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Abstract

Given an irregular signal f , the associated Hölder exponent hf (x0), charac-
terising the pointwise regularity of f at the point x0, may change widely from
a point to another: the function hf itself can be irregular and is often hard to
compute. It is thus more interesting to estimate the “size” of the set of points
which share the same Hölder exponent, i.e. to determine the Hölder spectrum of
f . In practice, multifractals formalisms are used to numerically approximate this
spectrum.

In this thesis, we study some multifractal formalisms based on profiles: these
are functions allowing to study the histograms of coefficients obtained by the
wavelet transform of f . The profile-based formalisms studied here are theWavelet
Profile Method (WPM) and the Leaders Profile Method (LPM). For the second
method, the wavelet coefficients are replaced with the leaders. An advantage of
these methods, compared to those that use a Legendre transform on a structure
function (as for example the WLM and the MFDFA), lies in the fact that they
are able to approximate non-concave spectra.

Let us recall that hf (x0) ≤ 1 is defined as the upper bound of the h < 1 such
that the quantity

||f(x)− f(x0)||L∞(B(x0,2−j)) (1)

is upper bounded by C2−hj (C > 0 depending on h and x0). Nothing guarantees
that Quantity (1) behaves like 2−hf (x0)j . For example, in the case of the Brownian
motion B (which is a monofractal process of exponent 1/2), the Khintchin law
states that, almost surely, Quantity (1) behaves like 2−j/2√log j, for almost every
x0 ∈ R.

In general, the amplitudes of the coefficients obtained by the wavelet transform
of a signal f have not necessarily the same asymptotic behaviour as Quantity (1);
logarithmic corrections can appear. However, we show here that the Khintchin
law is still valid for the asymptotic behaviour of the size of the wavelet leaders of
B.

This result also shows the interest of considering a generalisation of the pro-
files, by replacing the sequences (2−hj)j∈N by an admissible sequence of positive
numbers σ. Under some conditions on σ, we show that the spaces Sν,σ(·) associ-
ated to these generalised profiles have the same properties as the spaces Sν and
that they are linked to the generalised Besov spaces.

We then present an algorithm implementing these formalisms. We study it in
detail on classical examples, such as the fractional Brownian motion, the Lévy
process and the Mandelbrot cascades, as well as on processes constructed in this
thesis with prescribed pointwise regularity.

Finally, we propose a new method allowing to distinguish between the mono-
and the multifractal character of a signal, based on the LPM. It is applied on a
practical example: the fractal structure of Mars’ topography. The simultaneous
use of the LPM and the WLM allows to obtain additional information on the
nature of the signals. It is also possible to detect major surface features of Mars
in the spatial distribution of the Hölder exponents.





Résumé

Etant donné un signal irrégulier f , l’exposant de Hölder associé hf (x0), carac-
térisant la régularité ponctuelle de f en x0, peut varier d’un point à l’autre : la
fonction hf peut elle-même être irrégulière et est souvent impossible à estimer
numériquement. Il est donc préférable de calculer la “taille” des ensembles des
points partageant le même exposant, i.e. déterminer le spectre de Hölder de f . En
pratique, des formalismes multifractals sont utilisés pour estimer numériquement
ce spectre.

Cette thèse présente des formalismes multifractals basés sur des profils, i.e.
des fonctions permettant d’étudier les histogrammes des coefficients relatifs à
la transformée en ondelette de f . Ces formalismes sont appelés Wavelet Pro-
file Method (WPM) et Leaders Profile Method (LPM), selon qu’ils soient basés
sur les coefficients d’ondelettes ou les coefficients dominants. Un avantage de
ces méthodes, comparées à celles qui utilisent une transformée de Legendre sur
une fonction de structure (comme par exemple la WLM et la MFDFA), est de
permettre l’approximation des spectres non-concaves.

Rappelons que hf (x0) ≤ 1 est défini comme la borne supérieure des h < 1 tels
que la quantité

||f(x)− f(x0)||L∞(B(x0,2−j)) (2)

est majorée par C2−hj (C > 0 dépendant de h et x0). Rien ne garantit cependant
que Quantité (2) se comporte comme du 2−hf (x0)j . Par exemple, dans le cas
du mouvement Brownien B (processus monofractal d’exposant 1/2), la loi de
Khintchine affirme que, presque sûrement, Quantité (2) se comporte comme du
2−j/2√log j, pour presque tout x0 ∈ R.

En toute généralité, la taille des coefficients relatifs à la transformée en on-
delette d’un signal f n’a pas forcément le même comportement asymptotique
que Quantité (2) ; il peut exister une correction logarithmique. Cependant, nous
montrons que la loi de Khintchine s’observe à nouveau sur le comportement
asymptotique de la taille des coefficients dominants de B.

Ce résultat montre aussi l’intérêt d’une généralisation des profils, en rempla-
çant la suite (2−hj)j∈N par une suite admissible de nombres strictement positifs
σ. Sous certaines conditions sur σ, nous montrons que les espaces Sν,σ(·) associés
à ces profils généralisés ont des propriétés similaires à celles des espaces Sν usuels
et qu’ils sont liés aux espaces de Besov généralisés.

Un algorithme permettant de mettre en oeuvre ces formalismes est ensuite pré-
senté. Nous l’étudions en détails sur des exemples classiques, comme le mouve-
ment Brownien fractionnaire, le processus de Lévy et les cascades de Mandelbrot,
ainsi que sur des processus construits dans cette thèse où la régularité ponctuelle
peut être finement prescrite.

Enfin, nous proposons une nouvelle méthode basée sur la LPM pour faire la
distinction entre le caractère mono- et multifractal d’un signal. Elle est appliquée
sur un exemple concret : la topographie de la planète Mars. L’utilisation simulta-
née de la LPM et de la WLM permet d’obtenir des informations supplémentaires
sur la nature des signaux. Il est aussi possible de distinguer les principales carac-
téristiques de la surface de Mars dans la distribution spatiale des exposants de
Hölder.
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Introduction

How to characterise the regularity of a function f on R? There is not a
unique answer, but the notions of continuity and differentiability seem to

be a first step. It is well-known that differentiability implies continuity, while
the reciprocal is not valid: the classical example is the absolute value which is
continuous but not differentiable at the origin.
Let us take a more general example: the function fh : x ∈ R 7→ |x|h is

also continuous but not differentiable at the origin if h ∈ (0, 1], and fh is
differentiable if h > 1. When we look at a representation of the graph of fh
for different values of h (see Figure 1.1), the smaller h is the “less regular” the
graph of fh seems to be around the origin. Knowing only the (non-) continuity
and the (non-) differentiability is not sufficient to characterise the regularity of
fh at the origin. The value of h gives an information about this regularity and
it seems to be a “transition” between the continuity and the differentiability.
In terms of functional spaces, if we denote by C0(x0) (resp. C1(x0)) the set

of continuous (resp. continuously differentiable) functions at x0, the question is
thus: can we define some spaces “between” C0(x0) and C1(x0)? The pointwise
Hölder continuity, as introduced more than 130 years ago, allows to obtain a
first answer: a function f belongs to the Hölder space Λh(x0) (h ∈ (0, 1)) if
there exists a constant C > 0 such that

|f(x)− f(x0)| ≤ Cfh(|x− x0|) = C|x− x0|h, (3)

for any x in a neighbourhood of x0. We can prove that these spaces verify the
following property:

C1(x0) ⊂ Λh2(x0) ⊂ Λh1(x0) ⊂ C0(x0), (0 < h1 < h2 < 1).

The uniform version Λh of the Hölder spaces imposes that Condition (3) holds
for any x0, uniformly in C. It is also possible to define the Hölder spaces
for h ≥ 1, by modifying Condition (3). From the pointwise Hölder spaces
embedding, the regularity of f at x0 can be characterised by the upper bound
of h > 0 such that f ∈ Λh(x0); this bound is called the Hölder exponent of f
at x0 and is denoted by hf (x0).
The next question is to know if a function can be “irregular at each point”.

In the 19th century, mathematicians thought that every continuous function
is differentiable except on a set of isolated points [6]. In 1872, the mathemati-
cian Karl Weierstraß presented at the Academy of Science in Berlin a family

vii



viii Introduction

of functions that are continuous everywhere but nowhere differentiable [134]:
these functions are defined as

Wa,b : x 7→
+∞∑
n=0

an cos(bnπx),

where a ∈ (0, 1), b is any odd integer and ab > 1 + 3π
2 . At that time, the

scientific community was not ready for this result: the usefulness of such
functions was debated and in 1908, even the well-known mathematician Henri
Pointcaré qualified these functions of “monsters” and said1 [117]: “In the
past, when a new function was invented, it was with practical perspectives;
nowadays, they are invented on purpose to show our ancestors’ reasoning is
at fault, and we shall never get anything more out of them” .
In 1916, the mathematician Godfrey Harold Hardy extended the result of

Weierstraß for any b > 0 such that ab > 1 and proved that the regularity
of the Weierstraß functions is the same at all points [56]; he showed that
hWa,b

(x0) = − log a
log b , for any x0 ∈ R.

Another classical example of signal having the same Hölder exponent at
each point is, almost surely, a realisation of the Brownian motion B, which
has been studied during the same period. It is a Gaussian process which
was first observed in the random motion of particles suspended in a fluid.
Several observations were done in relation with this phenomena, for example
by the biologists John Turberville Needham and Jan Ingenhousz in the 18th
century, but the discovery is often credited to the biologist Robert Brown in
1827, when he observed pollen grains of the plant Clarkia pulchella suspended
in water under a microscope. In 1905, Albert Einstein proposed a physical
explanation of this motion [44]. In 1923, Norbert Wiener gave a mathematical
construction of B with the help of a probability measure of the space of real
continuous functions [137]. In 1933, Paul Lévy presented the necessary and
sufficient conditions to obtain a Brownian motion and in 1948, he published
the first version of his famous book “Processus stochastiques et mouvement
brownien” [93]. Since then, the Brownian motion has been used to model
many phenomena (see e.g. [106, 93, 73, 75, 94] and references therein).
Let us recall that, almost surely, B is continuous everywhere and nowhere

differentiable; moreover, hB(x0) = 1/2, for any x0 ∈ R [93]. While Wa,b

belongs to ΛhWa,b (x0)(x0) for any x0 ∈ R, the Khintchin law [45], established
in 1924, implies thatB does not belong to ΛhB(x0)(x0), for almost every x0 ∈ R.
Therefore, the Hölder spaces Λh(x0) do not allow to fully characterise the

pointwise regularity. For this reason, these spaces have been generalised: the
idea is to modify the quantity fh(|x− x0|) in Condition (3) by a more general

1Originally: “Autrefois, quand on inventait une fonction nouvelle, c’était en vue de quelque
but pratique ; aujourd’hui, on les invente tout exprès pour mettre en défaut les raison-
nements de nos pères, et on n’en tirera jamais que cela”
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expression. There exist two approaches: either to replace the function fh by
a modulus of smoothness 2 w [34], or use admissible sequences of positive
numbers3 σ [84]. The link between these two notions is the following: if w is
an modulus of continuity, then σ = (w(2−j))j∈N is an admissible sequence, and
if σ is an non-increasing admissible sequence, then there exists a modulus of
continuity w such that σj = w(2−j) [82]. In this thesis, we choose the approach
using the admissible sequences, which is more natural for the spaces presented
in the sequel. The generalised Hölder spaces are denoted by Λσ,M (x0) (M ∈ N
is a complementary parameter, see Definition 1.6.15). With this notation,
the Khintchin law implies that, almost surely, B belongs to Λσ,0(x0) with
σ = (2−j/2

√
log log 2j)j∈N, for almost every x0 ∈ R [93].

Let us mention that there exist other spaces allowing to study the regularity
of functions. For example, the Besov spaces Bs

p,q, which are a generalisation
of the Hölder spaces, have been defined in 1959 by Oleg Vladimirovich Besov
[25]. A lot of articles are devoted to their study and their generalisation
with the help of modulus of smoothness or admissible sequences ([26, 27, 128,
129, 130, 132, 133, 4, 49] and reference therein). The uniform Hölder spaces
have also been generalised with the help of modulus of smoothness in 1996
by Stéphane Jaffard and Yves Meyer [70]. A unified approach is proposed in
2016 by Damien Kreit and Samuel Nicolay by defining generalised uniform
Hölder spaces as a particular case of generalised Besov spaces through the use
of admissible sequences, to obtain a better understanding of the underlying
mechanisms behind such spaces[81].
Now that functional spaces allowing to study the regularity are defined, the

next question is to know how this regularity is distributed within the same
function. The Weierstraß functions and the Brownian motions have the same
Hölder exponent at each point. This kind of function is called a monofractal
function. If a function has at least two distinct real Hölder exponents, the
function is called a multifractal function. For such a function, the pointwise
regularity may change widely from a point to another: the function hf can
be very irregular and is often impossible to numerically approximate. For this
reason, it is more interesting to characterise the “size” of the set of points Ef (h)
which share the same Hölder exponent h. Roughly speaking, the information
concerning the regularity of a function f is summarised by its Hölder spectrum,
defined as

df : [0,+∞] 7→ {−∞} ∪ [0, n], h 7→ dimHEf (h),

where dimH is the Hausdorff dimension [48, 47]. This function gives a ge-
ometrical idea about the distribution of Ef (h). The Hölder spectrum of a

2A non-decreasing function non identically null w : [0,+∞) → [0,+∞) is a modulus of
smoothness, if w(0) = 0 and there exists a constant C > 0 such that w(2t) ≤ Cw(t) for
any t ≥ 0.

3A positive sequence σ = (σj)j∈N is admissible if σj+1/σj and σj/σj+1 are bounded for any
j ∈ N.
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multifractal function can have an increasing part and a decreasing part; there
also exist concave and non-concave spectra (see Figure 1.2 and Figure 1.3).
The next step is to determine df for a given function f . On theoretical

examples, it is often possible to deduce the spectrum from a few calculation
tricks, but on real-life signals, we need algorithms to numerically approximate
the spectrum. These methods are called multifractal formalisms.
The first method appeared in physics in the context of turbulence. The

mathematician Andreï Kolmogorov introduced in the 1940’s a first hypothesis
on the linear power-law of the increments of a structure function. While it
was false in a general framework, it paved the way for the modern understand-
ing and analysis of turbulent flows. In 1985, Giorgio Parisi and Uriel Frish
proposed the first multifractal formalism based on a Legendre transform of a
structure function [115]. They used heuristics arguments to show that their
methods lead to an approximation of the Hölder spectra. In 1997, Stéphane
Jaffard linked this method with the Besov spaces Bs

p,q and proved that this
method approximates the spectrum of a class of functions[61].
To construct multifractal formalisms, it is necessary to have a tool which is

accurate enough to study the pointwise regularity, and which is numerically
computable. In this thesis, the notion of wavelet is used. To understand where
this notion comes from, let us begin with Joseph Fourier. In 1822, he suggested
to decompose the function of the propagation of the heat into a weighted sum
of a set of simple oscillating functions, namely sines and cosines. This idea gave
birth to Fourier series and to the basis of the harmonic analysis. His technique
allows to decompose and reconstruct a signal without loss of information. It
also gives a representation in frequency, but loosing the temporal information.
In other words, it can detect the presence of different frequencies in the signal,
but not the order of appearance of these, which means that it does not allow
temporal location of abrupt changes.
In 1946, Dennis Gabor introduced a time-frequency analysis, often called

the short-time Fourier transform, which is optimal in terms of the uncertainty
principle4. The idea is to use a window function in order to localise the Fourier
analysis, then to shift the window to another position [74].
In 1982, Jean Morlet noted several problems with the functions of Gabor:

they oscillate too much at high frequencies, which implies a numerical insta-
bility in the computation of the coefficients, and too little at low frequencies,
which implies that they don’t allow a practical reconstruction formula. Morlet
has the idea to decompose a function f with the help of coefficients defined
as the scalar product of f with some dilatations and discrete translations of
a “mother function”. The wavelet transform was born. In 1984, he worked
with Alexander Grossman to obtain some first theoretical results about this

4The Gabor Uncertainty Principle states that the product of the uncertainties in frequency
and time is larger than a fixed constant, and so the accuracy with which one of them can
be measured limits the best possible accuracy with which the other can be measured.
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transform [53]. In 1986, Pierre Gilles Lemarié and Yves Meyer unified these re-
sults and established the first wavelet theory [89]. During the following years,
Stéphane Mallat worked on the fast wavelet transform and the multiresolution
analysis [97, 96] and Ingrid Daubechies proposed wavelets with compact sup-
ports [39]. These progresses allow a fast and efficient numerical computation
of the wavelet coefficients of a signal. Let us note that the Daubechies wavelets
are used in the standard format of image compression JPEG2000.
The wavelet transform allows a time-frequency analysis. Metaphorically, we

can say that the wavelet decomposition is the equivalent of the music sheet
of a signal, indicating the musical notes (frequencies) and also when they are
played. Yves Meyer says about the wavelets[32]5: “contrary to what happens
for the Fourier series, wavelet coefficients render in a simple, accurate and
faithful way the properties of functions, at least the properties that correspond
to a discontinuity, an unexpected event”.
All the functional spaces cited above can be (quasi-)characterised with the

coefficients obtained from the wavelet transform. Moreover, the Hölder ex-
ponent is also connected with these coefficients [60, 67]. Consequently, the
wavelet transform is a good tool to construct multifractal formalisms.
In 1988, Alain Arneodo et al. suggested a multifractal formalism based

on the continuous wavelet transform [9]. Like those of Parisi and Frish, this
method cannot approximate the decreasing part of the spectrum. To take
care of this problem, Arneodo at al. proposed in 1993 the wavelet transform
modulus maxima method (WTMM) [109], using the notion of line of maxima
in the wavelet transform. This technique was proved helpful in many practical
problems, but its theoretical contribution was limited; in particular, there is no
underlying function space. This is why Jaffard replaced the continuous wavelet
transform with the discrete one and introduced the Wavelet Leaders Method
(WLM) [67], based on the oscillation spaces Osp, which are a generalisation of
the Besov Spaces. When comparing the WTMM with the WLM, numerical
results are similar [71].
In these previous methods, the spectrum is obtained with an inverse Leg-

endre transform and so is necessarily concave. To overcome this problem, in
2002, Jaffard introduced a multifractal formalism which is heuristically based
on the histogram of the discrete wavelet coefficients [14]. This method relies
on the spaces Sν . If this formalism allows to effectively recover non-concave
spectra, the problem met with the first approaches reappears: one cannot
access the decreasing part of the spectrum. The idea to solve this issue is
to replace the wavelet coefficients in the spaces Sν with the wavelet leaders.
These new spaces are called Lν and the method related to these spaces can
detect non-increasing and non-concave spectra [23, 22].

5Originally: “à l’inverse de ce qui sepasse pour les séries de Fourier, les coefficients d’une
série d’ondelettes traduisent de façon simple, précise et fidèle les propriétés des fonctions,
du moins les propriétés qui correspondent à une discontinuité, un événement imprévu.”
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The contribution of this thesis on a practical level is directly related to these
last methods. We propose an algorithm for these multifractal formalisms based
on the spaces Sν and Lν . This algorithm is applied and is compared with the
WLM on classical examples, as the fractional Brownian motion, the Lévy
process and the Mandelbrot cascades, as well as on processes constructed in
this thesis with prescribed pointwise regularity. A new method to distinguish
the mono- and multifractality of a signal is proposed. This algorithm is used
on a practical example: the Mars’ topography.
On the theoretical level, the contributions of this thesis can be divided into

two parts. First, we propose a new study of the Brownian motion showing that
its wavelet leaders allow to get very fine properties concerning its trajectories.
Indeed, in general, the amplitudes of the coefficients obtained by the wavelet
transform of a signal f have not necessarily the same asymptotic behaviour
as |f(x) − f(x0)|: a logarithmic correction can appear [63]. In the case of
the Brownian motion, this correction is almost everywhere not present. The
suggested approach provides a new way to study fine properties of stochastic
processes. We also construct a multifractal process that has a local regu-
larity similar to that of the Brownian motion. The second contribution is
a generalisation of the Sν spaces with the help of the admissible sequences.
This generalisation is motivated by the fact that the coefficients related to the
wavelet transform of f can describe very precisely the regularity of f . We
show that the main properties of the classical Sν spaces are preserved, and
that these new spaces are linked to the generalised Besov spaces.
This thesis is structured as follows. The first chapter presents the mathe-

matical tools and the important notations used throughout the thesis. The
useful functional spaces (Besov, Hölder spaces and their generalisation with
the help of admissible sequences, as well as the spaces Sν and Lν) are defined
and their (quasi-)characterisations with the wavelets are presented. The three
following multifractal formalisms are presented: the Wavelet Leaders Method
(WLM), the Wavelet Profile Method (WPM) and the Leaders Profile Method
(LPM).
Chapter 2 studies the Hölderian behaviour of some functions through wavelets.

First, the wavelet decomposition is used to construct a function with pre-
scribed Hölder exponents whose wavelet coefficients display a prescribed be-
haviour. Second, the study of the wavelet leaders of the Brownian motion
is given. We prove that the three well-known behaviours of its oscillations
(known as ordinary, rapid and slow) are also present in the behaviour of the
amplitude of its wavelet leaders. Finally, a multifractal process based on the
decomposition of the Brownian motion in the Shauder basis is presented. This
is a variant of the multifractional Brownian motion [116, 24].
Chapter 3 presents the spaces Sν,σ(·) which are a generalisation of the Sν

spaces with the help of the admissible sequences. The topological properties
holding for the usual Sν spaces are preserved. The robustness of Sν,σ(·) is also
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presented, which implies the independence of the chosen wavelet basis, and
finally a link with the generalised Besov spaces is given.
Chapter 4 describes some profile-based multifractal formalisms. A profile

is a function allowing to study the histograms of coefficients obtained by the
wavelet transform of f and which can be related to the spaces Sν , Sν,σ(·) or
Lν . In particular, an implementation of the WPM and the LPM is presented.
These two methods are usually as good as the WLM with monofractal func-
tions and multifractal functions with a concave spectrum. Moreover, these
two methods can approximate non-concave spectra, and are generally more
robust than the WLM.
Chapter 5 contains numerical applications of the profile-based multifractal

formalisms. More precisely, we show the advantages of the LPM compared to
the WLM, and the specificities of the LPM are studied to understand some
drawbacks of this method. We also answer to the following question: is it
possible to detect an admissible sequence appearing in the Hölderian behaviour
of a numeric function? To this end, the profile associated to Sν,σ(·) is used.
The last chapter contains a practical application: the study of the fractal

structure of Mars’ topography with the help of the WLM and the LPM. A
complete study at small scales in 1D and 2D is done. We highlight the difficulty
of the WLM to distinguish between the mono- and multifractality and a new
approach with the LPM is suggested. We also show that the simultaneous use
of these two methods allows to obtain additional information on the nature of
signals. Finally, we show that it is possible to detect major surface features of
Mars in the spatial distribution of the Hölder exponents.





Part I.

Theory





Chapter 1
General Framework: Regularity
of Functions

This chapter contains the mathematical tools used throughout this thesis.
Some important notions and notations are reviewed. No proof is given;

each result is preceded by a reference containing one.
The main notion studied in this chapter is the regularity of functions via the

Hölder exponent. The first section precises its general framework. The other
sections define the concepts studied throughout the following chapters and
give some important results. Functional spaces linked to functions’ regularity,
namely Besov, Hölder, Sν and Lν spaces, are defined, as well as their general-
isation with the help of admissible sequences. Their (quasi-)characterisations
with the wavelets are also presented. Finally, the three main multifractal
formalisms used in this thesis are explained: the Wavelet Leaders Method
(WLM), the Wavelet Profile Method (WPM) and the Leaders Profile Method
(LPM).
More precisely, this chapter is structured as follows:

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Hausdorff Dimension . . . . . . . . . . . . . . . . . . 9
1.3. Admissible Sequences . . . . . . . . . . . . . . . . . . 10
1.4. Some Notations about the Spaces Lp(X,A, µ) . . . . 12
1.5. Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1. Multiresolution Analysis: Generalities . . . . . . . . 14
1.5.2. Multiresolution Analysis: The Case of L2(R) . . . . 15
1.5.3. Multiresolution Analysis: The Case of L2(Rn) . . . . 16
1.5.4. Some Links with the Hölder Exponent . . . . . . . . 19
1.5.5. Periodised Wavelets . . . . . . . . . . . . . . . . . . 21

1.6. Hölder Spaces and a few Generalisations . . . . . . 21
1.6.1. Additional Information about Hölder Spaces . . . . 22
1.6.2. Besov Spaces and Oscillation Spaces . . . . . . . . . 23
1.6.3. Generalisation with the help of the admissible se-

quences . . . . . . . . . . . . . . . . . . . . . . . . . 25
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1.7. The Wavelet Leaders Method . . . . . . . . . . . . . 28
1.8. Sν spaces and the Wavelet Profile Method . . . . . 29
1.9. Lν spaces and the Leaders Profile Method . . . . . 33

1.1 Introduction

It is well-known that the function

fh : x 7→ |x|h (h ≥ 0)

is continuous and if h ∈ (0, 1], fh is not differentiable at the origin. Figure 1.1
shows this function for several values of h. The smaller h is the “less regular”
the graph of f seems to be around 0. An idea to define the regularity of a
function f at a point x0 consists in comparing f with the function fh, i.e. to
find the “best” h for which there exists a constant C > 0 such that

|f(x)− f(x0)| ≤ Cfh(x− x0),

for any x in a neighbourhood of x0. This characterisation is not necessarily
relevant if h > 1. Indeed, let f : x 7→ |x|3/2 + x; the regularity of this function
is “similar” to the function f3/2 around the origin but f does not satisfy the
previous inequality. The constant f(x0) must be replaced by the polynomial
f(x0) + f ′(x0)x. It seems thus natural to replace the constant f(x0) by a
polynomial of degree less than h. We will see in Section 1.6.1 that the case
h ∈ N is more delicate. For the moment, we only treat the case h > 0 and
h /∈ N.

Definition 1.1.1. Let us set h > 0, h /∈ N and let x0 ∈ Rn. The pointwise
Hölder space Λh(x0) is the set of locally bounded functions f for which there
exist a constant C > 0 and a polynomial Px0 of degree less than h such that

|f(x)− Px0(x)| ≤ C|x− x0|h, (4)

for any x in a neighbourhood of x0. The uniform Hölder space Λh is the set
of functions f such that Condition (4) holds for any x0 ∈ Rn uniformly in C.

A function is said uniformly Hölder if f ∈ Λε for some ε > 0.
The following proposition gives some basic properties about these spaces.

Proposition 1.1.2.

1. One has Λh+ε(x0) ⊂ Λh(x0) and Λh+ε ⊂ Λh for any ε > 0.

2. If f ∈ Λh(x0) for some h > 0 then f is continuous at x0 and, if h > 1
then f is differentiable at x0.
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Figure 1.1.: The function fh : x 7→ |x|h around the origin.

3. If f is differentiable at x0 then Condition (4) holds for h = 1.

4. If f ∈ Λm+ε(x0) (m ∈ N and ε > 0) and if f is m-times continuously
differentiable in a neighbourhood of x0 then the polynomial Px0 of Con-
dition (4) is the Taylor polynomial of order m.

5. If f ∈ Λm+ε (m ∈ N and ε > 0) then f is m-times continuously differ-
entiable.

Let us note that there exist functions f ∈ Λh(x0) for some h > 1 for which
f ′ does not belong to Λh−1(x0). Take for example the function

f : x ∈ R 7→
{
|x|h sin(x−(h+2)) if x 6= 0
0 if x = 0 .

This function belongs to Λh(0) but its derivative is not continuous at the
origin.
From the pointwise Hölder spaces embedding, it is natural to consider the

following definition.



6 Chapter 1. Regularity of Functions

Definition 1.1.3. The Hölder exponent of f at the point x0 is defined as

hf (x0) = sup{h > 0 : f ∈ Λh(x0)}.

Let us note that this supremum is not necessarily reached. Take for example
the function

f : x 7→
{
|x|1/2 log |x| if x 6= 0
0 if x = 0 .

One has directly f ∈ Λh(0) for any h < 1/2 but f /∈ Λ1/2(0).
The Hölder exponent hf (x0) gives information about the local regularity

of f at x0. The smaller its value, the less regular the function f is around
x0. Moreover, if hf (x0) ∈ (0, 1) then the function is continuous and is not
differentiable at the point x0. For a long time, mathematicians thought that
any continuous function is differentiable except on a set of isolated points.
The first published example (1872) of a function continuous everywhere and
nowhere differentiable is the Weierstraß function [134], defined as follow:

Wa,b : x 7→
+∞∑
n=0

an cos(bnπx),

for a ∈ (0, 1) and b > 0 such that ab > 1. Notice that its Hölder exponent is
the same at every point. More precisely, we have the following result.

Theorem 1.1.4. [56] The Weierstraß functionWa,b is continuous and nowhere
differentiable. Moreover, its Hölder exponent equals − log a/ log b at every
point and Wa,b ∈ Λ− log a/ log b(x0) for any x0 ∈ R.

For an arbitrary locally bounded function f , the function x 7→ hf (x) is not
necessarily “simple”, as for the Weierstraß function; it can be very erratic
and computing hf can thus be very difficult, if not impossible. Therefore, it
is more interesting to characterise the “size” of the set of points Ef (h) which
share the same Hölder exponent h. In general, one set Ef (h) has full Lebesgue
measure and the others have a vanishing one. Moreover, it appears that the
sets Ef (h) are dense in Rn for the most functions of interest or sample paths
of stochastic processes. We thus need of a notion giving a geometrical idea
about the distribution of Ef (h).

Definition 1.1.5. The Hölder spectrum of a locally bounded function f is
defined as

df : [0,+∞] 7→ {−∞} ∪ [0, n], h 7→ dimHEf (h),

where dimH is the Hausdorff dimension1 and the iso-Hölder sets Ef (h) are
defined as

Ef (h) = {x ∈ Rn : hf (x) = h}.
1This notion is presented in Section 1.2.
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If the support of df is reduced to one point H, the function f is said monofrac-
tal of exponentH. If the support of df is not reduced to one point, the function
f is said multifractal.
Figure 1.2 and Figure 1.3 show a few examples of Hölder spectra. In the

multifractal case, the Hölder spectrum can have an increasing part and a
decreasing part; we also see that there exist concave and non-concave spectra.
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(a) Simulation of a Brownian motion
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(b) Spectrum of the Brownian motion [73]
(monofractal function with an exponent
H = 1/2)
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(c) a Binomial cascade
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(d) Spectrum of a Binomial cascade [127]
(multifractal function with a concave spec-
trum)

Figure 1.2.: A few examples of signals with their Hölder spectrum (1)

For a real-life signal, to compute the Hölder spectrum directly from its def-
inition is not feasible. For this reason, one uses an indirect way to estimate
the spectrum, called multifractal formalism. It is a formula, numerically com-
putable, which approximates the spectrum. More precisely, this formula must
give an upper bound of the Hölder spectrum for any uniformly Hölder func-
tion and it also must give the correct spectrum for some classes of functions.
Moreover, a multifractal formalism can also hold for a generic subset of a func-
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(b) Spectrum of two binomial cascades [78]
(multifractal function with a non-concave
spectrum)
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(d) Spectrum of a Lévy process with a Brow-
nian part [64] (multifractal function with
a non-concave spectrum without decreasing
part)

Figure 1.3.: A few examples of signals with their Hölder spectrum (2)

tion space [67]. The following sections present the tools needed to obtain the
multifractal formalisms studied in this thesis.
To finish this section, let us recall some links between multifractal for-

malisms and functional spaces. The first multifractal formalism was proposed
by Parisi and Frish in the context of fully developed turbulence [115]. Later,
Arneodo et al. proposed a similar method based on the continuous wavelet
transform [9]. These methods are relying on the Besov spaces Bs

p,q using the
box-counting technique or wavelets [61]. Since the Besov spaces Bs

p,q are not
defined for negative values of p, the decreasing part of the spectrum cannot be
obtained. To take care of this problem, Arneodo at al. proposed the wavelet
transform modulus maxima method (WTMM) [109]. However, there is no un-
derlying function space. This is why Jaffard replaced the continuous wavelet
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transform with the discrete one and introduced the Wavelet Leaders Method
(WLM) (see Section 1.7) [67], based on the oscillation spaces Osp [68].
However, in these previous methods, the spectrum is obtained with an in-

verse Legendre transform and so is necessarily concave. To overcome this
second problem, Jaffard introduced the spaces Sν that allow to get a multi-
fractal formalism which is heuristically based on the histogram of (discrete)
wavelet coefficients [14]. This formalism is called the Wavelet Profile Method
(WPM) (see Section 1.8) [78]. If this formalism allows to effectively recover
non-concave spectra, the problem met with the first approaches reappears: one
cannot access the decreasing part of the spectrum. The idea to take care of
this problem is the same that for the WLM: to replace the wavelet coefficients
appearing in the spaces Sν with the wavelet leaders. These news spaces are
called the spaces Lν and allow to construct a multifractal formalism detecting
non-increasing and non-concave spectra [22, 23]. This formalism is called the
Leaders Profile Method (LPM) (see Section 1.9) [46].

1.2 Hausdorff Dimension

As mentioned in the previous section, the Hausdorff dimension is used to
formalise the “size” of the iso-Hölder sets (see Definition 1.1.5). This section
presents briefly this notion. For more details, see [48, 47] for example.
In this section, the notation X represents a separable metric space.

Definition 1.2.1. Let ε, h > 0. The Hausdorff outer measure is defined as

Hhε : A ⊂ X 7→ inf{
+∞∑
i=1

diamh(Ai) : A ⊂
+∞⋃
i=1

Ai, diam(Ai) ≤ ε},

where diam(B) is the diameter of the set B.
Since Hhε is a decreasing function with respect to ε, one can define the

application
Hh : A ⊂ X 7→ sup

ε>0
Hhε (A) = lim

ε→0+
Hhε (A).

This application is an outer measure and its restriction to the Hh-measurable
sets is called the h-dimensional Hausdorff measure.

By definition, the h-dimensional Hausdorff measure is invariant by transla-
tion. In the case X = Rn, the following proposition gives the link between the
measure Hn and the n-dimensional Lebesgue measure Ln.

Proposition 1.2.2. For any measurable set A ⊂ Rn, one has

Ln(A) = cnHn(A), where cn = πn/2

2nΓ(n/2 + 1) .
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Let us notice that for any ε > 0 and any 0 < h1 < h2, one has

Hh1
ε (A) ≥ H

h2
ε (A)
εh2−h1

.

One thus obtains the important following proposition.

Proposition 1.2.3. Let 0 < h1 < h2.

• If Hh1(A) < +∞, then Hh2(A) = 0.

• If Hh1(A) > 0, then Hh2(A) = +∞.

There thus exists a critical value hc for which the function h 7→ Hh(A) is
equal to +∞ for any h < hc and is equal to 0 for any h > hc. This critical
value is called the Hausdorff dimension of A.

Definition 1.2.4. The Hausdorff dimension of a set A is defined as

dimH(A) = sup{h > 0 : Hh(A) = +∞}.

To conclude this section, let us give some properties of the Hausdorff di-
mension.

Proposition 1.2.5.

• If A ⊆ B then dimH(A) ≤ dimH(B).

• If A is a countable set, then dimH(A) = 0.

• We have

dimH

⋃
i∈N

Ai

 = sup
i∈N

dimH(Ai).

• For X = Rn, we have dimH(A) ≤ n for any A ⊂ Rn and if Ln(A) > 0,
then dimH(A) = n.

1.3 Admissible Sequences

This section presents the admissible sequences [107]. These sequences are
“small modifications” of the sequences (2−hj)j∈N. They will allow a finer study
of the regularity of functions and a generalisation of some function spaces, such
as the Besov spaces (see Section 1.6) and the spaces Sν (see Chapter 3).
Let us begin with some definitions and notations.

Definition 1.3.1. A sequence σ = (σj)j∈N of strictly positive real numbers is
called admissible if there exists a constant C > 0 such that

C−1σj ≤ σj+1 ≤ Cσj , (5)

for any j ∈ N.
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For example, for any h ∈ R, the following sequences are admissible:

(2−hj)j∈N, (2−hjj)j∈N, (2−hj
√
j)j∈N, (2−hj

√
log j)j∈N.

By contrast, the sequence (22j )j∈N is not an admissible sequence. This shows
that Condition (5) limits the speed of convergence.
Let us set

σj = inf
k∈N

σj+k
σk

and σj = sup
k∈N

σj+k
σk

,

for any j ∈ N. The sequence (log2 σj)j∈N is subadditive and the sequence
(log2 σj)j∈N is superadditive. We thus can define the lower and upper Boyd
indices as follows:

s(σ) = lim
j→+∞

log σj
log 2j and s(σ) = lim

j→+∞

log σj
log 2j .

Let us give some properties about these notions.

Proposition 1.3.2. Let σ be an admissible sequence. We have the following
properties:

• if s(σ) > 0, then σj → +∞ as j → +∞,

• if s(σ) < 0, then σj → 0 as j → +∞,

• for any ε > 0, there exists a positive constant D such that

D−12j(s(σ)−ε) ≤ σj+k
σk
≤ D2j(s(σ)+ε),

for any j, k ∈ N.
The following lemma shows how to obtain new admissible sequences from

other admissible sequences.

Lemma 1.3.3. Let σ and γ be two admissible sequences. We have the follow-
ing properties:

• the sequence σ + γ is admissible,

• the sequence σγ is admissible and one has

s(σγ) ≥ s(σ) + s(γ) and s(σγ) ≤ s(σ) + s(γ),

• for any strictly positive real number r, the sequence rσ is admissible and
one has s(rσ) = s(σ) and s(rσ) = s(σ),

• the sequence σα is admissible (α ∈ R) and if α ≥ 0, one has

s(σα) = αs(σ) and s(σα) = αs(σ),

and if α ≤ 0, one has

s(σα) = αs(σ) and s(σα) = αs(σ).
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1.4 Some Notations about the Spaces Lp(X,A, µ)

This section fixes some classical notations about the spaces Lp(X,A, µ), where
(X,A, µ) is a measured space with µ a σ-finite measure. For more details about
the Lp(X,A, µ) spaces, see [30, 120] for example.

