PhD defense

Charge-sensitive methods for the off-design performance characterization of organic Rankine cycle (ORC) power systems

by

Rémi DICKES

Organic Rankine Cycle (ORC)

1→2: compression

2→3: evaporation

3→4: expansion

4→1: condensation

ORC application fields

ORC application fields

Inputs: ORC boundary conditions
Components specifications

Inputs: ORC boundary conditions
Components specifications

Outputs: WF states along the cycle

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Energy balances → N - 1 equations
 Need 1 assumption (ΔT_{sc,cd,ex})

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Energy balances → N - 1 equations
 Need 1 assumption (ΔT_{sc,cd,ex})

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Working fluid (WF) mass flow rate
WF states along the cycle
All energy transfers

N variables ⇔ N equations:

Inputs: ORC boundary conditions
Components specifications

Outputs: Wr states along the cycle
All energy transfers

N variables ⇔ N equations:

- Energy balances → N 1 equations
- Mass balance → 1 equation

$$\sum_{j=1}^{N} M_j = M_{ORC} - \text{Total charge is constant }!!!$$

Inputs: ORC boundary conditions
Components specifications

+ total charge (M_{ORC})

Working fluid (WF) mass flow rate

Outputs: WF states along the cycle

All energy transfers

+ charge distribution (M_i)

N variables ⇔ N equations:

- Energy balances → N 1 equations
- Mass balance → 1 equation

$$\sum_{j=1}^{N} M_j = M_{ORC} - \text{Total charge is constant }!!!$$

TRUE OFF-DESIGN MODEL ONLY IF CHARGE-SENSITIVE

Thesis objectives

Presentation outline

- Context and motivations
- II. Experimental investigations
- III. Modelling developments
- IV. Applications of the simulation tools
- Conclusions and perspectives

II. EXPERIMENTAL INVESTIGATIONS

Test rig description

Main specifications

- 2kWe with R245fa as working fluid
- Scroll expander + diaphragm pump
- POE lubricant in free circulation
- Two BPHEXs (EV + REC)
- A fin coil air-cooled condenser
- Liquid receiver

Test rig description

Main specifications

- 2kWe with R245fa as working fluid
- Scroll expander + diaphragm pump
- POE lubricant in free circulation
- Two BPHEXs (EV + REC)
- A fin coil air-cooled condenser
- Liquid receiver

Main specifications

- 2kWe with R245fa as working fluid
- Scroll expander + diaphragm pump
- POE lubricant in free circulation
- Two BPHEXs (EV + REC)
- A fin coil air-cooled condenser
- Liquid receiver

flexible pipe

: rigid pipe

: holding clamp

Main specifications

- 2kWe with R245fa as working fluid
- Scroll expander + diaphragm pump
- POE lubricant in free circulation
- Two BPHEXs (EV + REC)
- A fin coil air-cooled condenser
- Liquid receiver

flexible pipe —: rigid pipe

holding clamp (1): load cell

Example of LC calibration:

Main specifications

- 2kWe with R245fa as working fluid
- Scroll expander + diaphragm pump
- POE lubricant in free circulation
- Two BPHEXs (EV + REC)
- A fin coil air-cooled condenser
- Liquid receiver

🖢 : holding clamp 🕦 : load cell

Example of LC calibration:

Main specifications

- 2kWe with R245fa as working fluid
- Scroll expander + diaphragm pump
- POE lubricant in free circulation
- Two BPHEXs (EV + REC)
- A fin coil air-cooled condenser
- Liquid receiver

flexible pipe

: rigid pipe holding clamp ①: load cell

Main specifications

- 2kWe with R245fa as working fluid
- Scroll expander + diaphragm pump
- POE lubricant in free circulation
- Two BPHEXs (EV + REC)
- A fin coil air-cooled condenser
- Liquid receiver

flexible pipe

: rigid pipe

: holding clamp

Experimental campaign

 6 control variables: Mdot,htf, Tsu,htf, Ncd, Npp, Nexp, Mwf

- No control strategy → non-optimal point, full-load, part-load
- 300 h of tests / 330 steady-state points
- Complete post-treament (dual data reconciliation)

Charge distribution analysis

Charge transfers Liquid and vapor phases redistribution

Liquid receiver

M related to the liquid level

Heat exchanger

M related to the **temperature profile**:

- inlet/outlet subcooling and superheating
- temperature differences between the fluids $\dot{\it O}$

