC∗). Therefore, the image of

[ω1] ? [ω2] ∈ Ω(C∗ \S1S2)/Ω(C∗) ' H1
S1S2

(C∗,ΩC∗)
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in H1
S1S2

(C∗,ΩC∗) is the same as the image of [∂ω1 ? ∂ω2] by the canonical morphism

H1(ΓS1S2
(C∗, C(1,•)

∞,C∗))→ H1
S1S2

(C∗,ΩC∗).

Let us note p1, p2 : C∗×C∗ → C∗ the two canonical projections and µ the complex
multiplication. Consider the commutative diagram

C∗×C∗
φ //

µ
$$

C∗×C∗

p2zz

ψ
oo

C∗

where φ(z1, z2) = (z1, z1z2) and ψ(ζ, z) = (ζ, z/ζ). Since φ ◦ ψ = id = ψ ◦ φ, we have∫
µ

=

∫
p2

◦
∫
φ

=

∫
p2

◦ ψ∗.

Therefore,

∂ω1 ? ∂ω2 =

∫
µ

(∂ω1 � ∂ω2)

=

∫
p2

(ψ∗(p∗1∂ω1 ∧ p∗2∂ω2))

=

∫
p2

(p∗1∂ω1 ∧ h∗∂ω2)),

where h(ζ, z) = z/ζ. Since

∂ω1 =
∂f

1

∂z
(z)dz ∧ dz and ∂ω2 =

∂f
2

∂z
(z)dz ∧ dz,

we have

h∗∂ω2 =
∂f

2

∂z

(
z

ζ

)
d

(
z

ζ

)
∧ d
(
z

ζ

)
=
∂f

2

∂z

(
z

ζ

)
ζdz − zdζ

ζ
2 ∧ ζdz − zdζ

ζ2

and

p∗1∂ω1 ∧ h∗∂ω2 =
∂f

1

∂z
(ζ)

∂f
2

∂z

(
z

ζ

)
dζ

ζ
∧ dζ
ζ
∧ dz ∧ dz.

Therefore,

∂ω1 ? ∂ω2 =

(∫
C∗

∂f
1

∂z
(ζ)

∂f
2

∂z

(
z

ζ

)
dζ

ζ
∧ dζ
ζ

)
dz ∧ dz.
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Since f
1
coincides with f1 on C∗ \S1, one has

supp

(
ζ 7→

∂f
1

∂z
(ζ)

)
⊂ S1.

Similarly, one has

supp

(
ζ 7→

∂f
2

∂z

(
z

ζ

))
⊂ zS−1

2 .

Hence,

ζ 7→
∂f

1

∂z
(ζ)

∂f
2

∂z

(
z

ζ

)
is an infinitely differentiable function on C∗ supported by S1∩zS−1

2 which is a compact
subset of C∗.

Since U is a relatively compact open subset of C∗ and S1 and S2 are convolvable
closed subsets of C∗,

K = S1 ∩ US−1
2

is a compact subset of C∗. Let c be a singular infinitely differentiable 2-chain of C∗
such that

[c] ∈ H2(C∗,C∗ \K)

is the relative orientation class [C∗]K . Then, on U , one has

∂ω1 ? ∂ω2 =

(∫
c

∂f
1

∂z
(ζ)

∂f
2

∂z

(
z

ζ

)
dζ

ζ
∧ dζ
ζ

)
dz ∧ dz,

since the integrated form is supported by S1 ∩ zS−1
2 ⊂ K for any z ∈ U . Moreover,

the function f
2
is infinitely differentiable on C∗ and the chain c is supported by a

compact subset of C∗. Thus, the function

f : z 7→
∫
c

∂f
1

∂z
(ζ)f

2

(
z

ζ

)
dζ ∧ dζ

ζ

is infinitely differentiable on C∗ and

∂f

∂z
(z) =

∫
c

∂f
1

∂z
(ζ)

∂f
2

∂z

(
z

ζ

)
dζ

ζ
∧ dζ
ζ

Therefore, on U , one has
∂ω1 ? ∂ω2 = ∂ω

where ω = f(z)dz. Since supp(∂ω1 ? ∂ω2) ⊂ S1S2, the function f is holomorphic on
U \ S1S2 and it follows from what precedes that

([ω1] ? [ω2])|U = [ω|U ]
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in
Ω(U\S1S2)/Ω(U) ' H1

(S1S2)∩U(U,ΩC∗).

Let us now show how to compute [ω|U ] in Ω(U \ V )/Ω(U) by means of f1 and f2

alone. Since V is an open neighbourhood of S1S2,

S1 ∩ (U \ V )S−1
2 = ∅.

Therefore,
C∗ = (C∗ \S1) ∪

(
C∗ \

(
(U \ V )S−1

2

))
and, replacing if necessary c by a barycentric subdivision, we may assume that

c = c1 + c2

where
supp c1 ⊂ C∗ \S1 and supp c2 ⊂ C∗ \

(
(U \ V )S−1

2

)
.

Since supp
∂f

1

∂z
⊂ S1, it is then clear that

f(z) =

∫
c2

∂f
1

∂z
(ζ)f

2

(
z

ζ

)
dζ ∧ dζ

ζ
.

Moreover, for any z ∈ U \ V one has

C∗ \zS−1
2 ⊃ C∗ \

(
(U \ V )S−1

2

)
⊃ supp c2

and since the function ζ 7→ f
2
(z/ζ) is holomorphic on C∗ \zS−1

2 , it follows that

f(z) =

∫
c2

∂

∂ζ

(
f

1
(ζ)f

2

(
z

ζ

)
1

ζ

)
dζ ∧ dζ

=

∫
∂c2

f
1
(ζ)f

2

(
z

ζ

)
dζ

ζ
.

By construction,

supp(∂c) ⊂ C∗ \K = (C∗ \S1) ∪ (C∗ \US−1
2 ).

Replacing, if necessary, c by a one of its barycentric subdivisions, we may thus assume
that ∂c = c′1 + c′2 where supp c′1 ⊂ C∗ \S1 and supp c′2 ⊂ C∗ \US−1

2 . Since

∂c1 + ∂c2 = ∂c = c′1 + c′2,

there is a chain c3 such that

∂c2 − c′2 = c3 = c′1 − ∂c1.
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Since supp c′2 ⊂ C∗ \US−1
2 , the function

z 7→
∫
c′2

f
1
(ζ)f

2

(
z

ζ

)
dζ

ζ

is clearly holomorphic on U . Hence, the image of [ω|U ] in Ω(U\V )/Ω(U) is [g(z)dz]
where g is the holomorphic function on U \ V defined by setting

g(z) =

∫
c3

f
1
(ζ)f

2

(
z

ζ

)
dζ

ζ
.

Since

supp(∂c2 − c′2) ⊂
(
C∗ \

(
(U \ V )S−1

2

))
∪
(
C∗ \US−1

2

)
= C∗ \

(
(U \ V )S−1

2

)
and

supp(c′1 − ∂c1) ⊂ (C∗ \S1) ∪ (C∗ \S1) = C∗ \S1,

it is clear that
supp c3 ⊂ (C∗ \S1) ∩

(
C∗ \

(
(U \ V )S−1

2

))
.

Therefore, we have in fact

g(z) =

∫
c3

f1(ζ)f2

(
z

ζ

)
dζ

ζ

for any z ∈ U \ V . Moreover, since ∂c3 = ∂c′1 = −∂c′2, it is clear that

supp ∂c3 ⊂ (C∗ \S1) ∩ (C∗ \US−1
2 ).

So,
c3 ∈ Z1

(
(C∗ \S1) ∩

(
C∗ \

(
(U \ V )S−1

2

))
, (C∗ \S1) ∩ (C∗ \US−1

2 )
)

and it follows by construction that it is a relative Hadamard cycle for S1 with respect
to US−1

2 in C∗ \(U \ V )S−1
2 (apply Remark 2.2.11 with F = S1, G = US−1

2 and
W = C∗ \

(
(U \ V )S−1

2

)
). Thus, c3 is also a relative Hadamard cycle for S1 with

respect to US−1
2 in C∗ \(U \ V )S−1

2 .

To conclude, it remains to show that if c′3 is another relative Hadamard cycle for
S1 with respect to US−1

2 in C∗ \(U \ V )S−1
2 and if

ǧ(z) =

∫
c′3

f1(ζ)f2

(
z

ζ

)
dζ

ζ

for any z ∈ U \ V , then [g(z)dz] = [ǧ(z)dz] in Ω(U\V )/Ω(U). For such a c′3, we have
[c3] = [c′3] in

H1

(
(C∗ \S1) ∩ (C∗ \

(
(U \ V )S−1

2 )
)
, (C∗ \S1) ∩ (C∗ \US−1

2 )
)
.
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Therefore, c′3 = c3 + c4 + ∂c5 where c4 is a 1-chain of (C∗ \S1)∩ (C∗ \US−1
2 ) and c5 is

a 2-chain of (C∗ \S1) ∩ (C∗ \(U \ V )S−1
2 ). It follows that the function

ǧ : z 7→
∫
c′3

f1(ζ)f2

(
z

ζ

)
dζ

ζ

is a holomorphic function on U \ V and that

ǧ(z) = g(z) +

∫
c4

f1(ζ)f2

(
z

ζ

)
dζ

ζ

on U \ V . Since

z 7→
∫
c4

f1(ζ)f2

(
z

ζ

)
dζ

ζ

is clearly holomorphic on U , we have [g(z)dz] = [ǧ(z)dz] in Ω(U\V )/Ω(U) as ex-
pected.

2.2.3 Strongly convolvable sets

It is natural to ask whether one can compute the holomorphic cohomological multi-
plicative convolution on C∗ thanks to a global formula, by adding extra-conditions
on S1 and S2. Recalling Definition 2.1.11, we are led to introduce the following one :

Definition 2.2.15. Let S1 and S2 be two convolvable proper closed subsets of C∗
such that S1S2 6= C∗. These two closed sets are said to be strongly convolvable if,
furthermore, S1 and S2 are star-eligible, that is to say, if S1 × S2 ⊂ M. (Here (.)
denotes the closure in P .)

Remark 2.2.16. One can find convolvable proper closed subsets of C∗ which are not
strongly convolvable. For example, consider 1

S1 =

{
1

(2m+ 1)!
: m ∈ N

}
and S2 = {(2n)! : n ∈ N}.

It is clear that 0 ∈ S1 and∞ ∈ S2. Moreover, these sets are multiplicatively convolv-
able since

card
(
S1 ∩

K

S2

)
<∞

for any compact subset K of C∗ . Let us prove it for

K = AR = {z ∈ C : R−1 ≤ |z| ≤ R}

with R > 0. (It is actually enough since any compact K of C∗ can be included in
such an annulus.)

1This example has originally been proposed by Daniel Fischer in https://math.stackexchange.
com/questions/1651882/closed-subsets-of-mathbbc-proper-for-multiplication.

https://math.stackexchange.com/questions/1651882/closed-subsets-of-mathbbc-proper-for-multiplication
https://math.stackexchange.com/questions/1651882/closed-subsets-of-mathbbc-proper-for-multiplication
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1) If 1
R
≤ (2n)!

(2m+1)!
, then m < n or (2m + 1) ≤ R. Indeed, if R < 2m + 1 and n ≤ m,

then (2n)! ≤ (2m)!. By multiplying the first and the third inequalities, one gets
(2n)!R < (2m+ 1)! and thus 1

R
> (2n)!

(2m+1)!
.

2) If (2n)!
(2m+1)!

≤ R then m ≥ n or 2n ≤ R. Indeed, if R < 2n and m < n then
m + 1

2
≤ n − 1

2
and hence 2m + 1 ≤ 2n − 1. Therefore (2m + 1)! ≤ (2n − 1)!

and, multiplying by the first inequality, we get R(2m + 1)! < (2n)! or, equivalently,
R < (2n)!

(2m+1)!
.

3) Now, let us assume that m > R−1
2

. Using 1), we see that (2n)!
(2m+1)!

∈ AR only if
n > m. But in this case, n > m+ 1

2
and thus 2n > 2m+ 1 > R. Using 2), this shows

that (2n)!
(2m+1)!

/∈ AR and leads to a contradiction. Hence, (2n)!
(2m+1)!

∈ AR necessarily
implies that m ≤ R−1

2
. This proves that

card
(
S1 ∩

AR
S2

)
= card

{
m ∈ N : ∃n ∈ N,

1

R
≤ (2n)!

(2m+ 1)!
≤ R

}
≤ R + 1

2
.

We shall now highlight the link with the generalized Hadamard product. Recall
Definitions 2.1.12 and 2.1.13.
Proposition 2.2.17. Let S1 and S2 be two strongly convolvable proper closed subsets
of C∗ and let us consider ω1 = f1dz (resp. ω2 = f2dz) with f1 ∈ O(C∗ \S1) (resp.
f2 ∈ O(C∗ \S2)). For all z ∈ C∗ \S1S2, let cz be a generalized Hadamard cycle for S1

in P \(zS−1

2 ∪ ({0,∞}\S1)). Then

[ω1] ? [ω2] = [fdz] ∈ Ω(C∗ \S1S2)/Ω(C∗),
where

f(z) = −
∫
cz

f1(ζ)f2

(
z

ζ

)
dζ

ζ

for all z ∈ C∗ \S1S2.

Proof. Let U be a relatively compact open subset of C∗ and V an open neighbourhood
of S1S2 in C∗. Let c be a relative Hadamard cycle for S1 with respect to US−1

2 in
C∗ \(U\V )S−1

2 . Then, by a similar argument as in the proof of Lemma 2.1.14, it is
clear that the image of [cz] by the sequence of canonical maps

H1(P \(S1 ∪ zS
−1

2 ∪ {0} ∪ {∞})) = H1(C∗ \(S1 ∪ zS−1
2 ))

��
BMH1(C∗ \(S1 ∪ zS−1

2 ))

��
BMH1((C∗ \S1) ∩ (C∗ \(U \ V )S−1

2 ))

��

H1((C∗ \S1) ∩ (C∗ \(U \ V )S−1
2 ), (C∗ \S1) ∩ (C∗ \US−1

2 ))
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is [−c] for all z ∈ U\V. Hence∫
c

f1(ζ)f2

(
z

ζ

)
dζ

ζ
= −

∫
cz

f1(ζ)f2

(
z

ζ

)
dζ

ζ
, ∀z ∈ U\V .

Since this argument is valid for all U and all V , the conclusion follows from Theo-
rem 2.2.12.

In this context, let us set (f1 ? f2)(z) = 1
2iπ

∫
cz
f1(ζ)f2

(
z
ζ

)
dζ
ζ
. If f1 ∈ O(P \S1)

and f2 ∈ O(P \S2), this really coincides with the generalized Hadamard product.

Remark 2.2.18. Let S1 and S2 be two strongly convolvable proper closed subsets
of C∗ . Let us make an identification fdz ↔ −2iπf between holomorphic 1-forms
and holomorphic functions. Then, by the previous proposition, the holomorphic
cohomological convolution morphism

H1
S1

(C∗,ΩC∗)⊗H1
S2

(C∗,ΩC∗)→ H1
S1S2

(C∗,ΩC∗)

can be seen as a bilinear map

O(C∗ \S1)/O(C∗)×O(C∗ \S2)/O(C∗)→ O(C∗ \S1S2)/O(C∗),

which can be computed by

[f1] ? [f2] = [f1 ? f2].

Example 2.2.19. Let S = C∗ \D(0, s) and T = C∗ \D(0, t) with s > 0, t > 0 and
let

f ∈ O(C∗ \S) = O(D(0, s)\{0}) and g ∈ O(C∗ \T ) = O(D(0, t)\{0})

be two holomorphic functions. Then, S and T are strongly convolvable proper closed
subsets of C∗ and we can write f(z) =

∑+∞
n=−∞ anz

n, g(z) =
∑+∞

n=−∞ bnz
n. Since

the polar part of f (resp. g) is holomorphic on C∗, we have [f ] =
[∑+∞

n=0 anz
n
]
in

O(D(0, s)\{0})/O(C∗) and [g] =
[∑+∞

n=0 bnz
n
]
in O(D(0, t)\{0})/O(C∗). Using the

preceding remark, we see that the holomorphic cohomological convolution [f ] ? [g] is
given by

[f ? g] =

[
+∞∑
n=0

anbnz
n

]
,

since the generalized Hadamard product coincides with the usual one in this case.

Let us now state a trivial proposition :

Proposition 2.2.20. Let S1 and S2 be two convolvable closed subsets of C∗ and
S ′1 ⊂ S1, S ′2 ⊂ S2 be two closed subsets. Then, S ′1 and S ′2 are convolvable and the
diagram
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H1
S1

(C∗,ΩC∗)⊗H1
S2

(C∗,ΩC∗) // H1
S1S2

(C∗,ΩC∗)

H1
S′1

(C∗,ΩC∗)⊗H1
S′2

(C∗,ΩC∗)

OO

// H1
S′1S

′
2
(C∗,ΩC∗),

OO

where the horizontal arrows are given by the holomorphic cohomological convolution
morphisms, is commutative.

Example 2.2.19 combined with Proposition 2.2.20 allows to compute several other
examples.

Example 2.2.21. Let S1 = S2 = (−∞,−1]. The principal determination of the
function z 7→ ln(1 + z) is holomorphic on C∗ \S1. Moreover, S1 and S2 are strongly
convolvable and thus, there is g ∈ O(C∗ \[1,+∞)) such that

[ln(1 + z)] ? [ln(1 + z)] = [g].

Using the previous results, one has

([ln(1 + z)] ? [ln(1 + z)])|D(0,1) = [ln(1 + z)|D(0,1)] ? [ln(1 + z)|D(0,1)]

=

[
+∞∑
n=1

(−1)n+1

n
zn

]
?

[
+∞∑
n=1

(−1)n+1

n
zn

]

=

[
∞∑
n=1

zn

n2

]
= [Li2(z)]|D(0,1),

where Li2 is the principal dilogarithm function, holomorphic on O(C∗ \[1,+∞)).
Hence, there is h ∈ O(C∗) such that

g|D(0,1) − Li2|D(0,1) = h.

By the uniqueness of the analytic continuation, one deduces that g − Li2 = h on
C∗ \[1,+∞) and, thus, that

[ln(1 + z)] ? [ln(1 + z)] = [Li2(z)]

in O(C∗ \S1S2)/O(C∗).

2.2.4 Additive convolution on C
Of course, the content of Section 2.2.2 can be adapted to study the additive holo-
morphic convolution on (C,+), i.e. the map

H1
S1

(C,ΩC)⊗H1
S2

(C,ΩC)→ H1
S1+S2

(C,ΩC),
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where S1 and S2 are additively convolvable proper closed subsets of C such that
S1 + S2 6= C . This map can be interpreted as a bilinear map

Ω(C \S1)/Ω(C)× Ω(C \S1)/Ω(C)→ Ω(C \(S1 + S2))/Ω(C).

Theorem 2.2.12 becomes

Theorem 2.2.22. Let S1 and S2 be two additively convolvable proper closed subsets
of C such that S1 + S2 6= C and let us consider ω1 = f1dz (resp. ω2 = f2dz) with
f1 ∈ O(C \S1) (resp. f2 ∈ O(C \S2)). Fix a relatively compact open subset U of C
and an open neighbourhood V of S1 + S2 in C. Then, the image of

[ω1] ? [ω2] ∈ Ω(C \(S1 + S2))/Ω(C) ' H1
S1+S2

(C,ΩC)

in
H1
V ∩U(U,ΩC)

is the class of the form ω = fdz ∈ Ω(U \ V ) where

f(z) =

∫
c

f1(ζ)f2(z − ζ)dζ

and c is a relative Hadamard cycle for S1 with respect to U −S2 in C \((U \V )−S2).

Section 2.2.3 can also be adapted in a trivial way. Indeed, it would be natural to
say that two proper closed subsets S1 and S2 of C are strongly additively convolvable
if (∞,∞) /∈ S1 × S2. However, this would simply imply that one of the two closed
sets is a compact subset of C. In that case, Proposition 2.2.17 becomes

Proposition 2.2.23. Let S1 be a non-empty compact subset of C and S2 be a proper
closed subset of C. Consider ω1 = f1dz (resp. ω2 = f2dz) with f1 ∈ O(C \S1) (resp.
f2 ∈ O(C \S2)). For all z ∈ C \(S1 + S2), let cz be a cycle in C \(S1 ∪ (z − S2)) such
that

Ind(cz, ζ) =

{
1 if ζ ∈ S1

0 if ζ ∈ z − S2.

Then

[ω1] ? [ω2] = [fdz] ∈ Ω(C \(S1 + S2))/Ω(C),

where
f(z) =

∫
cz

f1(ζ)f2(z − ζ)dζ

for all z ∈ C \(S1 + S2).

Additive convolution (e.g. of distributions) is in general interesting because of its
compatibility with the Laplace transform. It seems thus reasonable to ask whether
there is a kind of "contour-integration-type" Laplace transform, which would be
compatible with the additive holomorphic cohomological convolution. We introduce
such a transform in the next chapter.



Chapter 3

Analytic functionals with convex
carrier

This chapter invokes some classical concepts and results of functional analysis. Con-
cerning this matter, we refer to standard books, e.g. [39], [48], [50] and [101].

3.1 The compact case

3.1.1 Polya’s theorem

The Polya-Ehrenpreis-Martineau theorem, or simply Polya’s theorem, states that
three particular functional spaces, built from a convex compact subset K of C, are
topologically isomorphic through some integral transforms, including a "contour-
integration-type" Laplace transform. The original pieces of this construction can
be found in [75] and [89] (see also [3], [11] and [17]). A complete and detailed proof of
the theorem can be found in the first chapter of [6]. In this section, we shall mainly
rely on this last reference.

Definition 3.1.1. An analytic functional T on an open subset U of C is an element
of O′(U), i.e. a continuous linear map

T : O(U)→ C,

where O(U) has its usual Fréchet topology.

Let K be a compact subset of C. The space of analytic functionals carried by K is
defined by

O′(K) =

(
lim−→
U⊃K
O(U)

)′
.

Definition 3.1.2. For any compact subset K of C, we set

O0(C \K) = {f ∈ O(C \K) : lim
z→∞

f(z) = 0}.
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Let us identify C and its dual in such a way that 〈z, w〉 = zw.

Definition 3.1.3. For any non-empty convex compact subset K of C, we set

Exp(K) = {g ∈ O(C) : ∀ε > 0, sup
w∈C
|g(w)|e−hK(w)−ε|w| <∞}.