Definition 1.4.1. Let p > 0 or p = +∞, and let f be a complex function
defines on X. If p 6= +∞, we set

||f ||Lp(X,A,µ) :=
(∫

X
|f |p dµ

)1/p
,

and if p = +∞, we set

||f ||L∞(X,A,µ) := inf{C ≥ 0 : |f | ≤ C µ-almost everywhere}.

Since f = g µ-almost everywhere implies ||f ||Lp(X,A,µ) = ||g||Lp(X,A,µ), the
space Lp(X,A, µ) is defined as the quotient of the set of functions f for which
||f ||Lp(X,A,µ) is finite, by the relation ∼ defined as

f ∼ g if and only if f = g µ-almost everywhere.

We have the following proposition.

Proposition 1.4.2.

• If 1 ≤ p ≤ +∞, then (Lp(X,A, µ), ||.||Lp(X,A,µ)) is a Banach space.

• If 0 < p < 1, then (Lp(X,A, µ), dLp(X,A,µ)) is a quasi-Banach space,
where

dLp(X,A,µ) : Lp(X,A, µ)×Lp(X,A, µ) 7→ [0,+∞), ([f ]∼, [g]∼) 7→ ||f−g||pp.

To simplify the notations, a function f is assimilated to its equivalence class
[f ]∼. We thus write f ∈ Lp(X,A, µ). Let us distinguish two important cases.

1. If X ⊆ Rn and A is the Borel σ-algebra, then the space Lp(X,A,Ln) is
denoted by Lp(X). If X = Rn, the notation Lp is used.

2. If µ is the counting measure on N, then the sequences space Lp(N,P(N), µ)
is denoted by lp.

When there is no possible confusion, the application ||.||Lp(X,A,µ) is noted || · ||p
and the application dLp(X,A,µ) is noted dp(·, ·).



1.5 Wavelets 13

1.5 Wavelets

The notion of wavelet allows to study the multifractal properties of func-
tions. For example, the Hölder exponent of a function f can be computed
directly from the wavelet coefficients of f . Moreover, they allow to have
some numerically computable formula to approximate the Hölder spectrum
(see Section 1.7). The first orthonormal wavelet basis is due to Haar in 1910
[55]. Lemarié and Meyer showed the existence of wavelet in the Schwartz
class in 1986 [89]. A classical way to construct wavelets is based on a mul-
tiresolution analysis. This approach was created by Mallat [98] and Meyer
[104]. Daubechies used this method to construct compactly supported wavelets
with an arbitrary number of vanishing moment [39]. For more details, see
[39, 98, 105, 104] for example. From now on, the inner product of L2 is noted
by

〈f, g〉 :=
∫
Rn
f(x)g(x) dx.

This section presents the wavelets and their construction with the help of a
multiresolution analysis. The link with the Hölder exponent is also presented.

Definition 1.5.1. Let (ψ(i))1≤i<2n be 2n−1 functions of L2. For any 1 ≤ i < 2n,
j ∈ Z and k ∈ Zn, the function ψ(i)

j,k is defined as

ψ
(i)
j,k : x ∈ Rn 7→ ψ(i)(2jx− k).

The functions (ψ(i))1≤i<2n are called (mother) wavelets of the L2 space if the
set

{2jn/2ψ(i)
j,k : 1 ≤ i < 2n, j ∈ Z, k ∈ Zn}

form an orthonormal basis of L2.

In other words, we have a basis of L2 formed of translation and dilation of
functions ψ(i). Therefore, any function f ∈ L2 can be decomposed as

f(x) =
∑
j∈Z

∑
k∈Z

2n−1∑
i=1

c
(i)
j,kψ

(i)
j,k(x) where c

(i)
j,k = 2nj〈f, ψ(i)

j,k〉. (6)

The values c(i)
j,k are called the wavelet coefficients of f . The index j is called

the scale and the index k represents the position. Moreover, the index i can
be seen as the direction to a vector of origin 0 and of end a vertex of the unit
cube [0, 1)n; there are thus 2n − 1 possible directions. Let us notice that the
L2 normalisation is not chosen, but rather the L∞ normalisation, which will
be more appropriate to the study of the regularity of a function.
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1.5.1 Multiresolution Analysis: Generalities

Let us now present how to construct wavelets with the help of a multiresolution
analysis. For more details, see [97, 96, 39].

Definition 1.5.2. A multiresolution analysis of L2 is a sequence of closed
vector subspaces (Vj)j∈Z of L2 satisfying the following properties:

• one has Vj ⊂ Vj+1 for any j ∈ Z,

• one has ⋂
j∈Z

Vj = {0} and
⋂
j∈Z

Vj = L2,

• for any j ∈ Z, the function f belongs to Vj if and only if the function
f(2·) belongs to Vj+1,

• the function f belongs to V0 if and only if f(· − k) belongs to V0 for any
k ∈ Zn,

• there exists a function φ ∈ V0 such that the functions (φ(·−k))k∈Zn form
an orthonormal basis of V0.

The function φ is called a scaling function (or a father wavelet).

For any j ∈ Z and k ∈ Zn, the function φj,k is defined as

φj,k : x ∈ Rn 7→ φ(2jx− k).

We directly have that the set {2jn/2φj,k : k ∈ Zn} form a orthonormal basis
of Vj . Moreover, if Pj is the projection operator on Vj defined as

Pj : L2 → Vj , f 7→
∑
k∈Z

aj,kφj,k, where aj,k = 2nj〈f, φj,k〉,

then we have
lim

j→+∞
Pj(f) = f and lim

j→−∞
Pj(f) = 0.

The function Pj(f) can be considered as an approximation of the function f .
The sequence (aj,k)k∈Zn is thus called the approximation coefficients of f at
scale j.
Moreover, since the function φ belongs to V0 ⊂ V1, we have

φ = 2
∑
k∈Zn

hkφ1,k where hk = 〈φ, φ1,k〉.
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The sequence h = (hk)k∈Z is called the filter2 of the multiresolution analysis
(Vj)j∈Z associated to the function φ. We will see below that h allows to con-
struct wavelets and to compute the wavelet coefficients of a function f ∈ L2.
Let us first introduce the spaces Wj .

Definition 1.5.3. The space Wj is defined as the orthogonal complement of
Vj in Vj+1. One thus has

Vj+1 = Vj ⊕Wj .

The next theorem gives some properties about these spaces.

Theorem 1.5.4.

• For any j ∈ Z, one has f ∈Wj if and only if f(2·) ∈Wj+1.

• One has
L2 =

⊕
j∈Z

Wj = V0 ⊕
⊕
j≥0

Wj .

We still have to find a basis of the spaces Wj . In Section 1.5.2, we construct
a basis in the case L2(R), which allows to build one in the general case L2(Rn)
with the help of the tensor product in Section 1.5.3.

1.5.2 Multiresolution Analysis: The Case of L2(R)
This section presents the case of L2(R). For more details, see [97, 96, 39]. The
following theorem defines a wavelet of L2(R) from a multiresolution analysis
(Vj)j∈Z of L2(R).

Theorem 1.5.5. Let (Vj)j∈Z be a multiresolution analysis of L2(R) and (hk)k∈Z
the filter of (Vj)j∈Z associated to φ. A wavelet ψ of L2(R) is given by

ψ = 2
∑
k∈Z

gkφ1,k,

where gk = (−1)kh1−k. Moreover, the set {2j/2ψj,k : k ∈ Z} form an orthonor-
mal basis of Wj.

The previous theorem combined with Theorem 1.5.4 imply that the set

{φ(· − k) : k ∈ Z} ∪ {2j/2ψj,k : j ∈ N, k ∈ Z}

2In the literature, the filter h is sometimes defined as

hk =
√

2〈φ, φ(2 · −k)〉.
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form an orthogonal basis of L2(R). Any function f ∈ L2(R) can thus be
decomposed as

f(x) =
∑
k∈Z

Ckφ(x− k) +
∑
j∈N

∑
k∈Z

cj,kψj,k(x), where Ck = 〈f, φ(· − k)〉. (7)

Furthermore, from the approximation coefficients at a scale j, there exists
an efficient algorithm to compute the approximation and wavelet coefficients
at the scale j−1. Let us give a last definition before presenting this algorithm.

Definition 1.5.6. Let a = (ak)k∈Z and b = (bk)k∈Z be two sequences of
complex numbers. The discrete convolution between a and b is the sequence
a ∗ b defined as

(a ∗ b)k =
∑
l∈Z

albk−l,

for any k ∈ Z.

Theorem 1.5.7 (Mallat algorithm). Let (Vj)j∈Z be a multiresolution analysis
of L2(R), (hk)k∈Z the filter of (Vj)j∈Z associated to φ and (gk)k∈Z the sequence
defined as gk = (−1)kh1−k. Let f be a function of L2(R) and (cj,k)(j,k)∈Z×Z its
wavelet coefficients associated to the wavelet ψ given in Theorem 1.5.5. More-
over, let’s denote its approximation coefficients at scale j as a(j) := (aj,k)k∈Z.
We have

aj−1,k = (a(j) ∗ h̃)2k and cj−1,k = (a(j) ∗ g̃)2k, (8)

where h̃k = h−k and g̃k = g−k.

In practice, a real-life signal is a finite sequence of real numbers. This
sequence is interpreted as the approximation coefficients of a function f at
a scale j. The Mallat algorithm allows to compute the wavelet coefficients
of the function f at a scale smaller than j. Moreover, let us note that if
ψ is a compactly supported wavelet then the filter h is finite, which implies
that Formula (8) involves finite sums. For any r ∈ N, Daubechies has shown
that there exists a compactly supported wavelet ψ with its r first moments
vanishing, i.e. ∫

R
xαψ(x) dx = 0,

for any α ∈ {0, . . . , r − 1}. These wavelets are called the Daubechies wavelets
of order r. The associated filters are given in [39].

1.5.3 Multiresolution Analysis: The Case of L2(Rn)
This section uses the tensor product to define a multiresolution analysis of
L2(Rn) from one of L2(R). For more details, see [39, 105]. Let us begin with
some definitions.
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Definition 1.5.8. Let c(i) = (c(i)
j )j∈Z be a sequence of complex numbers

(1 ≤ i ≤ n). The sequence
⊗n

i=1 c
(i) is defined as

(
n⊗
i=1

c(i))j =
n∏
i=1

c
(i)
ji
,

for any j = (j1, . . . , jn) ∈ Zn.

Definition 1.5.9. Let fi be a function of L2(R) (1 ≤ i ≤ n). The function⊗n
i=1 fi is defined as

n⊗
i=1

fi : x = (x1, . . . , xn) ∈ Rn 7→
n∏
i=1

f(xi).

This function belongs to L2(Rn) and we have

〈
n⊗
i=1

fi,
n⊗
i=1

gi〉 =
n∏
i=1
〈fi, gi〉. (9)

Definition 1.5.10. Let Hi be a vector subspace of L2(R) (1 ≤ i ≤ n). The
tensor product of these subspaces is the vector subspace of L2(Rn) defined as
the closure of the set of all finite linear combinations of

{
n⊗
i=1

fi : fi ∈ Hi for any 1 ≤ i ≤ n}.

It is denoted by
⊗n

i=1Hi.

Let us note that
⊗n

i=1 L
2(R) = L2(Rn). Let us now define a multiresolution

analysis of L2(Rn).

Theorem 1.5.11. Let (Vj)j∈Z be a multiresolution analysis of L2(R). The
sequence (V (n)

j )j∈Z, where the space V (n)
j is defined as

V
(n)
j =

n⊗
i=1

Vj ,

is a multiresolution analysis of L2(Rn). In particular, if φ is a scaling function
of (Vj)j∈Z, then φ(n) :=

⊗n
i=1 φ is a scaling function of (V (n)

j )j∈Z.

Let us note that
(φ(n))j,k =

n⊗
i=1

φj,ki ,
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for any j ∈ Z and k = (k1, . . . , kn) ∈ Zn. Moreover, if h is a filter of (Vj)j∈Z
then Equality (9) implies that a filter of (V (n)

j )j∈Z is given by

h(n) =
n⊗
i=1

h.

It remains to determine the space W (n)
j which is the orthogonal complement

of V (n)
j in V (n)

j+1. For any j ∈ Z, we have

V
(n)
j+1 =

n⊗
i=1

Vj+1 =
n⊗
i=1

(Vj ⊕Wj) =
n⊗
i=1

Vj︸ ︷︷ ︸
=V (n)

j

⊕
2n−1⊕
i=1

A
(j)
i ,

where the space A(j)
i is of the form

⊗n
l=1B

(j,i)
l , where B(j,i)

l is equal to Wj or
Vj and for any i, there is at least one B(j,i)

l which is equal to Wj . One thus
obtains

W
(n)
j =

2n−1⊕
i=1

A
(j)
i .

The following theorem defines wavelets of L2(Rn) from the multiresolution
analysis (V (n)

j )j∈Z.

Theorem 1.5.12. Let (V (n)
j )j∈Z be a multiresolution analysis as defined above.

For any 1 ≤ i < 2n and 1 ≤ l ≤ n, let us set

ψ
(i)
l =

{
φ if B(0,i)

l = V0

ψ if B(0,i)
l = W0

and ψ(i) =
n⊗
l=1

ψ
(i)
l .

We have that (ψ(i))1≤i<2n are wavelets of the L2(Rn) space. Moreover, the set
{2jn/2ψ(i) : k ∈ Zn} form an orthonormal basis of W (n)

j .

Consequently, the set

{φ(n)(· − k) : k ∈ Zn} ∪ {2j/2ψ(i)
j,k : 1 ≤ i < 2n, j ∈ N, k ∈ Zn} (10)

form an orthogonal basis of L2(Rn). Any function f ∈ L2(Rn) can thus be
decomposed as

f(x) =
∑
k∈Zn

Ckφ
(n)(x−k)+

∑
j∈N

∑
k∈Zn

2n−1∑
i=1

c
(i)
j,kψ

(i)
j,k(x), where Ck = 〈f, φ(n)(·−k)〉.

(11)
The discrete convolution and the Mallat algorithm are generalised as follows.
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Definition 1.5.13. Let a = (ak)j∈Zn and b = (bk)k∈Zn be two sequences of
complex numbers. The discrete convolution between a and b is the sequence
a ∗ b defined as

(a ∗ b)k =
∑
l∈Zn

albk−l,

for any k ∈ Zn.

Theorem 1.5.14 (Mallat algorithm). Let (Vj)j∈Z be a multiresolution analy-
sis of L2(R), h = (hk)k∈Z the filter of (Vj)j∈Z associated to φ and (gk)k∈Z the
sequence defined by gk = (−1)kh1−k. For any 1 ≤ i < 2n and 1 ≤ l ≤ n, let
us set

g
(i)
l =

{
h if B(0,i)

l = V0

g if B(0,i)
l = W0

and g(i) =
n⊗
l=1

g
(i)
l .

Let f be a function of L2(Rn) and (c(i)
j,k)1≤i<2n,(j,k)∈Z×Zn its wavelet coefficients

associated to the wavelets (ψ(i))1≤i<2n given in Theorem 1.5.12. Moreover,
let’s denote its approximation coefficients at scale j by a(j) = (aj,k)k∈Zn. We
have

aj−1,k = (a(j) ∗ h̃(n))2k and c
(i)
j−1,k = (a(j) ∗ g̃(i))2k, (12)

where h̃(n)
k = h

(n)
−k and g̃(i)

k = g
(i)
−k.

If we use the Daubechies wavelets, the filter h is finite and thus Formulas (12)
are finite sums. This algorithm is used in Chapter 6 to compute the wavelet
coefficients of signals coming from the topography of the planet Mars.

1.5.4 Some Links with the Hölder Exponent

In this section, we present some links between the wavelet coefficients and the
Hölder exponent. We assume that we have a compactly supported wavelet
basis from a multiresolution analysis. Some results remain valid for other
types of wavelets. More details can be found in [39, 67, 69].
To determine the Hölder exponent of a function f from its wavelet coeffi-

cients, it is important for the wavelets to have a number of vanishing moments
sufficiently large [67]; we said that the wavelets (ψ(i))1≤i<2n have their r first
vanishing moments (r ∈ N∪{+∞}), if we have∫

Rn
xαψ(i)(x) dx = 0,

for any multi-index α such that |α| < r and for any 1 ≤ i < 2n.

Theorem 1.5.15. [60] If (ψ(i))1≤i<2n have their r first vanishing moments
with r ≥ bhf (x)c+ 1 and if f is uniformly Hölder, then

hf (x) = lim inf
j→+∞

inf
k∈Zn,1≤i<2n

log |c(i)
j,k|

log(2−j + |k2−j − x|) .
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This result shows that the values of |c(i)
j,k| are related to the Hölder exponent

at the points x close to k2−j . This fact motivates the following notations. Let
λ

(i)
j,k be the dyadic cube defined as

λ
(i)
j,k = {x ∈ Rn : 2jx− k ∈ [0, 1)n},

for any 1 ≤ i < 2n, j ∈ Z and k ∈ Zn. In the following, we will omit any
reference to the indices i, j, k for such cubes by writing λ = λ

(i)
j,k. Moreover, the

notation φλ refers to the function φ(i)
j,k and cλ refers to the wavelet coefficient

c
(i)
j,k. Let us notice that the index λ gives information on the localisation and
the scale of the corresponding wavelet: if ψ(i) are compactly supported then
there exists C > 0 such that supp(ψ(i)) ⊂ Cλ where Cλ denotes the cube
of same center as λ and C times larger. The function ψ(i) is “essentially”
localised around the cube λ.
For any 1 ≤ i < 2n, j ∈ Z and x ∈ Rn, there exists an unique dyadic cube

λ at scale j such that x ∈ λ; this dyadic cube is denoted by λj(x).
Moreover, the previous theorem shows that coefficients cλ allowing to study

the regularity of the function f at x are the coefficients associated to a dyadic
cube “close to” x. This motivates the following definition [69].

Definition 1.5.16. The wavelet leaders of a function f are defined as

d
λ

(i)
j,k

= max
λ∈N(λ(i)

j,k
)

sup
λ′(i)⊂λ

|cλ′ |,

where N(λ(i)
j,k) is the set of the 3n − 1 neighbours of λ(i)

j,k at the scale j and in
the direction i.

If f belongs to the L∞ space and if the wavelets (ψ(i))1≤i<2n belong to the
L1 space, then

|cλ| ≤ ||ψ||1 ||f ||∞,

and therefore, the wavelet leaders are finite3.
Moreover, the wavelet leader associated to the dyadic cube λj(x) is denoted

dj(x). The following theorem is the analog of Theorem 1.5.15 for the wavelet
leaders.

Theorem 1.5.17. [67] If (ψ(i))1≤i<2n have the first r vanishing moments with
r ≥ bhf (x)c+ 1 and if f is uniformly Hölder, then

hf (x) = lim inf
j→+∞

log dj(x)
log 2−j .

3The hypothesis f ∈ L∞ can be replaced by the weaker assumption that f belongs to the
Besov space B0

∞,∞ (see Section 1.6).
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1.5.5 Periodised Wavelets

A real-life signal is usually a finite sequence of real numbers. If we study a
phenomena that evolves over time, as the temperature for example, we have a
finite sequence of real numbers x1, . . . , xm which represents the studied signal.
This sequence can be interpreted as a function f defined on [0, 1] such that
f(i/m) = xi. This function can been seen as a function of period 1 which
locally belongs to L2(R). More generally, we have the following definition.

Definition 1.5.18. Let us denote by Tn the torus Rn /Zn. The space L2(Tn)
is the set of functions of period 1 which locally belong to L2(Rn).

The periodisation operator [·] is defined as

[·] : f 7→
∑
k∈Zn

f(· − k).

The basis defined in (10) allows to obtain a basis of L2(Tn). It is proved in
[37] that the set

{[φ]} ∪ {[ψλ] : 1 ≤ i < 2n, j ∈ N, k ∈ {0, . . . , 2j − 1}n}

form an orthonormal basis of L2(Tn). The corresponding wavelet coefficients

cper
λ = 2jn

∫ 1

0
f(x)[ψλ](x) dx

are naturally called the periodised wavelet coefficients. Let us set

Λj = {λ(i)
j,k : 1 ≤ i < 2n, k ∈ {0, . . . , 2j − 1}n} and Λ =

⋃
j∈N

Λj ,

so the indices λ of the wavelet coefficients cper
λ vary on Λ.

For the sake of simplicity, the notations ψλ and cλ are again used for peri-
odised wavelets and periodised wavelet coefficients.

1.6 Hölder Spaces and a few Generalisations

This section gives some additional information about Hölder spaces and some
generalisations of these spaces. In the first part, we discuss about the definition
of Hölder spaces (for a given exponent h ∈ N). In the second part, the Besov
spaces are defined. These spaces generalise the uniform Hölder spaces for
negative exponents (see [129, 25, 130] for example). The oscillation spaces are
also introduced [67]. They allow to approximate the decreasing part of the
concave hull of the Hölder spectrum of a function f (see Section 1.7). Finally,
a generalisation of the Hölder spaces and the Besov spaces is given with the
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help of the admissible sequences (see [49, 4, 82, 83, 84] and references therein).
These spaces allow to characterise in a better way the regularity of a function.
In this section, each result about the wavelet coefficients uses a compactly

supported wavelet basis from a multiresolution analysis (see Equality (11) and
Section 1.5) and the number of vanishing moments of the wavelets is supposed
sufficiently great. Some results remains valid for other types of wavelets. More
detail can be found in [105, 67, 68, 82, 83, 81, 84].

1.6.1 Additional Information about Hölder Spaces

Let us recall that a function f belongs to the Hölder space Λh(x0) (h /∈ N) if
and only if there exist a constant C > 0 and a polynomial Px0 of degree less
than h such that

|f(x)− Px0(x)| ≤ C|x− x0|h,

for any x in a neighbourhood of x0. This condition is equivalent to

||f − Px0 ||L∞(B(x0,2−j)) ≤ C2−hj , (13)

for any j ∈ N. This equivalence is also valid if h ∈ N. Moreover, if h /∈ N,
Condition (13) is equivalent to the following one4 [81]:

inf
P∈Pbhc

||f − P ||L∞(B(x0,2−j)) ≤ C2−hj , (14)

for any j ∈ N, where Pm is the set of polynomial of degree less than or equal to
m. If h ∈ N, a function verifying Condition (13) also verifies Condition (14),
but the converse is not necessarily true. A classical example is the Weierstraß
function

+∞∑
n=0

b−n cos(bnπx),

which verifies Condition (14) for h = 1 but does not verify Condition (13) for
h = 1 [56, 139, 57].
Let us notice that, if f ism-times continuously differentiable on a neighbour-

hood of x0 (m ≥ 1), then Condition (13) and Condition (14) are equivalent,
for any h ≤ m. Indeed, for a such function f , there exists a constant C > 0
such that, ||f−P ||L∞(B(x0,2−j)) ≤ C2−mj , for any j ∈ N, where P is the Taylor
polynomial of order m− 1 of f .
In the literature, there exist several conventions for h ∈ N [39, 105, 67,

35, 139, 80]. In this thesis, we use the same as Zygmund [139], i.e. Condi-
tion (14). Moreover, Krantz states that this choice is the usual convention in

4For any x ∈ R, the notation bxc is defined as

bxc = sup{k ∈ Z : k ≤ x}.
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the harmonic analysis [80]. This convention allows to have the same wavelet
characterisation of the Hölder spaces Λh(x0) for any h > 0 [83, 81, 84].

Definition 1.6.1. Let us fix x0 ∈ Rn and h > 0. The pointwise Hölder
space Λh(x0) is the set of locally bounded functions f for which there exists a
constant C > 0 satisfying

inf
P∈Pbhc

||f − P ||L∞(B(x0,2−j)) ≤ C2−hj , (15)

for any j ∈ N. The uniform Hölder space Λh is the set of functions f such
that Condition (15) holds for any x0 ∈ Rn uniformly in C.

As already mentioned in Section 1.1, a function f does not necessarily be-
longs to the space Λhf (x0)(x0). The Hölder spaces do not entirely characterise
the regularity of a function. For this reason, these spaces have been gener-
alised. The idea is to modify the sequence (2−hj)j∈N in Condition (15) by an
admissible sequence. This generalisation is presented in Section 1.6.3.

1.6.2 Besov Spaces and Oscillation Spaces

To define the Besov spaces [25], let us give some definitions and notations.

Definition 1.6.2. A function f : Rn → C is said rapidly decreasing if

||x 7→ xαf(x)||∞ < +∞.

The Schwartz space S is the set of infinitely differentiable functions f such
that, for any multi-index α ∈ Nn, ∂αf is rapidly decreasing. The topological
dual of the Schwartz space is denoted by S ′. This space is the set of tempered
distributions on Rn.

Let us denote by Φ the set of sequences (ϕj)j∈N such that

• ϕj ∈ S for any j ∈ N,

• suppϕ0 ⊂ B(0, 2),

• suppϕj ⊂ B(0, 2j+1) \B(0, 2j−1) for any j ≥ 1,

• ||x 7→ Dαϕj(x)||∞ ≤ cα2−j|α| for any j ∈ N and α ∈ Nn,

•
+∞∑
j=0

ϕj(x) = 1 for any x ∈ Rn.

Let us now define the Besov spaces.
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Definition 1.6.3. Let 0 < p, q ≤ +∞, s ∈ R and (ϕj)j∈N ∈ Φ. The Besov
space Bs

p,q is the set of functions f ∈ S ′ such that the sequence

(||2jsF−1(ϕjFf)||p)j∈N

belongs to lq, i.e.

||f ||Bsp,q := ||(||2jsF−1(ϕjFf)||p)j∈N||q

is finite.

The definition of the Bs
p,q space is independent of the chosen sequence

(ϕj)j∈N ∈ Φ. Moreover, the properties of the lp spaces (see Section 1.4) imply
that the space (Bs

p,q, || · ||Bsp,q) is a Banach space, if p, q ≥ 1.
The next proposition shows that the Besov spaces are a generalisation of

the uniform Hölder space.

Theorem 1.6.4. [129] If s > 0 then we have Bs
∞,∞ = Λs.

Let us now introduce the discrete counterparts of the Besov spaces which
will allow to give their wavelet characterisation.

Definition 1.6.5. Let 0 < p, q ≤ +∞, s ∈ R. The space bsp,q is the set of
sequences c such that the sequence

(2(s−n
p

)j ||(cλ)k∈Z||p)i∈{0,...,2n−1},j∈N

belongs to lq, i.e.

||c||bsp,q := ||(2(s−n
p

)j ||(cλ)k∈Zn ||p)i∈{0,...,2n−1},j∈N||q

is finite.

Theorem 1.6.6. [131] Let 0 < p, q ≤ +∞, s ∈ R. A function f belongs
to Bs

p,q if and only if its wavelet coefficients belongs to bsp,q and the sequence
(Ck)k∈Z belongs to lp.

The idea for defining the oscillation spaces5 Osp is to replace the wavelet
coefficients by the wavelet leaders in the characterisation of the Besov spaces
[67].

Definition 1.6.7. Let s ∈ R. If p > 0, the oscillation space Osp is the set of
functions f belonging to Bs

p,∞ such that its wavelet leaders belongs to bsp,∞.
If p < 0, the oscillation space Osp is the set of function f belonging to B0

∞,∞
and such that for any ε > 0 and for any finite set K ⊂ Zn, there exist C > 0
and J ∈ N satisfying

2(sp−n)j ∑
k∈K

dpλ ≤ C2εj

for any j ≥ J and any 1 ≤ i < 2n.
5The spaces Osp are a particular case of oscillation spaces Os,s

′
p (with s′ = 0) [62, 68].
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The space Osp is not a vector space for p < 0. The next proposition shows
that the oscillation spaces are a generalisation of the Besov spaces.

Proposition 1.6.8. [67] Let p > 0 and s ∈ R. One has Osp ⊂ Bs
p,∞ and if

s > n/p, then Osp = Bs
p,∞.

In the end of Section 1.5, we have defined the periodised wavelets on L2(Tn).
It is thus natural to define the Besov and oscillation spaces on the torus Tn.

Definition 1.6.9. Let 0 < p, q ≤ +∞ , s ∈ R. The periodised space bsp,q(Tn)
is the set of sequences c = (cλ)λ∈Λ such that

(2(s−n
p

)j ||(cλ)λ∈Λj ||p)1≤i<2n,j∈N

belongs to lq, i.e.

||c||bsp,q(Tn) := ||(2(s−n
p

)j ||(cλ)λ∈Λj ||p)i∈{0,...,2n−1},j∈N||q

is finite. The periodised Besov space Bs
p,q(Tn) is the set of functions f for

which the periodised wavelet coefficients belong to bsp,q(Tn).

Definition 1.6.10. Let s ∈ R. If p > 0, the periodised oscillation space
Osp(Tn) is the set of the functions f belonging to Bs

p,∞(Tn) such that their
wavelet leaders belong to bsp,∞(Tn).
If p < 0, the periodised oscillation space Osp is the set of functions f belonging
to B0

∞,∞(Tn) and such that for any ε > 0, there exist C > 0 and J ∈ N
satisfying

2(sp−n)j ∑
λ∈Λj

dpλ ≤ C2εj

for any j ≥ J and any 1 ≤ i < 2n.

To simplify the notation, the space Bs
p,q will denote either the Besov spaces

or the periodised Besov space depending on the context (idem for the oscilla-
tion spaces).

1.6.3 Generalisation with the help of the admissible
sequences

Besov and Hölder spaces have been generalised in the literature for more than
30 years (see [49, 4, 82, 83, 84] and references therein). In this thesis, we work
with a generalisation using admissible sequences. The goal of this generalisa-
tion is to characterise in a better way the regularity of functions.
For example, let us take the Brownian motion B = (Bx)x∈R; it is well-known

that, almost surely, B ∈ Λh for any h < 1/2 but B /∈ Λ1/2, i.e. there does not
exist a constant C > 0 such that

||B· −Bx0 ||L∞((x0−2−j ,x0+2−j)) ≤ C2−j/2, (16)
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for any j ∈ N and for any x0 ∈ R. If we replace the sequence (2−j/2)j∈N in
Condition (16) by the sequence (2−j/2

√
j)j∈N, this condition holds for some

C > 0 (see [73] for example and Theorem 2.3.5). The generalisation of Besov
spaces is based on this idea: the sequence (2sj)j∈Z in Definition 1.6.3 of Besov
spaces is replaced by an admissible sequence σ.

Definition 1.6.11. Let 0 < p, q ≤ +∞, σ an admissible sequence and let
(ϕj)j∈N ∈ Φ. The generalised Besov space Bσ

p,q is the set of functions f ∈ S ′
such that the sequence

(||σ−1
j F

−1(ϕjFf)||p)j∈N

belongs to lq, i.e.

||f ||Bσp,q := ||(||σ−1
j F

−1(ϕjFf)||p)j∈N||q

is finite. Moreover, if s(σ−1) > 0, the space Bσ
∞,∞ is denoted by Λσ and is

called the generalised uniform Hölder space6.

As for the classical Besov spaces, the previous definition is independent of
the sequence (ϕj)j∈N ∈ Φ. The following theorem shows that the spaces Λσ
generalise the uniform Hölder spaces Λh.

Theorem 1.6.12. [82] Let σ be an admissible sequence such that s(σ−1) > 0.
A locally bounded function f belongs to Λσ if and only if there exists C > 0
such that

inf
P∈Pbs(σ−1)c

||f − P ||L∞(B(x0,2−j)) ≤ Cσj ,

for any j ∈ N and for any x0 ∈ Rn. In particular, if σ = (2−hj)j∈N, we have
Λσ = Λh.

The space bsp,q is naturally generalised by the following definition.

Definition 1.6.13. Let 0 < p, q ≤ +∞ and σ an admissible sequence. The
space bσp,q is the set of sequences c such that the sequences

(σ−1
j 2−j

n
p ||(cλ)k∈Z||p)1≤i<2n,j∈N

belong to lq, i.e.

||c||bσp,q := ||(σ−1
j 2−j

n
p ||(cλ)k∈Zn ||p)1≤i<2n,j∈N||q

is finite.

The next proposition gives the wavelet characterisation of the generalised
Besov spaces.

6The space Λσ is a particular case of the spaces Λσ,α (with α = s(σ−1)) defined in [82, 83].
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Theorem 1.6.14. [4] Let 0 < p, q ≤ +∞ and σ be an admissible sequence. A
function f belongs to Bσ

p,q if and only if its wavelet coefficients belong to bσp,q
and the sequence (Ck)k∈Z belongs to lp.

We can also define these spaces on Tn as in the classical case. Again, the
notation Bσ

p,q denotes the generalised Besov space or the periodised Besov
space, depending on the context.
Finally, the pointwise Hölder space Λh(x0) can also be generalised with the

help of admissible sequences [84].

Definition 1.6.15. Let x0 ∈ Rn, M ∈ N and σ an admissible sequence. A
locally bounded function f belongs to the generalised Hölder space Λσ,M (x0)
if there exists a constant C > 0 such that

inf
P∈PM

||f − P ||L∞(B(x0,2−j)) ≤ Cσj ,

for any j ∈ N.

Let us notice that Λh(x0) = Λσ,M (x0) with σ = 2−hj and M = bhc. The next
proposition shows that if M < s(σ−1) then the lower bound of the definition
of generalised Hölder spaces is reached.

Proposition 1.6.16. [84] Let σ be an admissible sequence, M ∈ N and
x0 ∈ Rn. If M < s(σ−1), then f ∈ Λσ,M (x0) if and only if there exist a
constant C > 0 and a polynomial Px0 of degree less than M such that

||f − Px0 ||L∞(B(x0,2−j)) ≤ Cσj ,

for any j ∈ N.

The next theorem gives a quasi-characterisation of the spaces Λσ,M (x0) via
the wavelet leaders. Let us notice that this result is a generalisation of a result
of [67] which gives the link between the usual Hölder spaces Λh(x0) and the
wavelet leaders.

Theorem 1.6.17. [84] Let σ be an admissible sequence, M ∈ N and x0 ∈ Rn.
If f belongs to Λσ,M (x0), then there exists a constant C > 0 such that

dj(x0) ≤ Cσj ,

for any j ∈ N. Conversely, if this inequality holds for an uniformly Hölder
function f and if σj → 0 as j → +∞, then f ∈ Λσ′,M , where σ′ is defined as
σ′j = σj | log σj | and M + 1 > s(σ−1).

This result shows that the behaviour of infP∈PM ||f − P ||L∞(B(x0,2−j)) as
j → +∞ is not necessarily the same that the behaviour of dj(x0) as j → +∞;
it can have a logarithmic correction between these behaviours. Moreover,
this logarithm correction is the best possible [60]. Chapter 2 shows that this
correction is not present in the case of the Brownian motion.



28 Chapter 1. Regularity of Functions

1.7 The Wavelet Leaders Method

This section presents the wavelet leaders method (WLM) [67, 68]. This method
is an adaptation of the box-counting method in the context of the discrete
wavelet transform. It allows to estimate the concave hull of the Hölder spec-
trum of a function f . This is a classical method to study the multifractal
properties of real-life signals (see [88, 135, 2, 42] for example).
Let f ∈ L2(Tn) and let us denote by (dλ)λ∈Λ its periodised wavelet leaders.

The WLM is a method to approximate the Hölder spectrum of f . Let us begin
by explaining the algorithm.
The structure function Sf is defined as

Sf (j, q) = 1
#Λj

∗∑
λ∈Λj

(dλ)q, (17)

where the symbol
∑∗ means that the sum is restricted to the non-vanishing

terms dλ. The scaling function ηf is obtained as

ηf (q) = lim inf
j→+∞

logSf (j, q)
log 2−j . (18)

The approximation of the Hölder spectrum is given by

dηf (h) = inf
q
{hq − ηf (q)}+ n,

i.e. the Legendre transform of the scaling function.
The heuristic argument that underlies this method is the following. The-

orem 1.5.17 states that if λ is a dyadic cube containing a point of Hölder
exponent h, then one should have dλ ∼ 2−hj as j tends to infinity. Moreover,
from the definition of the Hausdorff dimension, the iso-Hölder set of expo-
nent h can be covered by about 2df (h)j dyadic cubes λ. The most important
contribution in the sum

∑∗
λ∈Λj (dλ)q is thus given by

2suph{df (h)−hq}j .

Equality (18) shows that
∗∑

λ∈Λj

(dλ)q ∼ 2(n−η(q))j as j → +∞.

Consequently, we should have

sup
h
{df (h)− hq} = n− η(q).

Using the inverse Legendre transform, this relation shows that the function dηf
seems to be a reasonable candidate to approximate the Hölder spectrum df .
More precisely, one has the following theorem.
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Theorem 1.7.1. [61]

• The scaling function is related to the oscillation spaces by the following
relation:

ηf (p) = sup{s ∈ R : c ∈ Os/pp }.

Consequently, the scaling function is independent of the chosen wavelet
basis.

• If f is uniformly Hölder, then df ≤ dηf .

• The WLM holds for some classes of functions, as fractional Brownian
motions, cascades, etc.

Let us notice that the genericity of the set {f : df = dηf} for a function
space is still not proved. If the wavelet leaders in Relation (17) are replaced
by the wavelet coefficients, the scaling function is related to the Besov spaces
B
s/p
p,∞ and the genericity is proved in the space Bη defined as

Bη =
⋂
ε>0

⋂
p>0

B
η(p)−ε
p

p,∞ ,

for a certain function η [65, 51]. However, the Besov spaces Bs/p
p,∞ are defined

only for p > 0, which implies that one can only have access to the increasing
part of the spectrum.
The WLM allows to approximate the increasing and the decreasing part of

the spectrum but a problem remains: a Legendre transform is always a concave
function and thus the approximation of the Hölder spectrum is always concave.
However, there exist functions with non-concave spectrum (see Figure 1.2).
The two following sections define other methods to overcome this problem.

