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Abstract—This paper investigates the sizing of the Frequency
Restoration Reserve (FRR) in a context of increasing penetration
of renewable generation. More precisely, we propose (i) a prob-
abilistic method that mimics the current Belgian TSO (Elia)
practices and (ii) a Monte-Carlo based procedure that evaluates
the corresponding reliability of the system in terms of down/up-
ward reserves activation, wind curtailment and load shedding.
Using this method over the IEEE-RTS96 testcase, the impact of
wind penetration - low, moderate, high - is studied. In particular,
static (annual and seasonal) and dynamic (weekly and hourly)
FRR sizing approaches are defined and compared. It turns out
that the hourly sizing method is the most robust. It also appears
that FRR requirements for upward reserves are almost not
impacted by the high wind penetration whereas the downward
reserves increase significantly with the wind penetration. Our
implementations rely on Julia, Cplex and R and are available in
open source.

Index Terms—Power system reliability, renewable integration,
probabilistic reserve capacity dimensioning, Monte-Carlo meth-
ods.

I. INTRODUCTION

In power systems operation, Frequency Restoration Re-
serves (FRR) are needed in order to ensure, in spite of
uncertainties, equilibrium between generation and demand in
a given area at any moment, and to contribute in a proper
way to stabilize the frequency in the interconnected system.
If the amount of available reserves at some moment in time
is too small, energy supply is at risk and load-shedding or
curtailment of renewable energy sources may have to be used
as last resort actions. On the other hand, if the amount of
reserves is often too high, it means that the system is under-
utilized and hence sub-optimal from an economic point of
view.

More renewable generation leads to both more variability
and more stochasticity in the net demand (actual demand
minus renewable generation). In order to cope with these
trends, increased amounts of FRR may be needed and hence
increased costs may be foreseen. In most places, as in Belgium
[1], the requirements of different kinds of FRR are currently
defined in a static fashion on a yearly basis (same requirement
for every hour of the next year).

A possible direction of improvement could be to define the
required amounts of reserves in a more dynamical (i.e., time-
varying) fashion, thereby allowing the TSO to more effectively

adapt the amount of purchased reserves to the actual needs at
any given moment of time. Indeed, this could allow to improve
the overall social welfare by balancing in a more efficient way
the impact of reserve sizes on energy prices and on reliability.

The paper’s contribution has a twofold purpose. We first
propose a methodology that enables to estimate the FRR needs
taking into account the probability of an imbalance between
generation and demand. This method is close to the actual
TSOs practises, which gradually move from the traditional
N − 1 criterion toward probabilistic sizing. Together with this
FRR sizing method, we propose a reliability evaluation of
the resulting system in terms of probability of being short in
upward and downward reserves, expected amount of demand
not served and of wind curtailment and expected amount of
upward and downward reserve activation. These performances
are established by Monte-Carlo simulations. Second, using this
method on the IEEE-RTS96 modified to include renewable
generations, we analyse how the FRR size evolves (i) in front
of low, moderate and high wind penetration (ii) when being
fixed for one hour, one week, one season or one year and what
is the impact on the system’s reliability.

The remainder of the paper is organized as follows. Sec-
tion II describes the probabilistic methodology used to com-
pute the requested FRR dimension and the reliability evalu-
ation procedure. Section III presents an empirical study on
the IEEE-RTS96 benchmark, where the three areas have to
cope with different levels of wind-power penetration, from
very high in the West, to moderate in the East. Section IV
discusses related work and Section V concludes and identifies
several directions of further research.

II. FRR SIZING & EVALUATION METHODOLOGY

We consider a probabilistic reserve sizing method similar
to the one defined by ENTSOe. This method requires that
the probability that the level of reserve in a control area is
not sufficient to cover the imbalances of this area should
not exceed 0.1% [2]. Hence the first step is to obtain the
distribution function of the imbalances. For this purpose,
we model the sources of imbalance in Section II-A. In this
paper, the sources of imbalances are (i) the generation unit
outages; (ii) the difference between the day-ahead load forecast
and its realization; (iii) the difference between the day-ahead



wind generation forecast and its realization. The sources of
imbalances are considered as independent.