These three spaces have a canonical structure of Fréchet space (see section 1.4
of [6]). We can now define some transforms between them. We fix once for all a
non-empty convex compact subset K of C .

Definition 3.1.4. Let T ∈ O′(K). The Fourier-Borel transform of T , noted F(T ),
is defined by

F(T ) : w ∈ C 7→ 〈Tζ , ewζ〉.

Proposition 3.1.5. For any T ∈ O′(K), the Fourier-Borel transform F(T ) is an
element of Exp(K). Moreover, the map

F : O′(K)→ Exp(K)

is linear and continuous.

Definition 3.1.6. Let T ∈ O′(K). The Cauchy transform of T , noted C(T ), is defined
by

C(T ) : z ∈ C \K 7→
〈
Tζ ,

1

z − ζ

〉
.

Proposition 3.1.7. For any T ∈ O′(K), the Cauchy transform C(T ) is an element
of O0(C \K). Moreover, the map

C : O′(K)→ O0(C \K)

is linear and continuous.

Definition 3.1.8. Let r > 0 such that K ⊂ D(0, r). If f ∈ O0(C \K), the Polya
transform of f , noted P(f), is defined by

P(f) : w 7→ 1

2iπ

∫
C(0,r)+

ezwf(z)dz.

Obviously, this integral does not depend on the chosen r.

Proposition 3.1.9. For any f ∈ O0(C \K), the Polya transform P(f) is an element
of Exp(K). Moreover, the map

P : O0(C \K)→ Exp(K)

is linear and continuous.
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Theorem 3.1.10 (Polya-Ehrenpreis-Martineau).

O0(C \K)
P // Exp(K)

O′(K)

C

ee

F

99

is a commutative diagram of topological isomorphisms.

Without recalling the proof in details, let us nonetheless explain how to build the
inverse of P , which is often called the Borel transform.

Recall Theorem 1.5.4 and Remark 1.5.16. Let g ∈ Exp(K). For any ξ ∈ C such
that |ξ| = 1, we set

B ξ(g) : z 7→
∫
ξ[0,+∞)

e−zwg(w)dw.

This function is well-defined and holomorphic on Uξ = {z ∈ C : <(zξ) > hK(ξ)}. If
ξ 6= ξ′, it is not difficult to see that B ξ(g)(z) = B ξ′(g)(z) for all z ∈ Uξ ∩Uξ′ . Hence,
by gluing the B ξ(g), we obtain a function B(g) which is holomorphic on⋃

{ξ∈C:|ξ|=1}

{z ∈ C : <(zξ) > hK(ξ)} = C \K.

Proposition 3.1.11. For any g ∈ Exp(K), the Borel transform B(g) is an element
of O0(C \K). Moreover, the map

B : Exp(K)→ O0(C \K)

is linear, continuous and the inverse of P .

In chapter 5, we shall see how the bijectivity of P , which is actually the only crucial
point of Polya’s theorem, can be obtained thanks to cohomological arguments.

3.1.2 Associated convolution

Convolution of analytic functionals with compact carrier can be defined by mimicking
the definition of convolution of Schwartz distributions. This notably leads to the
theory of convolution equations (see e.g. [8], [6] and [67]). In this section, we simply
recall the definition of this convolution product as well as its compatibility with the
Fourier-Borel transform (see [6], section 1.5 for more details).

Let us fix two non-empty compact subsets K1 and K2 of C as well as two
compactly-carried analytic functionals T1 ∈ O′(K1) and T2 ∈ O′(K2).

Proposition 3.1.12. Let ϕ ∈ O(U) where U is an open neighbourhood of K1 +K2.
Then, the application

ζ1 7→ 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉
is well-defined and holomorphic on an open neighbourhood of K1.



46 CHAPTER 3. ANALYTIC FUNCTIONALS WITH CONVEX CARRIER

Definition 3.1.13. The convolution product of T1 and T2 is defined by

〈T1 ? T2, ϕ〉 = 〈(T1)ζ1 , 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉〉

for all ϕ ∈ O(K1 +K2).

Proposition 3.1.14. For any T1 ∈ O′(K1) and T2 ∈ O′(K2), the convolution product
T1 ? T2 is an element of O′(K1 +K2). Moreover, the convolution map

? : O′(K1)×O′(K2)→ O′(K1 +K2)

is bilinear and continuous on each factor.

The link with the Fourier-Borel transform is of course immediate.

Proposition 3.1.15. For any T1 ∈ O′(K1) and T2 ∈ O′(K2), one has

F(T1 ? T2) = F(T1)F(T2).

Proof. Let w ∈ C . One has

F(T1 ? T2)(w) = 〈(T1 ? T2)ζ , e
wζ〉

= 〈(T1)ζ1 , 〈(T2)ζ2 , e
w(ζ1+ζ2)〉〉

= 〈(T1)ζ1 , e
wζ1〉〈(T2)ζ2 , e

wζ2〉
= F(T1)(w)F(T2)(w),

hence the conclusion.

Let us now assume that K1 and K2 are convex. In this case, Theorem 3.1.10
is applicable and one sees that the Fourier-Borel transform is an isomorphism which
interchanges the convolution product of analytic functionals and the standard product
of functions. Similarly, thanks to the Cauchy transform C, the convolution can be
carried to a bilinear map

? : O0(C \K1)×O0(C \K2)→ O0(C \(K1 +K2)). (3.1)

We shall study (3.1) in the next section to prove that the convolution of analytic
functionals is another avatar of the holomorphic cohomological convolution.

3.1.3 Link with the holomorphic cohomological convolution

Proposition 3.1.16. Let f1 ∈ O0(C \K1) and f2 ∈ O0(C \K2). Let us choose a
cycle cz in C \(K1 ∪ (z −K2)), for all z ∈ C \(K1 +K2), which verifies

Ind(cz, ζ) =

{
1 if ζ ∈ K1

0 if ζ ∈ z −K2.

Then
(f1 ? f2)(z) =

1

2iπ

∫
cz

f1(ζ)f2(z − ζ)dζ

for all z ∈ C \(K1 +K2).
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Proof. Let f1 ∈ O0(C \K1) and f2 ∈ O0(C \K2).

1) It is clear that such cycles cz exist for all z ∈ C \(K1 +K2) and that

z 7→ 1

2iπ

∫
cz

f1(ζ)f2(z − ζ)dζ

is holomorphic on C \(K1 + K2). This can be proved by adapting Lemma 2.1.14 to
the additive case and then by differentiating under the integral sign.

2) One has

f1 ? f2 = C(C−1(f1) ? C−1(f2))

= B(F(C−1(f1) ? C−1(f2)))

= B(F(C−1(f1))F(C−1(f1)))

= B(P(f1)P(f2)).

3) Let r1, r2 > 0 be such that K1 ⊂ D(0, r1), K2 ⊂ D(0, r2). Let z ∈ C \(K1 +K2) be
such that <(z) > r1 + r2. Then by the definitions, one has

(f1 ? f2)(z) = B(P(f1)P(f2))(z)

=

(
1

2iπ

)2 ∫ +∞

0

e−zw
(∫

C(0,r1)+
ez1wf1(z1)dz1

)(∫
C(0,r2)+

ez2wf2(z2)dz2

)
dw

=

(
1

2iπ

)2 ∫
C(0,r1)+

∫
C(0,r2)+

(∫ +∞

0

e(z1+z2−z)wdw

)
f1(z1)f2(z2)dz2dz1

=

(
1

2iπ

)2 ∫
C(0,r1)+

f1(z1)

(∫
C(0,r2)+

f2(z2)

z − (z1 + z2)
dz2

)
dz1

=
1

2iπ

∫
C(0,r1)+

f1(z1)f2(z − z1)dz1.

Here, the last equality follows from the residue theorem. Indeed, it is clear that
z − z1 ∈ C \D(0, r2) for all z1 ∈ C(0, r1) and thus∫

C(0,r2)+

f2(z2)

z − (z1 + z2)
dz2

= −2iπ

(
Resz2=z−z1

(
f2(z2)

z − (z1 + z2)

)
− Resz2=∞

(
f2(z2)

z − (z1 + z2)

))
= −2iπ

(
lim

z2→z−z1
(z2 − (z − z1)

f2(z2)

z − (z1 + z2)
+ 0

)
= 2iπf2(z − z1),

the second equality following from limz2→∞ f2(z2) = 0.
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4) For all z such that <z > r1 + r2, it is clear that

1

2iπ

∫
cz

f1(ζ)f2(z − ζ)dζ =
1

2iπ

∫
C(0,r1)+

f1(ζ)f2(z − ζ)dζ

because cz and C(0, r1)+ share the same winding number conditions with respect to
K1 and z−K2 (recall Proposition 1.3.7). Since f1?f2 is holomorphic on C \(K1+K2),
the uniqueness of the holomorphic extension allows to conclude.

Remark 3.1.17. The equality P(f1 ? f2) = P(f1)P(f2) can be seen as the contour-
integration analogue of the usual compatibility theorem between the Laplace trans-
form and the convolution product of functions/distributions.

Let K be a non-empty compact subset of C. Thanks to Liouville’s theorem, the
map

iK : O0(C \K)→ Ω(C \K)/Ω(C)

defined by iK(f) =
[

1
2iπ
fdz

]
is injective. Moreover, if fdz ∈ Ω(C \K) and if r > 0

is such that K ⊂ D(0, r), then f(z) =
∑+∞

m=−∞ amz
m for all z ∈ C \D(0, r) and

g(z) =
∑+∞

m=0 amz
m is holomorphic on C. Thus

[fdz] = [(f − g)dz]

in Ω(C \K)/Ω(C) and in addition limz→∞(f(z) − g(z)) = 0. This proves that iK is
also surjective.

Proposition 3.1.18. Let K1 and K2 be two non-empty convex compact subsets of
C. Then the following diagram is commutative :

H1
K1

(C,ΩC)×H1
K2

(C,ΩC) // H1
K1+K2

(C,ΩC)

Ω(C \K1)/Ω(C)× Ω(C \K2)/Ω(C) //

o
OO

Ω(C \(K1 +K2))/Ω(C)

o
OO

O0(C \K1)×O0(C \K2)

o iK1
×iK2

OO

// O0(C \(K1 +K2))

o iK1+K2

OO

O′(K1)×O′(K2) //

o C ×C

OO

O′(K1 +K2)

o C

OO

Here, the two top (resp. bottom) horizontal arrows are given by the additive holomor-
phic cohomological convolution (resp. convolution of analytic functionals).

Proof. Immediate in view of Propositions 2.2.23 and 3.1.16.
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3.2 The non-compact case

The difficulty dramatically increases if one wants to develop a non-compact analogue
of this last result. In order to set a complete theory in the unbounded case, we first
need to extend the Polya-Ehrenpreis-Martineau theorem for non-compact convex sets.
This has already been done by J.W. De Roever in [99] by using L2-estimations and the
fundamental principle of Ehrenpreis-Palamodov. Later, adapting the considerations
developed by M. Morimoto in [80], A. Méril exposed a more explicit and less technical
proof of the unbounded case in [77]. We shall present this version in the next section.

3.2.1 Méril’s theorem

Recall Theorem 1.5.13. Let us fix a proper non-compact closed convex subset S of
C which does not contain any line. Hence S∞ is a proper closed convex salient cone
and (S∗∞)◦ 6= ∅. The convex S is in duality with (hS, C), where C◦ = (S∗∞)◦. We also
fix a reference point ξ0 ∈ C◦.

Definition 3.2.1. Let ε, ε′ > 0. We note Qε,ε′(S) the Banach space of holomorphic
functions ϕ ∈ O(S◦ε ) such that

||ϕ||ε,ε′ = sup
ζ∈S◦ε
|e−ε′ξ0ζϕ(ζ)| <∞.

Proposition 3.2.2. Let ε > ε1 > 0. The complex derivation operator

ϕ 7→ ϕ′ =
∂ϕ

∂ζ

is a continuous application from Qε,ε′(S) to Qε1,ε′(S).

Proposition 3.2.3. If ε > ε1 > 0 and ε′ > ε′1 > 0, the canonical restriction

rε,ε
′

ε1,ε′1
: Qε,ε′(S)→ Qε1,ε′1

(S)

is continuous and compact. We note Q(S) the topological inductive limit of this
inductive system of Banach spaces. It is a D.F.S. space.

Definition 3.2.4. The strong dual Q′(S) of Q(S) is called the space of analytic
functionals carried by S.

Remark 3.2.5. In virtue of [66], Theorem 12, Q′(S) is canonically topologically
isomorphic to lim←−

ε,ε′→0

Q′ε,ε′(S).

Definition 3.2.6. Let ε′ > 0. We note R(C \S, ε′) the subspace of O(C \S) built
with functions f such that

qε
′

ε,r(f) = sup
z∈Sr\S◦ε

|eε′ξ0zf(z)| <∞
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for all r > ε > 0. We also note R(C, ε′) the space of entire functions f such that

pε
′

ε (f) = sup
z∈Sε

|eε′ξ0zf(z)| <∞

for all ε > 0.

Proposition 3.2.7. For all ε′ > 0, the locally convex spaces (R(C \S, ε′), (qε′ε,r)r>ε>0)

and (R(C, ε′), (pε′ε )ε>0) are Fréchet spaces. Moreover, R(C, ε′) is a closed subset of
R(C \S, ε′) and the quotient

R(C \S, ε′)/R(C, ε′)

is also a Fréchet space. If ε′ > ε′1, there is a canonical linear and continuous injection

iε′,ε′1 : R(C \S, ε′1)/R(C, ε′1)→ R(C \S, ε′)/R(C, ε′).

The system defined by (iε′,ε′1)ε′>ε′1>0 is projective.

Definition 3.2.8. We set

HS(C, ε′) = R(C \S, ε′)/R(C, ε′)

and
HS(C) = lim←−

ε′→0

HS(C, ε′).

Remark 3.2.9. An element F ∈ HS(C) can be seen as a family ([fε′ ])ε′>0 where
fε′ ∈ R(C \S, ε′) for all ε′ > 0 and where fε′ − fε′1 ∈ R(C, ε′) for all ε′ > ε′1 > 0.

Definition 3.2.10. We set

Exp(S) = {g ∈ O((S∗∞)◦) : ∀ε, ε′ > 0, sup
w∈S?

∞+ε′ξ0

|g(w)|e−hS(w)−ε|w| <∞}.

Without giving the details, let us just say that the natural topology on Exp(S) is
nuclear and Fréchet.

Remark 3.2.11. The spaces Q(S), Q′(S), HS(C) and Exp(S) do not depend on the
reference point ξ0 ∈ C◦ (see [78]).

We can now define, as in the compact case, the transforms F , C,P and B.

Proposition 3.2.12. Let z ∈ C \S. For all ε′ > 0, the function

ζ 7→ eε
′ξ0(ζ−z)

z − ζ

is an element of Qε,ε′(S) for ε > 0 small enough. Let T ∈ Q′(S). The function

Cε′(T ) : z ∈ C \S 7→
〈
Tζ ,

eε
′ξ0(ζ−z)

z − ζ

〉
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is an element of R(C \S, ε′) for all ε′ > 0. Moreover Cε′(T ) − Cε′1(T ) ∈ R(C, ε′) for
all ε′ > ε′1 > 0. Therefore, this family determines a unique element C(T ) in HS(C).
The map

C : Q′(S)→HS(C)

is linear and continuous.

Proposition 3.2.13. Let w ∈ (S∗∞)◦. The function ζ 7→ ewζ is an element of Q(S).
Let T ∈ Q′(S). The function

w ∈ (S∗∞)◦ 7→ 〈Tζ , ewζ〉

is an element of Exp(S) that we shall denote by F(T ). The map

F : Q′(S) 7→ Exp(S)

is linear and continuous.

Recall that the boundary of a plane convex set (which is not a strip) is always a
rectifiable curve.

Proposition 3.2.14. Let F = ([fε′ ])ε′>0 ∈HS(C). For all w ∈ (S∗∞)◦, the integral∫
∂S+

ε

ezwfε′(z)dz

is well-defined and independent of ε, ε′. The function

w ∈ (S∗∞)◦ 7→ 1

2iπ

∫
∂S+

ε

ezwfε′(z)dz

is an element of Exp(S) that we shall denote by P(F ). The map

P : HS(C)→ Exp(S)

is linear and continuous.

Theorem 3.2.15 (Méril).

HS(C)
P // Exp(S)

Q′(S)

C

dd

F

::

is a commutative diagram of topological isomorphisms.
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Let g ∈ Exp(S) and ε′ > 0. For any ξ ∈ C such that |ξ| = 1, we set

B ε′,ξ(g) : z 7→
∫
ε′ξ0+ξ[0,+∞)

e−zwg(w)dw.

This function is well-defined and holomorphic on Uξ = {z ∈ C : <(zξ) > hS(ξ)}. If
ξ 6= ξ′, one can see that B ε′,ξ(g)(z) = B ε′,ξ′(g)(z) for all z ∈ Uξ ∩ Uξ′ . Hence, by
gluing the B ε′,ξ(g), we obtain a function B ε′(g) which is holomorphic on⋃

{ξ∈C:|ξ|=1}

{z ∈ C : <(zξ) > hS(ξ)} = C \S.

Proposition 3.2.16. For any g ∈ Exp(S) and ε′ > 0, the function B ε′(g) is an
element of R(C \S, ε′). Moreover B ε′(T ) − B ε′1(T ) ∈ R(C, ε′) for all ε′ > ε′1 > 0.
Therefore, this family determines a unique element B(g) in HS(C). The map

B : Exp(S)→HS(C)

is linear, continuous and the inverse of P .

As for the compact case, we shall see in chapter 5 that the bijectivity of P can be
derived from a cohomological point of view.

3.2.2 Convolution on compatible convex sets

In our knowledge, the general definition of the convolution product between analytic
functionals with non-compact convex carrier has never been discussed in the liter-
ature. However, a particular case has been treated in [78] and has already led to
interesting applications. In order to define a general convolution map

? : Q′(S1)×Q′(S2)→ Q′(S1 + S2),

it is pretty natural to introduce the following definition :

Definition 3.2.17. Let S1 (resp. S2) be a proper non-compact closed convex subset
of C which contains no lines, in duality with (hS1,C1) (resp. (hS2 , C2)). These two
sets are compatible if S1 +S2 is a proper non-compact closed convex subset of C which
contains no lines, in duality with (hS1 + hS2 , C1 ∩ C2).

Remark 3.2.18. Note that the only thing to check for the compatibility of S1 and
S2 is that S1 + S2 is still a closed subset of C which contains no lines. Indeed, the
sum of two non-compact convex subsets of C is obviously still a non-compact convex
subset of C. Moreover, by Proposition 1.5.7, hS1+S2 = hS1 +hS2 . Hence, S1 +S2 must
be in duality with (hS1 + hS2 , C1 ∩ C2).

From now on, we fix two compatible dualities S1 ↔ (hS1 , C1) and S2 ↔ (hS2 , C2).
In order to perform computations, we have to fix reference points ξ1 ∈ C◦1 , ξ2 ∈ C◦2
and ξ1,2 ∈ C◦1 ∩ C◦2 . Thanks to Remark 3.2.11, we shall actually fix ξ1,2 ∈ C◦1 ∩ C◦2
and then choose ξ1 = ξ2 = ξ1,2.
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Proposition 3.2.19. Let ε, ε′ > 0 and let ϕ ∈ Q3ε,ε′(S1 + S2). Then, for any
ζ1 ∈ (S1)◦ε,

ζ2 ∈ (S2)◦ε 7→ ϕ(ζ1 + ζ2)

is an element of Qε,ε′(S2).

Proof. Since ϕ is holomorphic on (S1 + S2)◦3ε ⊃ (S1)◦ε + (S2)◦ε, it is clear that the
function ζ2 7→ ϕ(ζ1 + ζ2) is holomorphic on (S2)◦ε for any fixed ζ1 ∈ (S1)◦ε. Moreover,
we know that

sup
ζ∈(S1+S2)◦3ε

|e−ε′ξ1,2ζϕ(ζ)| <∞.

Hence,

sup
ζ2∈(S2)◦ε

|e−ε′ξ2ζ2ϕ(ζ1 + ζ2)| = sup
ζ2∈(S2)◦ε

|eε′ξ2ζ1e−ε′ξ2(ζ1+ζ2)ϕ(ζ1 + ζ2)|

= |eε′ξ1,2ζ1| sup
ζ2∈(S2)◦ε

|e−ε′ξ1,2(ζ1+ζ2)ϕ(ζ1 + ζ2)|

≤ |eε′ξ1,2ζ1| sup
ζ∈(S1+S2)◦3ε

|e−ε′ξ1,2ζϕ(ζ)|

is finite for any ζ1 ∈ (S1)◦ε and one gets the conclusion.

Proposition 3.2.20. Let ε, ε′ > 0, T2 ∈ Q′ε,ε′(S2) and let ϕ ∈ Q3ε,ε′(S1 + S2). The
map

ζ1 ∈ (S1)◦ε 7→ 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉

is an element of Qε,ε′(S1).

Proof. Let us first prove that ζ1 7→ 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉 is holomorphic on (S1)◦ε. We
will prove that

lim
h→0
h6=0

1

h
(〈(T2)ζ2 , ϕ(ζ1 + h+ ζ2)〉 − 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉) = 〈(T2)ζ2 , ϕ

′(ζ1 + ζ2)〉.