1.8 Sν spaces and the Wavelet Profile Method

The previous section presented the WLM which only allows to approximate
the concave hull of the Hölder spectrum. This section presents the Sν spaces
[66] which allow to define the Wavelet Profile Method (WPM); this method
can approximate non-concave spectra.
The main idea behind the definition of the Sν spaces is the use of histograms

of wavelet coefficients for large scales: Theorem 1.5.15 states that the wavelet
coefficients which behaves like 2−hj are the signature of points with Hölder
exponent h. It seems therefore natural to try to estimate the spectrum of a
function f ∈ L2(Tn) by considering the function

ρf (h) = lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : 2−(h+ε)j ≤ |cλ| < 2−(h−ε)j}
log 2j .
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Hence, there exist approximately 2ρf (h)j wavelet coefficients of amplitude 2−hj .
From the definition of the Hausdorff dimension and the wavelet characterisa-
tion of the Hölder exponent, one can hope to have ρf (h) = df (h). However,
two problems make this formalism useless: the function ρf depends on the
chosen wavelet basis [66] and a numerical approximation of this function is
difficult to obtain. Indeed, in practice, we only have access to a finite number
of wavelet coefficients and in order to compute the double limit, one must
introduce an arbitrary dependence between ε and j to approximate ρf (h). To
overcome these issues, one modifies the definition of this function to count
the number of wavelet coefficients greater in modulus than 2−hj at each scale
j. This modification allows to define a function that is independent of the
wavelet basis [66] and which can be numerically computable (see Chapter 4).

Definition 1.8.1. The wavelet profile of f ∈ L2(Tn) is defined as

νf : h ∈ R 7→ lim
ε→0+

lim sup
j→+∞

log #Ej(1, h+ ε)(f)
log 2j ,

where
Ej(C, h)(f) = {λ ∈ Λj : |cλ| ≥ C2−hj}

and c = (cλ)λ∈Λ are the periodised wavelet coefficients of f .

The function νf is obviously non-decreasing, right-continuous and there ex-
ists hmin ∈ R for which νf (h) = −∞ for any h < hmin and νf (h) ∈ [0, n] for
any h ≥ hmin. Moreover, hmin > 0 if the function f is uniformly Hölder. A
function ν satisfying those properties with hmin > 0 is called an admissible
profile.

Definition 1.8.2. Let ν be an admissible profile. The space Sν is the set of
functions f ∈ L2(Tn) such that νf ≤ ν.

The definitions of the function νf and the Sν spaces are independent of
the chosen wavelet basis [66]. For a fixed wavelet basis, Sν can be seen as a
sequences space matching a function f ∈ L2(Tn) to its sequence of wavelet
coefficients. The wavelet profile of a sequence c = (cλ)λ∈Λ is denoted by νc
and is defined as

νc : h ∈ R 7→ lim
ε→0+

lim sup
j→+∞

log #Ej(1, h+ ε)(c)
log 2j ,

where
Ej(C, h)(c) = {λ ∈ Λj : |cλ| ≥ C2−hj}.

The next proposition gives an equivalent definition of the space Sν .
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Proposition 1.8.3. [66, 12] A sequence c belongs to Sν if and only if for any
h ∈ R, ε > 0 and C > 0, there exists J ∈ N such that

Ej(C, h)(c) ≤ 2(ν(h)+ε)j ,

for any j ≥ J .

In other words, a sequence c belongs to Sν if at each large scale, the number
of dyadic interval λ ∈ Λj such that |cλ| ≥ 2−hj , is smaller than 2ν(h)j . Let’s
notice that the Sν space can be endowed with a metric d such that the space
(Sν , d) is a complete topological vector space (for details, see [12]).
The following proposition shows the upsides of the spaces Sν compared to

the Besov spaces, in the context of the multifractal formalism .

Proposition 1.8.4. [12] If (pn)n∈N is a dense sequence of (0,+∞) and if
(εm)m∈N is a sequence of (0,+∞) which converges to 0, then

Sν ⊂ Bη =
⋂
n∈N

⋂
m∈N

b
η(pn)−εm

pm
pn,∞ ,

where η is defined by

η(q) = inf
h≥hmin

{hq − ν(h)}+ n.

The previous inclusion becomes an equality if and only if ν is concave.

This proposition can be interpreted as follows: since Bη does not contain
more information about the Hölder spectrum of a function f than its concave
hull (see the end of Section 1.7), if ν is not concave, then Sν gives additional
information. It leads to an estimation of non-concave spectra.
Let us present the multifractal formalism based on the Sν spaces, called the

Wavelet Profile Method (WPM).
Let ν be an admissible profile. The WPM is defined as

dν(h) =


−∞ if h < hmin

min{h sup
h′∈(0,h]

ν(h′)
h′

, n} if h ≥ hmin
. (19)

The following theorem shows the validity of this formalism.

Theorem 1.8.5. [13, 14] Let ν be an admissible profile. We have the following
properties:

• if the function f is uniformly Hölder, then df ≤ dνf ,

• the WPM holds for some classes of functions, as the Random Wavelet
Series,
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• the sets {f ∈ Sν : ν = νf} and

{f ∈ Sν : df (h) =
{
dνf (h) if h ∈ [hmin, hmax]
−∞ otherwise },

where
hmax = inf

h≥hmin

h

ν(h) ,

are residual and prevalent in Sν .

The approximation of the Hölder spectrum of a function f is thus given by
dνf and not directly by νf . Chapter 4 shows that for some classes of functions
f , the function νf can be used directly to approximate the Hölder spectrum.
To understand the transition from νf to dνff , let us introduce the following

definition [99].

Definition 1.8.6. Let 0 ≤ a < b ≤ +∞. A function f : [a, b] 7→ R+ is with
increasing-visibility if f is continuous at a and

sup
y∈(a,x]

f(y)
y
≤ f(x)

x
,

for any x ∈ (a, b].

In other words, a function f is with increasing-visibility if for any x ∈ (a, b],
the segment ((0, 0), (x, f(x))] lies above the graph of f on (a, x].
The passage from νf to dνff transforms the function νf into a function with

increasing-visibility. This is illustrated in Figure 1.4.

0

1

0 hmax

Figure 1.4.: Example of νf (---) and dνff (—)

Of course, the WPM can only recover spectra with increasing-visibility.
Moreover, since one considers wavelet coefficients and not wavelet leaders,
this method can only approximate to the increasing part of the spectrum [14].
The next section gives a multifractal formalism to approximate non-concave
and non-increasing spectra.
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1.9 Lν spaces and the Leaders Profile Method

The previous section presented the WPM which allows to approximate non-
concave spectra. A problem still exists: this formalism can only detect in-
creasing spectra. This issue is caused by the use of the wavelet coefficients.
As for the WLM (see Section 1.7), a way to circumvent this problem is to use
the wavelet leaders [22].
As for the Sν spaces, the new spaces defined in this section, called the Lν

spaces, can be seen as a sequences space or a functions space by matching a
function to its sequence of wavelet coefficients. In this section, we consider the
Lν space as a sequences space and we say that a function f belongs to Lν if
its wavelet coefficients belong to Lν .

Definition 1.9.1. The increasing wavelet leaders profile of a sequence c ∈ b0∞,∞
is defined as7

ν̃+
c : h ≥ 0 7→ lim

ε→0+
lim sup
j→+∞

log #Ẽ+
j (1, h+ ε)(c)
log 2j ,

where
Ẽ+
j (C, h)(c) = {λ ∈ Λj : dλ ≥ C2−hj},

and d = (dλ)λ∈Λ are the periodised wavelet leaders of the sequence c. Similarly,
the decreasing wavelet leaders profile of a sequence c ∈ b0∞,∞ is defined as

ν̃−c : h ≥ 0 7→ lim
ε→0+

lim sup
j→+∞

log #Ẽ−j (1, h− ε)(c)
log 2j ,

where
Ẽ−j (C, h)(c) = {λ ∈ Λj : dλ ≤ C2−hj}.

Let us denote by hs, the smallest positive number such that ν̃+
c (hs) = n. The

wavelet leaders profile of a sequence c ∈ b0∞,∞ is defined as

ν̃c : h ≥ 0 7→
{
ν̃+
c (h) if h ≤ hs
ν̃−c (h) if h ≥ hs

.

These definitions formalise the idea that there are about 2ν̃
+
f

(h)j (resp. 2ν̃
−
f

(h)j)
wavelet leaders larger (resp. smaller) than 2−hj at each large scale j.
The function ν̃c is obviously increasing and right-continuous (resp. decreas-

ing and left-continuous) on (−∞, hs] (resp. on [hs,+∞)) and there exists
7Let us recall that a sequence c = (cλ)λ∈Λ belongs to b0∞,∞, if and only if

sup
λ∈Λ
|cλ| < +∞.

For such a sequence, the wavelet leaders are thus finite.
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hmin ≤ hmax for which ν̃c(h) ∈ [0, n] for any h ∈ [hmin, hmax] and ν̃c(h) = −∞
for any h /∈ [hmin, hmax]. One also has that the function h 7→ (ν̃c(h) − n)/h
is decreasing on [hs, hmax]. Moreover, hmin > 0 if c ∈ bε∞,∞ for some ε > 0.
A function satisfying those properties with hmin > 0 is called an admissible
leaders profile.

Definition 1.9.2. Let ν be an admissible leaders profile. The space Lν is the
set of sequences c ∈ b0∞,∞ such that ν̃c ≤ ν. Moreover, the space Lν,+ (resp.
the space Lν,−) is the set of sequences c ∈ b0∞,∞ such that

ν̃+(h) ≤ ν(h) (resp. ν̃−(h) ≤ ν(h)),

for any h < hs (resp. for any h > hs)

One directly gets
Lν = Lν,+ ∩ Lν,−.

The next proposition gives an equivalent definition of these spaces8.

Proposition 1.9.3. [23]

• A sequence c belongs to Lν,+ if and only if for any h < hs, ε > 0 and
C > 0, there exists J ∈ N such that

#Ẽ+
j (C, h)(c) ≤ 2(ν(h)+ε)j ,

for any j ≥ J .

• A sequence c belongs to Lν,− if and only if for any h > hs, ε > 0 and
C > 0, there exists J ∈ N such that

#Ẽ−j (C, h)(c) ≤ 2(ν(h)+ε)j ,

for any j ≥ J .

Let us notice that Lν,+ is a vector space while Lν and Lν,− are not since 0
does not belong to these spaces.
As for Sν , Lν can be endowed with a metric d such that the space (Lν , d̃)

is a complete space. Let us now present the link between Sν and Lν .

Proposition 1.9.4. [23] Let ν be an admissible leaders profile. One has
Lν,+ = Sν if and only if ν is with increasing-visibility on [hmin, hs].

8Let us notice that the results presented in this section are also valid if the wavelet leaders
are replaced by the restricted wavelet leaders eλ defined as

eλ = sup
λ′⊂λ

|cλ′ |.
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This proposition shows that if ν is not with increasing visibility, Lν,+ gives
additional information compared to Sν . Besides, Lν,− allows to have access
to the decreasing part of the spectrum. The next proposition shows that the
Hölder spectrum of a function f can be approximated by the function ν̃c,
where c are the wavelet coefficients of f . This method is called the Leaders
Profile Method (LPM).

Theorem 1.9.5. [23] Let ν be an admissible leaders profile. We have the
following properties:

• if f is a uniformly Hölder function, then df ≤ ν̃c,

• the LPM holds for some classes of functions, as fractional Brownian
motion, lacunary wavelet series, random wavelet series, sum of deter-
ministic cascades, ...

• the set {c ∈ Lν : ν = ν̃c} is residual in Lν .

As for the WLM, the genericity of the set {f ∈ Lν : df = ν̃c} is still not
proved.
Let us finish this section by comparing the three methods presented in this

chapter: the LPM, the WLM and the WPM. The following propositions show
the upsides of the LPM compared to the WLM and of the LPM compared to
the WPM, in the context of the multifractal formalism.

Proposition 1.9.6. [46] If the function

h 7→ lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : 2−(α+ε)j ≤ dλ < 2−(α−ε)j}
log 2−j

takes the value −∞ outside of a compact set of [0,+∞), then we have the
following properties:

• we have ν̃c ≤ dηf ,

• the function dηf is the concave hull of the function ν̃c.

Proposition 1.9.7. [46] If f belongs to Lν , we have the following properties:

• we have ν̃c ≤ dνf on [0, hs],

• the previous inequality becomes an equality on [0, hs] if and only if ν̃c is
with increasing-visibility on [hmin, hs].





Chapter 2
Hölderian Behaviour through
Wavelets

It is well-known that the Brownian motion B = (Bx)x∈R is a monofractal
process with a Hölder exponent equal to 1/2 but that, almost surely, the

behaviour of |Bx − Bx0 | is not |x − x0|1/2, for almost every x0 ∈ R. The
Khintchin law states that, almost surely, the behaviour of |Bx −Bx0 | is

|x− x0|1/2
√

log log |x− x0|−1

as x → x0, for almost every x0 ∈ R (see [76, 73]). In terms of Hölder spaces,
this means thatB /∈ Λ1/2(x0) butB ∈ Λσ,0(x0) with σ = (2−j/2

√
log log 2j)j∈N.

Let us recall that Theorem (1.6.17) implies that the asymptotic behaviour of
the wavelet leaders of B is not necessarily the same as σ; it can exist a log-
arithmic correction. A goal of this chapter is to show that this correction is
not present for the Brownian motion. This result shows that the coefficients
obtained by a wavelet transform can characterise finely the pointwise regular-
ity. This also shows the interest of generalising the space Sν with the help of
admissible sequences (see Chapter 3). Indeed, the classical multifractal for-
malisms (as the WLM for example) can approximate the Hölder exponent of B
but they cannot detect the correction

√
log log 2j of the Hölderian behaviour

on simulations of B. Chapter 5 uses an algorithm based in this generalisation
of Sν to detect some corrections in the Hölderian behaviour.
The first section uses the wavelet decomposition to construct a function

with prescribed Hölder exponents whose its wavelet coefficients display a pre-
scribed behaviour. After a few remainder on the probability spaces and the
Brownian motion, Section 2.4 shows that the three well-known types of be-
haviour of points of the Brownian motion B (namely ordinary, slow and rapid
points) are also present in the behaviour of wavelet leaders of B. Finally, the
last section presents a multifractal process based on the decomposition of the
Brownian motion in the Schauder basis which has a local regularity similar
to the Brownian motion. This is a variant of the multifractional Brownian
motion [116, 24].
The results presented in Section 2.4 are a collaboration with C. Esser and A.

Ayache and have been published in [16]. The results presented in Section 2.5

37
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come from the discussions with A. Ayache and are also a collaboration with
S. Nicolay.
This chapter is structured as follows:

2.1. Functions with Prescribed Hölder Exponents Dis-
playing a Prescribed Behaviour in its Wavelet Co-
efficients . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2. A Brief Reminder on Probability Spaces . . . . . . 40
2.2.1. Random Variables and Borel-Cantelli Lemma . . . . 40
2.2.2. Gaussian Process . . . . . . . . . . . . . . . . . . . . 42

2.3. A Brief Remainder on the Brownian Motion . . . . 43
2.3.1. Definition and a few Properties . . . . . . . . . . . . 43
2.3.2. The Lévy-Ciesielski Construction . . . . . . . . . . . 46
2.3.3. Wiener Integrate . . . . . . . . . . . . . . . . . . . . 47

2.4. Behaviour of Wavelet Leaders of the Brownian
Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1. A few Comments on the Wavelet Coefficients and
the Wavelet Leaders of a Brownian Motion . . . . . 49

2.4.2. Proof of Theorem (2.4.1) . . . . . . . . . . . . . . . 52
2.4.3. Some Links between the Behaviours of the Oscilla-

tion and the Wavelet Leaders . . . . . . . . . . . . . 60
2.5. From the Brownian Motion in the Schauder Basis

to a Multifractal Process . . . . . . . . . . . . . . . . 61

2.1 Functions with Prescribed Hölder Expo-
nents Displaying a Prescribed Behaviour
in its Wavelet Coefficients

This section presents a method relying on the wavelet decomposition to build
a function f with a prescribed Hölder exponents whose its wavelet coefficients
display a prescribed behaviour. This method is a generalisation of Proposi-
tion 4 of [35] which shows that if the wavelet coefficients of a function f are
defined as cλ = 2−jH(k2−j), with H a well chosen function, then hf (x) = H(x)
for any x. This section shows that the introduction of a certain factor aj in
the definition of the wavelet coefficients of f does not modify hf (x).

Notation. Let us denote by HK the set of the functions from [0, 1] to the
compactK which are the limit of a sequence of continuous functions. Lemma 2
of [38] implies that for any H ∈ HK , there exists a sequence (Qj)j∈N of
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polynomials such that{
H(t) = lim

j→+∞
Qj(t) ∀t ∈ [0, 1]

||Q′j ||∞ ≤ j ∀j ∈ N
, (20)

where Q′j is the derivative of Qj .

The next proposition defines a continuous function f with a prescribed
Hölder exponent hf (x0) for every point x0.

Proposition 2.1.1. Let K ⊂ (0, 1) be a compact set, H ∈ HK and (Qj)j∈N
be a sequence of polynomials satisfying Relations (20). For any λj,k ∈ Λ, set

Hλj,k = max{ 1
log j ,Qj(k2−j)}.

If (aj)j∈N is a strictly positive real sequence such that

lim
j→+∞

log aj
log 2−j = 0,

then the function f defined as

f(x) =
+∞∑
j=0

∑
λ∈Λj

2−Hλajψλ(x) (21)

satisfies hf (x) = H(x), for any x ∈ [0, 1].

Proof. Let x ∈ [0, 1]; from Proposition (1.5.17) it suffices to prove that

lim
j→+∞

log dj(x)
log 2−j = H(x),

where dj(x) are the wavelet leaders of f associated to the dyadic interval λj(x).
From the definition of f , its wavelet coefficients are cλ = 2−Hλaj . Let ε > 0;
since the definition of the sequence (Qj)j∈N, there exists j0 such that for any
j ≥ j0 and λ′ ⊂ λ with λ ∈ N(λj(x)), we have

|Hλ′ −H(x)| ≤ |Qj′(k′2−j
′)−Qj′(x)|+ |Qj′(x)−H(x)|

≤ 2j′2−j′ + |Qj′(x)−H(x)|
≤ ε.

Consequently, we have

max{2−
j′

log j′ aj′ , 2−j
′ε2−j′H(x)aj′} ≤ |cλ′ | ≤ max{2−

j′
log j′ aj′ , 2j

′ε2−j′H(x)aj′}.
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We thus obtain

max{2−
j

log j aj , 2−jε2−jH(x)aj} ≤ dj(x) ≤ max{2−
j

log j aj , 2jε2−jH(x)aj},

i.e.
H(x) + ε ≥ lim

j→+∞

log dj(x)
log 2−j ≥ H(x)− ε,

hence the conclusion. �

Remark 2.1.2.

• The case aj = 1 corresponds to Proposition 4 of [35].

• If H is a continuous function, then the coefficients Hλ can be defined as

Hλ = max{ 1
log j ,H(k2−j)}.

• This result still holds if one replaces the sequence aj by

a′j(x) = aj(1 + g(x)),

where g is a bounded function such that inf g([0, 1]) > −1.

• Although the sequence (aj)j∈N in Equality (21) does not modify the
Hölder exponent of the function f , this function does not necessar-
ily belong to Λhf (x0)(x0). For example if H(x) = h ∈ (0, 1), then f
is a monofractal function with an Hölder exponent equals to h, and
f ∈ Λh(x0) if and only if the sequence (aj)j∈N is bounded; if (aj)j∈N is a
unbounded admissible sequence, then f ∈ Λσ,0(x0) with σ = (2−hjaj)j∈N.

2.2 A Brief Reminder on Probability Spaces

This section briefly presents some notions and fixes some notations about the
probability theory. For more details, see [11, 77, 94] for example. In the
following of this chapter, we fix a probability space (Ω,A,P).

2.2.1 Random Variables and Borel-Cantelli Lemma

Let us recall that a random variable X is a measurable function

X : (Ω,A)→ (R,B),

where B is the Borel σ-algebra. The following definitions give some notions
about random variables.
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Definition 2.2.1. Let X be a random variable. The distribution function of
X is the function FX defined as

FX : x ∈ R 7→ P({ω ∈ Ω : X(ω) ≤ x}),

the expected value of X is defined as

E(X) =
∫

Ω
X(ω)dP(ω)

and the variance of X is defined as

V(X) = E((X − E(X))2).

If X and Y are two random variables such that FX = FY , we write X ' Y .

Definition 2.2.2. LetX,Y be two random variables. The covariance between
X,Y is defined as

Cov(X,Y ) = E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ).

The following definition presents the important notion of independent ran-
dom variables.

Definition 2.2.3. A collection of random variables (Xα)α∈A is said indepen-
dent if for any finite set I ⊂ A and any xi ∈ R, one has

P(
⋂
i∈I
{ω ∈ Ω : Xi(ω) ≤ xi}) =

∏
i∈I

P({ω ∈ Ω : Xi(ω) ≤ xi}).

Proposition 2.2.4. [11] Let (Xα)α∈A be a collection of random variables
with a finite expected value. If (Xα)α∈A is independent then for any α, β ∈ A,
α 6= β, the variables Xα and Xβ are uncorrelated, i.e. Cov(Xα, Xβ) = 0.

Let us give some notions about a collection of random variables.

Definition 2.2.5. Let (Xx)x∈R be a collection of random variables. This
collection is said

(a) with stationary increments if Xx+y −Xx ∼ Xy −X0 for any x, y ∈ R,

(b) with independent increments if the increments

Xx2 −Xx1 , . . . , Xxn −Xxn−1

are independent for any x1 < x2 < · · · < xn, n ≥ 1.

To conclude this section, let us recall the Borel-Cantelli lemmas about se-
quences of events1.

1An event E is an element of the σ-algebra A.
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Definition 2.2.6. A collection of events (Eα)α∈A is said independent if for
any finite set I ⊂ A, one has

P(
⋂
i∈I

Ei) =
∏
i∈I

P(Ei).

Lemma 2.2.7 (First Borel-Cantelli lemma). [11] Let (En)n∈N be a sequence
of events. If

+∞∑
n=1

P(En) < +∞,

then we have2

P(lim sup
n→+∞

En) = 0.

Lemma 2.2.8 (Second Borel-Cantelli lemma). [11] Let (En)n∈N be a sequence
of events. If this sequence is independent and if

+∞∑
n=1

P(En) = +∞,

then we have
P(lim sup

n→+∞
En) = 1.

Let us notice that the assumption of independence can be weakened to
pairwise independence [11].

2.2.2 Gaussian Process

Let us present an important example of random variables.

Definition 2.2.9. A random variable X is called a Gaussian random variable
if there exist µ ∈ R and σ > 0 such that

FX(x) = 1√
2πσ2

∫ x

−∞
e−

1
2( y−µσ )2

dy.

In this case, we note X ∼ N (µ, σ2). If µ = 0, then we say that X is a centered
Gaussian random variable.

Let us notice that E(X) = µ, V(X) = σ2 and that X belongs to L2(Ω,A,P).
The following proposition shows that any sequence of Gaussian random vari-
ables which converge in L2(Ω,A,P), tends to a Gaussian random variable.

2Let us recall that

lim sup
n→+∞

En =
⋂
n∈N

⋃
k≥n

Ek and lim inf
n→+∞

En =
⋃
n∈N

⋂
k≥n

Ek
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Proposition 2.2.10. For any n ∈ N, let Xn ∼ N (µn, σ2
n) be a Gaussian

random variable. If the sequence (Xn)n∈N tends to X in L2(Ω,A,P) then
X ∼ N (µ, σ2) with µ = limn→+∞ µn and σ = limn→+∞ σn.

The following classical lemma provides asymptotic estimates on the tail
behaviour of a standard Gaussian distribution.

Lemma 2.2.11. Let Z ∼ N (0, 1) be a Gaussian random variable. Then, for
any x > 0, we have

1√
2π

x

x2 + 1e
−x2/2 ≤ P({ω ∈ Ω : Z(ω) > x}) ≤ 1√

2π
1
x
e−x

2/2.

To define a Gaussian process, we need the following definition.

Definition 2.2.12. A vector (X1, . . . , Xn) is called a Gaussian vector if for
any (t1, . . . , tn) ∈ Rn, the random variable

∑n
k=1 tkXk is Gaussian.

For such variables, Proposition 2.2.4 becomes an equivalence.

Proposition 2.2.13. [94] Let (X1, . . . , Xn) be a Gaussian vector. The vari-
ables X1, . . . , Xn are independents if and only if they are uncorrelated.

Definition 2.2.14. The collection of random variables (Xx)x∈R is called a
Gaussian process if for any finite set I ⊂ R, the vector (Xi)i∈I is a Gaussian
vector.

The following proposition is fundamental in the context of the Brownian
motion.

Proposition 2.2.15. [94] Let (Xx)x∈R be a collection of random variables.
The following two statements are equivalent:

• (Xx)x∈R is a Gaussian process with E(Xx) = 0 for any x ∈ R and
Cov(Xy, Xy) = min(x, y) for any x, y ∈ R,

• (Xx)x∈R has stationary independent increments and Xx ∼ N (0, |x|) for
any x ∈ R.

2.3 A Brief Remainder on the Brownian Mo-
tion

2.3.1 Definition and a few Properties

The Brownian motion is an important Gaussian process that models many
phenomena (see e.g. [106, 93, 73, 75, 94] and references therein).
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Definition 2.3.1. The Brownian motion B = (Bx)x∈R is the unique Gaussian
process such that

• almost surely, B0 = 0 and x ∈ R 7→ Bx is a continuous function,

• it has independent stationary increments such that for any x1, x2 ∈ R,
one has

Bx1 −Bx2 ∼ N (0, |x1 − x2|).

From Proposition 2.2.15, we have that Cov(Bx, By) = min(x, y), for any
x, y ∈ R. The following proposition gives some classical results about the
Brownian motion.

Proposition 2.3.2. [106] Let B = (Bx)x∈R be a Brownian motion.

• It has the property of scaling invariance of parameter 1/2, i.e.

Bax ∼ |a|1/2Bx,

for any a, x ∈ R.

• It has the property of time inversion, i.e.

Bx ∼ |x|B1/x,

for any x ∈ R0.

To define the local properties of the Brownian motion, let us introduce the
notion of oscillation.

Definition 2.3.3. Let f : R→ R be a continuous function and K a compact
interval of R. The oscillation of f on K is defined as

Oscf (K) = sup
x,x′∈K

∣∣f(x)− f(x′)
∣∣ .

If K is the interval [x− ρ, x+ ρ] (x ∈ R and ρ > 0), then the oscillation of f
on K is denoted by Oscf (x, ρ).

Remark 2.3.4. Let us note that we can directly check that if h ∈ (0, 1) then,
a function f belongs to Λh(x0) if and only if there exists a constant C > 0
such that

Oscf (x0, ρ) ≤ Cρh,

for any ρ > 0 small enough.

Here is a first result about the oscillation of the Brownian motion.

Theorem 2.3.5. [73] There exists an event Ω∗ ⊆ Ω of probability 1 such that
for any ω ∈ Ω∗, we have
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1. for any h ∈ (0, 1/2), there exists a constant C > 0 such that for any
x ∈ R, the inequality

OscB·(ω)(x, ρ) ≤ Cρh

holds for ρ > 0 small enough; this result is not valid for h = 1/2,

2. there exists a constant C > 0 such that for any x ∈ R, the inequality

OscB·(ω)(x, ρ) ≤ Cρ1/2
√

log ρ−1 (22)

holds for ρ > 0 small enough,

3. for almost every x ∈ R, there exists a constant C > 0 such that the
inequality

OscB·(ω)(x, ρ) ≤ Cρ1/2
√

log log ρ−1

holds for ρ > 0 small enough.

The first point of this last theorem shows that, almost surely, B is a monofrac-
tal process with a Hölder exponent equals to 1/2 but B /∈ Λ1/2. The second
point implies that, almost surely, for any x0 ∈ R,

B ∈ Λσ,0(x0), with σ = (2−j/2
√
j)j∈N

and the third point implies that, almost surely, for almost every x0 ∈ R,

B ∈ Λσ,0(x0), with σ = (2−j/2
√

log j)j∈N.

This previous result only gives an upper bound of the behaviour of the os-
cillation of B. The following theorem gives the exact behaviour: it shows
the existence of three different behaviours of the oscillations of B. Note that
the last point of this theorem follows from the Khintchin law of the iterated
logarithm.

Theorem 2.3.6. [76, 73] There exists an event Ω∗ ⊆ Ω of probability 1 such
that, for any ω ∈ Ω∗ and any non-empty open interval A of R, there are
xo(ω), xr(ω), xs(ω) ∈ A such that

1. xo(ω) is an ordinary point of B·(ω), i.e.

0 < lim sup
ρ→0+

OscB·(ω)(xo(ω), ρ)
ρ1/2

√
log log(ρ−1)

< +∞ ,

2. xr(ω) is a fast or rapid point of B·(ω), i.e.

0 < lim sup
ρ→0+

OscB·(ω)(xr(ω), ρ)
ρ1/2

√
log(ρ−1)

< +∞ ,



46 Chapter 2. Hölderian Behaviour through Wavelets

3. xs(ω) is a slow point of B·(ω), i.e.

0 < lim sup
ρ→0+

OscB·(ω)(xs(ω), ρ)
ρ1/2 < +∞ .

Moreover, for any ω ∈ Ω∗, almost every x ∈ R is an ordinary point of B·(ω).

The main goal of Section 2.4 is to show that we have a similar result for
the behaviours of the wavelet leaders of B. This means that the eventual
difference between the behaviour of the oscillation and the wavelet leaders
(see Theorem 1.6.17) is not present in the case of the Brownian motion.

2.3.2 The Lévy-Ciesielski Construction

This section presents the Lévy-Ciesielski construction. It allows to decompose
the Brownian motion in the Schauder basis (see [28] for example). This con-
struction will be used in Section 2.5 to obtain a multifractal process which
shares the same local regularity as the Brownian motion.
Let us begin with the definition of the Schauder functions.

Definition 2.3.7. The Schauder functions evaluated at x are the integrates
of the Haar wavelets on [0, x]. More precisely, let us set

F0(x) =


0 if x < 0
t if x ∈ [0, 1]
1 else

,

and for any λj,k ∈ Λ, define

Fλj,k(x) =


x− k2−j if t ∈ [k2−j , k2−j + 2−(j+1)]
−x+ (k + 1)2−j if t ∈ [k2−j + 2−(j+1), (k + 1)2−j ]
0 else

.

The next proposition recall the well-known properties of the Schauder func-
tions.

Proposition 2.3.8. We have the following properties:

1. let (aλ)λ∈Λ be a real sequence, a0 ∈ R and ε ∈ (0, 1/2). If

max
λ∈Λj

|aλ| = O(2jε) as j → +∞,

then the function f defined by

x 7→ a0F0(x) +
+∞∑
j=0

∑
λ∈Λj

aλ2j/2Fλ(x) (23)

is uniformly absolutely-convergent on [0, 1]. Besides, f is a real contin-
uous function such that f(0) = 0,
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2. any continuous function f from [0, 1] to R such that f(0) = 0 can be
written in the form (23). Besides, if f ∈ Λα(x0) then there exists a
constant C > 0 such that

|aλ2−j/2| ≤ C(2−j + |k2−j − x0|)α,

for any λ ∈ Λ.

The next theorem gives the decomposition of the Brownian motion in the
Schauder basis.

Theorem 2.3.9 (The Lévy-Ciesielski Construction). [28] Let (Zλ)λ∈Λ be a se-
quence of independents real-valued N (0, 1) Gaussian random variables. Then,
there exists an event Ω∗ ⊂ Ω of probability 1 such that, for any ω ∈ Ω∗, the
function B·(ω) defined by

B.(ω) : x 7→ Z0(ω)F0(x) +
+∞∑
j=0

∑
λ∈Λj

Zλ(ω)2j/2Fλ(x) (24)

is uniformly absolutely-convergent on [0, 1]. Moreover, the process B = (Bx)x
is a Brownian motion.

2.3.3 Wiener Integrate

This section briefly presents the Wiener integrate. It is a stochastic integrate
using the Brownian motion and it will be used in the next section to study
the wavelet coefficients of the Brownian motion. For more details, see [72, 94]
for example. Let B = (Bx)x∈R be a Brownian motion.
If f : [a, b] 7→ R is a simple function given by

f =
p∑
i=1

aiχ]xi,xi+1],

where a ≤ x1 < x2 < · · · < xp+1 ≤ b, χA is the indicator function of the set A
and ai ∈ R, then the Wiener integrate of f is defined as∫ b

a
f dB =

p∑
i=1

ai(Bxi+1 −Bxi).

From properties about the Brownian motion, we directly have that this inte-
grate is a centered Gaussian random variable N (0, ||f ||2).
If f ∈ L2 is a compactly supported function, then there exists a sequence of

simple functions (fn)n∈N which tends to f in L2. Moreover, the sequence

(
∫ bn

an
fn dB)n∈N
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converges in L2(Ω,A,P). This limit is independent of the sequence (fn)n∈N
and it is naturally called the Wiener integrate of f . It is denoted by

∫
R f dB.

From Proposition 2.2.10, we have directly that∫
R
f dB ∼ N (0, ||f ||2).

Let us finish this section by a result showing that this stochastic integrate
can be defined using the Lebesgue measure.

Theorem 2.3.10. [72] Let f ∈ L2 be a compactly supported function. If f is
continuously differentiable then∫

R
f dB = −

∫
R
f ′(x)Bx dx.

2.4 Behaviour of Wavelet Leaders of the Brow-
nian Motion

Theorem 2.3.6 shows the existence of (at least) three types of behaviours of
the oscillations of the Brownian motion: ρ1/2√log log(ρ−1), ρ1/2√log(ρ−1)
and ρ1/2. The aim of this section is to prove that these behaviours are also
present in the context of the wavelet leaders. More precisely, the main goal
here is to prove the following result.

Theorem 2.4.1. There exists an event Ω∗0 ⊆ Ω of probability 1 such that
for any ω ∈ Ω∗0 and for any non-empty open interval A of R, there are
xo(ω), xr(ω), xs(ω) ∈ A such that

• xo(ω) is a leader-ordinary point of B·(ω), i.e.

0 < lim sup
j→+∞

dj(xo(ω))
2−j/2

√
log j

< +∞ ,

• xr(ω) is a leader-rapid point of B·(ω), i.e.

0 < lim sup
j→+∞

dj(xr(ω))
2−j/2

√
j
< +∞ ,

• xs(ω) is a leader-slow point of B·(ω), i.e.

0 < lim sup
j→+∞

dj(xs(ω))
2−j/2

< +∞ .

Moreover, for any ω ∈ Ω∗0, almost every x ∈ R is a leader-ordinary point of
B·(ω).
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Let us fix ψ : R → R a compactly supported wavelet whose first moment
vanishes, that is: ∫

R
ψ(x) dx = 0 . (25)

Moreover, in the following of this chapter, N is a positive integer such that
the support of ψ is included in [−N,N ].
The next subsection gives a few comments on the wavelet coefficients and

the wavelet leaders of a Brownian motion which will be useful to prove the
previous theorem. Subsection 2.4.2 presents this proof and Subsection 2.4.3
gives some links between the behaviour of OscB·(w)(x, ρ) as ρ → 0 and the
behaviour of dj(x) as j → +∞, for x ∈ R fixed.

2.4.1 A few Comments on the Wavelet Coefficients
and the Wavelet Leaders of a Brownian Motion

The next proposition gives a first link between the wavelet leaders and the
oscillations of a function.

Proposition 2.4.2. Let f be a continuous function, x ∈ R and j ∈ N. One
has

dj(x) ≤ c0 Oscf (x, (2 +N)2−j),
where c0 = ‖ψ‖1.

Proof. Let λ be a dyadic interval. The wavelet coefficient cλ of f is equal to

cλ = 2j
∫
R
f(x)ψ(2jx− k) dx

=
∫
R
f((x+ k)2−j)ψ(x) dx

=
∫
R

(
f((x+ k)2−j)− f(k2−j)

)
ψ(x) dx, since (25)

=
∫ N

−N

(
f((x+ k)2−j)− f(k2−j)

)
ψ(x) dx.

Let x be a real number and j ∈ N. If λj′,k′ ⊂ λ with λ ∈ N(λj(x)), one has

|x− k′2−j′ | ≤ 2 · 2−j ,

hence, if x′ ∈ [−N,N ],

|x− (x′ + k′)2−j′ | ≤ (2 +N)2−j .

Therefore, one has

|cλj′,k′ | ≤
∫ N

−N

∣∣f((x+ k′)2−j′)− f(k′2−j′)
∣∣|ψ(x)| dx

≤ ‖ψ‖1 Oscf (x, (2 +N)2−j).
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As a consequence, one has

dj(x) ≤ c0 Oscf (x, (2 +N)2−j).

�

This last proposition combined with Theorem 2.3.6 directly give the follow-
ing proposition.

Proposition 2.4.3. Let Ω∗ be an event of probability 1 satisfying Theo-
rem 2.3.6. For any ω ∈ Ω∗ and any x ∈ R,

1. if x is an ordinary point of B·(ω), then

lim sup
j→+∞

dj(x, ω)
2−j/2

√
log j

< +∞ ,

2. if x is a rapid point B·(ω), then

lim sup
j→+∞

dj
(
x, ω

)
2−j/2

√
j
< +∞ ,

3. if x is a slow point of B·(ω), then

lim sup
j→+∞

dj
(
x, ω

)
2−j/2

< +∞ .