A. Physical and uncertainty models

1) Conventional generation unit outages: The probability
P that an unplanned outage occurs during a time interval
[t, t+ ∆t] depends only on ∆t and on the failure rate λ. It is
modeled by an exponential distribution [3]:

P (∆t) = 1− exp (−λ ·∆t) . (1)

In order to compute the probability distribution of imbalances
due to outages of conventional generation units, we adopt the
following assumptions, similar to [1]:
• a unit can be lost only once during the period ∆t = 1h;
• after at most 1h, any unit will be back online;
• outages of different units are independent;
• in case of outage occurence, it is assumed that the unit

has been dispatched at its maximum output;
• only thermal and nuclear are considered.

The probability distribution of the loss capacity in the produc-
tion park is then computed, by convolution, using (1) and the
assumptions above.

For the numerical study, the failure rate of the generating
units is taken from the literature [4].

2) Load and wind generation forecast error: Demand and
renewable stochasticities at a time step t are modelled as
truncated Gaussian white-noise relative deviations from day-
ahead forecast. Hence the load realization ptreal is given by:

ptreal = ptda (1 +N (σ)) , (2)

where ptda is the load forecast and N (σ) is a centered
truncated Gaussian of standard deviation σ and lying in an
interval [−η, η].

Equation (2) gives directly the load error distribution for a
time step t. We can derive the load error distribution over a
period of T time steps by:

P
(
ptreal − p

t
da > x

)
=

T∑
s=1

P
(
ptreal − p

t
da > x|t = s

)
P(t = s), (3)

=
1

T

T∑
s=1

P (psdaN (σ) > x) . (4)

It is a mixture of truncated Gaussians. If T = 1 the
distribution is simply a truncated Gaussian.

For the numerical study, σ and η are taken to be consistent
with the values of the 2016 Belgian grid. Note that these values
can be found in the implementations available at [5].

The wind generation forecast error for each wind station is
modeled similarly.

B. Computation of the imbalances distribution

The three previous distributions (outages, load and wind
errors forecasts) are convoluted, in order to obtain the distri-
bution of imbalances. Then, the upward reserve requirement
is computed by taking the 99.9% quantile of the positive

part of the imbalance distribution, and the downward reserve
requirement is computed by taking the 0.1% quantile of the
negative part of the imbalance distribution.

C. Evaluating the actual impact of the reserve sizing policies

In order to evaluate the resulting system, we propose
an approach based on crude Monte-Carlo simulation. First,
day-ahead unit generation scheduling together with the units
providing the reserves are given by a joint unit commitment,
assuming copper-plate network. The detailed unit commitment
is provided in [5]. Then, some scenarios of outages and
deviations of demand and wind-generation from forecasts, at
an hourly time step, are generated by using the probabilistic
model presented in Section II-A. These realizations are used
to estimate the following reliability indicators: (i) actual prob-
ability of shortage of FRR; (ii) expected level of activation
of FRR; (iii) expected amounts of load-shedding and wind
curtailment.

In our assessment, we aimed at evaluating probabilities of
rare events (probability of reserve shortage ≈ 0.1% and ex-
pectations of quantities, such as expected amount of shortage,
having a high variance). In order to estimate these quantities
with sufficient accuracy and thus to avoid any discussion about
the estimated values, we have used a very large number of
Monte-Carlo samples, namely 108.

III. CASE STUDY ON THE 3-AREA IEEE-RTS96

The probabilistic sizing method is applied to the IEEE-
RTS96, modified in order to include 19 wind farms: 9 in the
western area (Area 1), 7 in the central one (Area 2) and 3 in the
eastern one (Area 3) [6]. The period considered for the study
covers weeks 1 (representative of winter), 9 (representative of
spring/autumn) and 18 (representative of summer) of [4] with
an annual load peak of 2850 MW. The wind scenarios have
been provided by [6]

In our study, we consider that each area should cover the
imbalances originating from the generating sources and loads
connected in that area. Using reserves from another control
area would imply additional reliability considerations related
to the cross-border transmission capacities that are out of the
scope of the present study.

All the data necessary to reproduce these experiments can
be found in [5].