Remark that the right hand side exists, thanks to Proposition 3.2.2, since all the
derivatives of ϕ are in Q2ε,ε′(S1 + S2). We have

ϕ(ζ1 + h+ ζ2)− ϕ(ζ1 + ζ2))

h
− ϕ′(ζ1 + ζ2) = h

∫ 1

0

(1− t)ϕ′′(ζ1 + th+ ζ2)dt

for small enough h. Therefore, thanks to the continuity of T2, there is a positive
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constant A such that∣∣∣∣1h(〈(T2)ζ2 , ϕ(ζ1 + h+ ζ2)〉 − 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉)− 〈(T2)ζ2 , ϕ
′(z1 + z2)〉

∣∣∣∣
= |h|

∣∣∣∣〈(T2)ζ2 ,

∫ 1

0

(1− t)ϕ′′(ζ1 + th+ ζ2)dt

〉∣∣∣∣
≤ A|h| sup

ζ2∈(S2)◦ε

∣∣∣∣e−ε′ξ2ζ2 ∫ 1

0

(1− t)ϕ′′(ζ1 + th+ ζ2)dt

∣∣∣∣
≤ 2A|h| sup

ζ2∈(S2)◦ε

∣∣∣∣∣e−ε′ξ2ζ2 sup
t∈[0,1]

|ϕ′′(ζ1 + th+ ζ2)|

∣∣∣∣∣
≤ 2A|h| sup

t∈[0,1]

|eε′ξ1,2(ζ1+th)| sup
ζ2∈(S2)◦ε

∣∣∣∣∣ sup
t∈[0,1]

|e−ε′ξ1,2(ζ1+th+ζ2)ϕ′′(ζ1 + th+ ζ2)|

∣∣∣∣∣
≤ 2A|h| sup

t∈[0,1]

|eε′ξ1,2(ζ1+th)| sup
ζ∈(S1+S2)◦2ε

|e−ε′ξ1,2ζϕ′′(ζ)|

for small enough h. The conclusion follows from the fact that

lim
h→0
h6=0

|h| sup
t∈[0,1]

|eε′ξ1,2(ζ1+th)| = 0

and that ϕ′′ ∈ Q2ε,ε′(S1 + S2).

Secondly, we have to prove that

sup
ζ1∈(S1)◦ε

|e−ε′ξ1ζ1〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉| <∞.

As above, there is A > 0 such that

sup
ζ1∈(S1)◦ε

|e−ε′ξ1ζ1〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉| ≤ A sup
ζ1∈(S1)◦ε ,ζ2∈(S2)◦ε

|e−ε′ξ1ζ1e−ε′ξ2ζ2ϕ(ζ1 + ζ2)|

= A sup
ζ1∈(S1)◦ε ,ζ2∈(S2)◦ε

|e−ε′ξ1,2(ζ1+ζ2)ϕ(ζ1 + ζ2)|

≤ A sup
ζ∈(S1+S2)◦3ε

|e−ε′ξ1,2ζϕ(ζ)|,

hence the conclusion.

Proposition 3.2.21. Let ε, ε′ > 0 and T1 ∈ Q′ε,ε′(S1), T2 ∈ Q′ε,ε′(S2). Then, the
application

T1 ? T2 : ϕ ∈ Q3ε,ε′(S1 + S2) 7→ 〈(T1)ζ1 , 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉〉

is linear and continuous. It is thus an element of Q′3ε,ε′(S1 + S2).



3.2. THE NON-COMPACT CASE 55

Proof. Clearly, T1 ? T2 is linear. By continuity of T1 and T2, there are constants
B,A > 0 such that

|〈T1 ? T2, ϕ〉| = |〈(T1)ζ1 , 〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉〉|
≤ B sup

ζ1∈(S1)◦ε

|e−ε′ξ1ζ1〈(T2)ζ2 , ϕ(ζ1 + ζ2)〉|

≤ BA sup
ζ1∈(S1)◦ε ,ζ2∈(S2)◦ε

|e−ε′ξ1,2(ζ1+ζ2)ϕ(ζ1 + ζ2)|

≤ BA sup
ζ∈(S1+S2)◦3ε

|e−ε′ξ1,2ζϕ(ζ)|

for any ϕ ∈ Q3ε,ε′(S1 + S2). This proves that T1 ? T2 is continuous.

Definition 3.2.22. The convolution product map

? : Q′(S1)×Q′(S2)→ Q′(S1 + S2)

is defined as the projective limit on ε, ε′ → 0 of the map

? : Q′ε,ε′(S1)×Q′ε,ε′(S1)→ Q′3ε,ε′(S1 + S2),

introduced in the previous proposition.

Proposition 3.2.23. The multiplication of functions induces a map

Exp(S1)× Exp(S2)→ Exp(S1 + S2)

which is continuous on each factor.

Proof. Let g1 ∈ Exp(S1) and g2 ∈ Exp(S2). Since g1 ∈ O(C◦1) and g2 ∈ O(C◦2), it is
clear that g1g2 ∈ O((C1 ∩ C2)◦). Moreover, for all ε, ε′ > 0 we have

sup
w∈ε′ξ1+C◦1

|g1(w)|e−hS1
(w)−ε|w| <∞

and
sup

w∈ε′ξ2+C◦2

|g2(w)|e−hS2
(w)−ε|w| <∞.

Now let ε, ε′ > 0. Since

ε′ξ1,2 + (C1 ∩ C2)◦ = (ε′ξ1 + C◦1) ∩ (ε′ξ2 + C◦2),

we have

sup
w∈ε′ξ1,2+(C1∩C2)◦

|(g1g2)(w)|e−(hS1
+hS2

)(w)−ε|w|

≤

(
sup

w∈ε′ξ1+C◦1

|g1(w)|e−hS1
(w)− ε

2
|w|

)(
sup

w∈ε′ξ2+C◦2

|g2(w)|e−hS2
(w)− ε

2
|w|

)
<∞,

which proves the first part of the assertion. This inequality also shows the continuity
on each factor.
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Proposition 3.2.24. For any T1 ∈ Q′(S1) and T2 ∈ Q′(S2), one has

F(T1 ? T2) = F(T1)F(T2).

Proof. Similar to the proof of Proposition 3.1.15.

Corollary 3.2.25. The convolution product map of analytic functionals with non-
compact convex carrier is commutative and continuous on each factor.

Proof. It is enough to combine the two previous propositions with the fact that the
Fourier-Borel transform is a topological isomorphism.

Remark 3.2.26. The reader, who might be interested, could also define in a similar
manner a "mixed" convolution between a compactly carried analytic functional and
a non-compactly carried one.

3.2.3 Compatibility and convolvability

If one wants to make a link between the holomorphic cohomological convolution and
the convolution of non-compactly carried analytic functionals, it is pretty natural to
investigate the links between the convolvability condition (see Definition 2.2.1 in the
case of (C,+)) and the compatibility condition (see Definition 3.2.17). Actually, we
shall see that these conditions are equivalent when considering proper non-compact
closed convex subsets of C which contain no lines.

Proposition 3.2.27. Two non-empty closed subsets S1 and S2 of C are additively
convolvable if and only if

(S1)∞ ∩ −(S2)∞ = {0}.

Proof. The sets S1 and S2 are additively convolvable if and only if

S1 ∩ (D(0, r)− S2) = S1 ∩ −(S2)r

is compact for large enough r > 0. (We can thus assume that the intersection is not
empty.) Hence, using Proposition 1.5.10 and Example 1.5.12, S1∩−(S2)r is compact
if and only if

{0} = (S1 ∩ −(S2)r)∞ = (S1)∞ ∩ −((S2)r)∞ = (S1)∞ ∩ −(S2)∞.

Lemma 3.2.28. If S1 and S2 are two additively convolvable proper closed convex
subsets which contain no lines, then S1 + S2 is proper, closed and does not contain
any line.

Proof. Since S1 and S2 are convolvable, S1 + S2 is closed and one can use Proposi-
tion 3.2.27 and Theorem 1.5.11 to get the equality

(S1 + S2)∞ = (S1)∞ + (S2)∞.



3.2. THE NON-COMPACT CASE 57

First, remark that (S1)∞ and (S2)∞ are salient cones since they are convex cones
which do not contain any line. Now, one can proceed by contradiction. If S1 + S2

were containing a line, then so do (S1 + S2)∞ = (S1)∞+ (S2)∞. This means that one
can find 0 6= w ∈ C such that w and −w are elements of (S1)∞ + (S2)∞. Hence,
w = w1 + w2 and −w = w′1 + w′2 with w1, w

′
1 ∈ (S1)∞ and w2, w

′
2 ∈ (S2)∞. This

implies that w1 + w′1 = −(w2 + w′2). This complex number is non-zero, otherwise we
would have

w1 = −w′1 ∈ (S1)∞ ∩ −(S1)∞ and w2 = −w′2 ∈ (S2)∞ ∩ −(S2)∞

and thus w1 = w′1 = w2 = w′2 = w = 0 since (S1)∞ and (S2)∞ are salient. So
we have a non-zero complex number, namely w1 + w′1 = −(w2 + w′2), which is in
(S1)∞ ∩ −(S2)∞. This violates the convolvability condition and implies that S1 + S2

cannot contain any line and is, of course, proper.

Proposition 3.2.29. Let S1 and S2 be two proper non-compact closed convex subsets
of C which contain no lines. Then S1 and S2 are additively convolvable if and only
if they are compatible.

Proof. The condition is necessary. It immediately follows from Lemma 3.2.28.

The condition is sufficient. Since S1 and S2 are non-empty, closed and convex, remark
that the inclusion

(S1)∞ + (S2)∞ ⊂ (S1 + S2)∞

is true. (For example, use Proposition 1.5.10, item 7.) Now assume that S1 and
S2 are not convolvable. By Proposition 3.2.27, one can find 0 6= w ∈ C such that
w ∈ (S1)∞ and −w ∈ (S2)∞. In particular, since these cones are pointed, w and −w
are elements of (S1)∞ + (S2)∞, thus of (S1 + S2)∞. This implies that (S1 + S2)∞
contains a full line, since it is a pointed cone, and thus that S1 + S2 also contains a
line. Hence S1 and S2 cannot be compatible.

3.2.4 Main conjecture

Let us consider two compatible (or equivalently convolvable) proper non-compact
closed convex subsets S1 and S2 of C which contain no lines. On the one hand, the
additive holomorphic cohomological convolution provides a bilinear map

H1
S1

(C,ΩC)×H1
S2

(C,ΩC)→ H1
S1+S2

(C,ΩC)

which can be seen as a map

Ω(C \S1)/Ω(C)× Ω(C \S2)/Ω(C)→ Ω(C \(S1 + S2))/Ω(C).

On the other hand, the convolution of analytic functionals with non-compact convex
carrier

Q′(S1)×Q′(S2)→ Q′(S1 + S2)
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can be seen, through the Cauchy transform, as a bilinear map

HS1(C)×HS2(C)→HS1+S2(C).

For all ε′ > 0 and all proper non-compact closed convex subset S of C which contains
no lines, we consider the map

iS,ε′ : HS(C, ε′)→ Ω(C \S)/Ω(C)

defined by iS,ε′([f ]) =
[

1
2iπ
fdz

]
. We set

iS = lim←−
ε′→0

iS,ε′ : HS(C)→ Ω(C \S)/Ω(C).

Conjecture 3.2.30. The following diagram is commutative :

H1
S1

(C,ΩC)×H1
S2

(C,ΩC) // H1
S1+S2

(C,ΩC)

Ω(C \S1)/Ω(C)× Ω(C \S2)/Ω(C) //

o
OO

Ω(C \(S1 + S2))/Ω(C)

o
OO

HS1(C)×HS2(C)

iS1
×iS2

OO

//HS1+S2(C)

iS1+S2

OO

Q′(S1)×Q′(S2) //

o C ×C

OO

Q′(S1 + S2)

o C

OO

Here the two top (resp. bottom) horizontal arrows are given by the additive holomor-
phic cohomological convolution (resp. convolution of analytic functionals).

It is not surprising that this conjecture seems pretty hard to prove, since the
holomorphic cohomological convolution cannot, in general, be made explicit by a
nice global formula in the non-compact case. In the final chapter, we shall see that
the conjecture is true if one adds some subanalytic conditions on S1 and S2.



Chapter 4

Enhanced subanalytic sheaves

In this chapter, we introduce all the tools and some key properties needed to study
the enhanced Laplace transform in the final chapter.

4.1 Review on D-modules

For the classical theory of D-modules, we refer to [10], [53] and [103]. In this section
we fix some notations that will occur afterwards.

Let X be a complex manifold and DX its sheaf (of rings) of linear partial differen-
tial operators with holomorphic coefficients. Since these rings are not commutative,
we make a distinction between the category of left DX-modules, noted Mod(DX),
and the category of right DX-modules, noted Mod(Dop

X ). Recall that OX (resp. ΩX)
has a canonical structure of left (resp. right) DX-module. The sheaf ΩX admits a
⊗OX

-inverse, namely Ω⊗−1
X := HomOX

(ΩX ,OX). This can be used to prove that

Mod(DX) 3M 7→ ΩX ⊗OX
M∈ Mod(Dop

X )

is an equivalence of categories. Hence, it is enough to study Mod(DX).

One denotes by Db
hol(DX) (resp. Db

q-good(DX)) the full subcategory of Db(DX)
whose objects have holonomic (resp. quasi-good) cohomologies.

As usual, there are functors

RHomDX
(−,−) : Db(DX)op ×Db(DX)→ D+(CX),

−
L
⊗DX

− : Db(Dop
X )×Db(DX)→ Db(CX),

as well as an internal tensor product

−
D
⊗− : D−(DX)×D−(DX)→ D−(DX)

defined by endowingM⊗OX
N with a structure of left DX-module, for all left DX-

modulesM and N .
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Let f : X → Y be a morphism of complex manifolds. There is a transfer bimodule
DX→Y defined by

DX→Y = OX ⊗f−1OY
f−1DY .

It has a canonical structure of (DX , f
−1DY )-bimodule and a canonical section 1X→Y

defined by 1X ⊗ f−1(1Y ). One can also define the reverse transfer bimodule as

DY←X = ΩX ⊗OX
DX→Y ⊗f−1OY

f−1Ω⊗−1
Y ,

which is a (f−1DY ,DX)-bimodule. Thanks to these transfer bimodules, one can define
three external operations Df∗,Df

∗ and Df! on left DX-modules by setting

1) Df∗M = Rf∗(DY←X
L
⊗DX

M) forM∈ Db(DX),

2) Df ∗N = DX→Y
L
⊗f−1DY

f−1N for N ∈ Db(DY ),

3) Df!M = Rf!(DY←X
L
⊗DX

M) forM∈ Db(DX).

Let Y ⊂ X be a complex analytic hypersurface. One denotes by OX(∗Y ) the
sheaf of holomorphic functions with poles in Y . For any ϕ ∈ OX(∗Y ), one sets

DXe
ϕ = DX/{P : Peϕ = 0 on U} and E ϕ

U |X = DXe
ϕ

D
⊗OX(∗Y ),

where U = X\Y. Note that E ϕ
U |X has a canonical section given by the equivalence

class of the operator P = 1. This section is noted eϕ.

4.2 Subanalytic sheaves

4.2.1 Subanalytic sets

Subanalytic sets have been introduced by Gabrielov ([33]) and Hironaka ([45]). We
refer to [9] for a good exposition. In this thesis, we will only need the properties
verified by subanalytic sets, hence we will not recall the complete technical definitions.

Let N be a real analytic manifold. The family of subanalytic subsets of N is the
smallest family satisfying the following properties :

1. The intersection of two subanalytic subsets is subanalytic.

2. The union of a locally finite family of subanalytic subsets is subanalytic.

3. The complement of a subanalytic subset is subanalytic.

4. For any real analytic manifold M and any proper morphism f : M → N , the
image of M is subanalytic.
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It can be shown that the interior, the closure and the boundary of a subanalytic
subset is subanalytic. If f : M → N is a morphism of real analytic manifolds, then
f−1(S) is a subanalytic subset of M if S is a subanalytic subset of N . If S ′ is a
subanalytic subset of M such that f |S′ is proper, then f(S ′) is a subanalytic subset
of N .

The subanalytic subsets of Rn verify a crucial property, called "the Łojasiewicz
inequality" (see [68] and [73]).

Theorem 4.2.1. Let U and V be two subanalytic open subsets of Rn and K be a
compact subset of Rn . Then, there are a positive integer N and a real constant C > 0
such that

dist(x,K\(U ∪ V ))N ≤ C(dist(x,K\U) + dist(x,K\V ))

for all x ∈ K.

4.2.2 Subanalytic sheaves

Subanalytic sets allow to define a Grothendieck topology on a real analytic manifold
and thus give rise to a site and an associated topos (see [1] for the original definition
or [59]). In this thesis, we will avoid this general background and simply use the
point of view of [54]. More details can be found in [58] and [90].

Let M be a real analytic manifold. We write for short OpM (resp. Opsub,c
M ) the

category of open subsets of M (resp. the category of open subanalytic subsets of M
which are relatively compact).

Definition 4.2.2. A subanalytic presheaf is a contravariant functor

F : Opsub,c
M → Mod(C).

A subanalytic sheaf is a subanalytic presheaf F which satisfies the following finite
gluing condition :

1. F (∅) = 0.

2. For any U, V ∈ Opsub,c
M , the sequence

0→ F (U ∪ V )→ F (U)⊕ F (V )→ F (U ∩ V )

is exact. (Here, the first arrow is given by the maps F (U ∪ V ) → F (U) and
F (U ∪ V ) → F (V ) and the second arrow by the difference between the maps
F (U)→ F (U ∩ V ) and F (V )→ F (U ∩ V ).)

The category of subanalytic sheaves on M is noted Mod(Csub
M ).

Proposition 4.2.3. The category Mod(Csub
M ) is abelian, has enough injectives and

admits small inductive limits.
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There are more subanalytic sheaves than usual sheaves given that Opsub,c
M is a full

subcategory of OpM and that the coverings are only finite. Hence, we get a canonical
inclusion

ιM : Mod(CM)→ Mod(Csub
M ).

It is a fully faithful left exact functor. One has

Γ(U, F ) := F (U) = HomMod(Csub
M )(ιM(CU), F )

for any U ∈ Opsub,c
M .

Remark 4.2.4. We simply denote by lim−→ the inductive limit functor in Mod(Csub
M )

but some authors prefer to use the notation “ lim−→ ” to highlight the fact that, in
general, ιM ◦ lim−→ 6= lim−→◦ ιM . (See also [58] where the more general phenomenon of
ind-sheaves is explained.)

One can build a left adjoint αM to ιM by setting

Γ(U, αM(F )) = lim←−
V ∈Opsub,c

M ,V⊂⊂U

F (V )

for any U ∈ OpM and any F ∈ Mod(Csub
M ). It is an exact functor.

One can also build a left adjoint βM to αM by defining βM(F ) as the sheafification
of the subanalytic presheaf

Opsub,c
M 3 U 7→ F (U)

for any F ∈ Mod(CM). It is an exact functor.

On a complex manifold X, using ring actions (see [54], Section 3.7) one can easily
define the category of left (resp right) subanalytic DX-modules, noted Mod(D sub

X )
(resp. Mod(D sub,op

X )). The functor βX naturally appears in a lot of morphisms in-
volving subanalytic DX-modules. In order to lighten the notations, we shall adopt
the little abuse of notation of [60] and not always write this functor.

4.2.3 Grothendieck operations

The Grothendieck operations can easily be adapted to the context of subanalytic
sheaves. Let f : M → N be a morphism of real analytic manifolds. The four
operations

Ihom(−,−) : Mod(Csub
M )op ×Mod(Csub

M )→ Mod(Csub
M ),

−⊗− : Mod(Csub
M )×Mod(Csub

M )→ Mod(Csub
M ),

f∗ : Mod(Csub
M )→ Mod(Csub

N ),

f−1 : Mod(Csub
N )→ Mod(Csub

M )



4.2. SUBANALYTIC SHEAVES 63

are defined as for usual sheaves. The functor f−1 is exact. There is also a stacky hom
functor defined by Hom = αM ◦Ihom. One has

Γ(U,Hom(F1, F2)) = HomMod(Csub
U )(F1|U , F2|U)

for any U ∈ OpM and any F1, F2 ∈ Mod(Csub
M ).

If Z is a subanalytic locally closed subset of M , one sets

FZ = F ⊗ ιM(CZ) and I ΓZ(F ) = Ihom(ιM(CZ), F )

as well as ΓZ(F ) = Hom(ιM(CZ), F ) for any F ∈ Mod(Csub
M ). In this subanalytic

setting, one should pay attention to the abbreviation ΓZ(−, F ) that will stands for
Γ(−,I ΓZ(F )) and not for Γ(−,ΓZ(F )).

These operations verify all the usual properties of Grothendieck operations (e.g.
adjunctions).

Definition 4.2.5. Let f : M → N be a morphism of real analytic manifolds. One
defines a functor f!! : Mod(Csub

M )→ Mod(Csub
N ) by setting

f!!(F ) = lim−→
K

f∗(I ΓK(F ))

for any F ∈ Mod(Csub
M ), where K ranges through the family of subanalytic compact

subsets of M .

Remark 4.2.6. We changed a little bit the usual notation to emphasize the fact
that ιN ◦ f! 6= f!! ◦ ιM in general. The category of subanalytic sheaves is actually
equivalent to the category of ind-constructible sheaves (see. [58], section 7.1) and the
previous morphisms are the restrictions of the more general morphisms defined for
ind-sheaves. That’s why we chose such notations.

Since Mod(Csub
M ) is an abelian category, one can consider the derived categories

D(Csub
M ) := D(Mod(Csub

M )),D+(Csub
M ),D−(Csub

M ) and Db(Csub
M ). The Grothendieck op-

erations admit derived functors, namely −
L
⊗−,RIhom(−,−),Rf∗ and Rf!!. By the

Brown representability theorem (see e.g. Corollary 14.3.7 of [59]), the functor Rf!!

admits a right adjoint f !.

It is convenient to introduce a family of specific subanalytic sheaves, which play
an equivalent role as flabby sheaves in classical sheaf theory.

Definition 4.2.7. Let M be a real analytic manifold. A subanalytic sheaf F on
M is quasi-injective if the restriction map Γ(V, F ) → Γ(U, F ) is surjective for any
U, V ∈ Opsub,c

M such that U ⊂ V.

Proposition 4.2.8 ([90], Corollary 1.5.6, Proposition 1.5.10 and Proposition 1.5.11).
The family of quasi-injective subanalytic sheaves is injective for f∗, f!! and I ΓZ(−).

We let the reader adapt some other classical properties (e.g. Mayer-Vietoris,
excision) to the subanalytic case.
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4.3 Tempered distributions

4.3.1 Several definitions

Tempered distributions constitute an important example of quasi-injective subana-
lytic sheaf. Several definitions are possible but we shall mainly use the one introduced
by M. Kashiwara in [52] (see also [58] for more details).

Definition 4.3.1. Let M be a real analytic manifold and U an open subset of M .
One sets

Dbt
M(U) = {u ∈ DbM(U) : ∃v ∈ DbM(M), v|U = u}

and call it the C-vector space of tempered distributions on U.