The next section shows that for well-chosen points x, the previous superior
limits can be also strictly positive, which will prove Theorem (2.4.1). Before
doing that, let us give some of the properties of the wavelet coefficients of
the Brownian motion, arising directly from the properties of this stochastic
process. The following result is a particular case of a more general study of
stochastic processes presented in [1]. We reproduce a few reasoning in the
context of the Brownian motion.
For any ω ∈ Ω, the wavelet coefficient associated to the dyadic interval λ is

denoted as
cλ(ω) = 2j

∫
R
Bx(ω)ψ(2jx− k) dx.

Consequently, the function cλ : ω ∈ Ω 7→ cλ(ω) is a random variable.

Proposition 2.4.4. We have the following properties:

• for any j ∈ N, the sequence (cλj,k)k∈Z is stationary,

• for any dyadic interval λ, we have cλ ∼ 2−j/2cλ0,0,

• for any dyadic interval λ, cλ is a centered Gaussian random variable.
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Therefore, for any dyadic interval λ, we have

E
(
c2
λ

)
= E

(
c2
λ0,0

)
2−j and so, cλ ∼ N (0, 2−jE

(
c2
λ0,0

)
).

Proof. Let j ∈ N, k, k0 ∈ Z. We have

cλj,k+k0
= 2j

∫
R
Bxψ(2jx− k − k0) dx

= 2j
∫
R
Bx+k02−jψ(2jx− k) dx

= 2j
∫
R

(Bx+k02−j −Bk02−j )ψ(2jx− k) dx

' 2j
∫
R

(Bx −B0)ψ(2jx− k) dx,

where the last relation is obtained from the fact that B has stationary incre-
ments. Consequently, the sequence {cλj,k : k ∈ Z} is stationary in k. Moreover,
we have

cλj,k = 2j
∫
R
Bxψ(2jx− k) dx

=
∫
R
Bx2−jψ(x− k) dx

' 2−j/2
∫
R
Bxψ(x− k) dx,

where the last relation is obtained from the fact that B has the property of scal-
ing invariance (see Proposition (2.3.2)). We thus obtained that cλj,k ∼ 2−j/2cλ0,k .
This implies the second point of the proposition.
Finally, Theorem 2.3.10 shows that

cλ = −
∫
R
ψ(−1)(2jx− k) dB(x) where ψ(−1)(x) =

∫ x

−∞
ψ(y) dy.

The last point of the proposition is thus proved.
�

The following proposition gives a sufficient condition for the wavelet coeffi-
cients to be independent.

Proposition 2.4.5. The wavelet coefficients cλ1 , . . . , cλn are independent if(
ki −N

2ji ,
ki +N

2ji

)
∩
(
kl −N

2jl ,
kl +N

2jl

)
= ∅, (26)

for any i, l ∈ {1, . . . , n}, i 6= l. In particular, the coefficients cλj,k and cλj,l are
independent if |l − k| ≥ 2N .
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Proof. This proposition follows directly from the fact that the increments of
B are independent and that the wavelet coefficient cλ is equal to

cλ =
∫ N

−N
(B(x+k)2−j −Bk2−j )ψ(x) dx.

�

This proposition leads us to define the following condition.

Definition 2.4.6. Let n ≥ 2 and N ∈ N. We say that the dyadic in-
tervals λJ1,K1 , . . . , λJn,Kn satisfy Condition (CN ), if (26) is satisfied for any
i, l ∈ {1, . . . , n}, i 6= l.

2.4.2 Proof of Theorem (2.4.1)

The proof is based on several successive lemmas and propositions. In this
section, Λ denotes the set of dyadic intervals and Λj denote the set of dyadic
intervals of size 2−j . From Proposition 2.4.4 and Proposition 2.4.5, the se-
quence {ελ : λ ∈ Λ} defined by

ελ = 1
2−j/2

√
E(c2

λ0,0
)
cλ (27)

is a sequence of real-valued N (0, 1) random variable such that for any n ≥ 2,
and for any dyadic intervals λ1, . . . , λn satisfying Condition (CN ), the random
variables ελ1 , . . . , ελn are independent.
In the sequel, we fix an arbitrary sequence {ελ : λ ∈ Λ} of real-valuedN (0, 1)

random variable verifying the property above. Moreover, for any dyadic in-
terval λ and for any m ∈ N, we define the set Sλ,m as

Sλj,k,m = {λj+m,l : λj+m,l ⊂ λj,k};

roughly speaking, “Sλ,m is the set of the 2m descendants of λ at the m-th
generation”.
The following lemma allows to obtain a general lower bound for the ampli-

tude of the wavelet leaders of the Brownian motion.

Lemma 2.4.7. There exists an event Ω∗1 ⊆ Ω of probability 1 such that, for
any ω ∈ Ω∗1 and for any x ∈ R, one has

lim sup
j→+∞

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

∣∣ελ′(ω)
∣∣ > 0 . (28)
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Proof. Let us fix λ ∈ Λ. For any m ∈ N and any S ∈ Sλ,m, there is a unique
finite sequence (In)0≤n≤m of dyadic intervals which is decreasing in the sense of
the inclusion and satisfies I0 = λ, Im = S and In ∈ Sλ,n for any n ∈ {1, . . . ,m}.
Next, we consider the sequence (Tn)1≤n≤m of dyadic intervals constructed as
follows: for every n ∈ {1, . . . ,m}, Tn is the unique dyadic interval of Sλ,n such
that In−1 = Tn ∪ In. Note that, since the sequence (In)0≤n≤m is decreasing,
this construction ensures that the intervals (Tn)1≤n≤m are pairwise disjoints.
Moreover, let us also note that, for any n ∈ {1, . . . ,m}, one has Tn ∈ N

(
In
)
.

For any n ∈ {1, . . . ,m}, there is a dyadic interval T ′n ∈ STn,blog2(N)c+2 such
that (

kn −N
2jn ,

kn +N

2jn

)
⊆ Tn,

where T ′n = λjn,kn . Consequently, by assumption, the corresponding Gaus-
sian random variables (εT ′n)1≤n≤m are independent. In the following, the set
{T ′n : 1 ≤ n ≤ m} is denoted by T ′λ,m(S).
Let c0 = 2−3/2√π and denote by p0 the probability that an arbitrary real-

valued N (0, 1) Gaussian random variable belongs to the interval (−c0, c0).
Elementary calculations allows to obtain that

0 < p0 <
1
2 . (29)

For any S ∈ Sλ,m, we denote by Bλ,m(S) the Bernoulli random variable defined
as

Bλ,m(S) =
∏

T ′∈T ′
λ,m

(S)
χ{ω∈Ω:|εT ′ (w)|<c0} . (30)

Notice that, using the definition of p0 and the independence property of the
random variables εT ′ for T ′ ∈ T ′λ,m(S), one has

E
(
Bλ,m(S)

)
= pm0 . (31)

Next, let Gλ,m be the random variable with values in {0, . . . , 2m} defined as

Gλ,m =
∑

S∈Sλ,m

Bλ,m(S) .

Since the cardinality of Sλ,m equals 2m, using Equality (31), one gets that
E
(
Gλ,m

)
= (2p0)m. It follows from the Fatou Lemma3 and (29) that

0 ≤ E
(

lim inf
m→+∞

Gλ,m

)
≤ lim

m→+∞
E
(
Gλ,m

)
= 0.

3Let us recall that the Fatou lemma asserts that if (fn)n∈N is a sequence of real measured
functions on a measured space (Ω,A, µ) then∫

lim inf
n→+∞

fndµ ≤ lim inf
n→+∞

∫
fndµ.

See [11] for example.
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Hence, the event

Ω∗1,λ =
{
ω ∈ Ω : lim inf

m→+∞
Gλ,m(ω) = 0

}
(32)

has a probability equal to 1. Since Λ is a countable set, the probability of the
event

Ω∗1 =
⋂
λ∈Λ

Ω∗1,λ (33)

is also equal to 1.
Let us now consider ω ∈ Ω∗1 and x ∈ R, and let us prove that Inequality (28)

is satisfied. We fix j ∈ N. Since for any m ∈ N, Gλj(x),m takes values in
{0, . . . , 2m}, (32) and (33) imply that there are infinitely many m such that

Bλj(x),m(S) = 0,

for any S ∈ Sλj(x),m, i.e. using (30), there exists T ′ ∈ T ′λj(x),m(S) such that

|εT ′ | ≥ c0 .

In particular, this result is validated for S = λj+m(x). Consequently, T ′
belongs to Sλ,blog2(N)c+2n with λ ∈ N(λj+m(x)). The conclusion follows. �

Proposition 2.4.8. There exists an event Ω∗1 ⊂ Ω of probability 1 such that
for any ω ∈ Ω∗1 and for any x ∈ R, one has

lim sup
j→+∞

dj(x, ω)
2−j/2

> 0 .

Proof. From the fact that the support of the wavelet is included in [−N,N ],
Proposition 2.4.4 and Proposition 2.4.5 imply that the assumptions of Lemma
2.4.7 are fulfilled for the Gaussian variable ελ defined in Relation (27). There-
fore, there exists an event Ω∗1 ⊆ Ω of probability 1 such that, for any ω ∈ Ω∗1
and for any x ∈ R, one has

lim sup
j→+∞

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

∣∣ελ′(ω)
∣∣ > 0 . (34)

For any j ∈ N, from the definition of wavelet leaders and Relation (27), one
has

dj(x, ω) ≥ max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

∣∣cλ′(ω)
∣∣

≥ 2−(j+blog2(N)c+2)/2
√
E
(
c2

0,0
)

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

∣∣ελ′(ω)
∣∣ ,
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and together with (34), this implies that

lim sup
j→+∞

dj(x, ω)
2−j/2

> 0 .

This gives the conclusion. �

As we will see in the proof of Theorem 2.4.1, this result allow to get the
existence of leader-slow points. Let us now focus on leader-ordinary points.

Lemma 2.4.9. There exists an event Ω∗2 ⊆ Ω of probability 1 such that, for
any ω ∈ Ω∗2 and almost every t ∈ R, one has

lim sup
j→+∞

1√
log j

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(t))

|ελ′ | > 0 .

Proof. Within this proof, we will use the same notations as in the proof of
Lemma 2.4.7. Let us fix x ∈ R. Let j ∈ N. For every m ∈ N, we consider the
dyadic interval S = λj+m(x) ∈ Sλ(x),m and the associated sequence (T ′n)1≤n≤m
of dyadic intervals. Next, we set

Ej,m(x) :=
{
ω ∈ Ω : max

1≤n≤m
|εT ′n(ω)| ≥

√
log(2m)

}
.

By construction, the Gaussian random variables (εT ′n)1≤n≤m are independent.
Therefore, one has

P
(
Ej,m(x)

)
= 1−

∏
1≤n≤m

P
{
ω ∈ Ω : |εT ′n(ω)| <

√
log(2m)

}
= 1−

(
1− P

{
ω ∈ Ω : |ε(ω)| >

√
log(2m)

})m
,

where ε ∼ N (0, 1). Let us set C = 1/2 (2π−1)1/2 > 0. Using Lemma 2.2.11
and the fact that log(1− x) ≤ −x if x ∈ (0, 1), there exists M ∈ N such that
for any m > M , we have

P
(
Ej,m(x)

)
≥ 1−

(
1− C e

− 1
2 log(2m)√
log(2m)

)m

≥ 1− exp
(
−Cme−

1
2 log(2m)√
log(2m)

)

≥ 1− exp
(
−C

√
m

2 log(2m)

)
≥ 1− exp(−mγ),
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for γ ∈ (0, 1/2). Consequently, one has in particular∑
M∈N

P
(
E2M ,2M (t)

)
= +∞ .

In view of the fact that the events E2M ,2M (t) (M ∈ N) are independents, it
follows from the second Borel-Cantelli lemma (Lemma 2.2.8) that

P
(

lim sup
M→+∞

E2M ,2M (t)
)

= 1 .

Therefore, for a fixed x ∈ R, almost surely, there are infinitely many scales
j ∈ N such that

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

|ελ′ | ≥
√

log j .

Fubini’s theorem applied to the function (x, ω) ∈ R×Ω 7→ χS(x)(ω), where

S(x) = {ω ∈ Ω : lim sup
j→+∞

1√
log j

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

|ελ′ | < 1} ,

implies then that there is an event Ω∗2 ⊆ Ω of probability 1 on which for almost
every x ∈ R,

lim sup
j→+∞

1√
log j

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

|ελ′ | > 0 .

�

Proposition 2.4.10. There exists an event Ω∗2 of probability 1 such that for
every ω ∈ Ω∗2 and almost every x ∈ R, one has

lim sup
j→+∞

dj(x, ω)
2−j/2

√
log j

> 0 .

Proof. We proceed as in the proof of Proposition 2.4.8. Using Lemma 2.4.9,
Proposition 2.4.4, Proposition 2.4.5 and the fact that the support of the
wavelet is included in [−N,N ], we know that there exists an event Ω∗2 ⊆ Ω of
probability 1 such that, for every ω ∈ Ω∗2 and almost every x ∈ R, one has

lim sup
j→+∞

1√
log j

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

|ελ′(ω)| > 0 ,

where
ελ = 1√

2−jE
(
c2
λ0,0

)cλ .
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In particular,

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

∣∣cλ′(ω)
∣∣ = 2−(j+blog2(N)c+2)/2

√
E
(
c2
λ0,0

)
max

λ′∈Sλ,blog2(N)c+2
λ∈N(λj(t))

∣∣ελ′(ω)
∣∣.

Consequently, if ω ∈ Ω∗2, for almost every x ∈ R, one has

lim sup
j→+∞

dj(x, ω)
2−j/2

√
log j

≥ lim sup
j→+∞

1
2−j/2

√
log j

max
λ′∈Sλ,blog2(N)c+2

λ∈N(λj(x))

∣∣cλ′(ω)
∣∣ > 0

and the conclusion follows. �

Let us end with a result which will be useful for rapid points.

Lemma 2.4.11. There exists an event Ω∗3 ⊆ Ω of probability 1 such that, for
any ω ∈ Ω∗3 and for any non-empty open interval A of R, there is x ∈ A such
that

lim sup
j→+∞

|ελj(t)|√
j

> 0 .

Proof. To avoid making the notations heavier, we suppose that A = (0, 1).
The proof can be adapted in the general case. The conclusion then follows by
covering R with open intervals with rational endpoints.
Let us fix a ∈ (0, 1) and C > 0 such that C2 < 2a log 2. Let us also consider

for every j ∈ N and l ∈ {0, . . . , b2j(1−a)c − 1}, the event

Fj,l :=
{
ω ∈ Ω : max

k∈{lb2aj/(2N)c,...,(l+1)b2aj/(2N)c−1}
|ελj,2kN (ω)| ≥ C

√
j

}
.

Besides, let j0 be the smallest j ∈ N such that b2aj/(2N)c ≥ 1.
Assume for a while that

P

{
 ⋂
l∈{0,...,b2j(1−a)c−1}

Fj,l

 (35)

is the general term of a convergent series; then the first Borel-Cantelli lemma
(Lemma 2.2.7) implies that

P

 ⋃
J≥j0

⋂
j≥J

⋂
l∈{0,...,b2j(1−a)c−1}

Fj,l

 = 1.

Now, let us set
Ω∗3 :=

⋃
J≥j0

⋂
j≥J

⋂
l∈{0,...,b2j(1−a)c−1}

Fj,l (36)
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and let us consider ω ∈ Ω∗3. For any j ≥ j0, let us set

Gj(ω) :=
{
k ∈ {0, . . . , 2j − 1} : |ελj,k(ω)| ≥ C

√
j
}

(37)

and
Uj(ω) :=

⋃
k∈Gj(ω)

(
k

2j ,
k + 1

2j
)
. (38)

Finally, for any n ≥ j0, one considers

On(ω) :=
⋃
j≥n

Uj(ω).

This last open set is dense in (0, 1). Indeed, let us consider x ∈ (0, 1), j ≥ j0
and k such that λj(t) = λj,k. Then, either there exists l ∈ {0, . . . , b2j(1−a)c−1}
such that

k ∈
{
lb2jac, . . . , (l + 1)b2jac − 1

}
or k ∈ {b2j(1−a)cb2jac, . . . , 2j − 1}.

In the first case, using (36) and (37), there exists

k′ ∈ {lb2aj/(2N)c, . . . , (l + 1)b2aj/(2N)c − 1}

such that 2k′N ∈ Gj(ω). From (38), we get that x is at a distance at most
2 · 2j(a−1) of Uj(ω). In the second case, there is

k′ ∈ {(b2j(1−a)c − 1)b2aj/(2N)c, . . . , b2j(1−a)cb2aj/(2N)c − 1}

such that 2k′N ∈ Gj(ω), and similarly, we get that x is at a distance at most
c · 2j(a−1) of Uj(ω), for some constant c > 0 depending only on N and a. The
density follows. Hence, Baire’s theorem gives that the set⋂

n≥j0
On(ω)

is not empty. If x ∈
⋂
n≥j0 On(ω), for any n ≥ j0, there is j ≥ n such that

|ελj(t)(ω)| ≥ C
√
j, and the conclusion follows.

It remains to show that (35) is the general term of a convergent series. Let
us note that the variables ελj,2kN for k ∈ {lb2aj/(2N)c, . . . , (l+1)b2aj/2Nc−1}
and l ∈ {0, . . . , b2j(1−a)c − 1} are independent. Consequently, one has

P

{
 ⋂
l∈{0,...,b2j(1−a)c−1}

Fj,l


= 1−

(
1− P

{
ω ∈ Ω : |ε(ω)| < C

√
j
}b2aj/(2N)c

)b2j(1−a)c

= 1−
(

1−
(
1− P

{
ω ∈ Ω : |ε(ω)| ≥ C

√
j
})b2aj/(2N)c

)b2j(1−a)c

≤ 1− exp
(
2j(1−a) log(1− xj)

)
(39)
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where ε ∼ N (0, 1) and

xj =
(
1− P

{
ω ∈ Ω : |ε(ω)| ≥ C

√
j
))b2aj/(2N)c

.

Let us note that xj is always positive and tends to 0 as j → +∞. In-
deed, let us set C ′ = (1/2)(2π−1)1/2. Using Lemma 2.2.11 and the fact that
log(1− x) ≤ −x if x ∈ (0, 1), there exists J ∈ N such that for any j ≥ J , one
has

0 ≤ xj ≤ (1− C ′
√
j exp(−C2j/2))b2aj/(2N)c

≤ exp
(
−
⌊

2aj

2N

⌋
C ′
√
j exp(−C2j/2)

)
≤ exp

(
−C ′′

√
j exp(j(a log 2− C2/2)

)
, (40)

where C ′′ is a strictly positive constant depending only on a, N and C. The
expression (40) tends to 0 as j → +∞, since C2 < 2a log 2. Moreover, the
same argument shows that 2j(1−a)xj tends to 0 as j → +∞. Using the fact
that log(1 − x) = −x + o(x) and exp(x) = 1 + x + o(x) as x → 0, we obtain
that, for any ε > 0, Expression (47) is upper bounded by

2j(1−a)(ε(xj + εxj) + xj + εxj) (41)

for j large enough. Therefore Expression (47) is the general term of a conver-
gent series using Inequality (41) and Inequality (40). �

Proposition 2.4.12. There exists an event Ω∗3 ⊂ Ω of probability 1 such that
for every ω ∈ Ω∗3 and every non-empty open interval A of R, there is x(ω) ∈ A
such that

lim sup
j→+∞

dj
(
x(ω), ω

)
2−j/2

√
j

> 0 .

Proof. We proceed as in the proof of Propositions 2.4.8 and 2.4.10, using
Lemma 2.4.11, the assumption that the support of the wavelet is included in
[−N,N ], Remark 2.4.4 and Remark 2.4.5. �

We are now able to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. From Inequality (22) and Proposition 2.4.2, there ex-
ists an event Ω∗4 ⊆ Ω of probability 1 such that for any ω ∈ Ω∗4 and for any
x ∈ R, one has

lim sup
j→+∞

dj(t, ω)
2−j/2

√
j
< +∞. (42)

Let us consider the event

Ω∗0 := Ω∗ ∩ Ω∗1 ∩ Ω∗2 ∩ Ω∗3 ∩ Ω∗4
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of probability 1, where the event Ω∗ (resp. Ω∗1, Ω∗2 and Ω∗3) is the event of Theo-
rem 2.3.6 (resp. Proposition 2.4.8, Proposition 2.4.10 and Proposition 2.4.12).
Let us fix ω ∈ Ω∗0 and let us consider a non-empty open interval A of R.
Let us first show that almost every x ∈ R is a leader-ordinary point of B·(ω).

Using Theorem 2.3.6, we know that almost every x ∈ R is an ordinary point
of B·(ω). Together with Proposition 2.4.3 and Proposition 2.4.10, this implies
that for almost every x ∈ R,

0 < lim sup
j→+∞

dj(t, ω)
2−j/2

√
log j

< +∞ .

In particular, there exist leader-ordinary points of B·(ω) in A.
Secondly, Proposition 2.4.12 shows that there exists xr(ω) ∈ A such that

lim sup
j→+∞

dj
(
xr(ω), ω

)
2−j/2

√
j

> 0.

This result combined with Equation (42) implies that the point xr(ω) is a
leader-rapid point of B·(ω).
Finally, Theorem 2.3.6 and Proposition 2.4.3 show that there exists xs(ω) ∈ A

such that
lim sup
j→+∞

dj
(
xs(ω), ω

)
2−j/2

< +∞ .

Using Proposition 2.4.8, we see that the point xs(ω) is a leader-slow point of
B·(ω).

�

2.4.3 Some Links between the Behaviours of the Os-
cillation and the Wavelet Leaders

Theorem 2.4.1 shows that there are (at least) three different behaviours for
the amplitude of the wavelet leaders of the Brownian motion and that they
correspond to the behaviours of the oscillations. A natural question is to
determine, for x ∈ R fixed, if the behaviour of OscB·(ω)(x, ρ) as ρ → 0 is the
same as dj(x) as j → +∞, and conversely. This section gives a partial answer
to this question.
First, let us note that Inequality (2.4.2) directly leads to the following propo-

sition, which is an equivalent of Proposition 2.4.3.

Proposition 2.4.13. Let Ω∗0 be the event of probability 1 given in Theorem
2.4.1. For any ω ∈ Ω∗0 and for any x ∈ R, we have

1. if x is a leader-ordinary point of B·(ω), then

lim sup
ρ→0+

OscB·(ω)(xo(ω), ρ)
ρ1/2

√
log log(ρ−1)

> 0 ,
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2. if x is a leader-rapid point of B·(ω), then

lim sup
ρ→0+

OscB·(ω)(xo(ω), ρ)
ρ1/2

√
log(ρ−1)

> 0 ,

3. if x is a leader-slow point of B·(ω), then

lim sup
ρ→0+

OscB·(ω)(xo(ω), ρ)
ρ1/2 > 0 .

We can now give some links between the behaviours of the oscillations and
the amplitude of the wavelet leaders.

Theorem 2.4.14. Let Ω∗0 be the event of probability 1 given in Theorem 2.4.1
and let us fix ω ∈ Ω∗0.

1. For any x ∈ R,
• if x is a leader-rapid point of B·(ω), then x is a rapid point of B·(ω),
• if x is a slow point of B·(ω), then x is a leader-slow point of B·(ω).

2. For almost every x ∈ R, x is an ordinary point and a leader-ordinary
point of B·(ω).

Proof. If x is a leader-rapid point, Proposition 2.4.13 and Inequality (22) di-
rectly imply that x is a rapid point. If x is a slow point, Proposition 2.4.3
and Proposition 2.4.8 give that x is a leader-slow point. Finally, the result for
the ordinary points can be deduced from the last parts of Theorems 2.3.6 and
2.4.1. �

2.5 From the Brownian Motion in the Schauder
Basis to a Multifractal Process

This last section presents a process based on the Lévy-Ciesielski construction
(see Section 2.3.2). We modify the decomposition of the Brownian motion
in the Schauder basis in order to obtain a multifractal process which shares
the same local regularity as the Brownian motion. This is a variant of the
multifractional Brownian motion [116, 24]. As for the example of Section 2.1,
we use a factor 2−Hλj , for a well-chosen sequence (Hλ)λ∈Λ. This idea comes
from a discussion with A. Ayache and is inspired of [38]. Similar approaches
using random wavelet-type series can be found in [18, 17] for example.

Notation. Let us denote by HK the set of the functions from [0, 1] to the
compact K which are the lower limit of a sequence of continuous functions.
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Lemma 2 of [38] implies that for any H ∈ HK , there exists a sequence (Qj)j∈N
of polynomials such that{

H(t) = lim inf
j→+∞

Qj(t) ∀t ∈ [0, 1]

||Q′j ||∞ ≤ j ∀j ∈ N
, (43)

where Q′j is the derivative of Qj .

This leads to the main result of this section.

Theorem 2.5.1. Let K be a compact of (−1/2, 1/2), H ∈ HK and (Qj)j∈N
be a sequence of polynomials satisfying Relation (43). For any λj,k ∈ Λ, set

Hλj,k = Qj(k2−j).

Let (Zλ)λ∈Λ be a sequence of independents real-valued N (0, 1) Gaussian ran-
dom variables and let us define

BH
x (ω) = Z0(ω)F0(x) +

+∞∑
j=0

∑
λ∈Λj

2−jHλZλ(ω)2j/2Fλ(x), (44)

for any x ∈ [0, 1] and any w ∈ Ω. Then, there exists an event Ω∗ ⊂ Ω of
probability 1 such that, for any ω ∈ Ω∗, we have the following properties:

1. the function
x 7→ BH

x (ω)

is a continuous function defined on [0, 1],

2. we have the following relation:

hBH. (ω)(x) = 1/2 +H(x),

for any x ∈ [0, 1],

3. let x ∈ [0, 1]; if there exists C > 0 such that

H(x)−Qj(x) ≤ Cj−1, (45)

for any j ∈ N then there exist a constant C ′ > 0 independent of x such
that

|BH
x+h(ω)−BH

x (ω)| ≤ C ′2C |h|1/2+H(x)
√

log |h|−1,

for any h in a neighbourhood of 0.
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Proof. First, Relation (20) implies that, for any ε′ > 0, there exists J ∈ N
such that for any j ≥ J , λ ∈ Λj and for any x ∈ λ, one has

H(x)−Hλ = H(x)−Qj(x) +Qj(x)−Qj(k2−j) ≤ ε′/2 + j2−j ≤ ε′. (46)

One gets inf K − ε′ ≤ Hλ, and thus

2−jHλ ≤ 2−j inf K2jε′ . (47)

Let us prove the first point of the theorem. Let ε ∈ (0, 1/2) and choose a
constant C > 0. Let us define

Aj = {w ∈ Ω : max
λ∈Λj

|Zλ(ω)| > C2j(ε−ε′+inf K)}.

One has

P(Aj) ≤
∑
λ∈Λj

P({w ∈ Ω : |Zλ(ω)| > C2j(ε−ε′+inf K)})

≤ 2jP({|Z| > C2j(ε−ε′+inf K)},

where Z ∼ N (0, 1). Using Lemma 2.2.11, one has

P(Aj) ≤
√

2
πC2 2j(1−(ε−ε′+inf K))e−(C222j(ε−ε′+infK))/2.

Since inf K ∈ (−1/2, 1/2), there exists ε ∈ (0, 1/2) such that ε− ε′+ inf K > 0
for ε′ small enough. In this case,

+∞∑
j=0

P(Aj) < +∞.

It follows from the Borel-Cantelli lemma that

P
(

lim sup
j→+∞

Aj

)
= 0.

Hence, the event

Ω∗ = lim inf
j→+∞

{ω : max
λ∈Λj

2−jHλ |Zλ(ω)| ≤ C2jε}

has a probability equal to 1. The first point of the theorem is thus proved,
thanks to Proposition 2.3.8.
Now, let us prove that hf (x) ≥ 1/2 +H(x). The third point is a particular

case of this reasoning. From the Borel-Cantelli lemma, for a constant C > 0
large enough, the event

lim inf
j→+∞

{ω : max
λ∈Λj

|Zλ(ω)| ≤ C
√
j}
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has probability 1. Let ω be a element of this event. There thus exists J ∈ N
such that for any j ≥ J ,

max
λ∈Λj

|Zλ(ω)| ≤ C
√
j.

Let x ∈ [0, 1], ε′ > 0 and suppose that J is large enough in order for Inequal-
ity (46) to be satisfied. Let h be a real number such that x, x + h ∈ λ, for
some λ ∈ ΛJ , and let l > J be such that 2−l < |h| ≤ 2−l+1. By construc-
tion, for any j ≤ l, there exists a unique dyadic interval λj(x) ∈ Λj such that
x, x+ h ∈ λj(x). One has

|BH
x+h(ω)−BH

x (ω)| ≤
Z0(ω)|h|+ CJ |h| (48)

+
l−1∑

j=J+1
2−jHλj(x) |Zλj(x)(ω)|2j/2|Fλj(x)(x+ h)− Fλj(x)(x)| (49)

+
+∞∑
j=l

∑
λ∈Λj

2−jHλ |Zλ(ω)|2j/2|Fλ(x+ h)− Fλ(x)|, (50)

for some constant CJ depending only on J .
By eventually reducing h, we can suppose that the terms in (48) are smaller

than
C|h|1/2+supK

√
log |h|−1 ≤ C|h|1/2+H(t)

√
log |h|−1,

for some constant C > 0 independent of t and h.
Using Inequality (46) and since the supports of the functions Fλj(x) are

included in λj(x), each term in (49) is smaller than

|h|
l−1∑

j=J+1
2j(1/2−Hλj(x)) max

λ∈Λj
|Zλ(w)| ≤ C|h|

l∑
j=J+1

2j(1/2−H(t)+ε′)√j
≤ C ′|h|2l(1/2−H(t)+ε′)√l (51)

≤ C ′|h|1/2+H(t)−ε′
√

log |h|−1,

where C ′ > 0 is a constant that does not depend on t or l. The last inequality
is valid by definition of l.
For any j ≥ l, there exist unique dyadic intervals λj(x), λj(x+h) ∈ Λj such

that x ∈ λj(x) and x + h ∈ λj(x + h). Since |Fλ| ≤ 2−j−1, the terms in (50)
are smaller than

+∞∑
j=l

2−j/2 max
λ∈Λj

|Zλ(ω)|(2−jHλj(x) + 2−jHλj(x+h))

≤ C ′′2−l/2(2−lHλl(x) + 2−jHλl(x+h))
√
l

≤ C ′′2−l(1/2+H(t)−ε′)√l, (52)
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where C ′′ > 0 is a constant independent of t and l. The last inequality is
obtained by remarking that λl(x+ h) ∈ N(λl(x)). Since the terms in (50) are
smaller than

C ′′|h|1/2+H(t)−ε′
√

log |h|−1,

there exists a constant C ′′′ independent of x such that for any ε′ > 0, one has

|BH
x+h(ω)−BH

x (ω)| ≤ C ′′′|h|1/2+H(x)−ε′
√

log |h|−1.

We deduce that hf (x) ≥ 1/2 +H(x). Now, using hypothesis (45), we obtain

H(x)−Hλl(x) ≤ (C + 1)l−1.

We can directly take ε′ = (C + 1)l−1 in Inequalities (51) and (52) to obtain
the third point of the theorem.
To conclude, it remains to prove that hf (x) ≤ 1/2 + H(x). Using Rela-

tions (20), for any J ∈ N and for any ε > 0, there exists jJ ≥ J such that

QjJ (x) ≤ H(x) + ε and |HλjJ (x) −QjJ (x)| ≤ jJ2−jJ ≤ ε.

Moreover, the Borel-Cantelli lemma applied to the independent events

AjJ = {ω : |ZλjJ (x)(ω)| > 2−εjJ}

implies that, almost surely, for any J ∈ N, there exists J ′ > J such that
|ZλjJ′ (x)(ω)| > 2−εjJ′ . We thus have

2
−jJ′HλjJ′ (x) |ZλjJ′ (x)(ω)|2−jJ′/2 ≥ 2−jJ′ (jJ′2

−jJ′+ε+H(t)+1/2)|ZjJ′ ,k(ω)|

> 2−jJ′ (1/2+H(t)+3ε).

We can conclude using point (2) of Proposition 2.3.8. �

The next proposition studies the local regularity of the process BH .

Proposition 2.5.2. Under Hypothesis (45), there exists an event Ω∗ ⊂ Ω of
probability 1 such that, for any ω ∈ Ω∗ and for almost every x ∈ [0, 1], there
exists a constant C > 0 such that

|BH
x+h(ω)−BH

x (ω)| ≤ C|h|1/2+H(x)
√

log log |h|−1,

for any h in a neighbourhood of 0.

Proof. We will use the same notations as in the proof of the previous theorem.
Let us fix x ∈ [0, 1] and recall that, for any j ∈ J , there exists a unique dyadic
interval λj(x) ∈ Λj such that x ∈ λj(x). From the Borel-Cantelli lemma, for
a constant C > 0 large enough, the event

lim inf
j→+∞

{ω : |Zλj(x)(ω)| ≤ C
√

log j}
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has probability 1. Using the same argument as in the previous proof, we obtain
that, for any x ∈ [0, 1], there exists almost surely a constant C > 0 such that

|BH
x+h(ω)−BH

x (ω)| ≤ C|h|1/2+H(x)
√

log log |h|−1,

for any h small enough. Fubini’s theorem allows to conclude. �

Remark 2.5.3. If H is the zero function, then BH is the classical Brownian
motion. In this case, Section 2.4 shows that almost surely, dj(x0) behaves like
2−j/2

√
log j as j → +∞, for almost every x0. In the general case, the result is

not still established because some problems of dependence between the wavelet
coefficients appear. Chapter 5 shows that on several numerical simulations,
the general case seems to behave like the Brownian motion through its wavelet
coefficients.



Chapter 3
A Generalisation of the Sν spaces
with the Help of the Admissible
Sequences

As already mentioned, ||f − Px0 ||L∞(B(x0,2−j)) behaves not necessarily like
2−hf (x0)j as j → +∞; some (logarithmic) corrections can appear. In

order to characterise the Hölder behaviour in a better way, the Besov and
Hölder spaces have been generalised with the help of admissible sequences
(see Section 1.6.3).
Let us recall that the wavelet coefficients c = (cλ)λ∈Λ belong to Sν if and

only if, for any h ∈ R, ε > 0, C > 0, there exists J ∈ N such that, for any
j ≥ J , the number of λ ∈ Λj for which

|cλ| ≥ 2−hj (53)

is smaller than 2(ν(h)+ε)j . The previous chapter shows that the wavelets allow
an efficient study of the Hölderian behaviour of some classes of functions.
Consequently, it is natural to generalise the spaces Sν using the same idea
as for the Besov and Hölder spaces: to replace the sequence (2−hj)j∈N of
Inequality (53) by a more general sequence σ. This chapter studies these new
spaces from a theoretical point of view and Chapter 4 states a new numerical
method based on these new spaces to analyse the regularity of signals.
The first section consists in checking that the topological properties holding

for the usual Sν spaces are preserved. Moreover, it is crucial to show that
different wavelet bases give rise to identical spaces. Therefore, the second
section shows the robustness of these new spaces. Finally, because Sν is relying
on Besov spaces, it is also natural to study the link between these new spaces
and the generalised Besov spaces, which is the subject of the third section.
The results presented in this chapter are a collaboration with S. Nicolay.
This chapter is structured as follows:

3.1. Definition and First Properties . . . . . . . . . . . . 68
3.2. Robustness . . . . . . . . . . . . . . . . . . . . . . . . 74

67
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3.3. Some Connections with Generalised Besov Spaces 79

3.1 Definition and First Properties

Throughout this chapter, ν refers to a right-continuous increasing function for
which there exists hmin ∈ R such that ν(h) = −∞ if h < hmin and ν(h) ∈ [0, n]
if h ≥ hmin. Let us recall that Λ is the set of dyadic cubes included in [0, 1]n
and Λj is the set of those of size 2−j .
This section defines the spaces Sν,σ(·) as a generalisation of the spaces Sν

and shows that the basic topological properties of Sν are preserved, if we put a
few natural hypothesis on the sequences σ(·). The strategy to define a topology
on Sν,σ(·) is the same as for Sν [12]. At the end of this section, an equivalent
definition of Sν,σ(·) using a generalised profile is given.
Let us recall that the space Sν is the set of complex sequences c = (cλ)λ∈Λ

such that for any h ∈ R, ε > 0 and C > 0, there exists J > 0 for which for
any j ≥ J , we have

#Ej(C, h)(c) ≤ 2(ν(h)+ε)j ,

where
Ej(C, h)(c) = {λ ∈ Λj : |cλ| ≥ C2−hj}. (54)

As mentioned in the introduction of this chapter, the generalisation of these
spaces is based on the same idea as for the Besov and Hölder spaces: to replace
the sequence (2−hj)j∈N in Relation (54) by a more general sequence σ.

Definition 3.1.1. For any h ∈ R, let σ(h) = (σ(h)
j )j∈N be a sequence of positive

real numbers. The space Sν,σ(·) is the set of complex sequences c = (cλ)λ∈Λ
such that for any h ∈ R, ε > 0 and C > 0, there exists J > 0 for which for
any j ≥ J , we have

#Ej(C, σ(h))(c) ≤ 2(ν(h)+ε)j ,

where
Ej(C, σ(h))(c) = {λ ∈ Λj : |cλ| ≥ Cσ

(h)
j }.

To define a topology on these vector spaces, let us introduce some auxiliary
spaces.