Impact of increasing the charge only:

EV → No impact

LR → First absorber

CD → Second absorber

$$x_{cd,ex} = 0$$

III. MODELLING DEVELOPMENTS

Modelling developments

- Speed vs. accuracy → 0D/1D semi-empirical
- Matlab 2015a + CoolProp
- Open-access library (ORCmKit)

Modelling developments

- Speed vs. accuracy → 0D/1D semi-empirical
- Matlab 2015a + CoolProp
- Open-access library (ORCmKit) =

Fluid / flow properties

Component-level models

System-level models

R245fa/POE mixture composition model

$$h_{mix} = \frac{\zeta_{wf} \kappa_{oil} (1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf} \kappa_{oil}} h_{wf,l} \cdots$$

$$\dots + \frac{(1 - \zeta_{wf} - \kappa_{oil})(1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf}\kappa_{oil}} h_{wf,v} + \kappa_{oil}h_{oil}$$

R245fa/POE mixture composition model

$$h_{mix} = \frac{\zeta_{wf} \kappa_{oil} (1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf} \kappa_{oil}} h_{wf,l} \cdots$$

$$\dots + \frac{(1 - \zeta_{wf} - \kappa_{oil})(1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf}\kappa_{oil}} h_{wf,v} + \kappa_{oil}h_{oil}$$

Void fraction model

$$M = V \bar{\rho}$$

$$\rho_l (1 - \bar{\alpha}) + \rho_v \bar{\alpha}$$

$$\alpha = \frac{1}{1 + \frac{1 - x}{x} \left(\frac{\rho_v}{\rho_l}\right) S}$$

R245fa/POE mixture composition model

$$h_{mix} = \frac{\zeta_{wf} \kappa_{oil} (1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf} \kappa_{oil}} h_{wf,l} \cdots$$

$$\dots + \frac{(1 - \zeta_{wf} - \kappa_{oil})(1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf}\kappa_{oil}} h_{wf,v} + \kappa_{oil}h_{oil}$$

Void fraction model

R245fa/POE mixture composition model

$$h_{mix} = \frac{\zeta_{wf} \kappa_{oil} (1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf} \kappa_{oil}} h_{wf,l} \cdots$$

$$\dots + \frac{(1 - \zeta_{wf} - \kappa_{oil})(1 - \kappa_{oil})}{1 - \zeta_{wf} - \kappa_{oil} + \zeta_{wf}\kappa_{oil}} h_{wf,v} + \kappa_{oil}h_{oil}$$

Void fraction model

$$M = V \bar{\rho}$$

$$\rho_l (1 - \bar{\alpha}) + \rho_v \bar{\alpha}$$

$$\alpha = \frac{1}{1 + \frac{1 - x}{x} \left(\frac{\rho_v}{\rho_l}\right) S}$$

$$M_{oil} = (1 - \zeta_{wf}) (1 - \bar{\alpha}) \rho_l V$$

$$M_{wf} = [\bar{\alpha} \rho_v + (1 - \bar{\alpha}) \zeta_{wf} \rho_l] V$$

Component modelling

Component modelling

Heat exchangers:

1D moving boundary

- General, robust and versatile:
 - Single- / multi-phase heat transfers
 - Counter- / cross-flow configurations
 - Symmetric / asymmetric surface area
 - Heat transfer transition (dry-out and wet-desuperheating)
 - Advanced discretization
 - Secondary resistances (fooling, conduction)
 - Fluid composition (pure, mixture, incompressible)
 - Heat source inversion

Component modelling

Heat exchangers:

Why are the CHTCs so important?

Heat exchangers:

CHTCs identification method:

- 1. Selection of SoA correlations (Nu = f(Re, Pr))
- 2. Fitting comparison in terms of
 - a) Heat transfer predictions
 - b) Charge/zone distribution predictions
- 3. Refinement of the best candidates, i.e.

$$Nu_j^* = c_j . Nu_j$$

$$\min_{c_j} RMSE_{\dot{Q}} + RMSE_{M/A_i}$$

Pipelines:

- Pressure drops + ambient losses → easy
- Charge and oil retention → more complex

<u>Liquid</u> receiver:

if $x = 0 \rightarrow$ partially filled (two-phase)

if "x < 0" \rightarrow filled of subcooled liquid

if $0 < x < 1 \rightarrow$ filled of saturated vapour

if "x>1" \rightarrow filled of superheated vapour

ORC modelling

ORC modelling

Model validation (inner state)