A. Reserves sizes

Tables I and II display the average upward and downward
FRR sizes resulting from the probabilistic methodology for
each case. The annual static case is constant over the whole
period of 3 representative weeks (i.e., T = 504 in (4)), while
the weekly reserve requirement is adjusted for each week (i.e.,
T = 168 in (4)). These weekly reserves requirement are
presented in Tables III and IV. Going down to daily (i.e.,
T = 24 in (4)) and hourly (i.e., T = 1 in (4)) allocations,
Fig. 1 and 2 show the variations of the corresponding reserves
requirements.



TABLE I: Average upward reserves (in MW).

Area 1 Area 2 Area 3

Annual 524.3 482.7 425.9
Weekly 525.2 481.2 426.1
Daily 523.2 480.2 426.3
Hourly 520.4 480.0 428.6

TABLE II: Average downward reserves (in MW).

Area 1 Area 2 Area 3

Annual −443.2 −350.5 −135.0
Weekly −417.3 −322.8 −125.9
Daily −391.7 −305.2 −116.1
Hourly −350.4 −274.8 −106.8

1) Impact of the wind penetration: Both upward and
downward reserves are higher for the areas having a higher
penetration of wind-power. This dependance is however much
stronger for the downward reserves, which do not have to
cover the conventional generating units outages (the latter
having only an impact on the upward reserve requirements
and being in our study modeled identically in the three areas).
Daily and hourly variations of reserves requirement are most
important in area 1, where the wind penetration is the largest.

2) Impact of the reserve size temporal variations: The
seasonal, daily and hourly sizing methods yield reserve re-
quirements that indeed vary significantly from one season to
another, from day to day, and from hour to hour. On average
over the three study weeks, the upwards reserve requirements
are however almost not affected, but the downwards reserve
requirements decrease significantly, the effect being stronger
in the more wind-intense areas and for the more dynamic
methods (reduction of 20% in the western area, when using
the hourly sizing method, reduction of 9% in the eastern area,
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Figure 1: Daily probabilistic reserve sizing (in MW). Areas A1, A2, A3 are
ordered from West to East, i.e., from high to low wind penetration. ‘R+’ (resp.
‘R-’) stands for upward (resp. downward) reserves.

TABLE III: Seasonal upward reserves (in MW).

Area 1 Area 2 Area 3

Week 1 (winter) 588.6 520.8 435.3
Week 9 (spring) 531.7 481.7 426.1

Week 18 (summer) 455.5 441.2 417.0

TABLE IV: Seasonal downward reserves (in MW).

Area 1 Area 2 Area 3

Week 1 (winter) −533.7 −424.0 −155.1
Week 9 (spring) −451.5 −336.1 −127.6

Week 18 (summer) −266.7 −208.3 −95.1

when using the seasonal sizing method).
3) Discussion: From the above results, we may be tempted

to conclude that (i) the seasonal, daily and hourly variations
of load and wind-generation profiles could be exploited in
order to more dynamically adjust reserve requirements in
such a way that the overall reserve requirements are reduced
significantly for downward reserves and more marginally for
upward reserves, and (ii) that the expected potential for such
dynamic reserve sizing methods should increase with higher
levels of wind-generation penetration.

This possibility should however be confronted with the fact
that energy market prices themselves are as well impacted by
the seasonal, daily and hourly dynamics of load and renewable
generation, so that at the moments when more reserve is
required, the impact of purchasing more of it on these latter
energy markets would be amplified, and in the end be possibly
counter-productive from an overall socio-economic viewpoint.

On the other hand, we would like to stress the fact that
the strategies investigated above in order to adjust reserve
requirements are by no means optimal, since they are still
computed in foresight based on seasonal, daily and hourly
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Figure 2: Hourly probabilistic reserve sizing (in MW). Areas A1, A2, A3
are ordered from West to East, i.e., from high to low wind penetration. ‘R+’
(resp. ‘R-’) stands for upward (resp. downward) reserves.



TABLE V: Estimated actual probability (in %) that the required reserve level
is sufficient to cover the imbalance. We provide a large number of digits to
facilitate verification in the context of replication studies.