Definition 3.1.2. Let us set h ∈ R and β ∈ R∪{−∞}. The space E(σ(h), β)
is the set of complex sequences c = (cλ)λ∈Λ such that there exist C,C ′ > 0 for
which we have

#Ej(C, σ(h)) ≤ C ′2βj ,

for any j ∈ N. A metric dσ(h),β is defined on this space as

dσ(h),β(c, d) = inf{C+C ′ : C,C ′ ≥ 0 #Ej(C, σ(h))(c−d) ≤ C ′2βj for any j ∈ N}.
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Let us give the basic properties of these spaces.

Proposition 3.1.3. We have the following properties:

1. the space E(σ(h), β) is a vector space,

2. the sum is a continuous operation in (E(σ(h), β), dσ(h),β), while the prod-
uct is not necessarily continuous,

3. the metric dσ(h),β is invariant by translation and satisfies the inequality

dσ(h),β(κc, 0) ≤ sup{1, |λ|}dσ(h),β(c, 0),

for any κ ∈ C,

4. if β′ ≤ β and if there exists J ∈ N such that σ(h′)
j ≤ σ(h)

j for any j ≥ J ,
then E(σ(h′), β′) is included in E(σ(h), β),

5. suppose that
σ

(h′)
j /σ

(h)
j → 0 as j → +∞

and β′ < β. If the sequence (κm)m∈N converges to κ in C and if
(c(m))m∈N is a sequence of E(σ(h), β) which converges to c ∈ E(σ(h′), β′)
for dσ(h),β, then the sequences (κmc(m))m∈N converges to κc for dσ(h),β.

Proof. The first four points are straightforward; let us note that the product
is not necessarily continuous because it was already the case for the Sν spaces
[12]. It remains to prove the last point. From the properties of the metric
dσ(h),β, we obtain

dσ(h),β(κmc(m), κc(m)) ≤ sup{1, |κm|}dσ(h),β(c(m)− c, 0) + dσ(h),β((κm− κ)c, 0).

So, it suffices to show that dσ(h),β((κm − κ)c, 0) converges to 0 as m → +∞.
There exist C,C ′ ≥ 0 such that

#{λ ∈ Λj : |cλ| ≥ Cσ
(h′)
j } ≤ C ′2β′j ,

for any j ∈ N. Let us set ε > 0 and M ∈ N such that |κm − κ| < 1, for any
m ≥ M . There exists J ≥ 0 such that C ′2β′j ≤ ε2βj and Cσ(h′)

j ≤ εσ
(h)
j , for

any j ≥ J . In this case, we have

#{λ ∈ Λj : |(κm − κ)cλ| ≥ εσ
(h)
j } ≤ #{λ ∈ Λj : |cλ| ≥ Cσ

(h′)
j }

≤ ε2βj ,

for any j ≥ J . Besides, we can suppose that |(κm − κ)cλ| < εσ
(h)
j for any

λ ∈ Λj , j < J and m ≥M . With this hypothesis, we get

dσ(h),β((κm − κ)c, 0) ≤ 2ε,

for any m ≥M . �
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Proposition 3.1.4. The space (E(σ(h), β), dσ(h),β) is complete.

Proof. Let (c(m))m∈N be a Cauchy sequence of E(σ(h), β). Let us first show
that the sequence (c(m)

λ )m∈N is a pointwise Cauchy sequence for any fixed
λ ∈ Λ. Let us set ε > 0, j ∈ N and ε′ = inf{ε(σ(h)

j )−1, 1/2 2βj}. Since
(c(m))m∈N is a Cauchy sequence, there exists J > 0 such that, for any p, q ≥ J ,

#{λ ∈ Λj : |c(p)
λ − c

(q)
λ | ≥ ε

′σ
(h)
j } ≤ ε

′2βj ,

i.e. |c(p)
λ − c

(q)
λ | ≤ ε for any λ ∈ Λj .

Therefore, for any λ ∈ Λ, there exists cλ such that c(m)
λ → cλ as m→ +∞.

It remains to prove that c(m) → c in E(σ(h), β) as m → +∞. If ε > 0, there
exists M such that

∀j ≥ 0, ∀p, q ≥M, #{λ ∈ Λj : |c(p)
λ − c

(q)
λ | ≥ εσ

(h)
j } ≤ ε2

βj ,

which implies

∀p, q ≥M, c(q) ∈ {d : #{λ ∈ Λj : |c(p)
λ − dλ| ≥ ε

′σ
(h)
j } ≤ ε2

βj ∀j ≥ 0}.

As these sets are closed for the pointwise convergence, we get that

∀p ≥M, c ∈ {d : #{λ ∈ Λj : |c(p)
λ − dλ| ≥ ε

′σ
(h)
j } ≤ ε2

βj ∀j ≥ 0}.

We thus have c ∈ E(σ(h), β) (and c(m) converges to c in E(σ(h), β)). �

The next theorem gives a link between the space Sν,σ(·) and the spaces
E(σ(h), β). This will allow us to define a topology on Sν,σ(·) .

Theorem 3.1.5. Suppose that h < h′ implies

σ
(h′)
j /σ

(h)
j → 0 as j → +∞.

For any sequence (hn)n∈N dense in R and any sequence (εm)m∈N of strictly
positive real numbers which converges to 0, we have

Sν,σ
(·) =

⋂
m∈N

⋂
n∈N

E(σ(hn), ν(hn) + εm).

Proof. We directly have that Sν,σ(·) is included in E(σ(hn), ν(hn) + εm), for
any m,n ∈ N. Let us show that⋂

m∈N

⋂
n∈N

E(σ(hn), ν(hn) + εm)
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is a subset of Sν,σ(·) . Let c be an element of the intersection and let h ∈ R,
ε > 0, C > 0. For any m,n ∈ N, there exist Cn,m, C ′n,m ≥ 0 such that

#{λ ∈ Λj : |cλ| ≥ Cn,mσ
(hn)
j } ≤ C ′n,m2(ν(hn)+εm)j ,

for any j ∈ N. Let m ∈ N be such that 2εm < ε.
If ν(h) = −∞ let us take n ∈ N such that hn ∈ (h, hmin). If ν(h) ∈ R, let us

take n ∈ N such that hn > h and ν(h) < ν(hn) < ν(h)+εm. In any case, there
exists Jn,m ∈ N such that Cn,mσ(hn)

j ≤ Cσ(h)
j and C ′n,m2(ν(hn)+εm)j ≤ 2(ν(h)+ε)j ,

for any m ≥M and j ≥ Jn,m. We thus have

#{λ ∈ Λj : |cλ| ≥ Cσ
(h)
j } ≤ #{λ ∈ Λj : |cλ| ≥ Cn,mσ

(hn)
j }

≤ 2(ν(h)+ε)j ,

for any j ≥ Jn,m, which implies c ∈ Sν,σ(·) . �

Let us recall a classical topological property which be useful to define a
metric on Sν,σ(·) .

Proposition 3.1.6. [86] If (Em, dm) is a metric space for any m ∈ N, then

d : (e, f) 7→
+∞∑
m=1

2−m dm(e, f)
1 + dm(e, f)

is a metric on E = ∩m∈NEm. Moreover, for any m ∈ N, the projection

im : (E, d)→ (Em, dm)

is continuous and the topology induced by d is the weakest topology on E which
satisfies this property. Finally, a sequence is a Cauchy sequence (resp. con-
verges to e) in (E, d) if and only if for any m ∈ N, it is also a Cauchy sequence
(resp. it also converges to e) in (Em, dm).

Theorem 3.1.7. Under the hypothesis of Theorem 3.1.5, if we set

dm,n = dσ(hn),ν(hn)+εm ,

then the application

d : (c, d) ∈ Sν,σ(·) × Sν,σ(·) 7→
+∞∑
m=1

+∞∑
n=1

1
2m+n

dm,n(c, d)
1 + dm,n(c, d)

is a metric on Sν,σ
(·). This application is invariant by translation and the

space (Sν,σ(·)
, d) is a complete topological vector space. The induced topology

is independent of the sequences (hn)n∈N and (εm)m∈N.
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Proof. We will prove that the product is continuous and that the topology is
complete and independent of the sequences (hn)n∈N and (εm)m∈N, the other
properties being straightforward.
First, let us show that if λl → λ in C and if c(l) → c in Sν,σ

(·) , then
λlc

(l) → λc in E(σ(hn), ν(hn) + εm), for any n,m ∈ N. Let us set n,m ∈ N; if
ν(hn) = −∞, then there exists p ∈ N such that hp ∈ (hn, hmin). If ν(hn) ∈ R,
there exist p, q ∈ N such that hp > hn and ν(hp) + εq < ν(hn) + εm. In any
case, we have c(l) → c in E(σ(hn), ν(hn) + εm) and c ∈ E(σ(hp), ν(hp) + εq).
Using Proposition 3.1.3, we have λlc(l) → λc in E(σ(hn), ν(hn) + εm), which
implies that the product is continuous.
Now, let us prove that the topology is independent of the sequences (hn)n∈N

and (εm)m∈N. We have to show that if c(l) → c in Sν,σ
(·) , then c(l) → c in

E(σ(h), ν(h) + ε), for any h ∈ R and ε > 0. Let h be a real number and ε > 0.
Since c(l) → c in Sν,σ(·) , there exist Cn,m, C ′n,m ≥ 0 such that

#{λ ∈ Λj : |c(l)
λ − cλ| ≥ Cn,mσ

(hn)
j } ≤ C ′n,m2(ν(hn)+εm)j ,

for any j ∈ N. Let δ be a strictly positive number and take m ∈ N such that
2εm < ε. Using the same arguments as in the proof of Theorem 3.1.5, there
exist n ∈ N and Jn,m ∈ N such that Cn,mσ(hn)

j ≤ δσ(h)
j and

C ′n,m2(ν(hn)+εm)j ≤ δ2(ν(h)+ε)j ,

for any j ≥ Jn,m. We get

#{λ ∈ Λj : |c(l)
λ − cλ| ≥ δσ

(h)
j } ≤ #{λ ∈ Λj : |c(l)

λ − cλ| ≥ Cn,mσ
(hn)
j }

≤ δ2(ν(h)+ε)j ,

for any j ≥ Jn,m. We thus obtain dσ(h),ν(h)+ε(c
(l)
λ , cλ) ≤ 2δ.

Finally, let us show that the topology is complete. Let (c(l))l∈N be a Cauchy
sequence of Sν,σ(·) . This sequence is a Cauchy sequence of E(σ(hn), ν(hn)+εm),
for any n,m ∈ N. By Proposition 3.1.4, there exists a sequence c(m,n) such
that (c(l))l∈N converges to c(m,n) in E(σ(hn), ν(hn)+ εm), for any n,m. Similar
arguments as in the first part of the proof of Proposition 3.1.4 show that, if a
sequence (cl)l∈N converges to c in E(σ(h), β), then (c(l)

λ )l∈N converges to cλ in
C for any λ ∈ Λ. This implies the equality c(m,n) = c(m′,n′) is valided, for any
m,m′, n, n′ ∈ N. �

To finish this section, let us now give another definition of Sν,σ(·) by intro-
ducing a new notion.

Definition 3.1.8. The generalised wavelet profile of a sequence c is defined
as

νc,σ(·) : h ∈ R 7→ lim
ε→0+

lim sup
j→+∞

log #Ej(1, σ(h+ε))(c)
log 2j .
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This definition is well-founded if we suppose that for any h < h′ there exists
J ∈ N such that σ(h′)

j ≤ σ(h)
j for any j ≥ J .

The following proposition gives a few properties of the function νc,σ(·) and
leads to an alternative definition of Sν,σ(·) .

Proposition 3.1.9. Suppose that h < h′ implies σ(h′)
j /σ

(h)
j → 0 as j → +∞.

We have the following properties:

1. the function νc,σ(·) is right-continuous and increasing; moreover, we have
νc,σ(·)(h) ∈ [0, n] ∪ {−∞},

2. a sequence c belongs to Sν,σ
(·) if and only if νc,σ(·)(h) ≤ ν(h) for any

h ∈ R,

3. if for any h1 < h2, we have σ(h2)
j < σ

(h1)
j for any j ∈ N, then there exists

c ∈ Sν,σ(·) such that νc,σ(·) = ν.

Proof. The first property is immediate. Let c be a sequence of Sν,σ(·) and
h ∈ R. For any ε > 0, there exists J ∈ N such that

#Ej(1, σ(h+ε))(c) ≤ 2(ν(h+ε)+ε)j ,

for any j ≥ J ; we thus have νc,σ(·)(h) ≤ ν(h).
Let c be a sequence such that νc,σ(·) ≤ ν and let h ∈ R, ε > 0 and C > 0.

There exist ε′ > 0, J ∈ N such that for any ε′′ < ε′ and j ≥ J , we have

log #Ej(1, σ(h+ε′′)(c)
log 2j ≤ ν(h) + ε,

which gives #Ej(1, σ(h+ε′′)) ≤ 2(ν(h)+ε)j . We can suppose that σ(h+ε′′)
j ≤ Cσ(h)

j

for any j ≥ J , so that #Ej(C, σ(h))(c) ≤ 2(ν(h)+ε)j .
Now, let us construct a sequence c ∈ Sν,σ

(·) such that νc,σ(·) = ν. Let
(hm)m∈N be a dense sequence of [hmin,+∞) and let (c(m))m∈N be a sequence
defined as

c
(m)
λj,k

=
{
σ

(hm)
j+m for b2ν(hm)jc values of k

0 else
.

Next, we define c by

cλj,k =
{

0 if k = 0
c

(j−l)
λ
l,k−2l

if k ∈ {2l, . . . , 2l+1 − 1} with l ∈ {0, . . . , j} .

Let us set h < hmin. We have

νc,σ(·)(h) = lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : |cλ| ≥ σ
(h)
j }

log 2j
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and for any λj,k ∈ Λ, there exists m ∈ {0, . . . , j} such that

cλj,k = c
(m)
λ
j−m,k−2j−m

= (σ(hm)
j or 0).

So, using the last hypothesis, we get νc,σ(·)(h) = −∞. To conclude, it remains
to prove that νc,σ(·)(hm) = ν(hm) for any m ∈ N.

Let m be a natural number and let ε > 0. For any j ≥ m, we have
σ

(hm)
j ≥ σ

(hm+ε)
j and cλj,k is equal to σ

(hm)
j for b2ν(hm)(j−m)c values of k.

So, we obtain

lim sup
j→+∞

logb2ν(hm)(j−m)c
log 2j ≤ lim sup

j→+∞

log #{λ ∈ Λj : |cλ| ≥ σ
(hm+ε)
j }

log 2j ,

which gives ν(hm) ≤ νc,σ(·)(hm). Besides, we have, for any j ≥ m,

#{λ ∈ Λj : |cλ| ≥ σ
(hm+ε)
j } ≤

j∑
l=1

hl≤hm+ε

2ν(hl)(j−l)

≤ 2ν(hm+ε)j
j∑
l=1

hl≤hm+ε

2−lν(hl)

≤ 2ν(hm+ε)jj,

which allows us to write νc,σ(·)(hm) ≤ ν(hm). �

3.2 Robustness

Until now, we have considered the spaces Sν,σ(·) as sequence spaces, but we
should keep in mind that such a sequence represents wavelet coefficients and
thus a function. To associate these spaces to functions, we have to check
that the definition does not depend on the chosen wavelet basis. This section
shows this independence for the wavelets belonging to the Schwartz class, i.e.
the wavelets infinitely differentiable whose derivatives are rapidly decreasing.
In order to achieve this, the sequences σ(h) are supposed admissible. This
assumption is natural because all generalisations of function spaces that char-
acterise the regularity of functions (see Section 1.6.3) also use this hypothesis.
Let us now state definitions and properties related to important classes of

linear operators in the context of wavelet bases [66, 105].

Definition 3.2.1. For γ > 0, we set

wγ(λ, λ′) = 2−(γ+d+1)|j−j′|

(1 + 2inf{j,j′}|2−jk − 2−j′k′|)γ+d+1 ,
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for any λ, λ′ ∈ Λ. The space Aγ is the set of matrix A =
(
Aλ,λ′

)
λ,λ′∈Λ for

which there exists C ≥ 0 such that

|Aλ,λ′ | ≤ Cwγ(λ, λ′),

for any λ, λ′ ∈ Λ. The infimum of these constants is denoted by ‖A‖γ .
The matrix A is almost diagonal (resp. quasidiagonal) if A ∈ Aγ for any γ > 0
(resp. A is invertible and A,A−1 ∈ Aγ for any γ > 0).

Let us recall the important following theorem.

Theorem 3.2.2 ([105]). The matrix of the operator which maps a orthonormal
wavelet basis in the Schwartz class into another C∞ orthonormal wavelet basis
in the Schwartz class is quasidiagonal.

Consequently, in order to check that a condition defined on wavelet coef-
ficients does not depend of the chosen wavelet basis (in the Schwartz class),
we can check the stronger property that it is invariant under the action of
quasidiagonal matrices.

Definition 3.2.3. A property P is linear robust if the following properties
hold:

• the set of c such that P(c) holds is a vector space;

• if P(c) holds then, for any almost diagonal operator A, P(Ac) holds.

Definition 3.2.4. A property P is robust if the following property holds: if
P(c) holds then, for any quasidiagonal operator A, P(Ac) holds.

Let us first generalise the following classical result of [105]: if γ > |h| and
A ∈ Aγ then there exists a constant C̃ (which only depends on the dimension
n) such that

|cλ| ≤ C2−hj ∀λ ∈ Λ⇒ |(Ac)λ| ≤ CC̃‖A‖γ2−hj ∀λ. (55)

Lemma 3.2.5. Let σ be an admissible sequence and γ be a strictly positive
number such that γ > max{−s(σ)− 1, s(σ)}. If there exists a constant C > 0
such that

|cλ| ≤ Cσj ,

for any λ ∈ Λ, then there exists a constant C̃ which depends on γ, σ and the
dimension n such that for any matrix A ∈ Aγ, we have

|(Ac)λ| ≤ CC̃‖A‖γσj ,

for any λ ∈ Λ.
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Proof. Let us set ε = γ −max{−s(σ)− 1, s(σ)} > 0. Since the sequence σ is
admissible, there exists a constant Cγ,σ > 0 such that

σj ≤ Cγ,σ2−(j′−j)(s(σ)−ε)σj′ ,

for any j ≤ j′ and
σj ≤ Cγ,σ2(j−j′)(s(σ)+ε)σj′ ,

for any j′ ≤ j. Let A be a matrix of Aγ and choose a constant D such that
D > ‖A‖γ . Let us note that

|(Ac)λ′ | ≤ DC

 j′∑
j=0

∑
λ∈Λj

wγ(λ, λ′)σj +
+∞∑

j=j′+1

∑
λ∈Λj

wγ(λ, λ′)σj

 .
If j ≤ j′, we have

∑
λ∈Λj

wγ(λ, λ′) =
2j−1∑
k=0

( 1
1 + |k − 2−(j′−j)k′|

)γ+n+1
2−(j′−j)(γ+n+1)

≤
+∞∑
k=0

( 1
1 + |k − 2−(j′−j)k′|

)n+1
2−(j′−j)(γ+n+1)

≤ Cn2−(j′−j)(γ+n+1),

where Cn is a positive constant that only depends on the dimension n.
If j > j′, we have

∑
λ∈Λj

wγ(λ, λ′) =
2j−1∑
k=0

( 1
1 + |2−(j−j′)k − k′|

)γ+n+1
2−(j−j′)(γ+n+1)

≤
2j−1∑
k=0

1
2j−j′

( 1
1 + |2−(j−j′)k − k′|

)n+1
2−(j−j′)(γ+n)

≤ C ′n2−(j−j′)(γ+n),

where C ′n is a positive constant only depending on the dimension n.
Therefore, there exists a constant C ′′n > 0 only depending on the dimension n
such that

|(Ac)λ′ | ≤ CC ′′nCγ,σDσj′ ,

for any λ′ ∈ Λ. �

Let us note that the constant Cγ,σ is equal to 1 if σj = 2−hj , which implies
that the previous result is a generalisation of (55).
The next theorem shows the robustness of the Sν,σ(·) spaces.
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Theorem 3.2.6. Suppose that h < h′ implies

σ
(h′)
j /σ

(h)
j → 0 as j → +∞.

If for any h ∈ R, the sequence σ(h) is admissible, then Sν,σ
(·) is a linear

robust space. Moreover, for any c ∈ Sν,σ(·), the function νc,σ(·) is robust, i.e.
νc,σ(·) = νAc,σ(·) for any quasidiagonal matrix A.

Proof. Let A be an almost diagonal matrix and take c ∈ Sν,σ(·) . Let us prove
that Ac belongs to Sν,σ(·) . Let h ∈ R, ε > 0 and C > 0.
If h < hmin, then let h′ be an element of (h, hmin). Since c ∈ Sν,σ(·) , there

exists C ′ > 0 such that |cλ| ≤ C ′σ
(h′)
j , for any λ ∈ Λ. By Lemma 3.2.5, there

exists a constant C̃ > 0 depending on A, h′ and the dimension n such that
|(Ac)λ| ≤ C ′C̃σ

(h′)
j , for any λ. By hypothesis, there exists J ∈ N such that

|(Ac)λ| < Cσ
(h)
j for any j ≥ J .

It remains to examine the case h ≥ hmin. Let γ be a strictly positive number
such that

γ > max{−s(σ(h))− 1, s(σ(h))}

and let C ′ be the constant C̃‖A‖γ from Lemma 3.2.5. For any j ∈ N, let us
define the set

Qj = {λ ∈ Λj : |cλ| ≥
C

2C ′σ
(h)
j }.

Let us note that we have Ac = Ac(1) +Ac(2), where

c
(1)
λj,k

=
{
cλj,k if k ∈ Qj
0 else and c

(2)
λj,k

=
{
cλj,k if k /∈ Qj
0 else. ,

and that |c(2)
λ | < C/(2C ′) σ(h)

j , for any λ ∈ Λ. Therefore, using Lemma 3.2.5,
we get |(Ac(2))λ| ≤ C/2 σ

(h)
j for any λ ∈ Λ, which implies

#{λ ∈ Λj : |(Ac)λ| ≥ Cσ
(h)
j } ≤ #{λ ∈ Λj : |(Ac(1))λ| ≥

C

2 σ
(h)
j }.

As in [66], let us define the δ-neighbourhood N δ(λ) (δ > 0) of [k/2j , (k+1)/2j)
as the set of λ′ ∈ Λ such that{

|j − j′| ≤ δj∣∣∣ k2j − k′

2j′
∣∣∣ ≤ 22δj2−j .

Let us recall that if λ′ /∈ N δ(λ) then

w2δ−2(λ, λ′) ≤ wδ−2(λ, λ′)2−jδ−1
.
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Let us take λ such that for any k′ ∈ Qj′ , we have λ′ /∈ N δ(λ). If h′ < hmin,
for any constant C ′′ large enough and any constant δ small enough, we get

|(Ac(1))λ| ≤
∑
j′∈N

∑
k′∈Qj′

‖A‖2δ−2w2δ−2(λ, λ′)|cλ′ |

≤ ‖A‖2δ−22−jδ−1 ∑
j′∈N

∑
k′∈Qj′

wδ−2(λ, λ′)|cλ′ |

≤ ‖A‖2δ−22−jδ−1 ∑
j′∈N

∑
k′∈Qj′

wδ−2(λ, λ′)C ′′σ(h′)
j′

≤ ‖A‖2δ−22−jδ−1
C ′′

∑
λ′∈Λ

wδ−2(λ, λ′)σ(h′)
j′ .

Using the proof of the previous lemma, there exists a constant C ′′′ depending
on δ, h′ and the dimension n such that∑

λ′∈Λ
wδ−2(λ, λ′)σ(h′)

j′ ≤ C
′′′σ

(h′)
j .

Since the sequences σ(h) and σ(h′) are admissible, there exists s > 0 such that
σ(h′)/σ(h) ≤ 2sj . So, there exists J ∈ N such that

|(Ac(1))λ| ≤ ‖A‖2δ−2C ′′C ′′′2−j(δ−1−s)σ
(h)
j

≤ C

4 σ
(h)
j ,

for any j ≥ J . We thus have

#{λ ∈ Λj : |(Ac(1))λ| ≥
C

2 σ
(h)
j } ≤ #{λ ∈ Λj : ∃λ′ ∈ N δ(λ), k′ ∈ Qj′}

≤
∑

j′:|j−j′|≤δj

∑
k′∈Qj′

#{λ ∈ Λj :
∣∣∣∣ k2j − k′

2j′
∣∣∣∣ ≤ 22δj2−j}

≤
∑

j′:|j−j′|≤δj

∑
k′∈Qj′

(22δj+1 + 1)n

≤
∑

j′:|j−j′|≤δj
#Qj′ (22δj+1 + 1)n,

for any j ≥ J . Since c belongs to Sν,σ(·) , we have #Qj′ ≤ 2(ν(h)+ε/2)j′ , for j′
large enough. We get

#{k : |(Ac(1))λ| ≥
C

2 σ
(h)
j } ≤ 2δj2(ν(h)+ε/2)j(1+δ)23δjn

≤ 2(ν(h)+ε/2)j2(1+ν(h)+ε/2+3n)δj

≤ 2(ν(h)+ε)j ,
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for any j ≥ J (for large enough J). We thus have shown that the space
Sν,σ

(·) is linear robust. The second part of the theorem is obtained by using
Proposition 3.1.9 and the fact that c belongs to Sνc,σ(·) ,σ

(·)
. �

Consequently, Sν,σ(·) can be seen as a function space matching a function
f ∈ L2(Tn) to its sequence of wavelet coefficients:

Sν,σ
(·) = {f ∈ L2(Tn) : ∀h ∈ R ∀ε > 0 ∀C > 0

∃J > 0 ∀j ≥ J, #Ej(C, σ(h))(f) ≤ 2(ν(h)+ε)j},

where
Ej(C, σ(h))(f) = {λ ∈ Λj : |cλ| ≥ Cσ

(h)
j },

and c = (cλ)λ∈Λ is the wavelet coefficients of f in a given wavelet basis.

3.3 Some Connections with Generalised Besov
Spaces

Let us recall that Proposition 1.8.4 gives a connection between the Besov
spaces and the Sν spaces by the following relation:

Sν ⊆
⋂
p>0

⋂
ε>0

b
η(p)−ε
p

p,∞ ,

where η(q) = infh≥hmin{hq− ν(h)}+n, and the inclusion becomes an equality
if and only if ν is concave.
The Besov spaces have been generalised with the help of the admissible

sequences (see Section 1.6.3). It is thus natural to study the connections
between these spaces and the spaces Sν,σ(·) defined in Section 3.1.
The next theorem gives a condition under which the Sν,σ(·) spaces are in-

cluded in an intersection of generalised Besov spaces.

Theorem 3.3.1. For any h ∈ R, let σ(h) be an admissible sequence and let
us suppose that

• h < h′ implies σ(h′)
j /σ

(h)
j → 0 as j → +∞,

• s(σ(h))→ −∞ as h→ +∞.

For any p > 0, let θ(p) be an admissible sequence. We have

Sν,σ
(·) ⊆

⋂
p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞
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if and only if for any p, ε > 0 and for any h ≥ hmin, there exists C > 0 such
that

θ
(p)
j 2−jε/p ≤ C2jn/p2−jν(h)/p(σ(h)

j )−1, (56)

for any j ∈ N.

Proof. First, let us suppose that the inclusion is satisfied. For any h ≥ hmin,
let c(h) be a sequence defined as

c
(h)
λj,k

=
{
σ

(h)
j for b2ν(h)jc values of k

0 else
.

We directly have that c(h) belongs to Sν,σ(·) and thus, for any p, ε > 0, there
exists C > 0 such that

θ
(p)
j 2−jε/p2−jn/p

∑
λ∈Λj

|c(h)
λ |

p

1/p

< C,

for any j ∈ N. From the definition of the sequence c(h), we obtain

θ
(p)
j 2−jε/p ≤ C2jn/p2−jν(h)/p(σ(h)

j )−1,

for any j.

Now, let us suppose that (56) is satisfied and let us show the required
inclusion. Let c be a sequence belonging to Sν,σ

(·) and let p, ε > 0. Since
s(σ(h)) → −∞ as h → +∞, there exists h′ ≥ hmin such that the sequence
(θ(p)
j 2−jε/pσ(h′)

j )j is bounded. We have

(θ(p)
j )p2−jε2−jn

∑
λ∈Λj

|cλ|p

≤ (θ(p)
j )p2−jε2−jn

 ∑
λ∈Λj :|cλ|<σ

(h′)
j

|cλ|p +
∑

λ∈Λj :|cλ|≥σ
(h′)
j

|cλ|p


≤ (θ(p)

j 2−jε/pσ(h′)
j )p + (θ(p)

j )p2−jε2−jn
∑

λ∈Λj :|cλ|≥σ
(h′)
j

|cλ|p,

for any j ∈ N. It remains to prove that the second term of the previous in-
equality is bounded.

Let β be a real number smaller than hmin and let J be such that |cλ| < σ
(β)
j

for any λ ∈ Λj with j ≥ J . We have

{λ ∈ Λj : |cλ| ≥ σ
(h′)
j } = {λ ∈ Λj : σ(β)

j > |cλ| ≥ σ
(h′)
j },
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for any j ≥ J . Moreover, for any η > 0, there exist γ1, . . . , γN ∈ (β − η, h′)
such that

[β, h′] ⊂
N⋃
i=1

[γi, γi + η], [σ(h′)
j , σ

(β)
j ] ⊂

N⋃
j=1

[σ(γi+η)
j , σ

(γi)
j ]

and
#{λ ∈ Λj : |c(i)

λ | ≥ σ
(γi+η)
j } ≤ 2(ν(γi+η)+η)j ,

for any j ≥ J (with J large enough). Since ν is a right-continuous function,
there exists η > 0 such that ν(γi + η) + η < ν(γi) + ε/2 for any i ∈ {1, . . . , N}.
As a consequence, there exists a constant C ′ > 0 such that

(θ(p)
j )p2−jε2−jn

∑
λ∈Λj :|cλ|≥σ

(h′)
j

|cλ|p ≤
N∑
i=1

(θ(p)
j )p2−jε2−jn(σ(γi)

j )p2(ν(γi)+ε/2)j

≤ C ′N,

for any j ≥ J . The conclusion follows.
�

Let us recall that bσ′p,∞ ⊂ bσp,∞ if σj ≤ σ′j for any j large enough. Therefore,
to get the equality in the previous theorem, we must choose the “largest”
sequences θ(p) satisfying the condition. To do so, we will introduce a new
function ν̂. Let us first rewrite the condition on the sequences θ(p). We have

θ
(p)
j 2−jε/p ≤ C2jn/p2−jν(h+η/2)/p(σ(h+η/2)

j )−1

⇔ θ
(p)
j 2−jε/p ≤ 2jn/p2−jν(h+η/2)/p(σ(h+η)

j )−1

⇔ 2jν(h+η/2)/p2−jε/p ≤ 2jn/p(θ(p)
j σ

(h+η)
j )−1

⇔ ν(h) ≤ lim
η→0+

inf
p>0

lim sup
j→+∞

n− p
log(θ(p)

j σ
(h+η)
j )

log 2j .

Definition 3.3.2. The function ν̂ is defined as

ν̂(h) =

 lim
η→0+

inf
p>0

lim sup
j→+∞

n− p
log(θ(p)

j σ
(h+η)
j )

log 2j if h ≥ hmin

−∞ else
.

The function ν̂ is a right-continuous increasing function such that ν̂(h) ≥ 0
for any h ≥ hmin. Besides, if ν̂ is an admissible profile (i.e. if ν̂ ≤ n) then we
directly have

Sν,σ
(·) ⊂ S ν̂,σ(·)

.
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Theorem 3.3.3. Under the hypothesis of Theorem 3.3.1, if ν̂ ≤ n and if for
any h < hmin, there exist p, ε > 0 such that 2−jn/pσ(h)

j θ
(p)
j 2−jε/p → +∞ as

j → +∞, then we have ⋂
p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞ ⊂ S ν̂,σ(·)
.

Remark 3.3.4. Hypothesis 2−jn/pσ(h)
j θ

(p)
j 2−jε/p → +∞ means that the se-

quence θ(p)
j must be “sufficiently large”. Moreover,

- if we suppose that ⋂
p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞ ⊂ S ν̂,σ(·)
,

then, for any h < hmin, there exist p, ε > 0 such that

lim sup
j→+∞

2−jn/pσ(h)
j θ

(p)
j 2−jε/p = +∞, (57)

- let us define the sequence c such that, for any j ∈ N, cλj,k = σ
(h)
j for one

and only one k, and cλj,k = 0 otherwise; if we assume that there exists
h < hmin such that, for any p, ε > 0, Limit superior (57) is bounded, then

we directly have that the sequence c belongs to
⋂
p>0

⋂
ε>0 b

(θ(p)
j 2−jε/p)j

p,∞ ,
but c does not belong to S ν̂,σ(·) .

Proof. Let c be a sequence belonging to
⋂
p>0

⋂
ε>0 b

(θ(p)2−jε/p)j
p,∞ . For any

p, ε > 0, there exists Cp,ε > 0 such that

(θ(p)
j )p2−jε2−jn

∑
λ∈Λj

|cλ|p ≤ Cp,ε,

for any j ∈ N.

If h < hmin, we have

#{λ ∈ Λj : |cλ| ≥ σ
(h)
j } ≤ Cp,ε(2

−jn/pθ
(p)
j 2−jε/pσ(h)

j )−p.

Let us take p, ε as in the hypothesis; there thus exists J > 0 such that
|cλ| < σ

(h)
j for any λ ∈ Λj with j ≥ J , i.e. νc,σ(·)(h) = −∞.

If h ≥ hmin, we have

#{λ ∈ Λj : |cλ| ≥ σ
(h+ε/2)
j } ≤ Cp,ε2jn(θ(p)

j )−p2εj(σ(h+ε/2)
j )−p

≤ 2jn(θ(p)
j )−p2εj(σ(h+ε)

j )−p,
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for j large enough; we thus have νc,σ(·)(h) ≤ ν̂(h). This implies that c belongs
to S ν̂,σ(·) .

�

The previous theorem allows to assert that if ν = ν̂ then

Sν,σ
(·) =

⋂
p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞ .

The next corollary shows that when Inequalities (56) are satisfied for ν̂, the
previous implication becomes an equivalence.

Corollary 3.3.5. Under the hypothesis of the previous theorem, if for any
p, ε > 0 and for any h ≥ hmin, there exists C > 0 such that

θ
(p)
j 2−jε/p ≤ C2jn/p2−jν̂(h)/p(σ(h)

j )−1,

for any j ∈ N and if for any h < β, we have σ(β)
j ≤ σ

(h)
j for any j ∈ N, then

we have
Sν,σ

(·) =
⋂
p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞

if and only if ν = ν̂.

Proof. We directly have

⋂
p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞ = S ν̂,σ
(·)
,

and we can conclude using Proposition 3.1.9. �

If ν = ν̂, a natural question concerns the link between the topology of the
space (Sν,σ(·)

, d) defined in Theorem 3.1.7, and the topology induced on the
intersection in the previous theorem. The canonical topology on the gener-
alised Besov space is metrizable, complete and stronger than the pointwise
convergence, and so is the topology on (Sν,σ(·)

, d). If the intersection of the
generalised Besov spaces can be written as a countable intersection of bσ(i)

p,∞
spaces (i ∈ N) then, from the closed graph theorem, the topology τ defined on
Sν,σ

(·) as the weakest topology such that each identity map (Sν,σ(·)
, τ) 7→ bσ

(i)
p,∞

is continuous, is equivalent to the topology on (Sν,σ(·)
, d). The next proposition

gives some conditions on the sequences θ(p)
j to have a countable intersection.

Proposition 3.3.6. If the function p > 0 7→ log2j θ
(p)
j is left continuous

uniformly with respect to j then, if pm (m ∈ N) is a dense sequence of (0,+∞)
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and if εl (l ∈ N) is a sequence of strictly positive numbers converging to 0, we
have ⋂

p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞ =
⋂
m∈N

⋂
l∈N

b
(θ(pm)
j 2−jεl/pm )j

pm,∞ .

Proof. The inclusion of the second space in the first space is straightforward.
Let us prove the other inclusion.

Let us take p > 0 and ε > 0. It suffices to find pm and εl such that

pm ≤ p and θ(pm)
j 2−j(εl+n)/pm ≥ θ(p)

j 2−j(ε+n)/p,

for j large enough. This is equivalent to ask

pm ≤ p and ε

p
− εl
pm
≥ n

pm
− n

p
−
(
log2j θ

(pm)
j − log2j θ

(p)
j

)
,

for j large enough. Since we can choose pm ≤ p such that

| log2j θ
(pm)
j − log2j θ

(p)
j | <

ε

3p and n

pm
− n

p
<

ε

3p,

for any j ∈ N, we can conclude by taking εl sufficiently small. �

To end this section, let us show that the preceding results are generalisations
of Proposition 1.8.4. For σ(h)

j = 2−hj , let us find an admissible sequence θ(p)
j

such that for any p, ε > 0 and for any h ≥ hmin, there exists C > 0 such that

θ
(p)
j 2−jε/p ≤ C2jn/p2−jν(h)/p(σ(h)

j )−1,

i.e.
θ

(p)
j 2−jε/p ≤ C2j(n−ν(h)+hp)/p.