Model validation (energy flows)

Model validation (charge inventory)

IV. APPLICATIONS OF THE SIMULATION TOOLS

Example of applications

- Off-design sensitivity mapping
- Cavitation detection

Full- and part-load performance optimization

Optimal charge selection and LR sizing

Example #1: Cavitation detection

Pump cavitation = vapour bubbles within pump → really bad!

$$\frac{P_{pp,su} - P_{sat}(T_{pp,su})}{g \; \rho_{pp,su}} < NPSH_r$$

Example #1: Cavitation detection

- Pump cavitation = vapour bubbles within pump → really bad!
- Detectable with charge-sensitive model (no guess on $\Delta T_{sc,cd,ex}$)

Example #1: Cavitation detection

- Pump cavitation = vapour bubbles within pump → really bad!
- Detectable with charge-sensitive model (no guess on $\Delta T_{sc,cd,ex}$)
- Example: decrease of charge in the system

- Define off-design operational range
- 2. Full-load performance mapping while imposing $\Delta T_{sc,cd,ex}$

 \Rightarrow Seek for optimal control in order to maximize \dot{W}_{net}

- Define off-design operational range
- 2. Full-load performance mapping while imposing $\Delta T_{sc,cd,ex}$

 \Rightarrow Seek for optimal control in order to maximize \dot{W}_{net}

Build a charge requirement mapping

- Define off-design operational range
- 2. Full-load performance mapping while imposing $\Delta T_{sc,cd,ex}$
- 3. Optimal charge assessment $\rightarrow M_{ORC} = \max(M_{FL,i})$

- Define off-design operational range
- 2. Full-load performance mapping while imposing $\Delta T_{sc,cd,ex}$
- 3. Optimal charge assessment $\rightarrow M_{ORC} = \max(M_{FL,j})$
- 4. Minimum LR volume $\rightarrow V_{LR} = \frac{M_{ORC} M_{min}}{\rho_{l,min}}$

- 1. Define off-design operational range
- 2. Full-load performance mapping while imposing $\Delta T_{sc,cd,ex}$
- 3. Optimal charge assessment $\rightarrow M_{ORC} = \max(M_{FL,i})$
- 4. Minimum LR volume $\rightarrow V_{LR} = \frac{M_{ORC} M_{min}}{\rho_{l,min}}$

M_{min} Full-load only

- Define off-design operational range
- Full-load performance mapping while imposing $\Delta T_{sc,cd,ex}$
- Optimal charge assessment $\rightarrow M_{ORC} = \max(M_{FL,i})$

4. Minimum LR volume
$$\rightarrow V_{LR} = \frac{M_{ORC} - M_{min}}{\rho_{l,min}}$$

Part-load M_{min} Full-load only

 $\min(M_{FL,i})$

V. CONCLUSIONS AND PERSPECTIVES

Overall summary

- Modelling library in Matlab (ORCmKit)
- Components + whole systems
- Semi-empirical approaches (0D/1D)
- Robust and versatile

Charge-sensitive method

- Direct OLM method
- Intrinsic charge inventory
- Mechanisms of charge transfers

ORC off-design modelling

Experimental validation

- 2kWe ORC test rig
- 330 SS pts database
- Full operating ranges
- Reconciled data

Lubricant-sensitive

- Miscibility impact on performance rating
- Modelling framework for POE/R245fa

5 lessons to remember

- 1. True off-design models MUST be charge-sensitive.
- 2. The charge distribution is related to spatial occupation of the liquid/vapour phases.
- 3. The master is the evaporator. The low-pressure components are slaves.

4. Any knowledge on the charge inventory (or the zones distribution) can help to characterize the convective heat transfer coefficients.

5. Charge-sensitive models are not mandatory, but they are useful.

Perspectives

- Extend to other architectures/technologies
 - Other fluids, shell&tube HEX, turbines, external LR, etc.
 - QCV method vs. OLM method
 - If lubricant in free circulation, direct measurement of oil fraction

- Need further investigations on fundamental aspects
 - Convective heat transfer coefficients
 - Hydraulics in BPHEX (oil retention, void fraction, etc.)
 - WF/lubricant miscibility data

Extend to dynamic simulations

Thanks for your attention Any questions?

(Hopefully, future Dr)

Rémi Dickes

rdickes@uliege.be

Thermodynamics Laboratory
University of Liège
Belgium