Remark 4.3.2. This definition can be made more explicit. Let U be a relatively
compact subset of Rn. Then u ∈ Dbt

M(U) if and only if there are positive integers
m,N and a constant C > 0 such that

|〈u, ϕ〉| ≤ C
∑
|α|≤m

sup
x∈U

(
dist(x, ∂U)−N |Dαϕ(x)|

)
for all test function ϕ on U . (See Lemma 3.3 in [52].)

Remark 4.3.3. Let us denote by Sn the real n-dimensional sphere. In [106, p. 238],
it is explained that the classical space S ′(Rn) can be seen as the space of distributions
on Rn which can be extended to Sn. In other words, one has

S ′(Rn) = Dbt
Sn(Rn).

Hence, we see that Kashiwara’s definition is a good extension of the historical defi-
nition of L. Schwartz.

Remark 4.3.4. There is a trivial embedding Dbt
M ↪→ ιM(DbM) of subanalytic

sheaves.

One could also need tempered functions instead of distributions.

Definition 4.3.5. Let M be a real analytic manifold and U an open subset of M .
One says that f ∈ C∞,M(U) has polynomial growth at x0 ∈ M if it satisfies the
following condition : for a local coordinate system around x0, there are a sufficiently
small compact neighbourhood K of x0 and a positive integer N such that

sup
x∈K∩U

(dist(x,K\U))N |f(x)| <∞.

One says that f is tempered if f as well as all its derivatives have polynomial growth
at all points ofM . One denotes by Ct

∞,M(U) the C-vector space of tempered functions
on U .
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One can remark that this condition is non-trivial only on the boundary of U .
Thanks to Theorem 4.2.1, we get

Proposition 4.3.6. The subanalytic presheaves

Opsub,c
M 3 U 7→ Ct

∞,M(U),Dbt
M(U)

are subanalytic sheaves. Moreover, by definition Dbt
M is quasi-injective.

One obviously has a monomorphism Ct
∞,M → Dbt

M of subanalytic sheaves.

We can easily adapt the previous definitions to consider the subanalytic sheaf of
tempered differential r-forms (resp. tempered distributional r-forms), noted Ct,r

∞,M
(resp. Dbt,r

M ) for all r ∈ Z. On a complex manifold X, these subanalytic sheaves
admit a bi-type decomposition

Ct,r
∞,X '

⊕
p+q=r

Ct,p,q
∞,X and Dbt,r

X '
⊕
p+q=r

Dbt,p,q
X .

Definition 4.3.7. LetX be a complex manifold of complex dimension dX and p ∈ Z .
One defines the complex of tempered holomorphic p-forms Ωt,p

X ∈ Db(Csub
X ) by the

Dolbeault complex

0→ Dbt,p,0
X

∂̄→ Dbt,p,1
X → · · · → Dbt,p,dX

X → 0

or equivalently by the Dolbeault complex

0→ Ct,p,0
∞,X

∂̄→ Ct,p,1
∞,X → · · · → C

t,p,dX
∞,X → 0.

One sets for short Ot
X = Ωt,0

X and Ωt
X = Ωt,dX

X .

Proposition 4.3.8. If dX = 1, then Ot
X is concentrated in degree 0.

4.3.2 Integration

Let us now adapt the usual distributional operations of section 1.4 to the tempered
case.

Lemma 4.3.9 ([56], Proposition 4.3). Let M (resp. N) be a real analytic manifold
of real dimension dM (resp. dN) and let f : M → N be a real analytic map. Then,
the integration of distributions along the fibers of f induces a morphism of complexes∫

f

: f!!Dbt,•+dM
M → Dbt,•+dN

N . (4.1)
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Proposition 4.3.10 ([56], Theorem 5.7). Let f : X → Y be a holomorphic map
between complex manifolds of complex dimension dX and dY . The integration of
distributions along the fibers of f induces a morphism of double complexes∫

f

: f!!Dbt,•+dX ,•+dX
X → Dbt,•+dY ,•+dY

Y (4.2)

and thus a morphism ∫
f

: Rf!!Ω
t,p+dX
X [dX ]→ Ωt,p+dY

Y [dY ] (4.3)

in Db(Csub
Y ), for each p ∈ Z .

Proposition 4.3.11 ([58], Lemma 7.4.4 and Lemma 7.4.5). Let f : X → Y be
a holomorphic map between complex manifolds of complex dimension dX and dY .
There is a natural isomorphism

Ωt
X

L
⊗DX

DX→Y [dX ]
∼−→ f !Ωt

Y [dY ] (4.4)

in Db(Csub
X ). Its adjoint morphism

Rf!!(Ω
t
X

L
⊗DX

DX→Y )[dX ]→ Ωt
Y [dY ]

induces, thanks to the canonical section 1X→Y of DX→Y , a morphism

Rf!!Ω
t
X [dX ]→ Ωt

Y [dY ],

which is equivalent to (4.3) when p = 0.

Remark 4.3.12. The morphism (4.2) is of course easily defined when X is compact,
which will always be the case in the further applications. Indeed, by definition

Γ(V, f!!Dbt,p+dX ,q+dX
X ) = lim−→

K

Γ(f−1(V ),I ΓK Dbt,p+dX ,q+dX
X )

= Γ(f−1(V ),Dbt,p+dX ,q+dX
X ),

where V ∈ Opsub,c
Y and K ranges through the family of subanalytic compact subsets

of X. If u ∈ Γ(f−1(V ),Dbt,p+dX ,q+dX
X ), then it can be extended to a distributional

form u on X. By compactness of X, the distributional form
∫
f
u is well-defined on

Y and is an extension of
∫
f
u. Hence

∫
f
u is tempered.

4.3.3 Pullback

Lemma 4.3.13 ([52], Proposition 3.9). Let M (resp. N) be a real analytic manifold
of real dimension dM (resp. dN) and let f : M → N be a submersive real analytic
map. Then, the pullback of distributions by f induces a morphism of complexes

f ∗ : f−1Dbt •
N → Db

t,•
M . (4.5)
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Proposition 4.3.14. Let f : X → Y be a submersive holomorphic map between
complex manifolds. The pullback of distributions by f induces a morphism of double
complexes

f ∗ : f−1Dbt,•,•
Y → Dbt,•,•

X (4.6)

and thus a morphism
f ∗ : f−1Ωt,p

Y → Ωt,p
X (4.7)

in Db(Csub
X ), for each p ∈ Z .

Proposition 4.3.15 ([56], Theorem 4.5, Theorem 5.8 and [58], Lemma 7.4.9). Let
f : X → Y be a holomorphic map between complex manifolds. There is a natural
morphism

DX→Y
L
⊗f−1DY

f−1Ot
Y → Ot

X (4.8)

in Db(Csub
X ). The canonical section 1X→Y of DX→Y induces a morphism

f−1Ot
Y → Ot

X ,

which is equivalent to (4.7) when p = 0, if f is submersive.

4.4 Bordered spaces

4.4.1 General definition

Bordered spaces have been introduced in [19]. Let us first recall some general defi-
nitions. By good topological space, we mean a topological space which is Hausdorff,
locally compact, countable at infinity and with finite flabby dimension.

Definition 4.4.1. A bordered space is a couple M∞ = (M, M̂), where M̂ is a good
topological space and M an open subset of M̂.

If M∞ = (M, M̂) and N∞ = (N, N̂) are two bordered spaces and if f : M → N is
a continuous map, we denote by Γf ⊂ M ×N the graph of f and by Γf the closure
of Γf in M̂ × N̂ .

A morphism of bordered spaces f : M∞ → N∞ is a continuous map f : M → N
such that the canonical projection Γf → M̂ is proper. The composition of two
morphisms is the composition of the underlying continuous maps.

Remark 4.4.2. 1. Any good topological space M can be seen as a particular
bordered space by considering the couple (M,M). We shall simply write M
instead of (M,M). Hence, there are natural morphisms

M → (M, M̂)→ M̂.
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2. If N̂ is compact, then any continuous map f : M → N induces a morphism of
bordered spaces.

3. If f : M → N can be extended to a continuous map f̂ : M̂ → N̂ , then it
induces a morphism of bordered spaces.

4. In general, if f : M∞ → N∞ is a morphism of bordered spaces, the continuous
map f : M → N does not admit such an extension f̂ . However, one can always
reduce to that situation by considering

(M, M̂)
q1←− (Γf ,Γf )

q2→ (N, N̂),

where the first projection q1 : Γf →M gives rise to an isomorphism of bordered
spaces and where the second projection q2 : Γf → N extends to a continuous
map q̂2 : Γf → N̂ .

5. If M∞ = (M, M̂) and N∞ = (N, N̂) are two bordered spaces, the product
M∞ ×N∞ = (M ×N, M̂ × N̂) is obviously a bordered space.

Definition 4.4.3. A morphism of bordered spaces f : (M, M̂) → (N, N̂) is semi-
proper if q̂2 : Γf → N̂ is proper.

4.4.2 Subanalytic sheaves on subanalytic bordered spaces

Sections 4.2.2 and 4.2.3 can easily be adapted to the bordered case. However, we shall
need to consider spaces like R = R∪{−∞,+∞} which are not real analytic manifolds.
Hence, we have to introduce the more general notion of subanalytic spaces. We refer
to [54] for the whole content of this section.

Definition 4.4.4. LetM,N be real analytic manifolds, S a closed subanalytic subset
of M and f : S → N a continuous map. We say that f is subanalytic if its graph is a
subanalytic subset of M ×N. One denotes by A R

S the sheaf of R-valued subanalytic
continuous map on S.

A subanalytic space (M,A R
M), or simplyM , is a R-ringed space locally isomorphic

to (S,A R
S ) for some closed subanalytic subset S of a real analytic manifold.

Definition 4.4.5. A subanalytic bordered space is a bordered space (M, M̂) where
M̂ is a good subanalytic space and M a subanalytic open subset of M̂.

A morphism f : (M, M̂) → (N, N̂) of bordered spaces is a morphism of subana-
lytic bordered spaces if its graph Γf is a subanalytic subset of M̂ × N̂ .

Let M∞ = (M, M̂) be a subanalytic bordered space. One denotes by Opsub,c
M∞

the
full subcategory of OpM consisting of open subsets ofM which are relatively compact
and subanalytic in M̂.
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Definition 4.4.6. A subanalytic presheaf on M∞ is a contravariant functor

F : Opsub,c
M∞
→ Mod(C).

A subanalytic sheaf on M∞ is a subanalytic presheaf F on M∞ which satisfies the
following finite gluing condition :

1. F (∅) = 0.

2. For any U, V ∈ Opsub,c
M∞

, the sequence

0→ F (U ∪ V )→ F (U)⊕ F (V )→ F (U ∩ V )

is exact.

The category of subanalytic sheaves on M∞ is noted Mod(Csub
M∞). We write D(Csub

M∞),
D+(Csub

M∞),D−(Csub
M∞) and Db(Csub

M∞) the associated derived categories.

Remark 4.4.7. It can be shown that the canonical map

Mod(Csub
M̂

)/Mod(Csub
M̂\M)→ Mod(Csub

M∞)

is an isomorphism. (The same result also holds for the bounded derived category.)
Here, the quotient is given by the direct image i∗ : Mod(Csub

M̂\M)→ Mod(Csub
M̂

), where

i : M̂\M ↪→ M̂ is the inclusion. Note also that

Mod(CM̂)/Mod(CM̂\M)
∼−→ Mod(CM).

Hence, going to the quotient, one gets canonical functors

ιM : Mod(CM)→ Mod(Csub
M∞) and αM : Mod(Csub

M∞)→ Mod(CM).

Of course, the Grothendieck operations − ⊗ −,Ihom, f∗, f−1 and f!! are well-
defined for subanalytic sheaves on subanalytic bordered spaces. For example, if

f : M∞ = (M, M̂)→ N∞ = (N, N̂)

is a morphism of subanalytic bordered spaces and if F ∈ Mod(Csub
M∞), then

(f∗F )(V ) = HomMod(Csub
M∞ )(ιM(Cf−1(V )), F )

for all V ∈ Opsub,c
N∞

. (Note that f−1(V ) is not necessarily an element of Opsub,c
M∞

.)

These operations verify all the classical properties of Grothendieck operations
and, as usual, Rf!! admits a right adjoint, noted f !.

Remark 4.4.8. If f : M∞ → N∞ is semi-proper, then ιN ◦ f! = f!! ◦ ιM .
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4.4.3 D-modules on complex bordered spaces

The notion of complex bordered space is defined in section 4.3 of [60].

Definition 4.4.9. A complex bordered space X∞ = (X, X̂) is a bordered space where
X̂ is a complex manifold and X̂\X is a complex analytic subset of X̂.

A morphism f : (X, X̂) → (Y, Ŷ ) of bordered spaces is a morphism of complex
bordered spaces if f : X → Y is holomorphic, if the canonical projection Γf → X̂ is
proper and if Γf is a complex analytic subset of X̂ × Ŷ .

If j : X∞ → X̂ denotes the canonical inclusion of complex bordered spaces, we
set OX∞ = j−1(OX̂),ΩX∞ = j−1(ΩX̂) and Ω⊗−1

X∞
= HomOX∞

(ΩX∞ ,OX∞).

It is easy to adapt the definitions of section 4.1 to complex bordered spaces. First,
if X∞ = (X, X̂) is a complex bordered space we set

1. Db(DX∞) = Db(DX̂)/{M : supp(M) ⊂ X̂\X} ' Db(DX),

2. Db
hol(DX∞) = Db

hol(DX̂)/{M : supp(M) ⊂ X̂\X},

3. Db
q-good(DX∞) = Db

q-good(DX̂)/{M : supp(M) ⊂ X̂\X}

and we denote by DX∞ the class of DX̂ ∈ Db(DX̂).

Secondly, it is clear that the bifunctors
L
⊗D

X̂
,

D
⊗ and RHomD

X̂
factor through the

quotients and give well-defined functors
L
⊗DX∞

,
D
⊗ and RHomDX∞

in the complex
bordered setting.

Thirdly, if f : X∞ = (X, X̂) → Y∞ = (Y, Ŷ ) is a morphism of complex bordered
spaces, it is possible to define a direct and an inverse image in the bordered sense.
However, this presents some complications (see Lemma 4.12 in [60]) and therefore,
we shall give the definition only in the case where f extends to a holomorphic map
f̂ : X̂ → Ŷ . In this case, we denote by DX∞→Y∞ (resp. DY∞←X∞) the (DX∞ , f

−1DY∞)-
bimodule (resp. the (f−1DY∞ ,DX∞)-bimodule) represented by DX̂→Ŷ (resp. DŶ←X̂).

If N ∈ Db(DY∞) is represented by N ′ ∈ Db(DŶ ), then one sets

Df ∗N =
[
Df̂ ∗N ′

]
= DX∞→Y∞

L
⊗f−1DY∞

f−1N .

This gives a well defined functor

Df ∗ : Db(DY∞)→ Db(DX∞).

Nonetheless, the direct image functor cannot be defined simply by factorisation
through the quotient since the support condition is not preserved. One thus has to
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introduce a slight modification. If M ∈ Db(DX∞) is represented by M′ ∈ Db(DX̂),
then one sets

Df∗M = [Df̂∗(M′ D
⊗ ΓX Ot

X̂
)].

This gives a well defined functor

Df∗ : Db(DX∞)→ Db(DY∞).

Note that the direct image preserves quasi-goodness if f is semi-proper and that the
inverse image preserves quasi-goodness for any f .

4.5 Enhanced subanalytic sheaves

The theory of enhanced ind-sheaves has been extensively developed in [19], inspired
by an idea of D. Tamarkin (see [112] and also [40]). In this section, we present the
alternative theory of enhanced subanalytic sheaves, developed in [54]. We refer to
these articles for a complete exposition.

4.5.1 Main definition

Let us denote by R = R∪{−∞,+∞} the two-points compactification of R and by
R∞ the subanalytic bordered space (R,R).

Definition 4.5.1. Let M∞ = (M, M̂) be a subanalytic bordered space and let

µ, q1, q2 : M∞ × R∞×R∞ →M∞ × R∞

be the morphisms defined by

µ(x, t1, t2) = (x, t1 + t2), q1(x, t1, t2) = (x, t1), q2(x, t1, t2) = (x, t2).

We define the two convolution functors

−
+
⊗− : Db(Csub

M∞×R∞)×Db(Csub
M∞×R∞)→ Db(Csub

M∞×R∞),

Ihom+(−,−) : D−(Csub
M∞×R∞)op ×D+(Csub

M∞×R∞)→ D+(Csub
M∞×R∞)

by

F1

+
⊗ F2 = Rµ!!(q

−1
1 F1 ⊗ q−1

2 F2),

Ihom+(F1, F2) = Rq1∗RIhom(q−1
2 F1, µ

!F2).

Proposition 4.5.2. The following adjunction formulas are true for every F1, F2,
F3 ∈ Db(Csub

M∞×R∞) :
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HomDb(Csub
M∞×R∞ )(F1

+
⊗ F2, F3) ' HomDb(Csub

M∞×R∞ )(F1,Ihom
+(F2, F3)),

Ihom+(F1

+
⊗ F2, F3) ' Ihom+(F1,Ihom

+(F2, F3)),

RπM∗RIhom(F1

+
⊗ F2, F3) ' RπM∗RIhom(F1,Ihom

+(F2, F3)),

where πM : M∞ × R∞ →M∞ is the first projection.

Remark 4.5.3. Let ϕ : M → R be a continuous function. One sets for short

C{t≥ϕ(x)} = ιM(C{(x,t)∈M×R : t≥ϕ(x)})

and one defines similarly C{t≤ϕ(x)},C{t>ϕ(x)},C{t<ϕ(x)} and C{t=ϕ(x)}. Let us also de-
note by µϕ : M∞ × R∞ → M∞ × R∞ the map defined by µϕ(x, t) = (x, t + ϕ(x)).
Then,

C{t=ϕ(x)}
+
⊗F ' Rµϕ∗F ' Ihom+(C{t=−ϕ(x)}, F )

for any F ∈ Db(Csub
M∞×R∞).

We can now introduce the category of enhanced subanalytic sheaves.

Definition 4.5.4. On a subanalytic bordered space M∞ = (M, M̂), one defines the
category of (bounded) enhanced subanalytic sheaves by setting

Eb(Csub
M∞) = Db(Csub

M∞×R∞)/{F : (C{t≥0}⊕C{t≤0})
+
⊗ F ' 0}.

We denote by
QM : Db(Csub

M∞×R∞)→ Eb(Csub
M∞),

or simply Q, the quotient functor. If the context is clear, we shall simply write CS

instead of Q(CS) when S is a subanalytic subset of M ×R, locally closed in M̂ ×R.
Proposition 4.5.5. The quotient functor Q admits a left adjoint LE and a right
adjoint RE defined by

LE(F ) = (C{t≥0}⊕C{t≤0})
+
⊗ F,

RE(F ) = Ihom+(C{t≥0}⊕C{t≤0}, F )

for all F ∈ Eb(Csub
M∞). Moreover, these functors are fully faithful and hence, through

RE, one can identify Eb(Csub
M∞) to a full subcategory of Db(Csub

M∞×R∞).

4.5.2 Grothendieck operations

In order to define the six Grothendieck operations on Eb(Csub
M∞), it is first necessary

to remark that −
L
⊗ − (resp. RIhom(−,−)) does not factor through the product

Eb(Csub
M∞)× Eb(Csub

M∞) (resp. Eb(Csub
M∞)op × Eb(Csub

M∞)). However,

−
+
⊗− : Eb(Csub

M∞)× Eb(Csub
M∞)→ Eb(Csub

M∞),

Ihom+(−,−) : Eb(Csub
M∞)op × Eb(Csub

M∞)→ Eb(Csub
M∞)

are well-defined functors.
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Definition 4.5.6. One defines the hom functor

RIhomE(−,−) : Eb(Csub
M∞)op × Eb(Csub

M∞)→ Db(Csub
M∞)

by
RIhomE(F1, F2) = RπM∗RIhom(REF1,R

EF2).

One also defines

RHomE(−,−) : Eb(Csub
M∞)op × Eb(Csub

M∞)→ Db(CM)

by RHomE = αM ◦ RIhomE. Finally, one sets

RHomE(−,−) = RΓ(M,RHomE(−,−)).

Remark that
HomEb(Csub

M∞ )(F1, F2) ' H0RHomE(F1, F2)

for all F1, F2 ∈ Eb(Csub
M∞).

To define the four other operations, let us consider a morphism f : M∞ → N∞ of
subanalytic bordered spaces. We define

fR := f × idR : M∞ × R∞ → N∞ × R∞

by fR(x, r) = (f(x), r) for all (x, r) ∈M ×R . As explained in section 4.4.2, there are
four functors

RfR∗,RfR!! : Db(Csub
M∞×R∞)→ Db(Csub

N∞×R∞),

f−1
R , f !

R : Db(Csub
N∞×R∞)→ Db(Csub

M∞×R∞).

It can be shown that these functors factor through the quotients. We shall write

Ef∗,Ef!! : Eb(Csub
M∞)→ Eb(Csub

N∞),

Ef−1,Ef ! : Eb(Csub
N∞)→ Eb(Csub

M∞)

their factorisation. They obviously verify all the classical properties of Grothendieck
operations.

Let us finally introduce an important enhanced subanalytic sheaf.

Definition 4.5.7. Let M∞ = (M, M̂) be a subanalytic bordered space. One sets

CE
M∞ = Q

(
lim−→

a→+∞
C{t≥a}

)
.

Proposition 4.5.8 ([19], Corollary 4.7.8). For any F1, F2 ∈ Eb(Csub
M∞), there is an

isomorphism

Ihom+(CE
M∞

+
⊗ F1,CE

M∞

+
⊗ F2) ' Ihom+(F1,CE

M∞

+
⊗ F2)

in Eb(Csub
M∞).
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4.6 Enhanced distributions

Enhanced distributions are the key tools to understand the enhanced Laplace trans-
form. They have been introduced in [19] and also studied in [54] and [60]. From
now on, we refer to these three articles. Note that, in this section, we will consider
real analytic bordered spaces (M, M̂), i.e. bordered spaces where M̂ is a real analytic
manifold. The morphisms of real analytic bordered spaces are defined in the obvious
manner.

4.6.1 Several definitions

Let M∞ = (M, M̂) be a real analytic bordered space and let P = R∪{∞} (resp.
P = C∪{∞}) be the one-point compactification of R (resp. C). We denote by
t ∈ R ⊂ P and τ ∈ C ⊂ P the affine coordinates, with τ |R = t.