If we take θ(p)
j = 2jη(p)/p with

η(p) = inf
h≥hmin

{hp− ν(h)}+ n,

we get ν̂(h) = infp>0{hp − η(p)} + n for any h ≥ hmin and the hypothesis of
Corollary 3.3.5 and Proposition 3.3.6 are satisfied. We thus obtain

Sν =
⋂
p>0

⋂
ε>0

b
(θ(p)
j 2−jε/p)j

p,∞ =
⋂
p>0

⋂
ε>0

b
η(p)−ε
p

p,∞ =
⋂
m∈N

⋂
l∈N

b
η(pm)−εl

pm
pm,∞

if and only if ν = ν̂, i.e. if ν is concave.
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Chapter 4
From Theory to Practice:
Implementation of Multifractal
Formalisms based on Profiles

Now that the theoretical setting has been formulated and the theoretical
interest has been shown, we can describe an algorithm to effectively ap-

proximate the spectrum df associated with a numerical signal f , with the help
of the profiles νf , ν̃+

f , ν̃
−
f and νf,σ(·) . Each profile is defined in the same way

and consequently, we introduce the following notations:

ν̆f (h) = lim sup
j→+∞

log #Ĕj(1, σ(h+ε))(f)
log 2j , (58)

where for any h ∈ R, σ(h) is an admissible sequence and the set Ĕj(C, σ(h))(f)
corresponds either to

• the set Ej(C, σ(h))(f), which means that ν̆f is the generalised wavelet
profile νf,σ(·) ,

• or, if σ(h) = (2−hj)j∈N, then it corresponds either to
– the set Ej(C, h)(f), which means that ν̆f is the wavelet profile νf ,
– or to the set Ẽ+

j (C, h)(f), which means that ν̆f is the increasing
wavelet leaders profile ν̃+

f ,

– or to the set Ẽ−j (C, h)(f), which means that ν̆f is the decreasing
wavelet leaders profile ν̃−f .

Section 4.1 first gives a complement to the WPM in order to show that,
under some hypothesis on f , the wavelet profile νf can directly be used to ap-
proximate the spectrum df . Secondly, we show that the constant 1 appearing
in the definition of ν̆f is arbitrary. It is important to notice that this fact is
not valid for a real-life signal f because, in this case, we only have access to
a finite number of scales j; consequently, the constant is not arbitrary and its
choice becomes a crucial point to compute ν̆f . An algorithm to approximate
ν̆f is presented in Second 4.2. Let us mention that this one is a stand-alone

87
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method: no operation but fine tuning is required by the user. Section 4.3 com-
pares the approximation of the spectrum df by applying the WPM, the LPM
and the WLM on numerical signals f , as the fractional Brownian motion, the
Mandelbrot cascades and the Lévy processes. We show that the WPM and
the LPM are usually as good as the WLM with monofractal functions and
multifractal functions with a concave spectrum. We also show that the WPM
and the LPM can approximate non-concave spectra, while the WLM can only
approximate the concave hull of spectra. Section 4.4 presents an improvement
of the algorithm which improves the approximation of the spectrum in some
cases. Section 4.5 shows the robustness of the algorithm and Section 4.6 gives
some remarks on several parameters of the algorithm presented in this chapter.
The last section summaries the effectiveness of the WPM and of the LPM. The
numerical contributions obtained with the generalised wavelet profile νf,σ(·) is
presented in Chapter 5.
As already mentioned in Section 1.5, for each numerical simulation of a

function f , we use the Mallat algorithm and the Daubechies wavelets of order
3 to compute a finite number of wavelet coefficients corresponding to f .
The main ideas developed in this chapter were published in [46, 78]. It is

important to notice that the algorithm to approximate ν̆f has evolved between
the two articles: the first one presents the first version of the algorithm in the
context of the Lν spaces and the second one presents a first improvement in
the context of the Sν spaces. This improvement (presented in Section 4.2.2)
had not yet been tested with Lν . This chapter presents the algorithm having
obtained the best results and illustrates it in the context of Sν and Lν spaces.
Moreover, the new improvement presented in Section 4.4 is for the first time
presented; it has not yet been the subject of an article. These works are a
collaboration with C. Esser and S. Nicolay.
This chapter is structured as follows:

4.1. Preliminary Results . . . . . . . . . . . . . . . . . . . 89
4.2. An Algorithm to Compute ν̆f . . . . . . . . . . . . . 91

4.2.1. For Fixed h ∈ R and C > 0, Computation of ν̆Cf (h) . 91
4.2.2. For a Fixed h ∈ R, Choice of the Constant C > 0 to

Approximate ν̆f (h) . . . . . . . . . . . . . . . . . . . 92
4.2.3. Computation of the Function ν̆f . . . . . . . . . . . 94

4.3. WPM and LPM in Action: Standard Setting . . . 94
4.3.1. A Monofractal Example: The Fractional Brownian

Motion . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2. A Multifractal Example with Concave Spectrum: The

Mandelbrot Cascades . . . . . . . . . . . . . . . . . 104
4.3.3. A Multifractal Example with a linear Spectrum: The

Lévy Processes without Brownian Component . . . . 106



4.1 Preliminary Results 89

4.3.4. A Multifractal Example with a Non-Concave Spec-
trum: The Lévy Processes with a Brownian Compo-
nent . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4. Improvement of the Stability of the Function C 7→ ν̆
(C)
f (h):

to a Better Approximation of the Spectrum . . . . 115
4.5. Profile Methods vs WLM: Robustness of the Method120
4.6. Remarks about the Length of the Stabilisation . . 121
4.7. Effectiveness of Profile-based Methods: Summary . 124

4.1 Preliminary Results

This section first shows that, for the WPM, the wavelet profile νf can directly
be used to approximate the spectrum df , if f verifies some hypothesis. Sec-
ondly, we establish the key result on which the algorithm presented in the
following section is based; this result states that the constant 1 appearing in
the definition of the profiles (see Equality 58) is arbitrary.
As already mentioned in Section 1.8, the approximation of the spectrum of

f with the WPM is given by the function

d
νf
f = sup

h′∈(0,h]

νf (h′)
h′

,

which transform the function νf into a function with increasing-visibility (see
Definition 1.8.6). Let us show that, under some hypothesis on f , we can avoid
this transformation. Before establishing this result, let us recall a few notions
about measures (for more details, see [21]).

Definition 4.1.1. Let µ be a positive Borel measure on [0, 1]n. The Hölder
exponent of x0 ∈ [0, 1]n and the Hölder spectrum of µ are respectively defined
as

hµ(x0) = lim inf
r→0+

logµ
(
B(x0, r)

)
log r

and

dµ : [0,+∞]→ {−∞} ∪ [0, n], h 7→ dimH({x ∈ [0, 1]n : hµ(x) = h}).

The following proposition constructs a function f from a measure µ, whose
the spectrum is the same as the spectrum of µ.

Proposition 4.1.2. [122]) If µ is an uniformly regular measure1, then there
exists a function f , called the associated wavelet series, whose wavelet coeffi-
cients are defined as

cλ = µ(λ),
1A measure µ is called an uniformly regular measure if there exist a constant C > 0 and
an exponent hmin > 0 such that µ(B(x, r)) ≤ Crhmin , for any ball B(x, r) ⊂ [0, 1]n.
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for any λ ∈ Λ. Moreover, we have df = dµ.

In this setting, the following result shows that the estimation of the spectrum
with the WPM can be directly given by νf .

Proposition 4.1.3. Let µ be an uniformly regular measure and let f be the
associated wavelet series. If

inf
{
νf (x)− νf (y)

x− y
: x, y ∈ [hmin, hmax], x < y

}
> 0, (59)

then the wavelet profile νf is an approximation of the increasing part of df ,
i.e. it gives an upper bound of the Hölder spectrum.

Proof. Let us notice that, if fβ denotes the function whose wavelet coefficients
are given by 2−βjcλ, then we have

dfβ (h) = df (h− β) and νfβ (h) = νf (h− β), (60)

for any h ∈ [0,+∞]. The hypothesis on the wavelet profile νf implies that
there exists β > 0 such that the function νfβ is with increasing-visibility. In
this case, νfβ approximates dfβ . Using property (60), we can conclude that
the increasing part of df can be approximated by νf . �

Remark 4.1.4. Obviously, if the infimum in (59) equals 0 and if the infimum
taken on x, y ∈ [hmin, h] is strictly positive for any h < hmax, then the result
is still valid.

To close this section, let us establish a key result for an effective implemen-
tation of ν̆f . This result shows that the constant 1 appearing in the definition
of profiles (see Equality (58)) is arbitrary.

Proposition 4.1.5. Let C = (Cj)j∈N be a sequence of positive numbers for
which there exists D > 0 such that D−1 ≤ Cj ≤ D for any j ∈ N. Moreover,
for any h ∈ R, let σ(h) be an admissible profile and let us suppose that, h < h′

implies σ(h′)
j /σ

(h)
j → 0 as j → +∞. If we denote

ν̆C
f : h ∈ R 7→ lim

ε→0+
lim sup
j→+∞

log #Ĕj(Cj , σ(h+ε))(f)
log 2j ,

we have ν̆C
f (h) = ν̆f (h) for any h ∈ R.

If C is the constant sequence Cj = C, for any j ∈ N, we naturally write ν̆Cf
instead of ν̆C

f .
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Proof. The proof is given in the case where the set Ĕj(C, σ(h+ε))(f) corre-
sponds to the set Ej(C, σ(h+ε))(f) (i.e. ν̆f = νf,σ(·)); the other cases are simi-
lar.
First, notice that

#Ej(D−1, σ(h+ε))(f) ≤ #Ej(Cj , σ(h+ε))(f) ≤ #Ej(D,σ(h+ε))(f),

for any j ∈ N, h ∈ R and ε > 0. We thus have νD−1

f,σ(·) ≤ νC
f,σ(·) ≤ νD

f,σ(·) ;
therefore it is enough to prove that νC

f,σ(·) = νf,σ(·) for any C > 0.
Fix h ∈ R, C > 0. For any ε > 0, the hypothesis on the sequences σ(·)

implies that there exists J > 0 such that for any j > J , σ(h+ε/2)
j ≥ Cσ

(h+ε)
j ;

in other words, we have

#Ej(C, σ(h+ε)
j )(f) ≥ #Ej(1, σ(h+ε/2)

j )(f).

It thus leads νC
f,σ(·)(h) ≥ νf,σ(·)(h).

A similar reasoning allows to obtain the other inequality. �

4.2 An Algorithm to Compute ν̆f

In this section, the different steps of an algorithm to approximate ν̆f , where
f is a real-life signal, are presented. First, for a fixed h ∈ R and C > 0, we
explain how to approximate ν̆Cf (h). A discussion is done about the influence
of the value of C on the approximation of ν̆Cf (h), since we only have access to
a finite number of coefficients of f . We then explain, for a fixed h ∈ R, how
to choose this constant to correctly approximate ν̆f (h). Finally, we give the
pseudocode of the algorithm approximating the function ν̆f .

4.2.1 For Fixed h ∈ R and C > 0, Computation of ν̆Cf (h)
For a real-life signal f , we only have access to a finite number of scales j.
Consequently, an approximation of the theoretical value of ν̆f (h) should be
the slope of

j 7→ log #Ĕj(C, σ(h))(f)
log 2 , (61)

for large values of j. In practice, it is important to carefully chose the scales,
because they can influence the computed value approximating ν̆f (h). More-
over, it can to be interesting to compute this slope on several different sets of
scales to have some additional information about the signal (see Section 5.1.3
for a example). The slope is computed as the one of the linear regression on
the points corresponding to the chosen scales, using the least squares method,
if these points are correlated. We fix a threshold for the correlation of the
points used to compute the slope: we only keep the slope if this correlation is
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higher than the chosen threshold (typically 0.95 or 0.99). From now on, the
notation ν̆Cf (h) will refer to this slope.
This notation can be surprising because it does refer to the constant C,

while Proposition 4.1.5 implies that the value of ν̆(h) is independent of C.
It is important to notice that this independence it is not valid in practice,
since we only have access to a finite number of coefficients, and thus the
slope is computed on a finite number of points. Indeed, let us recall that
the notation #Ĕj(C, σ(h))(f) represents the number of (wavelet or leaders)
coefficients larger or smaller than Cσ(h)

j . If the typical value of coefficients is
too large or too small with respect to C, the slope ν̆Cf (h) will be very different
from the theoretical value ν̆f (h). For example, in the case of the LPM,

• if C is close to 0, then almost all the coefficients are larger than C2−hj .
This implies that the slope of j 7→ log2 #Ẽ+

j (C, h)(f) is close to n; the
larger C is, the smaller this slope is,

• if C is large, then almost all the coefficients are smaller than C2−hj .
This implies that the slope of j 7→ log2 #Ẽ−j (C, h)(f) is close to n; the
larger C is, the larger this slope is.

The next section explains how to define a “good” constant C for the ap-
proximation of ν̆f (h).

4.2.2 For a Fixed h ∈ R, Choice of the Constant C > 0
to Approximate ν̆f (h)

In order to determine a good approximation of ν̆f (h), we must use a constant
C which is adapted to the amplitude of the coefficients. Our approach is not
based on the choice of a specific constant, but on the choice of an interval of
“good” constants. For a fixed h ∈ R, let us construct the function

C > 0 7→ ν̆Cf (h).

If h ∈ [hmin, hmax], it should exist an interval I for which the values ν̆Cf (h),
with C ∈ I, are close from each other. In the other cases (i.e. if h < hmin
or h > hmax), such an interval should not exist, i.e. the function should
be decreasing or increasing without stabilisation. During my thesis’s years,
several strategies have been studied about the determination of I. Two points
are important to have a relevant interval: choosing a “good” length, and having
an effective method to detect a stabilisation of the chosen length.

Two Strategies to choose the length of the interval I. First, the greatest
value among the moduli of the coefficients has been used for the length of the
stabilisation. It gives some good results (see [46]) but it is less efficient for
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signals with small size and it may be influenced by aberrant values in the signal.
Moreover, the length of the stabilisation to approximate ν̆f (h) is thus the same
for any h > 0. However, the number of coefficients used to approximate ν̆f (h)
strongly depends on h, which implies that the approximation of ν̆f (h) for small
h is not possible. Consequently, the length of the stabilisation must depend
on h. A more robust approach is proposed in [78] where the length of the
stabilisation depends on h. Let us recall that #Ĕj(C, σ(h))(f) corresponds to
the number of coefficients that are larger (or smaller) than Cσ(h)

j . The idea is
thus to consider a length of stabilisation equal to the median of the computed
values

((σ(h)
j )−1|cλ|)λ or ((σ(h)

j )−1dλ)λ, (62)
depending on whether the wavelet coefficients or the wavelet leaders are used.
This length is denoted lh. This approach gives good results in the context of
νf [78].

Two Strategies to Detect a Stabilisation. First, a non-parametric gradient
descent, where the gradient is calculated as the slope of the regression line
over several consecutive points (typically 3 or 5 points) is proposed in [46, 78]:
if this gradient is close to 0 for several consecutive points corresponding to the
chosen length for the interval I, then we claim that a stabilisation has been
detected and the mean (or the median) of these points is used to approximate
ν̆f (h). This approach gives good results but it proved less effective on small
real-life signals. To overcome this problem, we propose a new strategy: to
use a sliding window of the length equal to the length of I on the function
C 7→ ν̆Cf (h). If the difference between the ninth decile and the first decile
in this window2 is small (typically, smaller than 0.03), then we say that a
stabilisation is detected.

Strategy Chosen in this thesis. After many tests, the most efficient method
is the following: we choose lh for the length of I, and we use a sliding window
on the function C 7→ ν̆Cf (h) to determine the existence of a stabilisation.
Consequently, the approximation of ν̆f (h) is

• −∞ if no stabilisation is detected;

• the median of the values ν̆Cf (h) belonging to the first window of length
lh for which a stabilisation has been detected.

As we will show in the following sections, this method is not influenced by
aberrant values in the signal and allows to have a better approximation of the
spectrum than other wavelet-based methods.

2These deciles have been chosen to avoid rejecting a stabilisation if only a few extreme
values are too apart. Let us notice that choosing the percentiles 5 and 95 give similar
results.
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Remark 4.2.1. For a small h, lh can be very small and in this case the
stabilisation will not be relevant, because it is computed with values of C
too close from each other. Concerning the signals studied in this thesis, we
have noticed that a value of lh smaller than 0.1cmax does not allow to have
an acceptable length for the stabilisation. Consequently, we replace lh with
max{lh, 0.1cmax}. In the same way, for the approximation of the decreasing
part of the spectrum with ν̃−f (h), lh can be very large if h is large, and it
becomes impossible to have a stabilisation of this length. In this case, we
replace lh with the median of the values

(2(h−hdom)jdλ)λ, (63)

where hdom is defined as the smallest h such that ν̃+
f (h) equals n.

4.2.3 Computation of the Function ν̆f

The first step consists in the detection of the smallest h for which ν̆f (h) 6= −∞,
i.e. for which the function C > 0 7→ ν̆Cf (h) has a stabilisation of length lh,
as explained in the previous section. From the fact that, if ν̆f (h) 6= −∞,
then ν̆f (h′) 6= −∞ for any h′ > h, we use a bisection method to detect this
smallest h. We begin this procedure between 0 and 1; if no value is found,
we restart this procedure between 1 and 2, and so on. Algorithm 1 gives the
pseudocode of this method. Let us recall that the choice of the scales j where
the regression is done is important and influences the approximation of ν̆f (h);
for this reason, they are part of the parameters of the method. Once this h is
detected, we can compute the function ν̆f , by step of length 0.01 for example.
Algorithm 2 gives the pseudocode of the approximation of ν̆f (h) for a given
h, described in the previous section.

4.3 WPM and LPM in Action: Standard Set-
ting

The next step is to test the algorithm described in the previous section on
several classical examples, in the context of the WPM and the LPM. We show
that this algorithm gives results at least as good as the ones obtained using
other wavelet-methods (mainly, the WLM), when the function is monofractal
or multifractal with a concave spectrum. Moreover, we show that this algo-
rithm can detect non-concave spectra. For each signal, the chosen scales j
for the regressions are the same for each method, and corresponds to the first
scales computed with the Mallat algorithm, since we want approximate the
theoretical spectrum of the signals.
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Algorithm 1 Bisection method to detect the smallest h for which ν̆f (h) 6= −∞
1: procedure smallestH(c,σ(·),chosen scales j) . c are the wavelet

coefficients or the wavelet leaders of f
2: h0 ← 0
3: h1 ← 1
4: prec← 0.01 . depends on the wished precision
5: repeat
6: hmin ← h0
7: hmax ← h1
8: h← (hmax + hmin)/2
9: repeat
10: if Approxν̆f (h, c, σ(h), chosen scales j) 6= −∞ then . see

Algorithm 2
11: hmax ← h
12: else
13: hmin ← h
14: end if
15: h← (hmax + hmin)/2
16: until |hmin − hmax| < prec
17: h0 ← h0 + 1
18: h1 ← h1 + 1
19: until a h such that ν̆f (h) 6= −∞ is detected
20: return h
21: end procedure
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Algorithm 2 Algorithm to approximate ν̆f (h)
1: procedure Approxν̆f (h, c, σ(h), chosen scales j) . c are the wavelet

coefficients or the wavelet leaders of f
2: thresholdCor← 0.95
3: thresholdStab← 0.03
4: łh ← the median of ((σ(h)

j )−1|cλ|)λ (and see Remark 4.2.1)
5: maxValueForC← 10lh . greater is not relevant to the signals of thesis
6: stepOfC← lh/100 . allows to have 100 points by window
7: for C ← 0 to maxValueForC by step of stepOfC do
8: Compute the slope and the correlation of the function
j 7→ log2 #Ĕj(C, σ(h))(c), on the chosen scales j

9: if correlation < thresholdCor then
10: ν̆Cf (h)← −∞
11: else
12: ν̆Cf (h)← slope
13: end if
14: end for
15: ν̆f (h)← −∞
16: W ← the first window of length lh of the function C 7→ ν̆Cf (h)
17: repeat
18: if |9th decile of W − 1st decile of W | < thresholdStab then
19: ν̆f (h)← the median of W
20: Break
21: else
22: W ← the next window
23: end if
24: until there does not exist a window
25: return ν̆f (h)
26: end procedure
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4.3.1 A Monofractal Example: The Fractional Brow-
nian Motion

The first example is the classical monofractal process: the fractional Brow-
nian motion [101]. It is a generalisation of the Brownian motion, studied in
Chapter 2.

Definition 4.3.1. The fractional Brownian motion of parameter H ∈ (0, 1),
noted BH = (BH

x )x∈R, is the unique Gaussian process such that

• almost surely, BH
0 = 0 and x ∈ R 7→ BH

x is a continuous function,

• it has stationary increments such that, for any x1, x2 ∈ R, one has

BH
x1 −B

H
x2 ∼ N (0, |x1 − x2|2H).

The parameter H is called the Hurst index.

The following proposition gives some properties of the fractional Brownian
motion.

Proposition 4.3.2. [73] Let BH = (BH
x )x∈R be a fractional Brownian motion

of parameter H.

• It has the property of scaling invariance of parameter H, i.e.

BH
ax ∼ |a|HBH

x ,

for any a, x ∈ R.

• If γ is the autocovariance function of the Gaussian process (BH
j+1−BH

j )j∈Z,
i.e. γ(j) = Cov(BH

j+1 −BH
j , B

H
1 −BH

0 ), then

γ(j) = 1
2(|j − 1|2H − 2|j|2H + |j + 1|2H),

for any j ∈ Z.

The second point of this proposition shows that, if H = 1/2, then γ(j) = 0,
for any j ∈ Z \{0}; consequently, the increments are independent. This implies
that the fractional Brownian motion of parameter 1/2 is the Brownian motion
presented in Section 2.3. If H 6= 1/2, then the increments are not independent
and we have

γ(j) ∼ H(2H − 1)j2H−2,

as j → +∞. This relation shows that, if H ∈ (1/2, 1), then γ(j) ∼ cjk

(c > 0 and k ∈ (−1, 0)) as j → +∞; in other words, BH presents long-range
dependencies. If H ∈ (0, 1/2), then γ(j) is strictly negative and we thus say
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Figure 4.1.: Simulation of fractional Brownian motions of parameter H.

that BH has negative dependence. This is illustrated on numerical simulations
in Figure 4.1 (to simulate fractional Brownian motions, we use the algorithm
described in [138]). Such dependencies are detected in many experimental
observations and that is why the fractional Brownian motion models many
monofractal phenomena [101, 36, 15, 111].
The following proposition shows that the Hurst index H characterises the

Hölderian regularity of BH .

Proposition 4.3.3. [73] There exists an event Ω∗ ⊆ Ω of probability 1 such
that, for any ω ∈ Ω∗, the walk x 7→ BH

x (ω) is a monofractal function with a
Hölder exponent equal to H.

Now that the fractional Brownian motion has been recalled, let us show
the efficiency of the WPM and LPM to approximate the Hurst index H on
numerical simulations of BH .
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Approximation of H. Let us recall that to approximate df (h), we look for
a stabilisation of the function C 7→ ν̆Cf (h). If there is no stabilisation, we set
df (h) = −∞. Let us begin with the WPM.
The WPM only approximates the increasing part of the spectrum with the

help of the function νf . Consequently, no stabilisation should be detected for
h < H and a stabilisation equal to 1 should appear for h ≥ H. Consequently,
the Hurst index H is approximated as the smallest h for which a stabilisation
equal to 1 is found. Figure 4.2 shows some stabilisations for a simulation of
the Brownian motion (i.e. H = 1/2).
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(d) h = 0.55 and lh = 343

Figure 4.2.: Function C 7→ νCf (h) for a simulation of a Brownian motion. We
search for a stabilisation on an interval I, whose the length lh
depends on h (see Section 4.2.2).

The LPM allows to approximate the increasing and the decreasing part
of the spectrum with the help of the function ν̃+

f and the function ν̃−f re-
spectively. Consequently, no stabilisation should be detected for the function
C 7→ ν̃+,C

BH
(h) if h < H, and a stabilisation equal to 1 should appear if h ≥ H.

While no stabilisation should be detected for the function C 7→ ν̃−,C
BH

(h) if
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h > H, and a stabilisation equal to 1 should appear if h ≤ H. Consequently,
the Hurst index H can be approximated in three different ways:

• as the smallest h for which the function C 7→ ν̃+,C
BH

(h) has a stabilisation
equal to 1,

• as the largest h for which C 7→ ν̃−,C
BH

(h) has a stabilisation equals 1,

• as the intersection between the functions ν̃+
BH

and ν̃−
BH

.
This three methods give similar results and this is the third method that was
chosen in the further sections. Figures 4.3 and 4.4 shows some stabilisations
for a simulation of the Brownian motion (i.e. H = 1/2).
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(b) h = 0.45, lh = 207
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(d) h = 0.55, lh = 710

Figure 4.3.: Function C 7→ ν̃+,C
f (h) for a simulation of a Brownian motion. We

search for a stabilisation on an interval I whose length lh depends
on h (see Section 4.2.2).

Remark 4.3.4. The value ν̃−,Cf (h) will always be equal to 1 if C is sufficiently
large, because we count the number of wavelet leaders that are smaller than
C2−hj . Consequently, we say that ν−f (h) is approximated by 1 if ν−,Cf (h)
equals 1 for most of the constants C > 0.
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(c) h = 0.55, lh = 710
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(d) h = 0.6, lh = 1321

Figure 4.4.: Function C 7→ ν̃−,Cf (h) for a simulation of a Brownian motion. We
search for a stabilisation on an interval I whose length lh depends
on h (see Section 4.2.2).

Data and Results. For a fixed size 2j (11 ≤ j ≤ 20), we have simulated
one hundred walks of fractional Brownian motion with a parameter H varying
between 0.2 and 0.8 by steps of 0.05. In Figure 4.5, the methods WPM, LPM
and WLM are compared. The mean and the boxplot of the distances between
the detected Hölder exponent andH, for simulations of size 2j , are represented.
The three methods give similar results. For the signals of size larger than 216,
the average value of this distance is 0.02 with the WPM and the WLM, and is
0.03 with the LPM. For the signals of smaller size, this average value is close
to 0.04 − 0.05 for the three methods. Let us notice that some signals have a
distance between the detected Hölder exponent and H larger than 0.08, for
the three methods.

Approximation of the Spectrum of B. Let us finish this section by noticing
that some stabilisations smaller than 1 can be found for h close to H. This
implies that the approximation of the spectrum is not reduced to one point.
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Figure 4.5.: For every j, the boxplot of the distances between the Hölder expo-
nent detected and H (for H varying between 0.2 and 0.8 by steps
of 0.05) of walks of fractional Brownian motion of size 2j with a
parameter H. The mean of these distances is also represented (in
black).

Figure 4.6 shows a typical example of spectrum obtained with the WPM and
the LPM for a Brownian motion. These examples show that the length of
the support of these spectra is relatively small. In fact, this length can be a
criterion to decide if a signal is monofractal or multifractal. This criterion will
be detailed in Chapter 6.

Data and Results. Let us compute the length of the support of the spectrum
on the simulations of fractional Brownian motions with the LPM. Figure 4.7
shows the mean and the boxplot of this length, as well as the smallest value
obtained for a stabilisation of the functions ν̃+

f and ν̃−f , for simulations of
fractional Brownian motions of size 2j , for j ∈ {11, . . . , 20}, with a parameter
H varying between 0.2 and 0.8 by steps of 0.05.
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Figure 4.6.: Typical approximation of the spectrum of a Brownian motion
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Figure 4.7.: For every j, the boxplot of some parameters of the LPM applied
on fractional Brownian motions of size 2j , with a parameter H
varying between 0.2 and 0.8 by steps of 0.05. The mean of these
parameters is also represented (in black).
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We see that the average of the lengths of the support of the spectrum is
close to 0.03, no matter the size of the signal. Nevertheless, some signals of
smaller size are associated to a spectrum with support of size larger than 0.06.
Moreover, the smallest value obtained for a stabilisation is on average close to
0.97.

4.3.2 A Multifractal Example with Concave Spectrum:
The Mandelbrot Cascades

The most classical function with a concave spectrum is based on the notion
of Mandelbrot cascades [100]. It models many phenomena, a lot of them
occurring in turbulence [103, 108, 8, 127].

Definition 4.3.5. Let W be a given positive random variable such that
E[W ] = 1 and let (Wε)ε∈Σ be an independent collection of copies ofW indexed
with the infinite binary tree Σ =

⋃
n≥1{0, 1}n. For any n ∈ N, the random

measure µn on [0, 1] is defined as

µn
(
[
n∑
k=1

εk
2k ,

n∑
k=1

εk
2k + 1

2n )
)

= Wε1Wε1ε2 . . .Wε1ε2...εn .

In [21], it is proved that the sequence µn converges almost surely to a Borel
measure µW on the interval [0, 1].

In the sequel, we only consider the case where the random variable W is
log-normal3. The following theorem gives the spectrum of µW in this case.

Theorem 4.3.6. [8, 21] If the law of W is log-normal with parameters µ < 0
and σ2 such that |µ|/σ >

√
2 log 2, then the spectrum of µW is given almost

surely by

dµW (h) = −(h+ µ/ log 2)2 log 2
2σ2 + 1

if h ∈ [−
√

2
log 2σ −

µ
log 2 ,

√
2

log 2σ −
µ

log 2 ].

Approximation of the Spectrum dµW . Let us recall that, for the two meth-
ods WPM and LPM, a stabilisation of the function C 7→ ν̆C(h) is searched.
Figure 4.8 represents this function, for some values of h.
The theoretical spectrum is compared with the spectrum obtained with the

WPM, the LPM and the WLM in Figure 4.9: one can see that the three
methods give a good approximation of the spectrum; let us recall that the
WPM can only approximate the increasing part of the spectrum. The WPM
and the LPM hardly detect the spectrum for small h; this problem depends on

3A random variable W is called a log-normal variable with parameters µ ∈ R and σ > 0, if
log(X) ∼ N (µ, σ2).
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(c) h = 0.6, lh = 0.1 (= 0.1cmax because the
median of (63) equals 0.03 and the median
of (62) equals 9) and ν̆f = ν̃−f
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(d) h = 0.85, lh = 0.81 (this is the median of
(63) because the median of (62) equals 259)
and ν̆f = ν̃−f

Figure 4.8.: Function C 7→ ν̆Cf (h) for a simulation of a log-normal cascade of
size 220 (µ = −0.45 log 2 and σ2 = 0.1 log 2). We search for a
stabilisation on an interval I whose length lh depends on h (see
Section 4.2.2).

the size of the signal (on average, the first h is equal to 0.03 for size 220 and 0.08
for size 215). Let us recall that these methods are based on the investigation
of the behaviour of the number of coefficients that are larger than 2−hj across
scales j. For very small h, there are not enough remaining coefficients to have
a stabilisation.

Data and Results. For a fixed size 2j (11 ≤ j ≤ 20), we have simulated fifty
log-normal cascades and computed the root-mean-square deviation (RMSE)
of each simulation. The boxplot and the mean of these RMSE are represented
in Figure 4.10. The three methods give similar results. For signals of size
larger than 217, the average value of the RMSE is close to 0.05, with the three
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methods. For the signals of smaller size, this average value is close to 0.07, for
the increasing part of the spectrum with the WPM and LPM. The WLM keeps
an average value for the RMSE close to 0.05 for the signals of size larger than
214, and this average value becomes 0.07 for the signals of size smaller than
213. Let us notice that, with the LPM, the decreasing part of the spectrum is
less well approximated than the increasing part.

4.3.3 A Multifractal Example with a linear Spectrum:
The Lévy Processes without Brownian Compo-
nent

The second multifractal example considered here is the Lévy process. It is
mostly used in the field of financial modelling, in particular for the purpose of
modelling the evolution of risky assets [119, 20, 31, 126, 121].

Definition 4.3.7. A Lévy process L = (Lx)x∈R is a stochastic process such
that

• almost surely, L0 = 0 and x 7→ Lx is right-continuous and admits a left
limit at any point,

• it has independent stationary increments.

Let us notice that the Brownian motion is thus a Lévy processes. The next
theorem shows that L is characterised with the help of three parameters.

Theorem 4.3.8. [92, 59] If L is a Lévy process, then there exists a triple
(a, σ, π), with a ∈ R, σ > 0 and π a Radon measure satisfying4

∫
R

(1 ∧ x2) dπ(x) <∞,

such that the characteristic function E(eitL) is equal to e−tφ(t), where

φ(t) = iat+ 1
2σ

2t2 +
∫
R

(1− eitx + itxχ(−1,1)(x)) dπ(x),

for any t ∈ R. Reciprocally, if the triple (a, σ, π) is defined as above, then there
exists a Lévy process L whose characteristic function is equal to e−tφ(t).

4The notation 1 ∧ x2 means

1 ∧ x2 =
{

1 if |x| > 1
x2 if |x| ≤ 1 .
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Figure 4.9.: Spectrum of the log-normal cascade (µ = −0.45 log 2 and
σ2 = 0.1 log 2). Theoretical spectrum (—), WPM spectrum (—),
LPM spectrum (—) and WLM spectrum (—). The results are
obtained with a realisation of length 2j .
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Figure 4.10.: For every j, the boxplot of the RMSE of fifty log-normal cascades
of size 2j . The mean of these RMSE is also represented (in black).
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The multifractal properties of the sample paths of a Lévy process are gov-
erned by an index β ∈ [0, 2], called the Blumenthal and Getoor lower index [29]:
if π is the measure of the previous theorem, then the index β is defined as

β = inf{γ ≥ 0 :
∫
|x|≤1

|x|γ dπ(x) <∞} = sup{0, lim sup
j→+∞

logCj
log 2j },

where
Cj =

∫
2−j−1≤|x|≤2−j

dπ(x).

The following theorem gives the Hölder spectrum of a path of a Lévy process.

Theorem 4.3.9. [64] Let L be a Lévy process satisfying β > 0 and∑
j∈N

2−j
√
Cj log(1 + Cj) < +∞.

• If L has no Brownian component (i.e. σ = 0), the spectrum of L is given,
almost surely, by

d(h) = βh,

for any h ∈ [0, 1/β].

• If L has a Brownian component (i.e. σ 6= 0), the spectrum of L is given,
almost surely, by

dL(h) =
{
βh if h ∈ [0, 1/2)
1 if h = 1/2 .

Consequently, if L has no Brownian component, the spectrum is linear and
thus is concave; if L has a Brownian component, the spectrum is not con-
cave. In this section, we treat the case of a Lévy process without Brownian
component. The case with a Brownian component will be treated in the next
section.
To simulate Lévy processes without Brownian component, the algorithm

described in [102] is used.

Approximation of the Spectrum dL. Figure 4.11 compares the theoretical
spectrum with the approximation of the increasing part of the spectrum ob-
tained with the WPM, the LPM and the WLM. The spectrum detected with
the WPM and LPM fits better the spectrum than the spectrum obtained via
the WLM. This last method tends to make a strictly concave spectrum. More-
over, the LPM seems to detect the spectrum for smaller h than the WPM.
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Figure 4.11.: Spectrum of the Lévy process without Brownian component
(β = 1.3). Theoretical spectrum (—), WPM spectrum (—),
LPM spectrum (—) and WLM spectrum (—). The results are
obtained with a realisation of length 2j .

Data and Results for the RMSE. For a fixed size 2j (11 ≤ j ≤ 20), we
have simulated fifty Lévy processes without Brownian component (β = 1.3)
and the RMSE of each simulation has been computed. The boxplot and the
mean of these RMSE are represented in Figure 4.12. For larger j, the LPM
gives clearly better results than the two others methods. For signals of size
larger than 215, the average value of the RMSE is close to 0.02 for the LPM,
while this average value is close to 0.05 (resp. 0.07) for the WPM (resp. the
WLM). For the signals of smaller size, the three methods are similar, with a
slight advantage for the LPM.

Results for the Smallest Detected Value of the Spectrum dL. It is impor-
tant to determine the smallest h for which df (h) can be approximate with the
WPM and the LPM. The boxplot and the mean of this h are represented in
Figure 4.13. We see that, for the large values of j, the LPM is clearly better
than the WPM. For the signals of size larger than 215, the first method detects
the spectrum, in average, from 0.05 , while the WPM detects from 0.09. For
the signals of smaller size, the two methods are similar, with a slight advantage
for the LPM.

Results for the (non-) Detection of the Decreasing Part of the Spectrum
dL, with the LPM. Let us finish this section by a complement on the LPM.
Since the Lévy process has a spectrum with an increasing part only, we have
only used the function ν̃+

f . However, for a real-life signal f , we do not know a
priori if the spectrum of f has a decreasing part. It is thus interesting to see
how the LPM behaves in the approximation of the decreasing part on a signal,
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Figure 4.12.: For every j, the boxplot of the RMSE of fifty Lévy processes
without Brownian component (β = 1.3) of size 2j . The mean of
these RMSE is also represented (in black).
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Figure 4.13.: For every j, the boxplot of the smaller h where the spectrum is
detected. The mean is also represented (in black).



4.3 WPM and LPM in Action: Standard Setting 111

which does not have one. For the Lévy process without a Brownian part, no
stabilisation should be detected in the function C 7→ ν̃−f (h) for h > 1/β. In
practice, we detect some stabilisation for h close to 1/β. Figure 4.14 shows
the boxplot and the mean of the distance between 1/β and the larger h for
which a stabilisation is detected, and the boxplot and the mean of the values
of this stabilisation.
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Figure 4.14.: For every j, the boxplot of the distance between 1/β and the
larger h for which a stabilisation is detected with the LPM (left),
and the boxplot and the mean of the value of this stabilisation
(right). The mean is also represented (in black).

We see that the distance between 1/β and the largest h for which a stabil-
isation is detected, is on average 0.03− 0.05. This stabilisation is on average
greater than 0.95.

4.3.4 A Multifractal Example with a Non-Concave
Spectrum: The Lévy Processes with a Brownian
Component

Let us now complete the study of the Lévy process by considering the case
where the Brownian component of the Lévy process is non-vanishing. Let us
recall that in this case, the Hölder spectrum is non-concave and, almost surely,
is equal to

dL(h) =
{
βh if h ∈ [0, 1/2)
1 if h = 1/2 .

To simulate this process, we add a Brownian motion to Lévy processes
generated in the previous section. Figure 4.15 shows a simulation of this
process.