Area 1 Area 2 Area 3

Pr
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t.
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p.
R

es
. Annual

Weekly
Daily

Hourly

99.95284± 10−3

99.97001± 10−2

99.97450± 10−3

99.97370± 10−3

99.87148± 10−2

99.81499± 10−2

99.83044± 10−2

99.84596± 10−3

99.89655± 10−3

99.89732± 10−3

99.89056± 10−3

99.89588± 10−3

Pr
.o

f
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or
t.

in
D

n.
R

es
.Annual

Weekly
Daily

Hourly

99.87224± 10−2

99.83007± 10−2

99.85437± 10−2

99.97414± 10−3

99.90943± 10−2

99.95286± 10−2

99.95899± 10−2

99.99328± 10−3

99.87865± 10−2

99.92270± 10−2

99.94504± 10−2

99.99516± 10−3

statistics available in advance (and hence do not adjust to
incoming information), and since they were designed so as
to maintain the probability of shortage constant and equal to
the 99.9% requirement over each sub-period considered; better
strategies could indeed possibly take advantage of incoming
information and a degree of freedom for allocating the risk of
shortage itself in a dynamic fashion.

B. Reliability assessment

This section presents and analyses the resulting system
reliability, evaluated using the method described in Section
II-C. Note that extended results are available in [5]. In the
following, the 99.9% confidence interval is given after the
symbol ‘±′.
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Figure 3: Probability of being short in upward reserve in Area 1, estimated by
Monte-Carlo over 108 samplings, 99.9% confidence interval in ±10−5 (resp.
±10−4, ±10−5, ±10−5) for the ‘annual’ (resp. ‘weekly’, ‘daily’, ‘hourly’)
setting.

For all three areas, and for all four FRR sizing methods,
an average reliability level of about 99.8% is indeed reached
when integrating over the whole study period, see details in

TABLE VI: Average upward and downward activated reserves over the whole
period (in MWh/hr).

Area 1 Area 2 Area 3

A
ct
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U

p.
R
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Annual
Weekly
Daily

Hourly

40.58108± 10−1

40.25705± 10−1

39.27389± 10−1

39.08801± 10−1

103.7042± 10−1

106.3275± 10−1

109.8709± 10−1

111.1260± 10−1

89.60536± 10−2

90.98905± 10−2

95.24042± 10−2

96.63406± 10−2

A
ct
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D

n.
R
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ve

Annual
Weekly
Daily

Hourly

40.35395± 10−1

40.01484± 10−1

39.07639± 10−1

38.92324± 10−1

23.16114± 10−1

22.71596± 10−1

22.15356± 10−1

21.63147± 10−1

8.649286± 10−2

8.660424± 10−2

8.180613± 10−2

7.627230± 10−2

Table V. However, as shown on Fig. 3 and 4 for the western
area, the annual, weekly and daily reserve sizing methods lead
to variations of the probability of shortage from hour to hour,
with peaks in the more difficult days and hours that can be
significantly higher than the set targets.

As concerns the level of reserve activation, we observe in
Table VI no significant differences among the different sizing
methods when integrating over the study period. These levels
are however quite different from one area to the other. For
example, in the western area, average upward and downwards
activation levels are of similar magnitude and represent about
10% of the FRR reservation. In the eastern area, on the other
hand, upwards reserve activation is about ten times higher
on average than the average downwards activation. The more
wind-intensitive area presents a symmetry in terms of upward
and downward reserves activation, i.e., the predominant factor
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Figure 4: Probability of being short in downward reserve in Area 1, estimated
by Monte-Carlo over 108 samplings, 99.9% confidence interval in ±10−4

(resp. ±10−4, ±10−4, ±10−5) for the ‘annual’ (resp. ‘weekly’, ‘daily’,
‘hourly’) setting.



of imbalance is the wind uncertainty, and not anymore the units
outages. Overall, we observe that average activation levels of
reserves are quite lower than the amounts prescribed by the
different reservation policies.