Definition 4.6.1. Let
j : M∞ × R∞ → M̂ × P

be the canonical inclusion of bordered spaces. One sets

DbT
M∞ = j!RHomDP(E

τ
C|P,Dbt

M̂×P
)[1] ∈ Db(Csub

M∞×R∞).

Recall that ∂t extends to a vector field on P. The following proposition is helpful
to concretely use DbT

M∞ .

Proposition 4.6.2. The complex DbT
M∞ is concentrated in degree −1 and

H−1(DbT
M∞) ' j−1(ker(Dbt

M̂×P

∂t−1−→ Dbt
M̂×P

)) ∈ Mod(Csub
M∞×R∞).

Definition 4.6.3. The subanalytic sheaf H−1(DbT
M∞) is called the sheaf of enhanced

distributions. If no confusion is possible, we shall simply note it DbT
M∞ . One similarly

introduces the sheaves DbT,r
M∞

of enhanced distributional r-forms for each r ∈ Z .

Of course, on a complex bordered space X∞ = (X, X̂), these subanalytic sheaves
admit a bi-type decomposition

DbT,r
X∞
'
⊕
p+q=r

DbT,p,q
X∞

for each r ∈ Z .

Definition 4.6.4. LetX∞ be a complex bordered space of complex dimension dX and
let p ∈ Z . One defines the complex of enhanced holomorphic p-forms ΩE,p

X∞
∈ Eb(Csub

X∞)
by the Dolbeault complex

Q(0→ DbT,p,0
X∞

∂̄→ DbT,p,1
X∞
→ · · · → DbT,p,dX

X∞
→ 0).

One sets for short OE
X∞ = ΩE,0

X∞
and ΩE

X∞ = ΩE,dX
X∞

.
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Proposition 4.6.5 ([19], Corollary 8.2.3). There are isomorphisms

CE
X∞

+
⊗ ΩE,p

X∞
' ΩE,p

X∞
' Ihom+(CE

X∞ ,Ω
E,p
X∞

)

in Eb(Csub
X∞), for all p ∈ Z .

Since OE
X∞ (resp. ΩE

X∞) has a canonical structure of left (resp. right) DX∞-
module, one can also introduce an associated De Rham/solution complex.

Definition 4.6.6. One sets

DRE
X∞ : Db(DX∞)→ Eb(Csub

X∞), M 7→ ΩE
X∞

L
⊗DX∞

M,

Sol E
X∞ : Db(DX∞)op → Eb(Csub

X∞), M 7→ RHomDX∞
(M,OE

X∞).

The functor DRE
X∞ (resp. Sol E

X∞) is called the enhanced De Rham functor (resp.
enhanced solution functor) of X∞.

We can now extend the operations of integration and pullback (recall sections
1.4.2, 1.4.3, 4.3.2 and 4.3.3) to enhanced distributional forms. Using Dolbeault reso-
lutions, we shall also point out that these constructions are encoded in the important
results of [60].

4.6.2 Integration

Lemma 4.6.7. Let M∞ = (M, M̂) (resp. N∞ = (N, N̂)) be a real analytic bordered
space of real dimension dM (resp. dN) and let f : M∞ → N∞ be a morphism of real
analytic bordered spaces. Then, the integration of distributions along the fibers of fR
induces a morphism of complexes∫

fR

: fR!!Db
T,•+dM
M∞

→ DbT,•+dN
N∞

. (4.9)

Proof. Using the graph embedding (recall Remark 4.4.2), one can assume that f
extends to a map f̂ : M̂ → N̂ and thus fR extends to f̂P = f̂ × idP. Let us write

Kr
M̂×P

= ker(Dbt,r+dM

M̂×P

∂t−1−→ Dbt,r+dM

M̂×P
),

Kr
N̂×P

= ker(Dbt,r+dN
N̂×P

∂t−1−→ Dbt,r+dN
N̂×P

)

for each r ∈ Z . Let us also denote by

jM×R : M∞ × R∞ → M̂ × P, jN×R : N∞ × R∞ → N̂ × P

the canonical inclusions of bordered spaces. One has

DbT,r+dM
M∞

= j−1
M×RK

r
M̂×P

and DbT,r+dN
N∞

= j−1
N×RK

r
N̂×P

.
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Hence, if we manage to define a morphism∫
f̂P

: f̂P!!KrM̂×P
→ Kr

N̂×P
(4.10)

for all r ∈ Z, we will get the conclusion. Indeed, (4.10) will induce a morphism∫
f̂P

: f̂P!!(CM×R⊗KrM̂×P
)→ Kr

N̂×P
(4.11)

and applying j−1
N×R to (4.11) will be enough since

j−1
N×Rf̂P!!(CM×R⊗KrM̂×P

) ' j−1
N×Rf̂P!!(jM×R!!j

−1
M×RK

r
M̂×P

)

' j−1
N×Rf̂P!!jM×R!!DbT,r+dM

M∞

' fR!!Db
T,r+dM
M∞

.

(See Lemmas 3.3.7 and 3.3.12 in [19].)

To define (4.10), let us take V ∈ Opsub,c

N̂×P
and show that the integration of distributions

is a well defined map

lim−→
K

Γ(f̂−1
P (V ),I ΓK(Kr

M̂×P
))→ Γ(V,Kr

N̂×P
).

Thanks to Lemma 4.3.9, we only have to check that the enhanced condition is pre-
served. Let us choose u ∈ Γ(f̂−1

P (V ),I ΓK(Kr
M̂×P

)) for some subanalytic compact

subset K of M̂ × P. Thus, ∂tu = u and it follows that〈
∂t

∫
f̂P

u, ω

〉
= −

〈∫
f̂P

u, ∂tω

〉
= −〈u, f̂ ∗P∂tω〉

=
(?)
−〈u, ∂tf̂ ∗Pω〉 = 〈∂tu, f̂ ∗Pω〉

= 〈u, f̂ ∗Pω〉 =

〈∫
f̂P

u, ω

〉
for all test-form ω. The equality (?) is of course obtained thanks to the specific form of
f̂P. Hence

∫
f̂P
u is still an enhanced distributional form and we get the conclusion.

Let us now prove a second lemma which will play a central role in the further
considerations.

Lemma 4.6.8. Let M∞ = (M, M̂) be a real analytic bordered space. Then, for each
r ∈ Z, the subanalytic sheaf DbT,r

M∞
is acyclic for fR!!.

Proof. We keep the same notations than in previous lemma. Let r ∈ Z . By Lemma
6.2.4 in [19], we get a short exact sequence

0 −→ Kr
M̂×P

−→ Dbt,r

M̂×P

∂t−1−→ Dbt,r

M̂×P
−→ 0.
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Applying j−1
M×R, which is exact, to the previous sequence gives a short exact sequence

0 −→ DbT,r
M∞
−→ j−1

M×RDb
t,r

M̂×P

∂t−1−→ j−1
M×RDb

t,r

M̂×P
−→ 0

and thus, a long exact sequence

0→ fR!!DbT,r
M∞

fR!!(j
−1
M×RDb

t,r

M̂×P
) fR!!(j

−1
M×RDb

t,r

M̂×P
)

R1fR!!DbT,r
M∞

R1fR!!(j
−1
M×RDb

t,r

M̂×P
) R1fR!!(j

−1
M×RDb

t,r

M̂×P
)→ . . .

Since Dbt,r

M̂×P
is quasi-injective, we know that RkfR!!(j

−1
M×RDb

t,r

M̂×P
) ' 0 for all k ≥ 1.

Therefore, for all k ≥ 2, one has RkfR!!DbT,r
M∞
' 0 and it only remains to show that

R1fR!!DbT,r
M∞
' 0, that is to say, to show that

fR!!(j
−1
M×RDb

t,r

M̂×P
)
∂t−1−→ fR!!(j

−1
M×RDb

t,r

M̂×P
)

is an epimorphism. Since j−1
N×R is exact, it is enough to show that

f̂P!!(CM×R⊗Dbt,r

M̂×P
)
∂t−1−→ f̂P!!(CM×R⊗Dbt,r

M̂×P
) (4.12)

is an epimorphism. Using again Lemma 6.2.4 of [19] and the exactness of CM×R⊗−,
it is clear that

f̂P∗(CM×R⊗Dbt,r

M̂×P
)
∂t−1−→ f̂P∗(CM×R⊗Dbt,r

M̂×P
)

is an epimorphism. Hence, we just have to prove that, if u and v are two sections of
f̂P∗(CM×R⊗Dbt,r

M̂×P
) such that ∂tv − v = u and if u is compactly supported, then v

is also compactly supported.

Let us denote by πM̂ : M̂ ×P→ M̂ the first projection. Then, if u and v are two
sections of f̂P∗(CM×R⊗Dbt,r

M̂×P
) such that ∂tv − v = u, we have

supp(v) ⊂ πM̂(supp(u))× R ⊂ πM̂(supp(u))× P . (4.13)

Indeed, let ω be a test-form supported by ({πM̂(supp(u)))× R . Then

〈v, ω〉 =

〈
v, (∂t + 1)

(
e−t
∫
etω

)〉
=

〈
(−∂t + 1)v, e−t

∫
etω

〉
= −

〈
u, e−t

∫
etω

〉
= 0.

Hence, (4.13) is true and we get the conclusion.
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Proposition 4.6.9. Let f : X∞ = (X, X̂)→ Y∞ = (Y, Ŷ ) be a morphism of complex
bordered spaces of complex dimension dX and dY . The integration of distributions
along the fibers of fR induces a morphism of double complexes∫

fR

: fR!!DbT,•+dX ,•+dX
X∞

→ DbT,•+dY ,•+dY
Y∞

(4.14)

and thus a morphism ∫
fR

: Ef!!Ω
E,p+dX
X∞

[dX ]→ ΩE,p+dY
Y∞

[dY ] (4.15)

in Eb(Csub
Y∞) for each p ∈ Z .

Proof. Thanks to Lemma 4.6.7, it is clear that (4.14) is well-defined. Moreover, by the
same proof as the one of Lemma 4.6.8, one can show that DbT,p+dX ,q+dX

X∞
is fR!!-acyclic

for all (p, q) ∈ Z2 . Hence the conclusion.

Proposition 4.6.10. Let f : X∞ = (X, X̂) → Y∞ = (Y, Ŷ ) be a morphism of
complex bordered spaces of complex dimension dX and dY and let N ∈ Db

q-good(DY∞).

(i) ([60], Proposition 4.15 (i)) There is a natural isomorphism

DRE
X∞(Df ∗N )[dX ] ' Ef !DRE

Y∞(N )[dY ]. (4.16)

(ii) If f extends to a holomorphic map f̂ : X̂ → Ŷ , then applying (4.16) to N = DY∞

gives an isomorphism

ΩE
X∞

L
⊗DX∞

DX∞→Y∞ [dX ]
∼−→ Ef !ΩE

Y∞ [dY ]. (4.17)

(iii) This morphism induces, thanks to 1X∞→Y∞, a morphism

ΩE
X∞ [dX ]→ Ef !ΩE

Y∞ [dY ]

in Eb(Csub
X∞), which is equivalent to the adjoint of (4.15) when p = 0.

Proof. First let us replace N by DY∞ in (4.16). On the one hand

DRE
X∞(Df ∗N ) = ΩE

X∞

L
⊗DX∞

Df ∗DY∞

' ΩE
X∞

L
⊗DX∞

DX∞→Y∞
L
⊗f−1DY∞

f−1DY∞

' ΩE
X∞

L
⊗DX∞

DX∞→Y∞

and on the other hand

Ef !DRE
Y∞(N ) = Ef !(ΩE

Y∞

L
⊗DY∞

DY∞) ' Ef !ΩE
Y∞ .

By construction of (4.16), the isomorphism (4.17) is built as an enhancement on
bordered spaces of (4.4). The conclusion follows from Proposition 4.3.11.
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4.6.3 Pullback

Lemma 4.6.11. Let f : M∞ = (M, M̂) → N∞ = (N, N̂) be a morphism of real
analytic bordered spaces. Assume that f can be extended to a real analytic submer-
sion f̂ : M̂ → N̂ . Then, the pullback of distributions by f̂P induces a morphism of
complexes

f ∗R : f−1
R Db

T,•
N∞
→ DbT,•

M∞
. (4.18)

Proof. Taking the notations of Lemma 4.6.7, it is enough to prove that the pullback
of distributions gives a well-defined map

f̂ ∗P : f̂−1
P K

r
N̂×P
→ Kr

M̂×P

for each r ∈ Z and then apply j−1
M×R. Thanks to Lemma 4.3.13, we only have to

show that the enhanced condition is preserved by pullback. Let U ∈ Opsub,c

M̂×P
and

v ∈ Γ(U, f̂−1
P KrN̂×P

). Thus, ∂tv = v and it follows that

〈∂tf̂ ∗Pv, ω〉 = −〈f̂ ∗Pv, ∂tω〉 = −
〈
v,

∫
f̂P

∂tω

〉
=
(?)
−
〈
v, ∂t

∫
f̂P

ω

〉
=

〈
∂tv,

∫
f̂P

ω

〉
=

〈
v,

∫
f̂P

ω

〉
= 〈f̂ ∗Pv, ω〉

for all test-form ω. Here, (?) comes from the equality f̂−1
P (x, t) = f̂−1(x)×{t} of fibers.

Hence f̂ ∗Pv is still an enhanced distributional form and we get the conclusion.

Proposition 4.6.12. Let f : X∞ = (X, X̂) → Y∞ = (Y, Ŷ ) be a morphism of
complex bordered spaces and assume that f can be extended to a holomorphic submer-
sion f̂ : X̂ → Ŷ . The pullback of distributions by f̂P induces a morphism of double
complexes

f ∗R : f−1
R Db

T,•,•
Y∞
→ DbT,•,•

X∞
(4.19)

and thus a morphism
f ∗R : Ef−1ΩE,p

Y∞
→ ΩE,p

X∞
(4.20)

in Eb(Csub
X∞) for each p ∈ Z .

Proof. The first morphism is well-defined thanks to the previous lemma and the
second one is obtained by the exactness of f−1

R .

Proposition 4.6.13. Let f : X∞ = (X, X̂) → Y∞ = (Y, Ŷ ) be a semi-proper mor-
phism of complex bordered spaces and letM∈ Db

q-good(DX∞).

(i) ([60], Proposition 4.15 (ii)) There is a natural isomorphism

DRE
Y∞(Df∗M) ' Ef∗DRE

X∞(M). (4.21)
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(ii) ([58], Lemma 7.4.10) If f extends to a holomorphic map f̂ : X̂ → Ŷ , then
(4.21) is induced by a morphism

DX∞→Y∞
L
⊗f−1DY∞

Ef−1OE
Y∞ → O

E
X∞ , (4.22)

which is an enhancement of (4.8).

(iii) The morphism (4.22) induces, thanks to 1X∞→Y∞, a morphism

Ef−1OE
Y∞ → O

E
X∞

in Eb(Csub
X∞), which is equivalent to (4.20) when p = 0, if f̂ is a holomorphic

submersion.



Chapter 5

Enhanced Laplace transform and
applications

5.1 The enhanced Laplace transform theorem

In this section, we explain how the usual Laplace transform of tempered distributions
can be studied in the enhanced subanalytic sheaves framework. Using the Dolbeault
complex of enhanced distributions, we remark that an important isomorphism of [60]
can be described explicitly. Throughout this section, we constantly refer to [60].

5.1.1 Multiplication by an exponential kernel

In section 4.6, we introduced two operations on enhanced distributions : integra-
tion and pullback. To understand the Laplace transform, one needs a third missing
operation, the multiplication by an exponential kernel. Recall Remark 4.5.3.

Proposition 5.1.1. Let X∞ = (X, X̂) be a complex bordered space and ϕ : X → C
a tempered function at infinity, i.e. ϕ ∈ Γ(X, Ct

∞,X̂). Then, there is a morphism

µ−<ϕ∗Db
T,p,q
X∞
→ DbT,p,q

X∞
(5.1)

defined by u 7→ eϕu for any (p, q) ∈ Z . If moreover ϕ is holomorphic, this gives rise
to a morphism of complexes

µ−<ϕ∗Db
T,p,•
X∞
→ DbT,p,•

X∞
(5.2)

for each p ∈ Z . This morphism induces itself a morphism

C{t=−<ϕ(x)}
+
⊗ ΩE,p

X∞
→ ΩE,p

X∞
(5.3)

in Eb(Csub
X∞) for each p ∈ Z .
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Proof. Let us consider U ∈ Opsub,c
X∞×R∞ . Then, for any (p, q) ∈ Z2, we define the map

Γ(U, µ−<ϕ∗Db
T,p,q
X∞

) = Γ(µ−1
−<ϕ(U),DbT,p,q

X∞
)→ Γ(U,DbT,p,q

X∞
)

by u(x, t) 7→ u(x, t+<ϕ(x)). (This little abuse of notation corresponds to the pullback
of u by µ<ϕ.) Since ϕ is tempered, this map is well-defined. Moreover, since u is a
solution of ∂tu = u, one can write u(x, t) = etρ(x) for a unique distributional form ρ.
Hence

u(x, t+ <ϕ(x)) = et+<ϕ(x)ρ(x) = e<ϕ(x)u(x, t).

To obtain (5.1), it is now enough to compose this map with

Γ(U,DbT,(p,q)
X∞

) 3 u 7→ ei=ϕu ∈ Γ(U,DbT,(p,q)
X∞

),

which is of course well-defined since |ei=ϕ| = 1. Then, (5.2) follows from the equality
∂(eϕu) = eϕ∂u if ϕ is holomorphic and (5.3) from the exactness of µ−<ϕ∗.

Particular cases of functions ϕ tempered at infinity are the functions with a polar
singularity at infinity.

Proposition 5.1.2 ([19], Corollary 9.4.12). Let X∞ = (X, X̂) be a complex bordered
space and ϕ ∈ OX̂(∗X̂\X). Then,

Sol E
X∞(E ϕ

X|X̂
) = CE

X∞

+
⊗C{t=−<ϕ(x)} .

Proposition 5.1.3. Let X∞ = (X, X̂) be a complex bordered space, L ∈ Db
hol(DX∞)

andM∈ Db
q-good(DX∞).

(i) ([60], Proposition 4.15 (iii))There is a natural isomorphism

DRE
X∞(L

D
⊗M) ' RIhom+(SolEX∞(L)),DRE

X∞(M)). (5.4)

(ii) Let ϕ ∈ OX̂(∗X̂\X). Then, (5.4) applied to M = DX∞ ⊗OX∞
Ω⊗−1
X∞

and
L = E ϕ

X|X̂
gives an adjoint morphism

C{t=−<ϕ(x)}
+
⊗
(

E ϕ

X|X̂

D
⊗OE

X∞

)
→ OE

X∞ (5.5)

that induces, thanks to the canonical section eϕ of E ϕ

X|X̂
, a morphism

C{t=−<ϕ(x)}
+
⊗ OE

X∞ → O
E
X∞ ,

which is equivalent to (5.3) when p = 0.
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Proof. Let us replace M by DX∞ ⊗OX∞
Ω⊗−1
X∞

and L by E ϕ

X|X̂
in (5.4). On the one

hand,

DRE
X∞(L

D
⊗M) = DRE

X∞(E ϕ

X|X̂

D
⊗ (DX∞ ⊗OX∞

Ω⊗−1
X∞

))

= ΩE
X∞

L
⊗DX∞

(E ϕ

X|X̂

D
⊗ (DX∞ ⊗OX∞

Ω⊗−1
X∞

))

' E ϕ

X|X̂

D
⊗ (ΩE

X∞ ⊗OX∞
Ω⊗−1
X∞

)

' E ϕ

X|X̂

D
⊗ ((ΩX∞ ⊗OX∞

OE
X∞)⊗OX∞

Ω⊗−1
X∞

)

' E ϕ

X|X̂

D
⊗OE

X∞

and on the other hand,

RIhom+(SolEX∞(L)),DRE
X∞(M)) '

(1)
RIhom+(CE

X∞

+
⊗C{t=−<ϕ(x)},OE

X∞)

'
(2)

RIhom+(C{t=−<ϕ(x)},Ihom
+(CE

X∞ ,O
E
X∞))

'
(3)

RIhom+(C{t=−<ϕ(x)},OE
X∞),

where (1) follows from Proposition 5.1.2, (2) from Proposition 4.5.2 and (3) from
Proposition 4.6.5. Thus, one obtains a morphism

E ϕ

X|X̂

D
⊗OE

X∞ → RIhom+(C{t=−<ϕ(x)},OE
X∞), (5.6)

adjoint to (5.5). Its construction is done in the part (f)-(1) of the proof of Theorem
4.5 in [60]. This morphism is defined in two steps. Let us first consider the canonical
projections

X∞ × R∞
q← X∞ × P×R∞

πX×P→ X∞ × P, X∞ × R∞
πX→ X∞.

There is an isomorphism

E ϕ

X|X̂

L
⊗OX∞

Dbt
X∞

∼−→ RπX∗RIhom(C{t<−<ϕ(x)}[1],DbT
X∞),

defined on sections by eϕ ⊗ u(x) 7→ et+ϕ(x)u(x) (see Lemma 9.6.3 in [19]). Therefore,
we can derive an isomorphism

E ϕ

X|X̂

D
⊗Ot

X∞×P
∼−→ RπX×P ∗RIhom(q−1 C{t=−<ϕ(x)},R

EOE
X∞×P). (5.7)

Now, if we denote by i : X∞ × R∞ → X∞ × P the canonical inclusion, it is enough

to apply the functor i!((E −τC|P)r
L
⊗DP −) to (5.7) to get (5.6). This clearly shows that

the morphism (5.6) is derived from a morphism of sheaves

E ϕ

X|X̂
⊗OX∞

DbT
X∞ → Ihom+(C{t=−<ϕ(x)},DbT

X∞)
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such that the morphism
DbT

X∞ → µ<ϕ∗Db
T
X∞

induced by the canonical section eϕ ∈ E ϕ

X|X̂
is given by u 7→ eϕu. One gets the

conclusion by adjunction, noticing that µ−1
<ϕ = µ−<ϕ∗.

5.1.2 The Fourier-Sato functors

Let us recall some facts about the enhanced Fourier-Sato functors, introduced in [60].
Let us fix V a n-dimensional complex vector space and V∗ its complex dual. We
consider the bordered spaces V∞ = (V,V) and V∗∞ = (V∗,V∗) where V (resp. V∗) is
the projective compactification of V (resp V∗). Let us also note 〈−,−〉 : V×V∗ → C
the duality bracket.