Approximation of the spectrum dL. In Figure 4.16, we have represented
the function C 7→ ν̃+,C

f (h) (h = 0.4 and h = 0.52) for a simulation of a Lévy
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(b) with Brownian component

Figure 4.15.: Simulations of a Lévy process

process with a Brownian part. It is interesting to note that for h < 0.5, one
stabilisation is detected and corresponds to the approximation of the spectrum
at h (see Figure 4.16(a)); for h > 0.5, two stabilisations are sometimes detected
(see Figure 4.16(b)). The first one is the approximation of the spectrum
at h, and the second one seems to correspond to the Lévy process without
Brownian part used to simulate the signal. The profile methods can thus
detect the presence of several processes in a single signal. We will confirm this
observation at the end of this section.
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(b) h = 0.52 and lh = 3605.66

Figure 4.16.: Function C 7→ ν+,C
f (h) for a simulation of a Lévy process

(β = 1.3) with a Brownian motion. We search for a stabilisation
on an interval I whose length lh depends on h (see Section 4.2.2).

In Figure 4.17, we compare the spectra obtained with the WPM, the LPM
and the WLM.With the WPM and the LPM, the non-concave part is detected.
Let us notice that for a size of 216, the approximation of the spectrum obtained
with the WPM and the LPM oscillates. In Section 4.4, we give a method to
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improve the approximation of the spectrum and get rid of this oscillation. The
WLM can only detected the concave hull of the spectrum. The superiority of
the WPM and the LPM is clear.
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Figure 4.17.: Spectrum of the Lévy process with a Brownian component
(β = 1.3). Theoretical spectrum (—), WPM spectrum (—),
LPM spectrum (—) and WLM spectrum (—). The results are
obtained with a realisation of length 2j .

Data and Results. For a fixed size 2j (11 ≤ j ≤ 20), we have simulated fifty
Lévy processes with a Brownian part (β = 1.3). For each fixed j, we have
computed the RMSE of each simulation. The boxplot and the mean of these
RMSE are represented in Figure 4.18. The WPM and the LPM are obviously
better than the WLM, due to the fact that this last one gives the concave hull
of the spectrum. Let us notice that, for signals of size 211, it is very difficult
to have acceptable stabilisations for the function C 7→ νCf (h). We have less
than 15% of the signals with an acceptable stabilisation; it is thus impossible
to represent the boxplot of these signals for the WPM.

Results for the (non-) Detection of the Decreasing Part of the Spectrum
dL, with the LPM. As for the case without Brownian component, we can
look at the approximation of the decreasing part with the LPM. The results
are similar to Figure 4.14.

Detection of two Stabilisations with the LPM. Let us finish this section
by returning to Figure 4.16(b). For h > 0.5, the function C 7→ ν̆Cf (h) has
two stabilisations. The second one corresponds to the approximation of the
spectrum evaluated at h of the Lévy process without Brownian component
used to simulate the process. Figure 4.19 shows the values obtained with the
second stabilisation with the LPM.
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Figure 4.18.: For every j the boxplot of the RMSE of fifty Lévy processes which
are the sum of a pure jump process (β = 1.3) and a Brownian
motion (H = 0.5) of size 2j . The mean of these RMSE is also
represented (in black).

For a fixed size 2j (11 ≤ j ≤ 20), we have simulated fifty Lévy processes with
a Brownian part (β = 1.3). For each fixed j, we have computed the RMSE of
the distance between the value of the second stabilisation and the spectrum of
the Lévy process without Brownian part used in the simulation. The boxplot
and the mean of these RMSE are represented in Figure 4.20. Obviously, this
approximation is less good than the approximation obtained directly on the
Lévy process without Brownian component, but they remain good. The most
important is to notice than the LPM (and more generally profile methods)
can show the existence of several phenomena in a single signal.
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Figure 4.19.: Spectrum of the Lévy process with a Brownian component
(β = 1.3). Theoretical spectrum (—), LPM spectrum (—) and
the dotted points correspond to the spectrum of the Lévy process
without Brownian component. The results are obtained with a
realisation of length 220.
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Figure 4.20.: For every j, the boxplot of the RMSE between the second stabil-
isation and the spectrum of the Lévy process without Brownian
component (β = 1.3) used to simulate the Lévy process with a
Brownian component. The mean of these RMSE is also repre-
sented (in black).

4.4 Improvement of the Stability of the Func-
tion C 7→ ν̆

(C)
f (h): Better Approximation of

the Spectrum

As seen in the previous section, the approximation of the spectrum df of a
real-life signal f , is based on the research of a stabilisation of the function

C 7→ ν̆
(C)
f (h).
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It can be sometimes difficult to find such a stabilisation. The main causes
are the following: the presence of noise in the coefficients, the values of the
coefficients are not enough variable or the size of the signals is too small. In
this section, we propose a method to improve the stability, and consequently
the approximation of the spectrum.
To understand one of the problems in which the stability is difficult to get,

let us recall the simplest example of cascade: the binomial cascade.

Definition 4.4.1. The binomial cascade of parameter p ∈ (0, 1) is the only
Borel measure µ defined on [0, 1] such that

µ
(
[
n∑
k=1

εk
2k ,

n∑
k=1

εk
2k + 1

2n )
)

= p
∑n

k=1 εk(1− p)n−
∑n

k=1 εk ,

for all n ∈ N and εk ∈ {0, 1} (k ∈ {1, ..., n}).

Proposition 4.1.2 ensures the existence of a function f such that cλ = µ(λ),
for any λ ∈ Λ, and that shares the same multifractal properties than µ. We
will say that f is a binomial cascade of parameter p. The following theorem
gives the spectrum of f .

Theorem 4.4.2 ([127]). The spectrum of a binomial cascade f of parameter
p ∈ (0, 1/2) is given by

df (h) = −
(
α log2 α+ (1− α) log2(1− α)

)
,

where
α = h+ log2(1− p)

log2(1− p)− log2 p
,

for any h ∈ [− log2(1− p),− log2 p].

Approximation of the Spectrum of a Binomial Cascade: Highlighting of the
Problem. Let us use the LPM to approximate the spectrum of a simulation
of a binomial cascade f . We fix h ∈ [− log2(1− p),− log2 p] and we must thus
construct the function

C 7→ ν̃
+,(C)
f (h). (64)

Let us recall that ν̃+,(C)
f (h) is the slope of the function

j 7→
log #Ẽ+

j (C, h)(f)
log 2 ,

where #Ẽ(+)
j (C, h)(f) represents the number of wavelet leaders that are larger

than C2−hj . In the case of the binomial cascade, the wavelet coefficients cλ
take only j different values within a scale j. This implies that there are
“jumps” in the function (64). These jumps affect the existence of a (clear)
stabilisation of this function. This is illustrated in Figure 4.21.
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(b) h = 0.9 (df (0.9) = 0.888)

Figure 4.21.: Function C 7→ ν̃
+,(C)
f (h) for a binomial cascade f of parameter

p = 0.25 of size 215.

A New Method to Overcome this Problem: adding Variability. The prob-
lem comes from the fact that the values of the coefficients do not vary enough
within a fixed scale j. To overcome this problem, we propose a method that
will add variability to the values taken by the wavelet coefficients. Before
applying the algorithm explained in Section 4.2, we modify the wavelet coef-
ficients of the function f as follows: the coefficients cλ is replaced by

cλUλ, (65)

where (Uλ)λ∈Λ is an arbitrary sequence of independent random variables with
respect to the uniform probability measure on [C1, C2] with 0 < C1 < C2.

Remark 4.4.3. If f is uniformly Hölder, then the function f̃ , whose the
wavelet coefficients are defined by (65), has the same Hölder spectrum than
f . Indeed, for any x ∈ [0, 1], we have

C1d
(f)
j (x) ≤ d(f̃)

j (x) ≤ C2d
(f)
j (x),

where d(f)
j (x) (resp. d(f̃)

j (x)) is the wavelet leader of f (resp. of f̃) associated
to the dyadic cube λj(x). Consequently, we have

lim inf
j→+∞

logC1 + log d(f)
j (x)

log 2−j ≤ lim inf
j→+∞

log d(f̃)
j (x)

log 2−j ≤ lim inf
j→+∞

logC2 + log d(f)
j (x)

log 2−j .

From Theorem 1.5.17, we conclude that hf (x) = hf̃ (x), and thus the spectrum
of f is the same as f̃ .

We must now choose constants C1, C2 in order to help us to improve the
stability of the function (64). After several tests, C1 = 0.5 and C2 = 1.5 seems
to be a good choice. This is motivated by the three following reasons:
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• on average, we multiply the coefficients by 1,

• the standard deviation is not too small, which insure a sufficient vari-
ability in the values of the coefficients,

• the standard deviation is not too large, in order to not have some values
of the coefficients “totally arbitrary”, from the fact that we only have a
finite number of wavelet coefficients.

The advantage of this transformation is that we can repeat this method as
much as wanted, which allows to compute an average spectrum; this technique
improve the approximation of the spectrum.

Application of this New Method to the Binomial Cascades. Let us apply
this method to the binomial cascade. Figure 4.22 shows the function (64)
obtained when one modifies the wavelet coefficients by (65) with C1 = 0.5 and
C2 = 1.5: now, we can clearly see the stabilisation.
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(b) h = 0.9 (df (0.9) = 0.888)

Figure 4.22.: Function C 7→ ν̃
+,(C)
f (h) for a binomial cascade f of parameter

p = 0.25 of size 215.

Figure 4.23 shows the average spectrum of a binomial cascade of size 216;
the above procedure has been repeated 50 times. We clearly see that the
spectrum is concave, but the obtained spectrum is slightly shifted to the left.
For strictly concave spectra, the WLM is a good method, but our method
allows to ensure that the spectrum is concave.

Application of this New Method to the Lévy Process with a Brownian
Component. The second example showing the effectiveness of this method
is the Lévy process with a Brownian component. Let us recall that, for a
simulation of this process with a size 216, the approximation of the spectrum
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Figure 4.23.: Average spectrum obtained with LPM (—) on the binomial cas-
cade of parameter p = 0.25 of size 216, where the wavelet coeffi-
cients have been replaced by (65).

tends to oscillate around the theoretical spectrum, as illustrated in Figure 4.17.
This is because the stabilisations obtained with a signal of this size are not as
good as those with a signal of a larger size. Now, let us take the signal which
is associated to the spectrum of this figure and compute the average spectrum
obtained with the method explained in this section. Figure 4.24 shows the
new approximation of the spectrum. We clearly see that an improvement in
the approximation of the spectrum. The oscillations showed in Figure 4.17,
for a size of 216, are vanishing, while we always see the non-concave part.
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Figure 4.24.: Average spectrum obtained with LPM (—) on a Lévy process
with a Brownian component (β = 1.3) of size 216, where the
wavelet coefficients have been replaced by (65).
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4.5 Profile Methods vs WLM: Robustness of
the Method

In practice, aberrant values can appear in a signal (for example, see [41]).
These values can influence the analysis of the signal. It is important to check
the influence of such values in the algorithm presented in this chapter. This
is illustrated in this section with a disturbance of the fractional Brownian
motion. More precisely, one point of the signal is replaced by four times the
largest value of the signal (such a modification is inspired by real-life signals
[41]). We will compare here the results obtained between the WPM and the
WLM. Let us notice that the results obtained with the LPM are similar to the
WPM.
Let us recall that, theWLM approximates the Hölder exponent of a monofrac-

tal signal by the slope of the function q 7→ ηf (q), where

ηf (q) = lim inf
j→+∞

2−j
∑
λ∈Λj |dλ|

q

log 2−j .

For the fractional Brownian motion, this method gives good results (see Sec-
tion 4.1), but the function ηf is strongly modified with the disturbed signal,
as illustrated in Figure 4.25. Indeed, if one point of the signal is much larger
than the others, at each scale j, at least one wavelet coefficient is strongly
modified. As a result, the function ηf has a flat part for the largest values of
q and the slope of the increasing part does not give a correct approximation
of the Hölder exponent. For example, the WPM (resp. WLM) approximates
the Hölder exponent by 0.81 and 0.82 (resp. 0.81 and 0.87) for the fractional
Brownian motion of parameter H = 0.8 and its disruption respectively.
Figure 4.26 shows for every j, the mean and the boxplot of the distance

between the Hölder exponent detected for the fractional Brownian motion
and the exponent detected for the corresponding disturbed signal using the
WPM and the WLM. The robustness of the WPM is clear. For sizes 2j with
15 ≤ j ≤ 20, this distance is smaller than 0.01. For smaller sizes, this distance
is also very small, excepted for a few signals of size 211. By contrast, the WLM
is very disturbed. For sizes 2j with 16 ≤ j ≤ 20, the distance has the same
order of magnitude as the approximation of the exponent of the original signal
(see Figure 4.5). For smaller sizes, the exponent detected for the disturbed
fractional Brownian motion is significantly different from the true exponent.
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Figure 4.25.: Function q 7→ ηf (q). Left (resp. right) for the fractional Brow-
nian motion (resp. the fractional Brownian motion where one
point is replaced by four times the largest value of the signal) of
size 215 with H = 0.8.
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Figure 4.26.: For every j, the boxplot of the distances between the Hölder
exponent detected for the fractional Brownian motion and the
exponent detected for the corresponding disturbed signal of size
2j . The mean of these distances is also represented (in black).

4.6 Remarks about the Length of the Stabil-
isation

In practice, the choice of the constant C used to compute an approximation
of the value ν̆f (h) is very important; the computed value ν̆Cf (h) is dependent
of C and can be very different from the theoretical value ν̆(h). As already
explained, the approach used in this thesis is not to find a constant C, but
rather an interval where the values ν̆Cf (h) are close.
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As already mentioned in Section 4.2, the first approach developed during my
thesis’s years consisted in taking the greatest value among the moduli of the
wavelet coefficients (or wavelet leaders) for the length of the interval (see [46]).
This approach gives some good results but a few problems are presents:

• it is less efficient for the signals of small size,

• it is very difficult to have an approximation of ν̆f (h) for small h,

• the method is strongly influenced by aberrant values in the signal.

The idea to use h as parameter for the length of this interval has been de-
veloped for the first time in [78], in the context of Sν , with a non-parametric
gradient descent to detect the stabilisation. This last section shows that the
approach used in this chapter solves a large part of the problems encountered
with the method presented in [78]. In what follows, the approach consisting in
using the greatest value among the moduli of the wavelet coefficients for the
length of the interval is called method 1, and the approach developed in this
chapter using the median of the values (2hj |cλ|)λ is called method 2.

Approximation of the Hurst Index H. First, we compare the two approaches
to detect the Hölder exponent of the fractional Brownian motion in Fig-
ure 4.27. We clearly see that method 1 is less efficient for the smallest sizes
of the signal than method 2. For this last method, i.e. the one proposed in
this thesis, the average value of the distance between the Hölder exponent
detected and H is always smaller than 0.05, while for the first method, the
average value is close to 0.08. Moreover, with method 1, some signals are
associated to a distance larger than 0.1, while method 2 none is.

Detection of the Smallest Detected Value of the Spectrum dL. Secondly,
method 2 allows to approximate the spectrum for smaller values of h than
method 1. Table 4.1 gives the median value for the smallest detected h for a
Lévy process of size 2j . We clearly see the advantages of the suggested method
in this chapter. The value of the smallest h detected for method 1 is often
three times larger than the one for method 2.

Approximation of the Hurst Index H for a Disturbed Signal. Finally, it
is easy to convince oneself that method 1 is strongly influenced by aberrant
values in the signal, since the size of the interval is given by the largest wavelet
coefficient. To illustrate this fact, we use the same modification of the frac-
tional Brownian motion as in Section 4.5: one point of the walks of a fractional
Brownian motion is replaced by four times the largest value of the signal. In
Figure 4.28, we compare the two methods for such a signal: we clearly see the
influence of an aberrant value in the signal in method 1. This last one gives
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Figure 4.27.: For every j, the boxplot of the distances between the Hölder ex-
ponent detected and H (for H varying between 0.2 and 0.8 by
steps of 0.05) for walks of fractional Brownian motion of size 2j
with parameter H. The mean of these distances is also repre-
sented (in black).

an average value of the distance between the Hölder exponent detected and
H always larger than 0.1, and even an average value larger than 0.3 for the
signals of size smaller than 215.

Table 4.1.: The median value of the smallest h detected in a Lévy process of
size 2j (β = 1.3).
method 1 method 2 difference between the two methods

j = 20 0.26 0.09 0.17
j = 19 0.27 0.08 0.19
j = 18 0.27 0.08 0.19
j = 17 0.28 0.08 0.2
j = 16 0.3 0.09 0.21
j = 15 0.33 0.09 0.24
j = 14 0.34 0.09 0.25
j = 13 0.37 0.11 0.26
j = 12 0.43 0.13 0.3
j = 11 0.56 0.17 0.39
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Figure 4.28.: For every j, the boxplot of the distances between the Hölder
exponent detected and H (for H varying between 0.2 and 0.8
by steps of 0.05) of walks of fractional Brownian motion with a
parameter H of size 2j where one point of the walks is replaced
by four times the largest value of the signal. The mean of these
distances is also represented (in black).

4.7 Effectiveness of Profile-based Methods:
Summary

In this chapter, profile-based methods allowing to approximate the Hölder
spectrum have been presented. The main idea to approximate the spectrum
df of a real-life signal f is to look at the behaviour of the function

C 7→ ν̆Cf (h), (66)

for a fixed h > 0. If this function has a large enough stabilisation, then this one
corresponds to the approximation of df (h). If no stabilisation is detected, then
df (h) = −∞. The two profile-based methods studied in this chapter are the
WPM and the LPM. We compare their results with the classical wavelet-based
method WLM.
The monofractal case is illustrated with the fractional Brownian motion.

The three methods give good and similar approximations of the Hölder expo-
nent. Moreover, the LPM can approximate the length of the support of the
spectrum, which allows to check more effectively if the signal is monofractal.
The multifractal case is considered on three examples. The first one is a

signal with a strictly concave spectrum: a Mandelbrot cascade. The three
methods give a good approximation of the spectrum, with an advantage for
the WLM for the signals with a smaller size. Let us recall that this last
method uses a Legendre transform, which explains this advantage. Let us
notice that the decreasing part of the spectrum is less well approximated than
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the increasing part when using the LPM. The second example of multifractal
signal is a signal with a linear spectrum: the Lévy process without Brownian
part. The WPM and the LPM correctly approximate the spectrum, while the
WLM only tends to give a strictly concave spectrum. Moreover, the LPM
allows to check if the spectrum has no decreasing part. The last example is a
signal with a non-concave spectrum: the Lévy process with a Brownian part.
The WPM and the LPM correctly approximate the spectrum, and thus allow
to detect the non-concave part. The WLM only approximates the concave
hull of the spectrum. The benefits to use a profile-based method are clear on
these two last examples.
Moreover, the profile based-methods can also detect the presence of two dif-

ferent processes within the same signal f . The presence of two stabilisations
in Function (66) indicates the existence of two processes within f . This is
illustrated on the Lévy process with a Brownian component. For h > 0.5,
Function (66) has two stabilisations: a first one corresponding to the Brow-
nian motion, and the second one corresponding to the Lévy process without
Brownian part used to simulate the process. However, this last one is less
accurate than the first.
Let us notice that the approximation of the spectrum obtained with the

profile-based methods sometimes strongly oscillates around the theoretical
spectrum. To overcome this problem, a method adding variability within
wavelet coefficients is proposed. This method allows to compute an average
spectrum, which approximates the theoretical spectrum without oscillation.
This result is validated on Binomial cascades and Lévy processes.
Finally, the robustness of the profile-based methods is showed with a dis-

turbance of the fractional Brownian motion, where one point of the signal is
replaced by four times the largest value of the signal. Using the LPM, the
disturbance does not impact the approximation of the Hölder exponent, while
the WLM is no more able to correctly approximate this exponent.





Chapter 5
Multifractal Formalisms based on
Profiles in Action: Contributions
on Numerical Signals

This chapter contains numerical applications of the profile-based multifractal
formalisms. More precisely, we focus on two methods: the LPM and

the method associated to the profile νf,σ(·) , where (σ(h))h∈R is a sequence of
admissible sequences.
The two first sections are related to the LPM. The first one studies signals

with a finite number of Hölder exponents. The first signal is the most natural
case: the concatenation of two fractional Brownian motions. While the WLM
is unable to detect the Hurst index of each fractional Brownian motion, we
show that the LPM can approximate these indexes. This allows us to study
the specificity of this method in more detail, through the histograms of wavelet
coefficients, and to understand some drawbacks of the LPM. The second signal
is a numerical signal with multi-Hölder exponents based on Cantor set. We
show how the LPM behaves on this kind of signals and we show the benefits
of this method compared to the WLM. Finally, the third signal considered is
a signal having Hölder exponents according to the scales j chosen to make the
regression in the algorithm used. This kind of signals is often met in practice
(see [7, 10, 110, 40, 87, 113, 3, 42] and references therein), it is thus natural
to apply the LPM on these signals. On this first study, the LPM gives similar
results as the WLM.
The second section presents a classical method used in the literature to

create non-concave spectra: the concatenation of two multifractal processes
(see [91, 90, 19, 33] for example). More precisely, the LPM is applied on
the concatenation of two log-normal cascades. We confirm that the LPM can
detect the non-concave part of a spectrum.
Section 5.3 presents the numerical contributions of the method using the

profile νf,σ(·) . The purpose of this section is to answer the following question:
is it possible to detect the admissible sequence σ appearing in the Hölderian
behaviour? The goal is to define a method detecting the law of the iterated
logarithm on numerical simulations of the Brownian motion. For a real-life
signal, it is obviously difficult to distinguish a noise and a structured irregular

127



128 Chapter 5. Contributions on Profiles

signal. Nevertheless, with a simulation of a theoretical function, it is easier
to control the numerical instability and to have a signal with a sufficiently
large size. Consequently, it is interesting to apply the method on simulations
of these kind of signals. Moreover, this method could be helpful to study
theoretical signals, for which the Hölderian behaviour is not know. A second
application could be found in the study of processes for which one can obtain
many realisations.
The last section summaries contributions of the LPM and of the generalised

profile νf,σ(·) .
Aside from the Section 5.3 that comes from [79], the other sections using

the LPM contains some new studies that have not been published yet. This
is the first time that such a study is done with the LPM and the first results
are presented. In this chapter, the considered signals are always of size 220.
A further study will be the subject of a forthcoming article. This work is a
collaboration with S. Nicolay.
This chapter is structured as follows:

5.1. Signals with a Finite Number of Hölder Exponents 128
5.1.1. Concatenation of Two Fractional Brownian Motions 129
5.1.2. Multi-Hölder Numerical Signals based on the Cantor

Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.1.3. Hölder Exponents According to Scales . . . . . . . . 143

5.2. Concatenation of Two Log-Normal Cascades . . . . 145
5.3. Numerical Contribution of Admissible Sequences . 148

5.3.1. Detection of the Hölderian Behaviour for Functions
with Prescribed Hölder Exponent Defined by their
Wavelet Decomposition . . . . . . . . . . . . . . . . 149

5.3.2. Detection of the Khintchin Law: Brownian Motion
vs Uniform Weierstraß Function . . . . . . . . . . . 153

5.3.3. Detection of the Hölderian Behaviour for the Pro-
cesses defined in the Schauder Basis . . . . . . . . . 158

5.4. Contributions of Profile-based Methods: Summary 161

5.1 Signals with a Finite Number of Hölder
Exponents

In this section, the effectiveness of the LPM is tested on signals having a finite
number of Hölder exponents. The first example is the simplest case of the
bifractality[52, 111]: the concatenation of two fractional Brownian motions.
On this tool example, the LPM is very effective to approximate the two Hölder
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exponents if there are not too close, while the WLM is unable to distinguish
them.
The second example is based on the process defined in the Schauder Basis

presented in Section 2.5. Thanks to this process with the help of the Cantor
set, it is easily to simulate signals behave like signals with one Hölder exponent
located in the Cantor set and another outside. On this example, the contri-
bution of the LPM is clear: it shows the existence of two Hölder exponents
and it approximates the Hausdorff dimension of the Cantor set; moreover, the
Hölder exponent located outside of the Cantor set is well approximated. The
only negative issue is the approximation of the value of the exponent in the
Cantor set which is not enough precised. The WLM can only approximate
the Hölder exponent which lies outside the Cantor set but does not allow to
see the existence of an exponent in the Cantor set and even to see that the
Cantor set is related to the signal. After that, a generalisation of the Cantor
set is used to generate signals with more than two Hölder exponents.
Finally, the case of signals having Hölder exponents according to the scales

is presented. This kind of signal is often met in practice (see [7, 10, 110, 40,
87, 113, 3, 42] and references therein) and we show that the LPM gives results
similar to the WLM.

5.1.1 Concatenation of Two Fractional Brownian Mo-
tions

The first example of signals with two Hölder exponents is the concatenation
of two independent fractional Brownian motions. This is the tool example of
the bifractality. This notion is presented in [52] and can be found in real-life
signals (see [111] for example). Let us define this concatenation and then
applied the LPM.

Definition 5.1.1. Let BH1 and BH2 be two independent fractional Brownian
motions of parameters H1 and H2 respectively; the concatenation fH1,H2 of
these two processes is defined as

fH1,H2(x) =
{
BH1
x if x ∈ [0, 1/2]

BH2
x + (BH1

1/2 −B
H2
0 ) if x ∈ (1/2, 1] .

The Hölder spectrum of fH1,H2 is directly given by

dfH1,H2
(h) =

{
1 if h ∈ {h1, h2}
−∞ otherwise .

Approximation of H1 and H2. As mentioned in Section 4.3.4, when we look
at the function C 7→ ν̃Cf (h), we can see the presence of several processes within
the same signal f . In the case of fH1,H2 , the function C 7→ ν̃+,C

fH1,H2
(h) should

be
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• decreasing, if h < H1,

• have a stabilisation equal to 1 followed by a decreasing part, if h ∈ [H1, H2),

• have all its values equal to 1, if h ≥ H2.

Likewise, the function C 7→ ν̃−,CfH1,H2
(h) should be

• increasing, if h > H2,

• have an increasing part followed by a stabilisation equal to 1, if h ∈ [H1, H2),

• have all its values equal to 1, if h ≤ H1.

Figure 5.1 shows that these different cases are effectively encountered.
Let us notice that the detection of H2 with the function ν̃−fH1,H2

is difficult:
the function C 7→ ν̃−,CfH1,H2

(h) is always equal to 1 for C sufficiently large;
consequently, it is difficult to distinguish the two first cases. It is easier to
detect the third case: it suffices to get values of ν−,CfH1,H2

(h) (if it exists1) equal
to 1, for any C > 0.
The strategy is thus the following: H1 is approximated as the greatest h

such that the function C 7→ ν̃−,CfH1,H2
(h) has all its values equal to 1 and H2 is

approximated as the smallest h such that C 7→ ν̃+,C
fH1,H2

(h) has all its values
equal to 2 1.

Data and Results. This method is illustrated withH1 = 0.5−l andH2 = 0.5+l,
where l ∈ {0.01, 0.02, . . . , 0.1}. Figure 5.2(a) and 5.2(b) show the boxplot of
the distance between the smallest (resp. greatest) Hölder exponent detected
and H1 (resp. H2). We clearly see that H1 is well approximated, while H2
is less well approximated. For the most signals, the LPM approximates H1
with an error less than 0.01, while H2 is approximated with an error greater
than 0.02. These approximations are very good. However, let us notice that,
when l is small (that is H1 and H2 are close), the function ν̃+

fH1,H2
detects the

average exponent between H1 and H2 (i.e. 0.5 in our case). This is illustrated
in Figure 5.2(c).

1Let us recall that the value of ν−,Cf (h) exists only if the correlation of the points of the
function

j 7→
log #Ẽ−j (C, h)(f)

log 2
is sufficiently large (see Section 4.2.1)

2In the case of a signal f with exactly one exponent H such that df (H) = 1, the use of the
function ν+

fH1,H2
or ν−fH1,H2

to approximate H gives similar results, as already mentioned
for the fractional Brownian motion (see Section 4.1).
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Figure 5.1.: The different cases of stabilisations for the function fH1,H2 with
H1 = 0.4 and H2 = 0.6.

Statistic Study of the Histograms of Wavelet Coefficients. To understand
why the method gives the average exponent when H1 and H2 are close, let
us recall the idea of the algorithm: for any scale j, we count the number
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Figure 5.2.: Above: Boxplot of the distances between the Hölder exponent
detected with ν̃−fH1,H2

(resp. with ν̃+
fH1,H2

) and H1 (resp. H2).
Below: Boxplot of the distances between the Hölder exponent
detected with ν̃+

fH1,H2
and 0.5.

of coefficients that are greater than C2−hj ; in other words, we study the
behaviour of the histogram of coefficients at each scale j.
Figure 5.3 and Figure 5.4 show, for a fixed scale j, a few histograms of

wavelet coefficients of the fractional Brownian motions, and Figure 5.5 shows
a few of those of fH1,H2 . For these last ones, if the distance between H1 and
H2 is sufficiently large, we can infer two behaviours within the histograms:
for example, for H1 = 0.2 and H2 = 0.9, the central peak is reminiscent
of the one of the histogram of the fractional Brownian motion of parameter
H1 = 0.2, while the expanse of the basis is reminiscent of the one of parameter
H2 = 0.9. This fact is less visible with the histogram associated to H1 = 0.4
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and H2 = 0.6, and seems totally nonexistent with the one associated with
H1 = 0.48 and H2 = 0.52. Moreover, the latter seems very similar to the one
associated with H = 0.5.
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Figure 5.3.: Histogram of wavelet coefficients (cλ15,k)k∈{0,...,215−1} of a realisa-
tion of a fractional Brownian motion of parameter H of size 220.

To confirm these hypotheses, we perform the (two-sample) Kolmogorov-
Smirnov test. The null-hypothesis states that the two data samples come from
the “same distribution”3. When we perform this test with a level α = 0.05, the
test rejects the null-hypothesis when the histogram of the wavelet coefficients

3The statistic of the Kolmogorov-Smirnov test is defined as

Dn,m = sup
x

|F1,n(x)−F2,m(x)|,

where F1,n and F2,m are the two empirical distribution functions of size n and m respec-
tively. The null-hypothesis is rejected at level α if

Dn,m > c(α)
√
n+m

nm
.
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Figure 5.4.: Histogram of wavelet coefficients (cλ15,k)k∈{0,...,215−1} of a realisa-
tion of a fractional Brownian motion of parameter H of size 220.

of a fractional Brownian motion of parameterH = 0.48 is compared with those
of parameter H = 0.52; the null-hypothesis is not reject when the histogram of
wavelet coefficients of f0.48,0.52 is compared with those of a Brownian motion,
for more than 90 percent of the tests. More precisely, Figure 5.6 shows the
number of Kolmogorov-Smirnov test that cannot reject the null-hypothesis,
when the histogram of wavelet coefficients of fH1,H2 is compared with those
of a Brownian motion. We clearly see that, when H1 and H2 are close, the
distribution of the wavelet coefficients of fH1,H2 is statistically the same as the
distribution of those of a Brownian motion.

Statistic Study of cλ(w), for a fixed λ ∈ Λ. Let us recall that, in the
case of the Brownian motion, for any scale j, the sequence (cλj,k)k follows
a centred Gaussian law. Contrariwise, for a fractional Brownian motion of
parameter H 6= 1/2, this fact is not valid because of the dependence between
the coefficients. Nevertheless, for any fixed λ, the wavelet coefficient cλ from a
fractional Brownian motion follows a centred Gaussian law and, for each scale
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Figure 5.5.: Histogram of wavelet coefficients of a realisation of fH1,H2 .
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Figure 5.6.: Number of Kolmogorov-Smirnov tests that cannot reject the fact
that the distribution of the wavelet coefficients of a Brownian
motion and the distribution of those of fH1,H2 are the same. We
have do 50 Kolmogorov-Smirnov tests. The axis of the abscissa
gives the value of H1 (above) and H2 (below).
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j, the variance of cλj,k is independent of k. We can thus perform a Fisher test,
whose null-hypothesis is “two Gaussian law have the same variance” 4. Again,
a level α = 0.05 is chosen.
From the fact that this test supposes that the distributions are Gaussian,

we use the (one-sample) Kolmogorov-Smirnov test to determine the number of
signals generated for each Fisher test, to ensure the Gaussian hypothesis. After
several try, we have noticed that, if we use 30 fractional Brownian motion of
size 220 to do a Kolmogorov-Smirnov test on the 30 coefficients c15,k (k fixed),
there are less than five percents of the tests rejecting the null-hypothesis. We
have thus decided to perform the Fisher test on realisations of 30 fractional
Brownian motions, to compare the variance between the 30 wavelet coefficients
cλ15,0.25∗215 and cλ15,0.75∗215 . Theoretically, the null-hypothesis is valid and in
practice, we have noticed that more than 90 percents of the tests do not reject
the null-hypothesis.
Based on these findings, we do the same on fH1,H2 . Figure 5.7 shows the

number of Fisher tests that can not reject the null-hypothesis. When H1 and
H2 are close, the null-hypothesis is not rejecting for 90 percents of the tests. It
is thus statistically difficult to differentiate the wavelet coefficients of fractional
Brownian motions of parameter H1 and H2 in this case.

0

10

20

30

40

50

0.49
0.51

0.48
0.52

0.47
0.53

0.46
0.54

0.45
0.55

0.44
0.56

0.43
0.57

0.42
0.58

0.41
0.59

0.4
0.6

Figure 5.7.: Number of Fisher tests that can not reject the fact that the
standard deviation is the same between the wavelet coefficients
cλ15,0.25∗215 and cλ15,0.75∗215 , using 30 signals. We have perform 50
Fisher tests. The axis of the abscissa gives the value of H1 (above)
and H2 (below).

4 The statistic of the Fisher test is defined as

Z = σ2
1
σ2

2
,

where σ2
1 and σ2

2 are the two variances; if σ2
1 ≥ σ2

2 , Z follows the Fisher-Snedecor distri-
bution of parameter (n1 − 1, n2 − 1), where n1 and n2 are the sizes of the two samples.
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In conclusion, due to the statistical difficulty of differentiating the his-
tograms of the wavelet coefficients of fractional Brownian motion whose pa-
rameters are close, the LPM does not well approximate the greater exponent
H2. However, the detection of H1 is not affected by these statistical problems
and the first exponent is well approximated, even when H1 and H2 are close.

A Problem with the WLM. To close this section, let us show that the WLM
does not allow to detect neither H1 nor H2: this method behaves like if the
signal is monofractal with an exponent equals to (H1 +H2)/2. Let us take as
example H1 = 0.4 and H = 0.6. Figure 5.8 shows a typical example of the
approximation of the function ηfH1,H2

(see Section 1.7 for more details).
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Figure 5.8.: Function q 7→ ηfH1,H2
(q), with H1 = 0.4 and H2 = 0.6.

Visually, this function is clearly linear and its slope is close too 0.5. In
practice, there exists several methods to verify the linearity of this function.
The first one is to look at the correlation of the points computed and the
second one consists in performing the Taylor expansion of ηfH1,H2

at q = 0:

ηfH1,H2
(q) =

∑
p≥1

cp
qp

p! .

The coefficients c2 is often used to test the linearity of this function (see
[43, 136]). On 100 simulations, the correlation is always greater than 0.99 and
the coefficient |c2| is always smaller than 0.005. Consequently, the WLM does
not allow to approximate H1 and H2. A possible reason is that the method
computes the quantities

2−j
∑
λ∈Λj

(dλ)q.

This sum gives an average value between the coefficients corresponding to
the fractional Brownian motion of parameters H1 and those of parameters
H2, because there is the same number of coefficients for each signal in this
example.
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5.1.2 Multi-Hölder Numerical Signals based on the
Cantor Set

In this section, we use the process BH defined in Section 2.5 to create signals
with multi-Hölder exponents based on the Cantor set and its generalisations.
Let us notice that the construction of the numerical signal use a finite number
of scales j; no attempt is made to give a meaning to the process as j → +∞.
Consequently, we will talk about numerical Hölder spectrum dnf because the
(theoretical) Hölder spectrum df does not make sense in this context.
Let us recall that the process BH is defined as

BH
x = Z0F0(x) +

+∞∑
j=0

∑
λ∈Λj

2−jHλZλ2j/2Fλ(x), (67)

where the random variables Z0 and Zλ, with λ ∈ Λ, are independent real-
valued N (0, 1) Gaussian random variables, the set {F0} ∪ {Fλ : λ ∈ Λ} forms
the Schauder basis and the real numbers Hλ are defined as5 Hλ = H(k2−j),
where the function H : [0, 1] → K ⊂ (−1/2, 1/2) belongs to HK . Moreover,
we have seen in Theorem 2.5.1 that hBH (x) = H(x)/1/2, for any x ∈ [0, 1].
As indicated in the beginning of this section, a generalisation of the Cantor

set is used. Let us first recall the definition of the Cantor set (for more details,
see [50] and references therein)

Definition 5.1.2. The Cantor set C is the set of all real numbers on the unit
interval that can to be written, in base 3, using only the digits 0 and 2.

The Cantor set C can also be defined by the following construction: Let
us set C0 = [0, 1] and define Cn+1 as the set of closed intervals obtained by
removing the open middle third of each interval of Cn; the Cantor set is then
equal to

C =
⋂
n∈N
Cn.

We directly see that C has a vanishing Lebesgue measure. The following
theorem gives its Hausdorff dimension.

Theorem 5.1.3. [48] The Hausdorff dimension of the Cantor set C is given
by

dimH(C) = log 2
log 3 .

5More precisely, Hλ = Qj(k2−j) (see Section 2.5), but in practice, when the process BH is
simulated, the series of Expression (67) is replaced by a finite sum and in this case, the
values Hλ are directly replaced by H(k2−j).
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Simulation of a multi-Hölder Numerical Signal with the help of C. Let us
now create a numerical signal that behaves like a signal having two Hölder
exponents associated to different Hausdorff dimensions. Let us replace the
series in Expression (67) with a sum with index varying from 0 to 20. Moreover,
the Cantor set C is approximated by the set6

12⋂
n=0
Cn = C12.