IV. RELATED WORK

A. FRR dimensioning methods

A large span of the literature is devoted to the modeling
of the sources of imbalances by analysing historical data. It
is often proposed to first estimate the distributions of each
driver of the imbalances and then to do the convolution of
these distributions assuming that they are not correlated [7],
[8]. Regarding to the type of distribution to select, we refer to
the survey of [9], to [7], which investigates the use of Kernel
distributions, and [10] for the wind error distribution. The main
limits of this method is the handling of correlations between
the different sources of imbalances and the distributions adjust-
ment. Another approach relies on machine learning method,
which is used for features selection and reserves sizing.
Regarding feature selection, a preliminary work has been done
in [11], using k-Nearest Neighbor method, Random Forest,
Gradient boosting Tree and Principal Component Analysis.
The study emphasises that the sources of imbalances do not
have the same impact within different control areas (TenneT,
Amprion, 50Hertz), e.g., the wind generation has a lower
impact in the Amprion control area than in the two others.
[12] uses the Lasso to weight the sources of imbalances, which
can be detrimental if two variables are highly correlated. As
for reserve needs prediction, [13], [14] study the case of the
German control area for a quarter of hour time step, using a
neural network and quantile regression. A key issue in this
work was the sparse data regarding the power unit outages,
requiring an adaptive bias correction function. Reference [12]
studies the case of the Austrian control area for a day-ahead
reserve dimensioning, using the Lasso and quantile regression.

Overall, these studies emphasize the good performance of
dynamic dimensioning. However, most of them investigate
only the adequacy between prediction and realization of the
imbalances and do not consider the problem in terms of power
system costs. The following paragraph considers contributions
on reserve from an economical viewpoint.

B. FRR costs

Regarding the procurement of reserves, [15] presents a
two-stage stochastic market-clearing model to determine the
amount of reserves that should be procured in each market
stage (weekly and daily auctions) in order to minimizes the
expected procurement costs of reserves, while taking reserve
dimensioning criteria and market properties into consideration.
This model is clearing the reserve market in Switzerland
since 2014. Reference [7] uses the Joint Market Model to
quantify the reserve costs of dynamic and static reserve, where
the reserve capacity prices are deduced as shadow prices
from the constraints which stipulate that reserves must be
met. The study on a 2030 German case emphasises a more
efficient provision of reserves through dynamic reserve sizing

(lower reserve and spot prices on average). The increased
economic efficiency (more than 10M euros) was in favor of
the consumers while the producers were exposed to financial
losses. Reference [16] evaluates how participating in a reserve
capacity market affects a hydro power producers decisions
compared to only participating in the day-ahead market. A
multi-stage model that is able to bids into multiple sequential
markets is developed. The case study considers a Norwegian
hydro power plant over a frametime of one week. The results
show that participating in the reserve capacity market is most
profitable when day-ahead prices and reservoir levels are low.
Reference [17] investigates the benefit of coordinating the
sizing, allocation and activation of reserves among market
zones, using a unit commitment model and dispatch decisions.
Though such coordination can lower operational costs and
increase system reliability, in this model it turns out that
decoupling sizing and allocation and only coordinating acti-
vation is the optimal strategy, because it neglects transmission
constraints at the sizing and allocation stages.

In these studies, apart for [7] and [17], the reserve require-
ment is an input of the problem and hence, the potential cost
due to an over or under-sizing of the FRR is not included.

The present paper is a first step toward covering simultane-
ously the 2 above aspects: FRR sizing and evaluation in term
of impact on the system.

V. CONCLUSION

This paper presents a methodology to compute the FRR
size in a probabilistic manner and evaluate it, complying
with the real-word practices. This method has been tested
on the IEEE-RTS96 three area system, where the different
areas are subject to different levels of renewable generation,
in this case represented as wind-farms. On this study, we have
exemplified how reserve requirements could be temporally
adapted. Finally, we have shown how reserve dimensioning
policies could be evaluated from a reliability point of view, by
applying a Monte-Carlo simulation approach and discussing
the resulting performance indicators.

The present study can be viewed as a template of how
different approaches for defining active power reserves can
be studied, evaluated, and hence optimized.

A. Discussion of the assumptions

Several simplifying assumptions have been made in the
models. We first notice that the outage capacity distribution
computed for conventional generators is in some sense a worst-
case distribution, since it assumes that all installed generating
units in a given area are (always) on-line and operating at
nominal power; on the other hand, the assumption that after
an outage of one hour a unit capacity loss will be compensated
by the generating company may be overly optimistic. In order
to make the model more realistic, more information about
conventional units dispatch statistics and repair times would
be required.