Definition 5.1.4. The Laplace kernels are defined by

LV = C{t=<〈z,w〉} ∈ Eb(Csub
V∞×V∗∞),

LaV = C{t=−<〈z,w〉} ∈ Eb(Csub
V∞×V∗∞).

Let us consider the correspondence

V∞
p←− V∞×V∗∞

q−→ V∗∞

where p and q are the canonical projections.

Definition 5.1.5. The enhanced Fourier-Sato functors

EFV,
EFaV : Eb(Csub

V∞)→ Eb(Csub
V∗∞)

are defined by

EFV(F ) = Eq!!(LV
+
⊗ Ep−1F ),

EFaV(F ) = Eq!!(L
a
V

+
⊗ Ep−1F ).

Remark 5.1.6. In [60], the authors mainly work with EFV. However, it will be more
convenient for us to use EFaV instead.

Theorem 5.1.7 ([60], Theorem 5.2). The enhanced Fourier-Sato functor EFaV is an
equivalence of categories whose inverse is given by EFV∗ [2n]. Moreover, there is an
isomorphism

RHomE(F1, F2) ' RHomE(EFaV(F1), EFaV(F2)), (5.8)

functorial in F1, F2 ∈ Eb(Csub
V∞), and the functor EFV∗ [2n] is isomorphic to the functor

ΨE
La
V
, defined by

ΨE
La
V
(F ) = Ep∗RIhom+(LaV,Eq

!(F )),

which is the right adjoint of EFaV.
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5.1.3 The enhanced Laplace isomorphism

We keep the notations of the previous section.

Proposition 5.1.8. There is a morphism of complexes

qR!!(µ−〈z,w〉∗p
−1
R Db

T,n,•+n
V∞ )→ DbT,0,•

V∗∞
(5.9)

encoding the usual positive Laplace transform of distributions with an extra real pa-
rameter, i.e. u 7→

∫
qR
e〈z,w〉p∗Ru.

This morphism induces a morphism

EFaV(ΩE
V∞)[n]→ OE

V∗∞ (5.10)

in Eb(Csub
V∗∞).

Proof. Using successively the morphisms (4.19), (5.2) and (4.14), we can define a
morphism of complexes

qR!!(µ−〈z,w〉∗p
−1
R Db

T,n,•+n
V∞ )→ qR!!(µ−〈z,w〉∗Db

T,n,•+n
V∞×V∗∞

)

→ qR!!(DbT,n,•+n
V∞×V∗∞

)

→ DbT,0,•
V∗∞

which clearly encodes the usual positive Laplace transform of distributions. By the
Propositions 4.6.12, 5.1.1 and 4.6.9, this induces a morphism

Eq!!(C{t=−〈z,w〉}
+
⊗Ep−1ΩE

V∞)[n]→ OE
V∗∞

in Eb(Csub
V∗∞). Hence the conclusion.

Definition 5.1.9. The morphism (5.10) is called the enhanced Laplace transform
from V to V∗.

Theorem 5.1.10. The enhanced Laplace transform is an isomorphism in Eb(Csub
V∗∞).

Proof. Theorem 6.3 of [60] states that there is a canonical isomorphism

EFaV(ΩE
V∞)[n] ' OE

V∗∞ (5.11)

in Eb(Csub
V∗∞). It is enough to prove that this isomorphism is equivalent to the enhanced

Laplace transform. Let us give the sketch of this proof. By Theorem 5.1.7, the
isomorphism (5.11) is equivalent to an isomorphism

ΩE
V∞ ' ΨE

La
V
(OE

V∗∞ [−n]). (5.12)

We shall recall the construction of (5.12) and prove that it is equivalent to the adjoint
of the enhanced Laplace transform. Let us set H = V\V,H∗ = V∗\V∗ as well as
L = E 〈z,w〉

V×V∗|V×V∗ . One has
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ΩE
V∞ ' ΩE

V∞
L
⊗DV∞

DV(∗H)

'
(1)

ΩE
V∞

L
⊗DV∞

Dp∗(L
D
⊗Dq∗(DV∗(∗H

∗)⊗OV∗∞
Ω⊗−1

V∗∞
))

'
(2)

Ep∗(Ω
E
V∞×V∗∞

L
⊗DV∞×V∗∞

(L
D
⊗Dq∗(DV∗(∗H

∗)⊗OV∗∞
Ω⊗−1

V∗∞
)))

'
(3)

Ep∗RIhom+(SolEV∞×V∗∞(L),ΩE
V∞×V∗∞

L
⊗DV∞×V∗∞

Dq∗(DV∗(∗H
∗)⊗OV∗∞

Ω⊗−1
V∗∞

))

'
(4)

Ep∗RIhom+(CE
V∞×V∗∞

+
⊗LaV,ΩE

V∞×V∗∞

L
⊗DV∞×V∗∞

Dq∗(DV∗(∗H
∗)⊗OV∗∞

Ω⊗−1
V∗∞

))

'
(5)

Ep∗RIhom+(LaV,Ω
E
V∞×V∗∞

L
⊗DV∞×V∗∞

Dq∗(DV∗(∗H
∗)⊗OV∗∞

Ω⊗−1
V∗∞

))

'
(6)

Ep∗RIhom+(LaV,Eq
!(ΩE

V∗∞

L
⊗DV∗∞

DV∗(∗H
∗)⊗OV∗∞

Ω⊗−1
V∗∞

[−n]))

' Ep∗RIhom+(LaV,Eq
!(OE

V∗∞ [−n]))

= ΨE
La
V
(OE

V∗∞ [−n]),

where

(1) follows from GAGA (see [107]) and a theorem of Katz and Laumon in [62] (see
also [57] and [74]),

(2) follows from (4.21),

(3) follows from (5.4),

(4) follows from Proposition 5.1.2,

(5) follows from Propositions 4.5.8 and 4.6.5,

(6) follows from (4.16).

The conclusion then follows from Propositions 4.6.10, 4.6.13 and 5.1.3.

5.2 Holomorphic Paley-Wiener-type theorems

We shall now explain how the enhanced Laplace transform isomorphism allows to
obtain a bunch of Paley-Wiener-type theorems. In particular, we shall show the link
with Polya’s and Méril’s theorems.

5.2.1 Almost C∞-subanalytic functions

In this section, we recall some definitions and propositions of the section 6.2 of [60].

Definition 5.2.1. LetM be a real analytic manifold and U a subanalytic open subset
of M . A function f : U → R is globally subanalytic on M if its graph Γf ⊂ U × R is



5.2. HOLOMORPHIC PALEY-WIENER-TYPE THEOREMS 87

subanalytic in M × R. A continuous function f : U → R is almost C∞-subanalytic
on M if there is a C∞-function g : U → R, globally subanalytic on M , such that

∃C > 0,∀x ∈ U : |f(x)− g(x)| < C.

In this case, we say that g is in the (ASA)-class of f .

Example 5.2.2. If f : Cn → C is a polynomial, then <f is globally subanalytic on
CPn (see e.g. [4]).

Conjecture 5.2.3 ([60], Conjecture 6.11). Let M be a real analytic manifold and U
a subanalytic open subset of M . Then any continuous globally subanalytic function
f : U → R on M is almost C∞-subanalytic on M .

Definition 5.2.4. Let M∞ = (M, M̂) be a real analytic bordered space and let
U ∈ Opsub,c

M∞
. Let f : U → R be a continuous almost C∞-subanalytic function on M̂ .

For any open set V ∈ Opsub,c
M∞

and any r ∈ Z, we set

e−f Dbt,r
M∞

(V ) = {u ∈ DbrM(U ∩ V ) : egu ∈ Dbt,r

M̂
(U ∩ V )},

where g is in the (ASA)-class of f . This definition does not depend on g and the
correspondence V ∈ Opsub,c

M∞
7→ e−f Dbt,r

M∞
(V ) clearly defines a subanalytic sheaf on

M∞.

Proposition 5.2.5. Let M∞ = (M̂, M̂). For each r ∈ Z, the sheaf e−f Dbt,r

M̂
is quasi-

injective.

Proof. Let V ∈ Opsub,c

M̂
. We have to show that the restriction map

{u ∈ Dbr
M̂

(U) : egu ∈ Dbt,r

M̂
(U)} → {u ∈ Dbr

M̂
(U ∩ V ) : egu ∈ Dbt,r

M̂
(U ∩ V )}

is surjective. Let u ∈ Dbr
M̂

(U ∩ V ) be a distributional form such that egu is in
Dbt,r

M̂
(U ∩V ). Hence, there is v ∈ Dbr

M̂
(M̂) such that v|U∩V = egu. The distributional

form e−gv|U verifies eg(e−gv|U) ∈ Dbt,r

M̂
(U) and (e−gv|U)|U∩V = u, which gives the

conclusion.

Let us now state a key proposition.

Proposition 5.2.6 ([18], Proposition 7.3 and [60], Theorem 6.12). LetM∞ = (M, M̂)
be a real analytic bordered space and U ∈ Opsub,c

M∞
. Let f : U → R be a continuous

almost C∞-subanalytic function on M̂ . There is an isomorphism

e−f Dbt,r
M∞
' RIhomE(C{t≥f(x),x∈U}, Q(DbT,r

M∞
))

for each r ∈ Z, which is given on sections by u 7→ etu. In particular, the right hand
side is concentrated in degree 0.

One can notice an immediate corollary :
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Corollary 5.2.7. Let M∞ = (M, M̂) be a real analytic bordered space and let also
f : M → R be a continuous almost C∞-subanalytic function on M̂ . Let S be a
subanalytic closed subset of M . There is an isomorphism

I ΓS(e−f Dbt,r
M∞

) ' RIhomE(C{t≥f(x),x∈S}, Q(DbT,r
M∞

))

for each r ∈ Z, which is given on sections by u 7→ etu. In particular, the right hand
side is concentrated in degree 0.

Proof. Let us note πM : M∞ × R∞ → M∞ the canonical projection. By Proposi-
tion 5.2.6 and the quasi-injectivity of e−f Dbt,r

M̂
, one gets

I ΓS(e−f Dbt,r
M∞

) ' RIhom(ιM(CS), e−f Dbt,r
M∞

)

' RIhom(ιM(CS),RIhomE(C{t≥f(x)}, Q(DbT,r
M∞

))

' RIhom(ιM(CS),RπM∗RIhom(C{t≥f(x)},DbT,r
M∞

)

' RπM∗RIhom(π−1
M (ιM(CS)),RIhom(C{t≥f(x)},DbT,r

M∞
)

' RπM∗RIhom(π−1
M (ιM(CS))⊗ C{t≥f(x)},DbT,r

M∞
)

' RπM∗RIhom(C{t≥f(x),x∈S},DbT,r
M∞

)

' RIhomE(C{t≥f(x),x∈S}, Q(DbT,r
M∞

)).

Thanks to Proposition 5.2.6, one can introduce the following definition :

Definition 5.2.8. Let X∞ = (X, X̂) be a complex bordered space of complex di-
mension dX and let U be an open subset of X. Let f : U → R be a continuous
almost C∞-subanalytic function on X̂. For each p ∈ Z, one defines the complex of
subanalytic sheaves e−fΩt,p

X∞
as the Dolbeault complex

0→ e−f Dbt,p,0
X∞

∂̄→ e−f Dbt,p,1
X∞
→ · · · → e−f Dbt,p,dX

X∞
→ 0.

As usual, one sets for short e−f Ot
X∞ = e−fΩt,0

X∞
and e−fΩt

X∞ = e−fΩt,dX
X∞

.

5.2.2 Laplace and Legendre transforms

Let us now focus on an important application. Recall the definitions of section 1.5.

Lemma 5.2.9 ([60], Theorem. 5.9). Let f ∈ Conv(V) and let d(f) be the real
dimension of H(f ∗)⊥, where H(f ∗) is the affine space generated by dom(f ∗). One
has an isomorphism

EFaV(C{t≥f(z)}) ' C{t≥−f∗(w),w∈dom◦(f∗)}⊗ orH(f∗)⊥ [−d(f)]. (5.13)

Using our explicit interpretation of the enhanced Laplace transform, we can refine
Theorem 6.14 and Corollary 6.15 of [60].
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Theorem 5.2.10. Let f : V → R be a continuous almost C∞-subanalytic function
on V and let S be a non-empty subanalytic closed subset of V. Let us denote by fS
the function which is equal to f on S and to +∞ on V \S. Assume that

(i) fS ∈ Conv(V),

(ii) H(f ∗S)⊥ = {0},

(iii) the convex set dom◦(f ∗S) is subanalytic,

(iv) the function f ∗S : dom◦(f ∗S) → R is continuous and almost C∞-subanalytic on
V∗.

Then, one gets an isomorphism

Hn
S (V, e−fΩt

V)
∼−→ H0(V∗, ef∗S Ot

V∗) ' ef
∗
S Dbt

V∗(dom◦(f ∗S)) ∩ OV∗(dom◦(f ∗S)). (5.14)

Moreover, there is a commutative diagram

Hn
S (V, e−fΩt

V) ∼ // H0(V∗, ef∗S Ot
V∗)

��
ΓS(V, e−f Dbt,n,n

V ) //

OO

Γ(V∗, ef∗S Dbt
V∗)

where the left arrow is defined by the Dolbeault resolution of e−fΩt
V, the right arrow

by the inclusion and the bottom arrow by the classical positive Laplace transform
u 7→ L+ u :=

∫
q
e〈z,w〉p∗ω. In particular, the isomorphism (5.14) can be explicitly

computed by

ΓS(V, e−f Dbt,n,n

V )

∂̄ΓS(V, e−f Dbt,n,n−1

V )
3 [u] 7→ L+ u ∈ H0(V∗, ef∗S Ot

V∗). (5.15)

Proof. By using successively Corollary 5.2.7, the isomorphisms (5.8) and (5.10),
Lemma 5.2.9 and finally Proposition 5.2.6, one obtains an isomorphism

Hn
S (V, e−fΩt

V) ' Hn(RHomE(C{t≥f(z),z∈S},Ω
E
V∞)

' Hn(RHomE(EFaV(C{t≥f(z),z∈S}),
EFaV(ΩE

V∞))
∼−→ H0(RHomE(EFaV(C{t≥fS(z)}),OE

V∗∞)

' H0(RHomE(C{t≥−f∗(w),w∈dom◦(f∗S)},OE
V∗∞)

' H0(V∗, ef∗S Ot
V∗).

Following this construction and using (5.9), the map

ΓS(V, e−f Dbt,n,n

V ) −→ Hn
S (V, e−fΩt

V)
∼−→ H0(V∗, ef∗S Ot

V∗)

−→ Γ(V∗, ef∗S Dbt
V∗)

is given by u 7→ e−t
∫
qR
e〈z,w〉p∗R(etu) = L+ u. Then, the conclusion follows from the

quasi-injectivity of e−f Dbt,p,q

V for all (p, q) ∈ Z2 .
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This last result can be seen as a purely holomorphic Paley-Wiener-type theorem
and can lead to plenty of Laplace isomorphisms, depending on the chosen f . We
decide to focus on Polya’s and Méril’s theorems in order to show how the contour
integration can be derived from this algebraic framework.

5.2.3 Link with Polya’s theorem

Let V be a one-dimensional complex vector space. Let us denote by P (resp. P∗)
the projective compactification of V (resp. V∗) and recall that Ot

P (resp. Ωt
P) is

concentrated in degree 0 and is a subanalytic subsheaf of OP (resp. ΩP) (see Propo-
sition 4.3.8). If U ∈ Opsub,c

P , one simply has OtP(U) = OP(U) ∩ Dbt
P(U) (resp.

Ωt
P(U) = ΩP(U) ∩ Dbt,1,0

P (U)). We shall also use the sheaf ΓVΩt
P of holomorphic

forms which are tempered only at infinity.

Let us choose a Hermitian norm || · || on V and denote by || · ||∗ the dual norm on
V∗ . Let us fix a non-empty convex compact subset K of V and let us consider the
null function f = 0 on V. For all ε > 0, we thus get a function fKε defined by

fKε(z) =

{
0 if z ∈ Kε,

+∞ else.

Clearly, this function is convex of domain Kε. Moreover, its Legendre transform is
given by

f ∗Kε
(w) = sup

z∈Kε

<〈z, w〉 = hKε(w) = hK(w) + hD(0,ε)(w) = hK(w) + ε||w||∗

for all w ∈ V∗ . In particular dom◦(f ∗ε ) = V∗ . Let ε > 0. In order to apply Theo-
rem 5.2.10, let us assume that Kε is subanalytic (which implies that hKε is globally
subanalytic on P∗, see [18]) and that hKε is almost C∞-subanalytic on P∗. Thus, we
get an isomorphism

L+ : H1
Kε

(V,Ωt
P)
∼−→ ehKε Ot

P∗(V
∗) (5.16)

given by the positive Laplace transform. We shall show that the projective limit
on ε → 0 of this isomorphism is equivalent to the bijectivity of P in Polya’s theo-
rem. Hence, for the rest of the section, it is enough to assume that our subanalytic
conditions are fulfilled for small ε.

Proposition 5.2.11. Let ε > 0. One has a canonical isomorphism

Ωt
P(V \Kε)/Ω

t
P(V)

∼−→ H1
Kε

(V,Ωt
P) (5.17)

given by

Ωt
P(V \Kε)/Ω

t
P(V) 3 [u] 7→ [∂̄u] ∈ ΓKε(V,Db

t,1,1
P )

∂̄ΓKε(V,Db
t,1,0
P )

,

where u is a distributional extension of u to V .
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Proof. 1) Consider the excision distinguished triangle

RΓKε(V,Ωt
P)→ RΓ(V,Ωt

P)→ RΓ(V \Kε,Ω
t
P)

+1→ . (5.18)

This gives the following exact sequence :

0 H0
Kε

(V,Ωt
P) H0(V,Ωt

P) H0(V \Kε,Ω
t
P)

H1
Kε

(V,Ωt
P) H1(V,Ωt

P) H1(V \Kε,Ω
t
P) · · ·

First, it is clear that H0
Kε

(V,Ωt
P) ' 0 since a non-trivial holomorphic form cannot be

supported by a compact set. Secondly, the surjectivity of

∂ : Dbt,1,0
P (V)→ Dbt,1,1

P (V)

(see [46] and [68]) implies that H1(V,Ωt
P) ' 0. Hence, we get the exact sequence

0→ Ωt
P(V)→ Ωt

P(V \Kε)→ H1
Kε

(V,Ωt
P)→ 0,

which proves the first statement. The second statement is proven as in Lemma 2.2.14.

Corollary 5.2.12. One has a canonical isomorphism

ΓVΩt
P(V \K)/Ωt

P(V)
∼−→ lim←−

ε→0

H1
Kε

(V,Ωt
P). (5.19)

Let ε > 0 and let ψε be a C∞-cutoff function which is equal to 1 on V \Kε and to 0
on Kε/2. Let u ∈ ΓVΩt

P(V \K). Then the image of [u] through the canonical map

ΓVΩt
P(V \K)/Ωt

P(V)→ H1
Kε

(V,Ωt
P)

is given by [∂̄(ψεu)].

Proof. There are trivial inclusions

ΓVΩt
P(V \Kε) ⊂ Ωt

P(V \K2ε) ⊂ ΓVΩt
P(V \K3ε)

for all ε > 0, which imply that

lim←−
ε→0

Ωt
P(V \Kε) ' lim←−

ε→0

ΓVΩt
P(V \Kε).

Moreover, one has
lim←−
ε→0

ΓVΩt
P(V \Kε) ' ΓVΩt

P(V \K).
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Indeed,

lim←−
ε→0

ΓVΩt
P(V \Kε) ' lim←−

ε→0

HomCP(CV \Kε ,ΓVΩt
P)

' HomCP(lim−→
ε→0

CV \Kε ,ΓVΩt
P)

' HomCP(CV \K ,ΓVΩt
P)

' ΓVΩt
P(V \K).

Hence, by the Mittag-Leffler theorem for projective systems, one obtains

lim←−
ε→0

H1
Kε

(V,Ωt
P)

∼←− lim←−
ε→0

(Ωt
P(V \Kε)/Ω

t
P(V))

' (lim←−
ε→0

Ωt
P(V \Kε))/Ω

t
P(V)

' ΓVΩt
P(V \K)/Ωt

P(V).

The second part of the statement is clear.

Remark 5.2.13. Note that in

ΓVΩt
P(V \K) = {u ∈ ΩV(V \K) : u is tempered at ∞},

one can replace the condition "u is tempered at infinity" by the condition "u has poly-
nomial growth at infinity". Indeed, thanks to Cauchy’s inequalities, the polynomial
growth of u at infinity implies the polynomial growth of all its derivatives.

Theorem 5.2.14. There is a canonical isomorphism of C-vector spaces

ΓVΩt
P(V \K)/Ωt

P(V)
∼−→ lim←−

ε→0

ehKε Ot
P∗(V

∗), (5.20)

where the spaces are independent of the chosen norm.

Given a global C-linear coordinate z of V and its dual coordinate w, this isomorphism
can be made explicit by [f(z)dz] 7→ g with

g(w) =

∫
C(0,r)+

ezwf(z)dz,

where C(0, r)+ is a positively oriented circle, which encloses K.

Proof. First, since all norms are equivalent, it is clear that

lim←−
ε→0

ehKε Ot
P∗(V

∗) ' {v ∈ OV∗(V∗) : ∀ε > 0, v ∈ ehKε Dbt
P∗(V

∗)}

is independent of the chosen norm. Secondly, by applying lim←−
ε→0

to (5.16) as well as

(5.19), we get the isomorphisms

ΓVΩt
P(V \K)/Ωt

P(V)
∼−→ lim←−

ε→0

H1
Kε

(V,Ωt
P)
∼−→ lim←−

ε→0

ehKε Ot
P∗(V

∗).
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Let us explicit the composition of these two maps within coordinates. Let f(z)dz be
in ΓVΩt

P(V \K) and let us fix r > 0 such that K ( D(0, r). Let us consider ε > 0
small enough such that K ( Kε ( D(0, r). Let us also choose a cutoff function ψε as
in Corollary 5.2.12. Then, applying this corollary, we see that the image of [f(z)dz]
in ehKε Ot

P(V∗) is given by g, where

g(w) = L+
w(∂̄(ψεf(z)dz)) =

∫
V
ezw∂̄(ψεf(z)dz) =

∫
V
∂̄(ezwψεf(z)dz)

=
(1)

∫
D(0,r)

∂̄(ezwψεf(z)dz) =
(2)

∫
C(0,r)+

ezwψεf(z)dz

=
(3)

∫
C(0,r)+

ezwf(z)dz.