Concerning the load-forecast errors, we believe that the
proposed model is suitable, but we have chosen its parameters



in an ad hoc way to fit public information about global
load-forecast errors. In practice, these parameters should be
correctly tuned to the available statistics about a given sys-
tem. Concerning the wind-generation forecast errors, we have
assumed that they are independent for different wind-farms,
and independent of the load-forecast errors; both assumptions
are to be validated based on observational data, specially if
the net load (as it is modelled at the EHV level) incorporates
a significant part of dispersed photovoltaic sources.

Last, we did not include an uncertainty factor that takes
into account the temporal distance between the time at which
the sizing is computed and the time at which we have a day-
ahead forecast. That is, the static methods (annual, weekly)
have access to the exact day-ahead forecasts even 3 weeks or
one week ahead. It is a strong, optimistic, assumption which
allows us to decouple 2 effects:

• the impact of the forecast precision on the reserve size
method;

• the time frame, or granularity, of a reserve size method.

We here study the impact of the latter on the power system
reliability.

B. Further work

In order to complete the analysis of the possible impact of
higher penetration of renewables on FRR reserve requirements
several directions of further research have been identified.

1) PV penetration: a similar study should focus on the
impact of PV penetration, first in isolation, then in conjunction
with wind-power penetration. For this, suitable models or PV
variability and uncertainty should be developed, since these
are quite different from the behaviour of wind-power.

2) Manual vs automatic FRR: in addition to the distinction
between upwards and downwards FRR requirements, it would
be of interest to extend the model to take into account the
distinction between manual and automatic FRR requirements.

3) Socio-economic analysis: in complement to the techni-
cal analysis provided in our study, it would be interesting to
carry out an analysis to appraise the impact of FRR sizing
methods and renewable penetration on the energy and reserve
market prices, TSO costs, and costs of service interruptions
(in terms of VOLL for the energy not served, and in terms
of possible penalties for the curtailment of generation). Such
a study would also allow to assess the relevance of the
0.1− 99.9% reliability targets, in terms of costs and benefits.

4) More sophisticated FRR sizing methods: ideally, a re-
serve sizing method should target the maximization of the
overall social welfare. Therefore other reserve sizing methods
explicitly aiming at such a maximization could be proposed.

5) More accurate probabilistic models: with respect to the
models used in our study several improvements could be imag-
ined, such as more realistic thermal and hydro power-plant
failure models, relaxing the gaussian white-noise assumption
of various forecast errors, and more generally taking into ac-
count correlations among the different sources of imbalances.
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[11] A. Ohsenbrügge and L. Sebastian, “Dynamic dimensioning of balancing
power with flexible feature selection,” in 23rd International Conference
on Electricity Distribution, June 2015.

[12] A. Essl, A. Ortner, R. Haas, and P. Hettegger, “Machine learning analysis
for a flexibility energy approach towards renewable energy integration
with dynamic forecasting of electricity balancing power,” in 2017 14th
International Conference on the European Energy Market (EEM), June
2017, pp. 1–6.

[13] D. Jost, A. Braun, and R. Fritz, “Dynamic dimensioning of frequency
restoration reserve capacity based on quantile regression,” in 2015 12th
International Conference on the European Energy Market (EEM), May
2015, pp. 1–5.

[14] D. Jost, A. Braun, R. Fritz, and S. Otterson, “Dynamic sizing of au-
tomatic and manual frequency restoration reserves for different product
lengths,” in 2016 13th International Conference on the European Energy
Market (EEM), June 2016, pp. 1–5.

[15] F. Abbaspourtorbati and M. Zima, “The swiss reserve market: stochastic
programming in practice,” IEEE Transactions on Power Systems, vol. 31,
no. 2, pp. 1188–1194, 2016.

[16] E. S. Grytli, “Optimal bidding strategy in the reserve capacity market,”
Ph.D. dissertation, Norwegian University of Science and Technology,
Norway, 2016.

[17] K. V. den Bergh, R. B. Hytowitz, K. Bruninx, E. Delarue,
W. D’haeseleer, and B. F. Hobbs, “Benefits of coordinating sizing,
allocation and activation of reserves among market zones,” Electric
Power Systems Research, vol. 143, no. Supplement C, pp. 140 – 148,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0378779616304096