Here, (1) comes from the fact that ezwψεf(z)dz is holomorphic on the open set
V \Kε ⊃ V \D(0, r), (2) from Green’s theorem and (3) from the fact that ψε = 1
on C(0, r) ⊂ V \Kε.

To conclude, we remark that this formula remains unchanged for smaller ε > 0.
Hence, it is the image of [f(z)dz] in lim←−

ε→0

ehKε Ot
P∗(V

∗).

Remark 5.2.15. Theorem 5.2.14 is actually nothing more but the "algebraic P-part"
of Polya’s theorem. First, the canonical map

O0(C \K) 3 f 7→
[

1

2iπ
fdz

]
∈ ΓCΩt

P(C \K)/Ωt
P(C)

is clearly bijective. (For the same reasons as the map iK in section 3.1.3.) Secondly,
the inclusion

Exp(K) ⊂ {g ∈ O(C) : ∀ε > 0, g ∈ ehKε Dbt
P(C)}

is an equality. Indeed, if e−hKεg is tempered at infinity, then e−hK2εg is bounded.

5.2.4 Link with Méril’s theorem

We keep the same conventions that in the previous section. Let us fix S a proper non-
compact closed convex subset of V which contains no lines and ξ0 a point in (S∗∞)◦. For
all ε′ > 0, we consider the function fε′ : V→ R defined by fε′(z) = <〈z, ε′ξ0〉, which
is globally subanalytic on P . For all ε, ε′ > 0, we thus get a function fε,ε′ := (fε′)Sε

defined by

fε,ε′(z) =

{
<〈z, ε′ξ0〉 if z ∈ Sε,
+∞ else.

Clearly, this function is convex of domain Sε. Moreover, its Legendre transform is
given by

f ∗ε,ε′(w) = sup
z∈Sε

<〈z, (w − ε′ξ0)〉 = hSε(w − ε′ξ0)
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for all w ∈ V∗ . Thanks to Theorem 1.5.13 one immediately gets that

dom◦(f ∗ε,ε′) = (S?∞)◦ + ε′ξ0

and that f ∗ε,ε′ is continuous on this open cone. In particular, since this cone is not
empty, its generated affine space is V∗. In order to apply Theorem 5.2.10, we will
assume throughout this section that Sε is subanalytic and that hSε is almost C∞-
subanalytic on P∗ for all ε > 0. Hence, we get an isomorphism

L+ : H1
Sε

(V, e−〈z,ε′ξ0〉Ωt
P)
∼−→ ehSε (w−ε′ξ0)Ot

P∗((S
?
∞)◦ + ε′ξ0) (5.21)

given by the positive Laplace transform for all ε, ε′ > 0. (Here, e−〈z,ε′ξ0〉Ωt
P is defined

in the obvious way and is of course equal to e−<〈z,ε′ξ0〉Ωt
P.) Among other things, we

shall show that the projective limit on ε, ε′ → 0 of this isomorphism is equivalent to
the bijectivity of P in Méril’s theorem.

Since z 7→ e−〈z,ε
′ξ0〉 is holomorphic on V, the surjectivity of

∂ : Dbt,1,0
P (V)→ Dbt,1,1

P (V)

implies the surjectivity of

∂ : e−〈z,ε
′ξ0〉Dbt,1,0

P (V)→ e−〈z,ε
′ξ0〉Dbt,1,1

P (V).

Hence, one can easily adapt Proposition 5.2.11 and Corollary 5.2.12 to obtain

Proposition 5.2.16. For all ε, ε′ > 0, there is a canonical isomorphism

e−〈z,ε
′ξ0〉Ωt

P(V \Sε)/e−〈z,ε
′ξ0〉Ωt

P(V)
∼−→ H1

Sε
(V, e−〈z,ε′ξ0〉Ωt

P). (5.22)

Let ε, ε′ > 0 and let ψε be a C∞-cutoff function which is equal to 1 on V \Sε and to
0 on Sε/2. Let u ∈ e−〈z,ε

′ξ0〉ΓVΩt
P(V \S). Then the image of [u] through the canonical

map

e−〈z,ε
′ξ0〉ΓVΩt

P(V \S)/e−〈z,ε
′ξ0〉Ωt

P(V)
∼−→ lim←−

ε→0

H1
Sε

(V, e−〈z,ε′ξ0〉Ωt
P)

−→ H1
Sε

(V, e−〈z,ε′ξ0〉Ωt
P)

is given by [∂̄(ψεu)].

By analogy with Méril’s spaces, we are led to introduce the following definitions.

Definition 5.2.17. For all ε′ > 0 we set

H t
S (V, ε′) =

{u ∈ ΩV(V \S) : ∀r > ε > 0, u ∈ e−〈z,ε′ξ0〉Dbt,1,0
P (S◦r\Sε)}

{u ∈ ΩV(V) : ∀r > 0, u ∈ e−〈z,ε′ξ0〉Dbt,1,0
P (S◦r )}

.

Remark that H t
S (V, ε′) ' e−〈z,ε

′ξ0〉ΓVΩt
P(V \S)/e−〈z,ε

′ξ0〉Ωt
P(V) for all ε′ > 0.
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Definition 5.2.18. For all ε, ε′ > 0 we set

Expt
ε,ε′(S) = ehSε (w−ε′ξ0)Ot

P∗((S
?
∞)◦ + ε′ξ0)

as well as
Expt

ε′(S) = lim←−
ε→0

Expt
ε,ε′(S).

If z, w ∈ C, we denote by θ(z, w) the non-oriented angle between z and w. Recall
that our inner product on C is <(zw) = |z||w| cos(θ(z̄, w)).

Lemma 5.2.19. Let S be a proper non-compact closed convex subset of C which
contains no lines and w ∈ (S∗∞)◦. Then, there are R, δ > 0 such that

cos(θ(z̄, w)) < −δ, ∀z ∈ S\D(0, R).

Proof. Since w ∈ (S∗∞)◦, there is a closed cone C such that w ∈ C\{0} ( (S∗∞)◦.
It is then clear that there is δ > 0 such that for all z ∈ S∞\{0} ( C∗, one has
cos(θ(z̄, w)) < −δ. Now, let us proceed by contradiction and assume that for all
n ∈ N0, there is zn ∈ S\D(0, n) such that cos(θ(z̄n, w)) ≥ −δ. Since C(0, 1) is
compact, one can find a subsequence zk(n) such that

zk(n)

|zk(n)|
→ z.

By construction, z is an element of S∞\{0} and thus cos(θ(z̄, w)) < −δ. However,
cos
(
θ
(
z̄k(n)

|zk(n)|
, w
))
≥ −δ for all n ∈ N0, which leads to a contradiction.

Theorem 5.2.20. Let ε′ > 0. There is a canonical isomorphism of C-vector spaces

H t
S (V, ε′) ∼−→ Expt

ε′(S). (5.23)

These spaces do not depend on the chosen norm.

Given a global C-linear coordinate z of V and its dual coordinate w, this isomorphism
can be made explicit by H t

S (V, ε′) 3 [f(z)dz] 7→ g ∈ Expt
ε′(S), with

g(w) =

∫
∂S+

ε

ezwf(z)dz,

where ∂S+
ε is the positively oriented boundary of any thickening Sε.

Proof. We apply lim←−
ε→0

to (5.21) as well as (5.22) to get isomorphisms

H t
S (V, ε′) ∼−→ lim←−

ε→0

H1
Sε

(V, e−〈z,ε′ξ0〉Ωt
P)
∼−→ Expt

ε′(S).
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Let us now compute this map within coordinates. Let [f(z)dz] ∈ H t
S (V, ε′) and fix

ε > 0. Let us choose a cutoff function ψε as in Proposition 5.2.16. Then, the image
of [f(z)dz] in Expt

ε,ε′(S) is given by g, where

g(w) = L+
w(∂̄(ψεf(z)dz)) =

∫
V
ezw∂̄(ψεf(z)dz).

One has ∫
V
ezw∂̄(ψεf(z)dz) =

∫
V
∂̄(ezwψεf(z)dz) =

∫
Sε\S◦ε/2

∂̄(ezwψεf(z)dz)

= lim
R→+∞

∫
(Sε\S◦ε/2)∩D(0,R)

∂̄(ezwψεf(z)dz)

= lim
R→+∞

∫
∂((Sε\S◦ε/2)∩D(0,R))+

ezwψεf(z)dz.

For R > 0 big enough, it is clear that ∂((Sε\S◦ε/2)∩D(0, R))+ is a Jordan rectifiable
curve which can be decomposed in four oriented rectifiable curves : (∂Sε∩D(0, R))+,
(∂Sε/2 ∩ D(0, R))− and two oriented arcs of circle IR and JR (see Figure 1 below).
By construction of ψε, we have∫

(∂Sε/2∩D(0,R))−
ezwψεf(z)dz = 0

and

lim
R→+∞

∫
(∂Sε∩D(0,R))+

ezwψεf(z)dz =

∫
∂S+

ε

ezwf(z)dz.

Let us prove that

lim
R→+∞

∫
IR
ezwψεf(z)dz = lim

R→+∞

∫
JR
ezwψεf(z)dz = 0.

We do it for IR. We have∣∣∣∣∫
IR
ezwψε(z)f(z)dz

∣∣∣∣ < 2πR sup
z∈IR
|ezwf(z)|

≤ 2πR sup
z∈IR
|ez(w−ε′ξ0)| sup

z∈IR
|ez(ε′ξ0)f(z)|.
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0
•

>
<

>

>

C(0, R)

∂Sε/2∂Sε

IR

JR

Figure 5.1: The contour ∂
((

Sε\S◦ε/2
)
∩D(0, R)

)+
.

On the one hand, thanks to the tempered condition on ez(ε
′ξ0)f(z)dz, one can see

that for R big enough, there are c ∈ (0,+∞) and N ∈ N such that

sup
z∈IR
|ez(ε′ξ0)f(z)| ≤ cRN .

On the other hand, for each R > 0, there is zR ∈ IR such that

sup
z∈IR
|ez(w−ε′ξ0)| = e<(zR(w−ε′ξ0)).

Moreover, one can write

e<(zR(w−ε′ξ0)) = e|zR||w−ε
′ξ0| cos(θ(z̄R,w−ε′ξ0)) = eR|w−ε

′ξ0| cos(θ(z̄R,w−ε′ξ0)).

By the previous lemma, since we have w − ε′ξ0 ∈ (S∗∞)◦ = (S∗ε,∞)◦ and zR ∈ Sε, we
can find δ > 0 such that cos(θ(z̄R, w − ε′ξ0)) < −δ for all R big enough. Hence, for
R big enough, ∣∣∣∣∫

IR
ezwψε(z)f(z) dz

∣∣∣∣ < 2πcRN+1e−|w−ε
′ξ0|δR →

R→+∞
0.

We have thus proved that the image of [f(z)dz] in Expt
ε,ε′(S) is the function g, defined

on (S∗∞)◦+ε′ξ0 by g(w) =
∫
∂S+

ε
ezwf(z)dz. One can check, by a similar proof as above,

that this integral remains unchanged with ε1 < ε. Therefore, it is also the image of
[f(z)dz] in Expt

ε′(S) and we get the conclusion.
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Remark 5.2.21. Let ε′ > ε′1 > 0. Then there is a well defined map

H t
S (V, ε′1)→H t

S (V, ε′),

namely [u] 7→ [u]. Indeed, if e〈z,ε′1ξ0〉u is tempered on S◦r\Sε (resp. S◦r ), then

e〈z,ε
′ξ0〉u = e〈z,(ε

′−ε′1)ξ0〉e〈z,ε
′
1ξ0〉u

is also tempered on S◦r\Sε (resp. S◦r ), since <(〈z, (ε′ − ε′1)ξ0〉) < 0 for all z ∈ Sr
with big enough module. Hence, this gives rise to a projective system (H t

S (V, ε′))ε′>0

which is compatible, through the positive Laplace transform, with the projective
system (Expt

ε′(S))ε′>0.

Corollary 5.2.22. There is a canonical isomorphism of C-vector spaces

lim←−
ε′→0

H t
S (V, ε′) ∼−→ lim←−

ε′→0

Expt
ε′(S). (5.24)

Given a global C-linear coordinate z of V and its dual coordinate w, this isomorphism

can be made explicit by

lim←−
ε′→0

H t
S (V, ε′) 3 ([fε′(z)dz])ε′>0 7→ g ∈ lim←−

ε′→0

Expt
ε′(S),

with
g(w) =

∫
∂S+

ε

ezwfε′(z)dz.

Proof. Within coordinates, we already know that the image of ([fε′(z)dz])ε′>0 through
(5.24) is given by a family (gε′)ε′>0, where

gε′(w) =

∫
∂S+

ε

ezwfε′(z)dz

on (S∗∞)◦ + ε′ξ0. To get the conclusion, it is enough to notice that

1. for all ε′ > 0, the function gε′ is well-defined and holomorphic on (S∗∞)◦,

2. for any ε′ > ε′1 > 0, one has∫
∂S+

ε

ezwfε′(z)dz =

∫
∂S+

ε

ezwfε′1(z)dz.

Indeed, since fε′ − fε′1 is entire and verifies a suitable tempered condition, we have∫
∂S+

ε

ezw(fε′(z)− fε′1(z))dz = lim
R→+∞

∫
∂(Sε∩D(0,R))+

ezw(fε′(z)− fε′1(z))dz = 0.
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Remark 5.2.23. Corollary 5.2.22 is nothing more but the "algebraic P-part" of
Méril’s theorem, while Theorem 5.2.20 is a stronger and new result. First, the canon-
ical map

HS(C, ε′)→H t
S (C, ε′), [f ] 7→

[
1

2iπ
fdz

]
is injective for all ε′, thanks to the Phragmen-Lindelöf theorem of [44, p. 394]. Hence,
it remains injective when applying lim←−

ε′→0

. Secondly, the map

HS(C)→ lim←−
ε′→0

H t
S (C, ε′)

is surjective since e〈z,2ε′ξ0〉f is bounded on Sr\S◦ε if e〈z,ε′ξ0〉f is tempered on Sr\S◦ε .
Finally, the inclusion

Exp(S) ⊂ {g ∈ O((S?∞)◦) : ∀ε, ε′ > 0, g ∈ ehSε Dbt
P((S?∞)◦ + ε′ξ0)}

' lim←−
ε′→0

Expt
ε′(S)

is an equality for the same reasons than in Remark 5.2.15.

5.3 Tempered holomorphic cohomological convolu-
tion

Using the link between Méril’s spaces and our tempered holomorphic cohomological
spaces, we can now prove, in the subanalytic case, the conjecture proposed at the end
of chapter 3. For this, we introduce an "intermediary step" between the holomorphic
cohomological convolution and the convolution of non-compactly carried analytic
functionals.

5.3.1 General definition

Let (G, µ) be a locally compact complex Lie group and recall section 4.2.1.

Proposition 5.3.1. If S1 and S2 are two convolvable subanalytic closed subsets of
G, then µ(S1 × S2) is also a subanalytic closed subset of G.

Proof. We already know that µ(S1 × S2) is closed. Let us denote by

p1, p2 : G×G→ G

the two projections. Since they are holomorphic, we know that p−1
1 (S1) = S1 × G

(resp. p−1
2 (S2) = G× S2) is a subanalytic subset of G×G. Hence,

S1 × S2 = (S1 ×G) ∩ (G× S2)

is a subanalytic subset of G×G. By the convolvability hypothesis, the map

µ|S1×S2 : S1 × S2 → G

is proper. Therefore, µ(S1 × S2) is a subanalytic subset of G.
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We can now imitate the definition of section 2.2.1. To simplify things, we will do
it for the complex bordered space V∞ = (V,V), where V is a complex vector space
of complex dimension n and V the projective compactification of V. Thus, it is clear
that the addition on V induces a semi-proper morphism of bordered spaces

+ : V∞×V∞ → V∞ .

Let S1 and S2 be two convolvable subanalytic closed subsets of V. On the one hand,
the external product of tempered distributions is clearly tempered and thus gives a
map

ΓS1(V,Db
t,2n

V )⊗ ΓS2(V,Db
t,2n

V )→ ΓS1×S2(V×V,Dbt,4n

V×V). (5.25)

On the other hand, decomposing the addition like a biholomorphism and a projection
extendible to V× V, one can use Lemma 4.3.9 to obtain a morphism∫

+

: +!!Dbt,4n
V∞×V∞ → Db

t,2n
V∞ ,

which induces a map∫
+

: ΓS1×S2(V×V,Dbt,4n

V×V)→ ΓS1+S2(V,Db
t,2n

V ). (5.26)

Obviously, the composition of (5.25) and (5.26) is a linear map

ΓS1(V,Db
t,2n

V )⊗ ΓS2(V,Db
t,2n

V )→ ΓS1+S2(V,Db
t,2n

V ),

defined by u1 ⊗ u2 7→ u1 ? u2, where u1 ? u2 is the usual convolution product of
distributions. It is thus natural to define the convolution of cohomology classes of
tempered holomorphic forms on V∞ as follows :

Definition 5.3.2. Let S1, S2 be two convolvable subanalytic closed subsets of V.
Consider the external product morphisms

RΓS1(V,Ω
t,p+n

V )[n]⊗ RΓS2(V,Ω
t,q+n

V )[n]→ RΓS1×S2(V×V,Ωt,p+q+2n

V×V )[2n]

and the morphisms∫
+

: RΓS1×S2(V×V,Ωt,p+q+2n

V×V )[2n]→ RΓS1+S2(V,Ω
t,p+q+n

V )[n]

induced by the holomorphic integration map and the fact that S1 × S2 is µ-proper.
By composition, these morphisms give derived category morphisms

?t
V∞ : RΓS1(V,Ω

t,p+n

V )[n]⊗ RΓS2(V,Ω
t,q+n

V )[n]→ RΓS1+S2(V,Ω
t,p+q+n

V )[n]

that we call the tempered holomorphic convolution morphisms of V∞. Going to co-
homology groups, these morphisms give rise to the morphisms

?t
V∞ : Hr+n

S1
(V,Ωt,p+n

V )⊗Hs+n
S2

(V,Ωt,q+n

V )→ Hr+s+n
S1+S2

(V,Ωt,p+q+n

V )

that we call the tempered holomorphic cohomological convolution morphisms of V∞.
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Remark 5.3.3. Let us take p = q = r = s = 0. Then, by the quasi-injectivity of the
tempered distribution sheaves, the tempered holomorphic cohomological convolution
morphism

?t
V∞ : Hn

S1
(V,Ωt

V)⊗Hn
S2

(V,Ωt
V)→ Hn

S1+S2
(V,Ωt

V)

can be explicitly computed by the linear map

ΓS1(V,Db
t,n,n

V )

∂̄ΓS1(V,Db
t,n,n−1

V )
⊗

ΓS2(V,Db
t,n,n

V )

∂̄ΓS2(V,Db
t,n,n−1

V )
7→

ΓS1+S2(V,Db
t,n,n

V )

∂̄ΓS1+S2(V,Db
t,n,n−1

V )
,

defined by [u1]⊗ [u2] 7→ [u1 ? u2].

Proposition 5.3.4. There is a canonical commutative diagram

Hn
S1

(V,ΩV)⊗Hn
S2

(V,ΩV) // Hn
S1+S2

(V,ΩV)

Hn
S1

(V,Ωt
V)⊗Hn

S2
(V,Ωt

V) //

OO

Hn
S1+S2

(V,Ωt
V)

OO

where the top arrow is given by the holomorphic cohomological convolution ?(V,+) and
the bottom arrow by the tempered holomorphic cohomological convolution ?t

V∞.

Proof. Consider the trivial embedding Ωt
V ↪→ ιVΩV of subanalytic sheaves. Then, if

S is a closed subanalytic subset of V, one gets a canonical map

RΓS(V,Ωt
V)→ RΓS(V, ιV(ΩV))

' RHom(ιV(CV⊗CS), ιV(ΩV))

' RHom(CV⊗CS,ΩV)

' RΓS(V,ΩV)

' RΓS(V,ΩV)

thanks to the fully-faithfulness of ιV. This map gives the vertical arrows of the
diagram, which is then obviously commutative by construction. (Indeed, by Re-
mark 4.4.8, the semi-properness of + entails that +!! ◦ ιV×V = ιV ◦+!.)

5.3.2 Proof of the main conjecture (subanalytic case)

Let us go back to the complex bordered space (C,P) where C is equipped with the
addition and let us fix two convolvable proper non-compact closed convex subsets of
C which contain no lines. Hence, one gets two compatible dualities S1 ↔ (hS1 , C1)
and S2 ↔ (hS2 , C2). Let us also fix a reference point ξ1,2 ∈ C◦1 ∩ C◦2 .

Throughout this section, we will assume that (S1)ε (resp. (S2)ε) is a subanalytic
subset of C and that h(S1)ε (resp. h(S2)ε) is almost C∞-subanalytic on P for all ε > 0.
Using an additive version of Lemma 2.2.13, it is clear that (S1)ε and (S2)ε are still
convolvable for all ε > 0. Moreover, by Proposition 5.3.1 (S1 + S2)2ε is a subanalytic
subset of C and, obviously, h(S1+S2)2ε = h(S1)ε + h(S2)ε is almost C∞-subanalytic on P
for all ε > 0.
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Proposition 5.3.5. Let ε, ε′ > 0. The tempered holomorphic cohomological convolu-
tion morphism

?t
(C,P) : H1

(S1)ε(C,Ω
t
P)⊗H1

(S2)ε(C,Ω
t
P)→ H1

(S1+S2)2ε
(C,Ωt

P)

induces a convolution map

H1
(S1)ε(C, e

−z1(ε′ξ1,2)Ωt
P)⊗H1

(S2)ε(C, e
−z2(ε′ξ1,2)Ωt

P)→ H1
(S1+S2)2ε

(C, e−z(ε′ξ1,2)Ωt
P).

Proof. It is enough to prove that the usual convolution product of distributions is a
well defined map from

Γ(S1)ε(C, e−z1(ε′ξ1,2)Dbt,1,1
P )⊗ Γ(S2)ε(C, e−z2(ε′ξ1,2)Dbt,1,1

P )

to
Γ(S1+S2)2ε(C, e−z(ε

′ξ1,2)Dbt,1,1
P ).

Let u1 (resp. u2) be an element of Db1,1
(S1)ε

(C) (resp. Db1,1
(S2)ε

(C)) such that ez1(ε′ξ1,2)u1

(resp. ez2(ε′ξ1,2)u2) is tempered at infinity. Then

〈u1 ? u2, ϕ〉 = 〈u1, 〈u2, ϕ(z1 + z2)〉〉
= 〈ez1(ε′ξ1,2)u1, 〈ez2(ε′ξ1,2)u2, e

−(z1+z2)(ε′ξ1,2)ϕ(z1 + z2)〉〉
= 〈ez1(ε′ξ1,2)u1 ? e

z2(ε′ξ1,2)u2, e
−z(ε′ξ1,2)ϕ〉

= 〈e−z(ε′ξ1,2)(ez1(ε′ξ1,2)u1 ? e
z2(ε′ξ1,2)u2), ϕ〉

for all test-function ϕ. Since ez1(ε′ξ1,2)u1?e
z2(ε′ξ1,2)u2 is tempered at infinity, this implies

that u ? v is an element of Γ(S1+S2)2ε(C, e−z(ε
′ξ1,2)Dbt,1,1

P ). Hence the conclusion.

Of course, like in Proposition 5.3.4, this convolution can be embedded in a com-
mutative diagram

H1
(S1)ε

(C,ΩC)⊗H1
(S2)ε

(C,ΩC) // H1
(S1+S2)2ε

(C,ΩC)

H1
(S1)ε

(C, e−z1(ε′ξ1,2)Ωt
P)⊗H1

(S2)ε
(C, e−z2(ε′ξ1,2)Ωt

P) //

OO

H1
(S1+S2)2ε

(C, e−z(ε′ξ1,2)Ωt
P)

OO

Taking the projective limit on ε→ 0 and then on ε′ → 0, one finally gets

Proposition 5.3.6. There is a canonical commutative diagram

H1
S1

(C,ΩC)⊗H1
S2

(C,ΩC) // H1
S1+S2

(C,ΩC)

HS1(C)⊗HS2(C) //

OO

HS1+S2(C)

OO

where the top arrow is given by the holomorphic cohomological convolution and the
bottom arrow by the tempered holomorphic cohomological convolution.
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Proof. The isomorphism

lim←−
ε→0

H1
Sε

(C,ΩC) ' H1
S(C,ΩC)

follows from Corollary 1.2.4 and the isomorphisms

HS(C) = lim←−
ε′→0

HS(C, ε′) ' lim←−
ε′→0

H t
S (C, ε′) ' lim←−

ε,ε′→0

H1
Sε

(C, e−z(ε′ξ)Ωt
P)

from Remark 5.2.23.

To prove Conjecture 3.2.30 in this subanalytic context, it is thus enough to prove
the following theorem :

Theorem 5.3.7. The following diagram is commutative :

HS1(C)×HS2(C) //HS1+S2(C)

Q′(S1)×Q′(S2) //

o

OO

Q′(S1 + S2)

o

OO

Here, the bottom arrow is given by the convolution of analytic functionals, the top
arrow by the tempered holomorphic cohomological convolution and the vertical arrows
by the Cauchy transform.

Lemma 5.3.8. Let
A

f // B

C
i //

g

OO

D

h

OO

E
l //

j

OO

F

k

OO

be a diagram in a category. Assume that the upper square and the big square are
commutative. Then, if h is a monomorphism, the lower square is also commutative.

Proof. One has
h ◦ i ◦ j = f ◦ g ◦ j = h ◦ k ◦ l.

Since h is a monomorphism, this implies that i ◦ j = k ◦ l. Hence the conclusion.

Proof of Theorem 5.3.7. Let ε, ε′ > 0. There is a commutative diagram

Expt
ε,ε′(S1)× Expt

ε,ε′(S2) // Expt
2ε,ε′(S1 + S2)

H1
(S1)ε

(C, e−z1(ε′ξ1,2)Ωt
P)×H1

(S2)ε
(C, e−z2(ε′ξ1,2)Ωt

P) //

o

OO

H1
(S1+S2)2ε

(C, e−z(ε′ξ1,2)Ωt
P)

o

OO
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where the bottom arrow is given by the tempered holomorphic cohomological con-
volution, the top arrow by the usual product of functions and the vertical arrows by
the isomorphism (5.21). Indeed, one has

L+([u1] ?t
(C,P) [u2]) = L+[u1 ? u2] = L+(u1 ? u2) = L+(u1)L+(u2),

where the last equality follows from a classical theorem in analysis. Taking the
projective limit on ε, ε′ → 0 and using Corollary 5.2.22 as well as Remark 5.2.23, one
gets a commutative diagram

Exp(S1)× Exp(S2) // Exp(S1 + S2)

HS1(C)×HS2(C) //

P×P

OO

HS1+S2(C)

P

OO

It can be embedded in the bigger diagram

Exp(S1)× Exp(S2) // Exp(S1 + S2)

HS1(C)×HS2(C) //

P×P

OO

HS1+S2(C)

P

OO

Q′(S1)×Q′(S2) //

C ×C

OO

Q′(S1 + S2)

C

OO

where the bottom arrow is given by the convolution of analytic functionals. In the
light of the above, the upper square is commutative. Moreover, since P ◦ C = F , the
big square is also commutative by Proposition 3.2.24. The conclusion then follows
from the bijectivity of P and the previous lemma.



Conclusion

As a conclusion, we would like to point out some possible ways to reinforce the results
that were obtained in this thesis and also propose some guidelines for a future research
linked to these thematics.

First, one could ask whether it is possible to obtain explicit results as Theo-
rem 2.2.12 for more general complex Lie groups, for example torus. The main diffi-
culty lies in the explicit computation of Hn

S (G,ΩG), where S is a proper closed subset
of G. One should determine what are the less restrictive conditions to require on G
and S in order to treat other interesting cases.

Secondly, one may aim to strengthen as much as possible the statement of Theo-
rem 5.2.10. The first priority would be to prove Conjecture 5.2.3, at least for convex
functions, so that one can remove the almost C∞-subanalytic condition on f ∗S. Drop-
ping the subanalytic condition on S seems to be more delicate. Of course, we know
that Corollary 5.2.22 is true, even without the subanalytic conditions on S, since one
can construct an explicit inverse of P , namely B. However, the Borel transform only
works as an inverse because one can change the ε′. Hence, it is not an inverse for
the stronger map in Theorem 5.2.20. This seems to suggest that our method can
provide isomorphisms between bigger spaces than usual, but without any reasonable
constructible inverse and this probably is deeply linked to the subanalytic conditions
on S. Nonetheless, convex properties are also very strong and it is perhaps possible
to preserve our results without any subanalytic assumption. Managing that would in
the same time garantee a proof of Conjecture 3.2.30 in the general case. The reader
could also want to incorporate a "topological part" so that our isomorphisms of C-
vector spaces become isomorphisms of locally convex spaces (nuclear Fréchet in our
case). A possible idea is to use subanalytic sheaves valued in the category IndBan,
studied in [92] and in [104].

Finally, one could replace the tempered conditions by other growth conditions,
like Gevrey ones, in order to get a greater diversity of holomorphic Paley-Wiener-
type theorems. In [41], the authors study the subanalytic sheaf Ogev

X of holomorphic
functions of Gevrey growth. They also introduce a refinement of the subanalytic site,
called the linear subanalytic site, which allows them to deal with the sheaf Ogev(s)

X

of holomorphic functions of Gevrey growth of type s ∈ (1,+∞). However, this new
site is not well-fit to use Grothendieck operations. For example, it is not possible to
define a direct image f∗ in general. S. Guillermou and P. Schapira nonetheless explain
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how it possible to solve the problem if one assumes that f is a submersion. Since the
Fourier-Sato functors only involve submersions, it seems that one can adapt them to
this new framework in order to study Gevrey growth conditions. The adaptation of
Theorem 5.1.10 will of course be the key point and will highly depend on the behaviour
of the new sheaves with respect to pullback and integration over the fibers.
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List of symbols

General notations

N The set of positive integers

Z The ring of integers

R The field of real numbers

P The one-point compactification R∪{∞}

R The two-points compactification R∪{−∞,+∞}

R∞ The bordered space (R,R)

C The field of complex numbers

C∗ The multiplicative group of non-zero complex numbers

P The one-point compactification C∪{∞}

card(A) The cardinal of the set A

A\B The set of elements which are in A and not in B

A×B The cartesian product of A and B

A◦ The interior of A

A The closure of A

∂A The boundary of A : A\A◦

lim←− The projective limit

lim−→ The inductive limit

{pt} A set of cardinal 1

aX The canonical map X → {pt}
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B(a, r) The open ball of center a and radius r in a normed space

D(a, r) Equivalent notation for B(a, r) in C

C(a, r) Circle of center a and radius r in a normed space

Ind(c, z) Index of a 1-cycle c at z, cf. Definition 1.3.5

Categories

OpX The category of open subsets of a topological space X

Mod(R) The category of sheaves of R-modules

D∗(R) The derived category of Mod(R) (∗ = ∅,+,−, b)

Db
hol(DX) The bounded derived category of left DX-modules with holonomic

cohomologies on a complex manifold X

Db
q-good(DX) The bounded derived category of left DX-modules with quasi-good

cohomologies on a complex manifold X

Opsub,c
M The category of open relatively compact subsets of a subanalytic space

M

Mod(Csub
M ) The category of subanalytic sheaves on M

D∗(Csub
M ) The derived category of Mod(Csub

M ) (∗ = ∅,+,−, b)

Db(DX∞) Denotes the category Db(DX̂)/{M : supp(M) ⊂ X̂\X} on a bordered
space X∞ = (X, X̂)

Db
hol(DX∞) Db

hol(DX̂)/{M : supp(M) ⊂ X̂\X}

Db
q-good(DX∞) Db

q-good(DX̂)/{M : supp(M) ⊂ X̂\X}

Opsub,c
M∞

On a subanalytic bordered space M∞ = (M, M̂), the category of open
subsets of M which are relatively compact in M̂

Mod(Csub
M∞) The category of subanalytic sheaves on M∞

D∗(Csub
M∞) The derived category of Mod(Csub

M∞) (∗ = ∅,+,−, b)

Eb(Csub
M∞) The category of enhanced subanalytic sheaves on M∞, cf. Defini-

tion 4.5.4

Functors and (co)homologies

Γ(U,−) Functor of sections, for sheaves, on an open set U
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ΓZ(−),Γc(−) Functor of sections supported by Z with Z locally closed (resp. sec-
tions compactly supported)

f∗, f
−1, f!,⊗,Hom Grothendieck operations for sheaves

Rf∗,Rf
−1,Rf!, f

!,
L
⊗,RHom Derived Grothendieck operations for sheaves

Df∗,Df
∗,Df!,

D
⊗ Grothendieck operations for D-modules

ιM The canonical inclusion functor Mod(CM) → Mod(Csub
M ) where M is

a subanalytic space

αM , βM The canonical left adjoint of ιM (resp. left adjoint of αM)

f∗, f
−1, f!!,⊗,Ihom Grothendieck operations for subanalytic sheaves

I ΓZ(−) Internal functor of sections supported by Z for subanalytic sheaves

QM Quotient functor Db(Csub
M∞×R∞) → Eb(Csub

M∞) where M∞ is a subana-
lytic bordered space

LE,RE The canonical left (resp. right) adjoint of QM

Ef∗,Ef
−1,Ef!!,Ef

!,
+
⊗,Ihom+ Grothendieck operations in Eb(Csub

M∞)

RIhomE(−,−) Abbreviation for the functor RπM∗RIhom(RE(−),RE(−)), where
πM : M∞ × R∞ →M∞ is the projection

RHomE(−,−) Stands for αM ◦ RIhomE(−,−)

DRE
X∞ ,Sol

E
X∞ Enhanced de Rham functor (resp. solution functor) on a complex

bordered space X∞, cf. Definition 4.6.6

[n] Shift functor by n ∈ Z

Hk Cohomological functor of degree k

BMHk(X) Borel-Moore homology of degree k of a topological locally compact
space X, cf. Definition 1.3.3

Hk(X) Singular homology of degree k of X

Hk(X,A) Relative singular homology of degree k of X with respect to A

[X] Canonical orientation class of BMHn(X), if X is an oriented topological
manifold of pure dimension n, cf. Definition 1.3.4

[X]K Canonical relative orientation class of Hn(X,X\K) if K is a compact
subset of X
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Sheaves

AX Constant sheaf of fiber A on a topological space X

ωX Orientation complex of X : a!
X Z{pt}

orX Abbreviation of H−n(ωX) on an oriented topological manifold of pure
dimension n

Cr∞,M ,DbrM Sheaf of infinitely differentiable complex differential r-forms (resp. dis-
tributional r-forms) on a real manifold M

Cp,q∞,X ,Db
p,q
X Sheaf of infinitely differentiable complex differential (p, q)-forms (resp.

distributional (p, q)-forms) on a complex manifold X

Ωp
X Sheaf of holomorphic p-forms on X (OX = Ω0

X and ΩX = ΩdX
X )

Ω⊗−1
X The inverse sheaf HomOX

(ΩX ,OX) of ΩX

DX Sheaf of linear partial differential operators with holomorphic coeffi-
cients on X

DX→Y ,DX←Y Transfer bimodules associated with a holomorphic map f : X → Y

Ct,r
∞,M ,Db

t,r
M Subanalytic sheaf of tempered differential r-forms (resp. tempered

distributional r-forms) on a real analytic manifold M , cf. Defini-
tions 4.3.1 and 4.3.5

e−f Dbt,r
M∞

Cf. Definition 5.2.4

Ct,p,q
∞,X ,Db

t,p,q
X Subanalytic sheaf of tempered differential (p, q)-forms (resp. tempered

distributional (p, q)-forms) on a complex manifold X

Ωt,p
X Complex of tempered holomorphic p-forms on X (Ot

X = Ωt,0
X and

Ωt
X = Ωt,dX

X )

OX(∗Y ) Sheaf of holomorphic functions with poles in Y , where Y is a complex
analytic hypersurface of X

DXe
ϕ The sheaf DX/{P : Peϕ = 0 on X\Y } with ϕ ∈ OX(∗Y )

E ϕ
U |X Abbreviation for DXe

ϕ
D
⊗OX(∗Y )

DX∞ The class of DX̂ in Db(DX̂)/{M : supp(M) ⊂ X̂\X} on a complex
bordered space X∞ = (X, X̂)

DX∞→Y∞ ,DX∞←Y∞ Transfer bimodules associated with an extendible morphism of
complex bordered spaces f : X∞ → Y∞
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DbT,r
M∞

Subanalytic sheaf of enhanced distributional r-forms on a real analytic
bordered space M∞, cf Definition 4.6.1

DbT,p,q
X∞

Subanalytic sheaf of enhanced distributional (p, q)-forms on a complex
bordered space X∞

ΩE,p
X∞

Complex of enhanced holomorphic p-forms on X∞ (OE
X∞ = ΩE,0

X∞
and

ΩE
X∞ = ΩE,dX

X∞
)

C{tRϕ(x)} Abbreviation of ιM(C{(x,t)∈M×R : tRϕ(x)}), whereR stands for =,≤,≥, >
or <

CE
M∞ The enhanced subanalytic sheaf QM

(
lim−→

a→+∞
C{t≥a}

)
Vector spaces

V, V ∗ A real vector space V and its real dual

V,V∗ A complex vector space V and its complex dual

V,V∗ The projective compactification of V and V∗

〈−,−〉 The duality bracket V × V ∗ → R or V×V∗ → C

LV, L
a
V The Laplace kernels on V, cf. Definition 5.1.4

EFV, EFaV The enhanced Fourier-Sato functors on V∞, cf. Definition 5.1.5

C,C∗ A cone and its polar cone

Conv(V ) The set of closed proper convex functions on V

dom(f) The domain, f−1(R), of f ∈ Conv(V )

f ∗ The Legendre transform of f ∈ Conv(V ), cf. Definition 1.5.1

hS The support function of a convex set S ⊂ V , cf. Definition 1.5.2

Sε The thickening of S by ε > 0

S∞ The asymptotic cone of S, cf. Definition 1.5.9

Functional spaces

H(Ω) O(Ω) if Ω ⊂ C and {f ∈ O(Ω) : f(∞) = 0} if ∞ ∈ Ω ⊂ P

O′(K) The space of analytic functionals carried by the compact subset K of
C, i.e. the strong topological dual of lim−→

U⊃K
O(U)
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O0(C \K) The space {f ∈ O(C \K) : limz→∞ f(z) = 0}

Exp(K) The space {g ∈ O(C) : ∀ε > 0, supw∈C|g(w)|e−hK(w)−ε|w| <∞}

Qε,ε′(S) The space {ϕ ∈ O(S◦ε ) : supζ∈S◦ε |e
−ε′ξ0ζϕ(ζ)| <∞} where S is a proper

non-compact closed convex subset of C which contains no lines and ξ0

a point of (S∗∞)◦

Q(S) The space lim−→
ε,ε′→0

Qε,ε′(S)

Q′(S) The space of analytic functionals carried by S, i.e. the strong topo-
logical dual of Q(S)

R(C \S, ε′) The space {f ∈ O(C \S) : ∀r > ε > 0, supz∈Sr\S◦ε |e
ε′ξ0zf(z)| <∞)}

R(C, ε′) The space {f ∈ O(C) : ∀r > 0, supz∈Sr
|eε′ξ0zf(z)| <∞)}

HS(C, ε′) The space R(C \S, ε′)/R(C, ε′)

HS(C) The space lim←−
ε′→0

HS(C, ε′)

Exp(S) The space

{g ∈ O((S∗∞)◦) : ∀ε, ε′ > 0, sup
w∈S?

∞+ε′ξ0

|g(w)|e−hS(w)−ε|w| <∞}

H t
S (V, ε′) The space

{u ∈ ΩV(V \S) : ∀r > ε > 0, u ∈ e−〈z,ε′ξ0〉Dbt,1,0
P (S◦r\Sε)}

{u ∈ ΩV(V) : ∀r > 0, u ∈ e−〈z,ε′ξ0〉Dbt,1,0
P (S◦r )}

,

where V is a complex vector space of dimension 1 and P its one-point
compactification

Expt
ε,ε′(S) The space ehSε (w−ε′ξ0)Ot

P∗((S
?
∞)◦ + ε′ξ0)

Expt
ε′(S) The space lim←−

ε→0

Expt
ε,ε′(S)

Particular transformations∫
f
ω,
∫
f
u Integration of an infinitely differentiable form ω (resp. a distributional

form u) along the fibers of f , cf. Definition 1.4.1 and Proposition 1.4.2

f ∗ω, f ∗u Pullback of an infinitely differentiable form ω (resp. a distributional
form u) by f , cf. Definition 1.4.4
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u1 � u2 External tensor product of two distributions u and v, cf. Defini-
tion 2.2.3

?(G,µ) The holomorphic cohomological convolution on a complex Lie group
(G, µ), cf. Definition 2.2.6

?t
V∞ The tempered holomorphic cohomological convolution on a bordered

complex vector space V∞ = (V,V), cf. Definition 5.3.2

? Indifferently the Hadamard product (cf. Definition 2.1.1), the ex-
tended Hadamard product of T. Pohlen (cf. Definition 2.1.8), the
generalized Hadamard product (cf. Definition 2.1.13), the additive
(resp. multiplicative) holomorphic cohomological convolution on C
(resp. C∗), the convolution of distributions and the convolution of
analytic functionals (cf. Definitions 3.1.13 and 3.2.22)

µϕ The map (x, t) 7→ (x, t+ ϕ(x))

C The Cauchy transform, cf. Definition 3.1.6 and Proposition 3.2.12

F The Fourier-Borel transform, cf. Definition 3.1.4 and Proposition
3.2.13

L+ The positive Laplace transform (of tempered distributions)

P The Polya transform, cf. Definition 3.1.8 and Proposition 3.2.14

B The Borel transform P−1, cf. Propositions 3.1.11 and 3.2.16
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Bordered space, 67
Borel transform, 45, 52
Borel-Moore homology, 9

Cauchy cycle, 21
Cauchy transform, 44, 51
Closed proper convex function, 15
Compatible convex sets, 52
Complex bordered space, 70
Cone, 16

Convex cone, 16
Pointed cone, 16
Polar cone, 16
Proper cone, 16
Salient cone, 16

Convex duality, 18
Convolution functors, 71
Convolution of compactly supported ana-

lytic functionals, 46
Convolution of distributional forms, 27
Convolution of non-compactly supported

analytic functionals, 55
Convolvable closed sets, 26
Convolvable distributional forms, 27

Domain of a convex function, 15

Enhanced, 72
Enhanced De Rham functor, 75
Enhanced distributional form, 74

Enhanced Fourier-Sato functors, 84
Enhanced holomorphic form, 74
Enhanced Laplace transform, 85
Enhanced solution functor, 75
Enhanced subanalytic sheaves, 72

Fourier-Borel transform, 44, 51

Generalized Hadamard cycle, 23
Generalized Hadamard product, 23
Globally subanalytic function, 86
Good topological space, 67

Hadamard cycle, 21
Hadamard product, 19, 22
Holomorphic cohomological convolution,

28
Holomorphic integration map, 13

Index of a complex 1-cycle, 10
Integral of a distributional form, 13

Laplace kernels, 84
Laplace transform, 85
Legendre transform, 15

Mittag-Leffler condition, 8

Orientation class, 10
Orientation complex, 9

Polya transform, 44, 51
Polynomial growth, 64
Pullback of a distributional form, 14

Quasi-injective subanalytic sheaf, 63

Real analytic bordered space, 74
Relative Hadamard cycle, 30
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Star product, 20
Star-eligible closed sets, 23
Star-eligible open sets, 20
Strongly convolvable closed sets, 38
Subanalytic, 60

Subanalytic bordered space, 68
Subanalytic function, 68
Subanalytic presheaf, 61, 69
Subanalytic set, 60
Subanalytic sheaf, 61, 69
Subanalytic space, 68

Support fonction, 15
Supporting half-spaces, 16
Supporting hyperplanes, 16

Tempered, 64
Tempered C∞-function, 64
Tempered distribution, 64
Tempered holomorphic cohomological
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