The function H must thus be defined only on the dyadic numbers xk = k2−20,
k ∈ {0, . . . , 220 − 1}. Let us set −1/2 < h0 < h1 < 1/2 and

H(xk) =
{
h0 if xk ∈ C12
h1 otherwise . (68)

Consequently, the numerical Hölder spectrum of BH is given by

dnBH (h) =


log 2
log 3 if h = h0 + 1/2
1 if h = h1 + 1/2
−∞ otherwise

.

Figure 5.9 shows a simulation of BH , with h0 = 0.3 and h1 = 0.6.

Approximation of the Numerical Spectrum dn
BH

. Figure 5.10 shows the
typical numerical spectrum obtained with the LPM and the WLM on such a
simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.9.: Simulation of BH (with H defined as (68) with h0 = 0.3 and
h1 = 0.6)

We see that the LPM does not allow to approximate h0 (the approxima-
tion of the spectrum starts clearly before h0) but we have a level close to

6We have chosen C12 because we must have intervals of length larger than 2−20.
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Figure 5.10.: Spectrum of BH (with H defined as (68) with h0 = 0.3 and
h1 = 0.6). Theoretical spectrum (•), LPM spectrum (—) and
WLM spectrum (—). The results are obtained with a realisation
of length 220.

log 2/ log 3 and the exponent h1 is well approximated. The WLM only al-
lows to approximate h1, and looking only at the spectrum, it is impossible to
see the presence of the exponent h0, whose Hausdorff dimension is equal to
log 2/ log 3. However, the function q 7→ ηBH (q) (see Figure 5.11) shows two
linear behaviours, which correspond to the two Hölder exponents, but only h1
is correctly approximated.

−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1 2 3 4 5

d1

d2

Figure 5.11.: Function q 7→ ηBH (q) (with H defined as (68) with h0 = 0.3 and
h1 = 0.6). The slope of d1 (resp. d2) is equal to 0.595 (resp.
0.175).

Consequently, the superiority of the LPM is clear: from the fact that it can
detect non-concave spectra, it clearly shows the presence of two exponents.
Moreover, it correctly approximates the value of the spectrum at these ex-
ponents. The exponent located in the Cantor set is not well approximated
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(but the WLM does not approximate this exponent either), whereas the other
exponent is.
Remark 5.1.4. In the case h0 > h1, meaning that the point (h0, log 2/ log 3)
is located in the decreasing part of the spectrum, none of the methods allows
to detect this point; only the exponent h1 located outside the Cantor set is
detected.
Let us now use a generalisation of the Cantor set [50].

Definition 5.1.5. Let b ≥ 3 be a natural number. The b-Cantor set C(b) is
the set of all real numbers on the unit interval that can be written, in base b,
using only the digits 0 and b− 1.
The b-Cantor set C(b) can also be defined by the following construction: Let

us set C(b)
0 = [0, 1] and define C(b)

n+1 as the set of closed intervals obtained by
removing the open middle interval of length (1− 2

b )
n+1 of each interval of Cn;

the b-Cantor set is thus equal to
C(b) =

⋂
n∈N
C(b)
n .

The following theorem gives its Hausdorff dimension.
Theorem 5.1.6. [48] The Hausdorff dimension of the b-Cantor set C(b) is
given by

dimH(C(b)) = log 2
log b .

Simulation of a multi-Hölder Numerical Signal with the help of C(b). We
will combine the sets C(3) and C(10) to construct a signal that behaves like a
signal having four Hölder exponents. The set C(10) is approximated by

5⋂
n=0
C(10)
n = C(10)

5 .

The function H is defined as

H(xk) =


−0.4 if xk ∈ C

(3)
12 ∩ [0, 1/2)

0.2 if xk /∈ C
(3)
12 ∩ [0, 1/2)

−0.1 if xk ∈ C
(10)
5 ∩ [1/2, 1]

0.4 if xk /∈ C
(10)
5 ∩ [1/2, 1]

. (69)

Consequently, the numerical Hölder spectrum of BH is given by

dnBH (h) =


log 2
log 10 if h = 0.1
log 2
log 3 if h = 0.4
1 if h ∈ {0.7, 0.9}
−∞ otherwise

.

Figure 5.12 shows a simulation of BH .
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Approximation of the numerical spectrum dn
BH

. Figure 5.13 shows the typ-
ical numerical spectrum obtained with the LPM and the WLM on such a
simulation.
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Figure 5.12.: Simulation of BH (with H defined as (69))
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Figure 5.13.: Spectrum of BH (with H defined as (69)). Theoretical spectrum
(•), LPM spectrum (—) and WLM spectrum (—). The results
are obtained with a realisation of length 220.

We see again that the LPM does not allow to approximate the exponents
located in a b-Cantor set but we have two levels, each one corresponding to
the Hausdorff dimension of a b-Cantor set. Moreover, the LPM detects the
two exponents located outside of b-Cantor sets. As we look at the spectrum
obtained with the WLM, only the larger exponent is well approximated. Even
worse, when we look at the function q 7→ ηBH (q) (see Figure 5.14), we only see
two linear behaviours, exactly as in the previous case (with only the Cantor
set); it is thus impossible to see the presence of the four exponents within the
signal. Again, the largest exponent is well approximated. In conclusion, the
LPM is clearly better for this kind of signals.
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Figure 5.14.: Function q 7→ ηBH (q) (with H defined as (69)). The slope of d1
(resp. d2) is equal to 0.885 (resp. 0.03).

5.1.3 Hölder Exponents According to Scales

In practice, it is well-known that the scales j chosen to perform the regressions
are very important and influence the spectrum obtained. This fact is not
specific to the wavelet based-methods: many methods in signal analysis have
such a same specificity (see [7, 10, 110, 40, 87, 113, 3, 42] and reference therein).
For the LPM (resp. the WLM), this choice is done when we compute the slope
of the function

j 7→ log #Ẽj(C, h)(f)
log 2 (resp. j 7→ logSf (j, q)

log 2 ).

Usually, this regression is done on the “small scales” and the “large scales”,
that is the first scales and the last scales obtained when we apply the Mallat
algorithm (see Theorem 1.5.7 and 1.5.14). The functions C 7→ ν̃Cf (h) and
q 7→ η(q) can be different according to the chosen regressions. Despite the
fact that theoretically, the regressions on large scales are not connected to the
Hölder spectrum, they can help to study and to classify real-life signals. For
the WLM, it is well-known that this technique gives good results (see [40, 42]
and references therein). This section contains a first study to this approach
with the LPM.

Simulation of BH . Let us take again the process BH defined in Section 2.5.
In the previous section, we have approximated this process by replacing the
series by a finite sum (j = 0, . . . , 20) and we have constructed a function H
on the dyadic numbers. Now, let us consider the following signal:

10∑
j=0

∑
λ∈Λj

2−jH0Zλ2j/2Fλ(x) +
20∑
j=11

∑
λ∈Λj

2−jH1Zλ2j/2Fλ(x), (70)
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with H0, H1 ∈ (−1/2, 1/2). Figure 5.15 shows a simulation of this signal with
H0 = 0.1 and H1 = 0.3. This signal can be interpreted as follows: an exponent
equals to H0+1/2 is present at large scales and an exponent equals to H1+1/2
is present at small scales.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.15.: Simulation of the signal defined as (70) with H0 = 0.1 and
H1 = 0.3.

Approximation of Hölder Exponents According to Scales. Let us now com-
pare the results obtained with the LPM and the WLM on simulations of size
220. For the LPM, we have already seen that there exists three ways to ap-
proximate the Hölder exponent of a monofractal signal (see Section 4.1). In
the case of the Brownian motion, these three methods give similar results but
we have seen in Section 5.1.1 that the method which consists in taking the
largest h for which ν−,Cf (h) is equal to 1 for any C > 0, gives better results in
some cases. Again, we take this approach to approximate the Hölder exponent
with the LPM in this section.

Results. For each method, the boxplot 1 and 2 of Figure 5.16 represent the
distance between the exponent approximated and H0 (resp. H1) when the
regression is done at the largest scales (resp. the smallest scales). We see
that the two methods give similar results, with a slight advantage for the
WLM at the small scales. Moreover, we notice a large difference between the
approximation of the two exponents: the exponent associated to the large
scales is less well approximated than the other one. The exponent associated
with the small scales is approximated with an error less than 0.01 for both
methods, while the one associated with the large scale is approximate with an
average error of 0.07 with the LPM, and of 0.05 with the WLM. This difference
between the small and large scales comes from the regression. Indeed, if we
take H0 = H1 (that is a signal with the same exponent at small and large
scales) and we apply the methods by regressing only on the large scales, the
distance between the exponent approximated and H0 is given in the boxplot
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3 of Figure 5.16. We see that this boxplot is similar to the boxplot 2. The
average error is 0.05 with the LPM and is 0.03 with the WLM, which is greater
than the error at small scales.
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Figure 5.16.: Boxplot 1: distance between the exponent approximated and H1
when the regression is done at small scales on the signal defined
as (70) with H0 = 0.1 and H1 = 0.3. Boxplot 2: distance be-
tween the exponent approximated and H0 when the regression is
done at large scales on the signal defined as (70) with H0 = 0.1
and H1 = 0.3. Boxplot 3: distance between the exponent ap-
proximated and H0 when the regression is done at large scales
on the signal defined as (70) with H0 = H1 = 0.1.

In conclusion, although it is necessary to investigate further the efficiency
of the LPM to approximate exponents located at different scales, this section
shows that it can be achieved, but that the exponents detected at largest
scales is less well approximated than those at smallest scales, exactly as with
the WLM.

5.2 Concatenation of Two Log-Normal Cas-
cades

This section shows that the LPM is a suitable method to study signals ob-
tained by a concatenation of two log-normal cascades. The concatenation is
an usual method in the literature to create processes with a non-concave spec-
trum (see [91, 90, 19, 33] for example). We are interested in two aspects of
these signals: first, we study the effectiveness of the LPM to detect the two
exponents associated to the Hausdorff dimension equals 1, and secondly, the
ability of the LPM to detect the non-concave part of the spectrum.
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Definition 5.2.1. Let µW1 and µW2 be two independent measures associated
with a log-normal cascade, and fW1 and fW2 their associated wavelet series
(see Proposition 4.1.2). The concatenation fW1,W2 of these processes is defined
as

fW1,W2(x) =
{
fW1(2x) if x ∈ [0, 1/2]
fW2(2x) if x ∈ (1/2, 1] .

Using the properties of the Hausdorff dimension (see Proposition 1.2.5), we
directly obtain the following proposition, which gives the spectrum of fW1,W2 .

Proposition 5.2.2. Let µW1 and µW2 be two independent measures associated
to two log-normal cascades. The spectrum of fW1,W2 is given, almost surely,
by

dfW1,W2
(h) = sup{dµW1

(h), dµW2
(h)},

for any h ≥ 0.

Approximation of Hölder Exponents associated to the Hausdorff Dimen-
sion equals 1. Before applying the LPM to approximate this spectrum, we
use this method to approximate the two Hölder exponents associated to the
Hausdorff dimension equals 1. To do this, we use the same approach as in
Section 5.1.1: if we denote by H1 and H2 these two exponents and if we sup-
pose that H1 < H2, then H1 is approximated as the greatest h such that the
function C 7→ ν̃−,CfW1,W2

(h) has all its values equal to 1, and H2 is approximated
as the smallest h such that C 7→ ν̃+,C

fW1,W2
(h) has all these values equal to 1.

Results. As in the case of the concatenation of two fractional Brownian mo-
tions, it is not always possible to detect these two exponents. This problem
comes from histograms of wavelet coefficients that are a concatenation of two
“similar” histograms. For a few concatenations of cascades, Figure 5.17 shows
the detected exponents with the methods described above.
About the method using ν−,CfW1,W2

, we see that, when the parameters of the
two log-normal W1 and W2 are close (see the two boxplots on the right in Fig-
ure 5.17(a)), the median of the results slightly overestimates H1. Let us notice
that the average is close to 0.5, which corresponding to (H1+H2)/2. When the
parameters of two log-normal cascades are sufficiently different, the method
approximates H2 and no H1 (see the boxplot on the left in Figure 5.17(a)).
Let us explain these results.
Let us recall that the function

C 7→ ν−,CfW1,W2
(h) (71)

contains information about the functions ν−,CfW1
(h) and ν−,CfW2

(h). When H1 and
H2 are close, if h is close to these exponents, the values of ν−,CfW1

(h) and ν−,CfW2
(h)
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(a) Use of ν−fW1,W2
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Figure 5.17.: Boxplots of the approximation of the greatest h such that the
function C 7→ ν̃−,CfW1,W2

(h) has all these values equal to 1 (left)
and the smallest h such that C 7→ ν̃+,C

fW1,W2
(h) has all these values

equal to 1 (right), for simulations of fW1,W2 , where W1 is a log-
normal cascade of parameters µ1 = H1 log 2 and σ2

1 = 0.005 log 2
and W2 is a log-normal cascade of parameters µ1 = H2 log 2 and
σ2

1 = 0.005 log 2. The axis of the abscissa gives the value of
H1 (above) and H2 (below). The results are obtained with a
realisation of length 220.

exist (see Section 4.2.1 to see the criterion of existence of these values) and
thus Function (71) has information about the two processes. Consequently,
the method detects the smallest exponents h such that df (h) = 1, that is
H1. Contrariwise, in the case of the log-normal cascade µW1 of parameters
µ1 = 0.4 log 2 and σ2

1 = 0.005, the detected value of ν−,CfW1
(h) is −∞ if h is close

to 0.6. Consequently, when we superpose this cascade with the log-normal
cascade µW2 of parameters µ2 = 0.6 log 2 and σ2

2 = 0.005, Function (71)
contains only the information about the cascade µW2 , if h is close to 0.6.
Consequently, the method approximates H2 and no H1.
Concerning the method using ν+,C

fW1,W2
, when the parameters are “very close”

(see the boxplot of the right in Figure 5.17(b)), we obtain on average an expo-
nent equals 0.5, which corresponds to (H1 +H2)/2. The more the parameters
are apart, the more the method gives an exponent close to H2 (see the two
boxplots on the left in Figure 5.17(b)). This exactly what happened in Sec-
tion 5.1.1.
When we look at the approximation of the distance between H1 and H2

with H1 = 0.45 and H2 = 0.55, the average is 0.056 with a standard deviation
of 0.024, and the median is 0.07.
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Approximation of the spectrum dfW1,W2
. To finish this section, let us look

at how the LPM approximated the spectrum of fW1,W2 . Let us recall that this
method has been introduced to approximate non-increasing and non-concave
spectra. We thus choose µW1 and µW2 for which the spectrum of fW1,W2 has
a non-concave decreasing part. Figure 5.18 shows the spectra obtained with
the LPM and the WLM. For the LPM, we use the method adding variability
of Section 4.4 to approximate the spectrum.
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Figure 5.18.: Spectrum of fW1,W2 where W1 is a log-normal cascade of param-
eters µ1 and σ2

1 and W2 is a log-normal cascade of parameters
µ2 and σ2

2. Theoretical spectrum (—), LPM spectrum (—) and
WLM spectrum (—).

We clearly see the superiority of the LPM over the WLM. The second
method can only compute the concave hull of the theoretical spectrum; it is
thus impossible to detect the presence of two log-normal cascades. With this
method, one could conclude that there is only one cascade in the signal. On
the other hand, the LPM shows the existence of a non-concave part and thus
the presence of a second phenomenon in the signal. Let us notice that when
the parameters of the two log-normal cascades are apart, the non-concave part
is not detected at the right place. This is explained by the interaction between
the histograms of wavelet coefficients of two log-normal cascades, as for the
detection of the exponents presented in the beginning of this section.

5.3 Numerical Contribution of Admissible Se-
quences

In Chapter 2, three classes of signals were studied: functions with prescribed
behaviour in their wavelet coefficients, Brownian motions and multifractal
processes defined in the Schauder basis. Each of these signals has a Hölderian
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behaviour of the form of
2−hf (x)jτj ,

where τ = (τj)j∈N is an admissible sequence. This section tries to answer to
the next question: is it possible to detect numerically the admissible sequence
τ? Let us recall that Chapter 3 has presented a generalisation of the spaces
Sν with the help of admissible sequences: the Sν,σ(·) spaces. We have also
defined a generalised profile νf,σ(·) that is independent of the chosen wavelet
basis. The algorithm presented in the previous chapter make sense for this
profile.
Let us notice that the sequence τ is negligible compared with a power of 2,

in the sense that it verifies

lim
j→+∞

log τj
log 2−j = 0.

Consequently, implementing an algorithm to detect τ is a real challenge that
cannot always be achieved for the two following main reasons: signal with too
small size and numerical instability. For a real-life signal, it is very difficult to
distinguish a noise from the sequence τ . From another point of view, it is easier
to control the numerical instability and to have a signal with a sufficiently large
size when we simulate a theoretical function. In this section, we work with
simulations of size 220 for the three theoretical signals presented in Chapter 2.
In particular, we show that we can detect the Khintchin Law in simulations
of a Brownian motion. This method should help to determine an unknown
Hölderian behaviour of theoretical signals.

5.3.1 Detection of the Hölderian Behaviour for Func-
tions with Prescribed Hölder Exponent Defined
by their Wavelet Decomposition

To evaluate the efficiency of the method, let us begin with the simplest case:
functions with prescribed Hölder exponents defined by their wavelet decompo-
sition. This example allows to put an arbitrary admissible sequence directly in
the value of the wavelet coefficients. Let us recall that, ifH : [0, 1]→ K ⊂ (0, 1)
is a continuous function (K is a compact set), then we can define a function
f with the help of its wavelet coefficients as

cλ = 2−Hλjaj with Hλ = max{ 1
log j ,H(k2−j)}, (72)

and a = (aj)j∈N a strictly positive real sequence such that

lim
j→+∞

log aj
log 2−j = 0.
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In this case, we have hf (x) = H(x), for any x ∈ [0, 1] (see Section 2.1 for
more details). The presence of the sequence a does not modify the Hölder
exponent but modifies the Hölderian behaviour: f does not necessarily belong
to ΛH(x0)(x0), but rather to Λσ,M (x0), for an admissible sequence σ depending
on a. The goal of this section is to show that the correction a can be detected
using numerical simulations, with the help of the algorithm presented in the
previous chapter applied on νf,σ(·) .

Simulation. In order to perform a statistical study of the results and to
improve of the stability required by the algorithm, we replace the wavelet
coefficients 2−Hλjaj appearing in Equality (72) by

cλ = 2−HλjajUλ, (73)

where each Uλ (λ ∈ Λ) is chosen independently with respect to the uniform
probability measure on [0.5, 1.5], as explained in Section 4.4. In the sequel, the
coefficients aj will be defined by aj = w(2−j), where w is a function belonging
to the set

W := {h 7→ 1, h 7→
√
| log | log h−1||, h 7→ | log | log h−1||, h 7→

√
| log h−1|}.

This choice is not arbitrary and comes from of the Khintchin law of the iterated
logarithm; indeed, in the following section, we want to show that we can detect
the Khintchin law on simulations of the Brownian motion, we thus choose
analogous corrections w involving a logarithm to test the method. Finally, let
us define the set

Σ := {h 7→ (2−hjw(2−j))j∈N : w ∈ W}.

Let us begin with a toy example to check the method associated to νf,σ(·) .

A Toy Example. Let us begin with the simplest case.

Proposition 5.3.1. Let n ≥ 1 and τ = (τj)j an admissible sequence. Let us
set

0 = x0 < x1 < · · · < xn = 1, 0 < b0 < · · · < bn−1 < 1,

and let us define the function H by

H(x) = bi, if x ∈ [xi, xi+1).

If there exists ε′ > 0 such that for any 0 < ε < ε′, there exists J ∈ N such that

2−εjτj ≤ aj , (74)
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for any j ≥ J , then we have

νf,σ(·)(h) =
{

1 if h ≥ b0
−∞ else ,

where σ(·)
j = 2−·jτj. If Condition (74) is not satisfied, we have

νf,σ = −∞.

Proof. Indeed, if τj satisfies Condition (74) then, for any dyadic interval λ ∈ Λ
such that λ ⊂ [x0, x1[, we have

|2−Hλjaj | ≥ 2−j(a+ε/2)aj = 2−j(a+ε)2jε/2aj ≥ 2−j(a+ε)τj ,

for j large enough. The conclusion follows. �

Let us notice that the Hölder spectrum of f is given by

df (h) =
{

1 if h = bi for some i ∈ {0, . . . , n− 1}
−∞ else ,

and the wavelet profile of f is given by

νf (h) =
{

1 if h ≥ b0
−∞ else .

Consequently, the smallest h such that νf (h) = 1 is the same as the small-
est h such that νf,σ(h) = 1, if σ(·)

j = 2−·jτj with an admissible sequence τ
satisfying Condition (74). In this case, it is not possible to differentiate the
corrections τ1 = (

√
log 2j)j and τ2 = (

√
log | log 2j |)j for example. This result

is only valid in theory, because it is based on the fact that the number of avail-
able scales j is infinite. However, when dealing with real-life signals, we only
have access to a finite number of scales j. Therefore, the value of the threshold
J appearing in Condition (74) is primordial, since the scales j smaller than J
can be influenced by the presence of the sequence τ . Let us illustrate on two
examples.

Data and Results of Signals of Proposition 5.3.1 with n = 1. The simplest
case is the monofractal case, where H(x) = H ∈ (0, 1). We have computed
20 simulations of the wavelet coefficients (cλ)λ∈Λj ,j∈{0,...,20} defined as in (73),
for each H ∈ {0.3, 0.35, . . . , 0.7} and for each function w ∈ W. Given a
simulation and σ(.) ∈ Σ, the smallest h for which νf,σ(.)(h) = 1 has been
computed. Figure 5.19 shows, for each function w and each σ(.), the boxplot
of the distance between H and the detected h (i.e. the absolute value of their
difference).
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Figure 5.19.: Boxplot of the distance between H and the smallest h such
that the profile evaluated in h equals 1. The left boxplot cor-
responds to the profile νf , and the three others correspond to
the generalised profile νf,σ(·) , with σ(α)

1 = (2−αj
√

log log 2j)j∈N,
σ

(α)
2 = (2−αj log log 2j)j∈N and σ(α)

3 = (2−αj
√

log 2j)j∈N.

Clearly, the best approximation of the Hölder exponent is obtained with the
method associated to the logarithmic correction used for building the signal.
As a consequence, such a method allows to detect the right logarithmic correc-
tion in the signal, since other approximations lead to less precise estimations
of the Hölder exponent.

Data and Results of Signals of Proposition 5.3.1 with n = 2. Let x1 = 0.5;
for each b0 ∈ {0.2, 0.25, 0.3, 0.35}, b1 ∈ {0.65, 0.7, 0.75, 0.8} and each func-
tion w ∈ W, we have computed 20 simulations of the wavelet coefficients
(cλj,k)j∈{0,...,20},k∈{0,...,2j−1} defined as in (73). As in the previous case, for
each simulation and each σ(.) ∈ Σ, the smallest h for which νf,σ(.)(h) = 1
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has been computed. Figure 5.20 shows, for each function w and each σ(.),
the boxplot of the distance between b0 and the detected h (i.e. the absolute
value of their difference). Once again, the method involving the appropriate
logarithmic correction clearly displays the best results.
Let us notice that in the case w : h 7→

√
| log h−1|, the lengths of the boxplots

corresponding to the methods associated to the profiles νf (i.e. the WPM) and
νf,σ1 are very large. A deeper analysis of the results shows a problem with
the simulated signals if b0 and b1 are too close from each other. This case
has already been encountered with the LPM in Section 5.1.1 and 5.2. The
interesting fact is that there is no problem with the method using the proper
correction.

Another Multifractal Example. Let us end this section with a last multi-
fractal example. Let a, b, c be real numbers belonging to (0, 1), with a < c,
and consider the function H explicitly defined by

H(x) =
{

c−a
b x+ a if x < b
c if x ≥ b . (75)

Data and Results. For each a ∈ {0, 0.1, . . . , 0.5}, b ∈ {0.1, 0.2, . . . , 0.5},
c ∈ {0.2, 0.3, . . . , 0.8} (a < c) and for each function w ∈ W, we have computed
20 simulations of the wavelet coefficients (cλj,k)j∈{0,...,20},k∈{0,...,2j−1} defined
as in (73) and for each simulation and each σ(.) ∈ Σ, the smallest h for which
νf,σ(·)(h) = 1 has been computed. Figure 5.21 shows, for each function w and
each σ(.), the boxplot of the distances between c and the detected h (i.e. the
absolute value of their difference).
As expected, the method using the proper correction displays the best esti-

mation.

5.3.2 Detection of the Khintchin Law: Brownian Mo-
tion vs Uniform Weierstraß Function

We show here that the generalised Sν spaces allow to detect a statistical
difference between the Hölderian behaviours of the Brownian motion and the
uniform Weierstraß function. Moreover, the Khintchin law can be detected.
Let us recall that the sample path B = (Bx)x∈R of a Brownian motion

belongs to the Hölder space Λ1/2−ε(R) almost surely for any ε > 0, but not to
Λ1/2(R). On the other hand, the Weierstraß function

W (x) =
∞∑
n=0

1
2n cos(22nxπ)

belongs to Λ1/2(R) (but not to Λ1/2+ε(R) as soon as ε > 0). As a consequence,
the Hölder exponents of both B and W are equal to 1/2. However, we have
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Figure 5.20.: Boxplot of the distance between H and the smallest h such
that the profile evaluated in h equals 1. The left boxplot cor-
responds to the profile νf , and the three others correspond to
the generalised profile νf,σ(·) , with σ(α)

1 = (2−αj
√

log log 2j)j∈N,
σ

(α)
2 = (2−αj log log 2j)j∈N and σ(α)

3 = (2−αj
√

log 2j)j∈N.
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Figure 5.21.: Boxplot of the distance between c and the smallest h such that
the profile evaluated in h equals 1. The left boxplot corre-
sponds to the profile νf , and the three others correspond to
the generalised profile νf,σ(·) , with σ(α)

1 = (2−αj
√

log log 2j)j∈N,
σ

(α)
2 = (2−αj log log 2j)j∈N and σ(α)

3 = (2−αj
√

log 2j)j∈N.

seen that the generalised Hölder spaces give additional information: B belongs
to Λτ (R), with τ = (2−j/2

√
log 2j)j∈N (see Chapter 1 for more details). The

Khintchin law of the iterated logarithm (see Theorem 2.3.6) implies that B
belongs, almost surely, to the generalised pointwise Hölder space Λσ,0(x), with
σ = (2−j/2

√
log log 2j)j∈N. Moreover, Chapter 2 has studied more in details

the wavelet leaders of a Brownian motion. We have seen in Theorem 2.4.1
that, almost surely, for almost every x ∈ R, x is a leader-ordinary point, that
is

0 < lim sup
j→+∞

dj(x)
2−j/2

√
log j

< +∞.

In other words, the wavelet leaders dj(x) behave like 2−j/2
√

log j, as j → +∞;
there is thus a logarithmic correction in the behaviour of the wavelet leaders.
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The generalised wavelet profile νf,σ(·) is defined with the wavelet coefficients,
and no the wavelet leaders. Nothing guarantees that it is possible to detect
the logarithmic correction with this profile. However, by analysing the results
of Chapter 2, we notice that the scale j′ of the wavelet coefficient cλ′ inducing
the logarithmic correction in the behaviour of the wavelet leader dλj,k is such
that, the smaller the size of the support of the wavelet is, the closer j′ from j
is. It is thus reasonable to test the method with νf,σ(·) .
In the future, we should be defining a generalisation of the profiles ν̃+

f and
ν̃−f in the same way as νf (namely replacing the sequence (2−hj)j∈N by an
admissible sequence with good properties). The independence of the chosen
wavelet basis of this generalisation is still not proven, but considering the work
done on Sν,σ(·) , it is reasonable to think that this property is still valid. When
all the theoretical results will be established, it will be interesting to test this
new method on the simulations of this section, to confirm the detection of the
Khintchin Law.
Let us now define the function with which the Brownian motion is compared:

the uniform Weierstraß function [58].

Definition 5.3.2. Let a, b be two real numbers such that 0 < a < 1 < b,
with ab ≥ 1, and let (Un)n∈N be an arbitrary sequence on independents ran-
dom variables with respect to the uniform probability measure on [0, 1]. The
uniform Weierstraß function of parameters (a, b) is defined as

W (x) =
+∞∑
n=0

an cos((bnx+ Un)π),

for any x ∈ R. In other words, this process is the classical Weierstraß function
coupled with an uniform random phase.

It is straightforward to check that the Hölder exponent of this process is
almost surely the same as the Hölder exponent of the classical deterministic
Weierstraß function, i.e. it is equal to − log(a)/ log(b). Moreover it belongs
almost surely to Λ− log(a)/ log(b)(R); as a matter of consequence, there is no
logarithmic correction in such a process. Figure 5.22 represents a simulation
of a Brownian motion and a uniform Weierstraß function. Visually, there is
little to no perceptible difference between these two representations. Since
the Hölder regularity of these processes is the same, the usual multifractal
formalisms cannot differentiate them. Let us now show that the method pre-
sented above allows to catch the logarithmic correction which distinguishes
these two processes.

Data and Results. We have computed 20 simulations of size 220 of a uniform
Weierstraß function of parameters (a, b), for each a ∈ {0.65, 0.7, . . . , 0.85} and
b = exp(− log(a)/0.5). For each Brownian motion, each uniform Weierstraß
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Figure 5.22.: Simulation of a Brownian motion (left) and a uniform Weierstraß
function (right) of parameters (0.8, 1.5625); the Hölder exponents
are equal to 1/2.

function and each σ(.) ∈ Σ, the smallest h for which νc,σ(.)(h) = 1 has been
computed. Figure 5.23 shows, for each function w and each σ(.), the boxplot
of the distances between 1/2 and the detected h (i.e. the absolute value of
their difference).
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Figure 5.23.: Boxplot of the distance between 1/2 and the smallest h such
that the profile evaluated in h equals 1. The left boxplot cor-
responds to the profile νf , and the three others correspond to
the generalised profile νf,σ(·) , with σ(α)

1 = (2−αj
√

log log 2j)j∈N,
σ

(α)
2 = (2−αj log log 2j)j∈N and σ(α)

3 = (2−αj
√

log 2j)j∈N.

In the case of the Brownian motion, the method using the correction

σ
(α)
1 = (2−αj

√
log log 2j)j∈N
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displays a significant difference from the other ones. This is in agreement
with the Khintchin law of the iterated logarithm. In the case of the uniform
Weierstraß functions, the Wavelet Profile Method is better than the other
ones. One can conclude that there is no logarithmic correction in this process.

5.3.3 Detection of the Hölderian Behaviour for the
Processes defined in the Schauder Basis

This last section uses again the process BH
. defined in Section 2.5. Propo-

sition 2.5.2 shows that there is surely a logarithmic correction, as for the
Brownian motion.

Simulation of a First Class of Multifractal Signals. The first example con-
sists in defining the function H as follows: let us set −1/2 < b0 < b1 < 1/2
and

H(xk) =
{
b0 if xk ∈ (−1/2, 0]
b1 if xk ∈ (0, 1/2) ;

before going further, we define a second sequence (H ′(xk))k∈{0,...,220} by shuf-
fling by blocks of length 10 the original sequence (H(xk))k∈{0,...,220}. The
shuffle by blocks is important to numerically maintain the multifractal prop-
erties of the original signal. This allows to have a signal with two Hölder
exponents distributed on [0, 1] which cannot be divided into two monofractal
signals. Figure 5.24 simulations with unshuffled and shuffled H.
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(a) Unshuffled H.
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(b) Shuffled H.

Figure 5.24.: Simulation of the signal BH
. with b0 = −0.2 and b1 = 0.2.

Data and Results. We have computed 20 simulations of the function BH
.

(with shuffled H), for each b0 belongs to {0.2, 0.25, 0.3, 0.35, 0.4} and for each
b1 belongs to {0.6, 0.65, 0.7, 0.75, 0.8}. For each simulation and each σ(.) ∈ Σ,
the smallest h for which νc,σ(.)(h) = 1 has also been computed. Figure 5.25
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shows, for each σ(.), the boxplot of the distance between b0 and the detected
h (i.e. the absolute value of their difference).
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Figure 5.25.: Boxplot of the distance between b0 and the smallest h such
that the profile evaluated in h equals 1. The left boxplot cor-
responds to the profile νf , and the three others correspond to
the generalised profile νf,σ(·) , with σ(α)

1 = (2−αj
√

log log 2j)j∈N,
σ

(α)
2 = (2−αj log log 2j)j∈N and σ(α)

3 = (2−αj
√

log 2j)j∈N.

The method using the correction σ
(α)
1 = (2−αj

√
log log 2j)j∈N displays re-

sults clearly more accurate than the other ones.

Simulation of a Second Class of Multifractal Signals. To end this section,
let us introduce a last multifractal example. We use again the function H
defined as in (75) with a translation of 1/2 down; again, we shuffle by blocks
of length 10 the function as explained above. Let us recall that the shuffle by
blocks is important to numerically maintain the multifractal properties of the
original signal. Figure 5.26 shows simulations with unshuffled and shuffled H.

Data and Results. For a = 0, b = 0.1 and for each c ∈ {0.2, 0.3, 0.4}, we
have computed 20 simulations of the function BH

. with H both shuffled by
blocks and unshuffled. For each simulation and each σ(.) ∈ Σ, the smallest h
for which νc,σ(.)(h) = 1 has been computed. Figure 5.27 shows, for each σ(.),
the boxplot of the distance between c and the detected h (i.e. the absolute
value of their difference).
In the case where H is not shuffled, the method using the correction

σ
(α)
1 = (2−αj

√
log log 2j)j∈N

displays again the best estimation. In the case where H is shuffled by blocks,
the distinction between the method associated with σ(α)

1 = (2−αj
√

log log 2j)j∈N



160 Chapter 5. Contributions on Profiles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Unshuffled H.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 5.26.: Simulation of the signal BH
. with a = 0, b = 0.1 and c = 0.3.
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Figure 5.27.: Boxplot of the distance between c and the smallest h such
that the profile evaluated in h equals 1 (a = 0 and b = 0.1).
The left boxplot corresponds to the profile νf , and the
three others correspond to the generalised profile νf,σ(·) , with
σ

(α)
1 = (2−αj

√
log log 2j)j∈N, σ(α)

2 = (2−αj log log 2j)j∈N and
σ

(α)
3 = (2−αj

√
log 2j)j∈N.

and the one associated with σ(α)
2 = (2−αj log log 2j)j∈N is less visible. An ex-

planation could come from the fact that the wavelet coefficients associated to
the most irregular points (i.e. the points with a Hölder exponent closer to 0)
are disturbed because of the shuffling.
For b = 0.1, a ∈ {0.1, 0.2, . . . , 0.8} and c = a + 0.1, we have computed 20

simulations of the function BH
. with H both shuffled by blocks and unshuffled.

For each simulation and each admissible sequence σ(.) ∈ Σ, the smallest h for
which νc,σ(.)(h) = 1 has been computed. Figure 5.28 shows for each admissible
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sequence σ(.), the boxplot of the distance between c and the detected h (i.e.
the absolute value of their difference). In both cases, the method using the
correction σ(α)

1 = (2−αj
√

log log 2j)j∈N clearly gives the best results.
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Figure 5.28.: Boxplot of the distance between c and the smallest h such
that the profile evaluated in h equals 1 (a = 0 and b = 0.1).
The left boxplot corresponds to the profile νf , and the
three others correspond to the generalised profile νf,σ(·) , with
σ
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2 = (2−αj log log 2j)j∈N and
σ

(α)
3 = (2−αj

√
log 2j)j∈N.

5.4 Contributions of Profile-based Methods:
Summary

In this chapter, contributions of profile-based methods are presented. The first
part of this chapter uses the LPM. For a real-life signal f , the first main issue
developed here is the detection of Hölder exponents h such that df (h) = 1. Let
us recall that, for a fixed h > 0, the LPM uses two functions to approximate
df (h):

C 7→ ν̃−,Cf (h) and C 7→ ν̃+,C
f (h). (76)

As already seen in the previous chapter, if several processes exist within the
signal f , Functions (76) can contain information about these processes. For
example, if f is the concatenation of two independent fractional Brownian
motions of parameters H1 and H2, then if h ∈ (H1, H2), within Functions (76),
we have a first part which is increasing or decreasing and a second part with a
stabilisation equal to 1. Consequently, in such cases, we can approximate two
Hölder exponents such that df (h) = 1: a first one which is the greatest h such
that the first function of (76) has all its value equal to 1, and a second one
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which is the smallest h such that the second function of (76) has all its value
equal to 1. If the distance between the approximation of these two Hölder
exponents is significantly different from 0, then the signal has at least two
Hölder exponents h such that df (h) = 1.
In the particular case of the concatenation of independent two fractional

Brownian motions, the two Hurst indexes are well approximated: the small-
est index is detected with the first function of (76), and the greatest one is
detected with the second function of (76). The same detection is done on
the concatenation of two independent log-normal cascades. The use of this
method on these two examples highlights the link between the ability of the
LPM to approximate df (h) and the statistical behaviour of the histograms of
wavelet coefficients on a fixed scale j. For signals for which it is statistically
impossible to see two constituting processes from the wavelet coefficients, the
LPM has difficulties to detect these processes. As a consequence, the precision
in the approximation of the spectrum is negatively impacted.
This chapter also confirms the ability of the LPM to approximate non-

concave spectra. For example, it can detect the non-concave part of the spec-
trum of the concatenation of two independent log-normal cascades. Moreover,
this ability allows the LPM to approximate the Hausdorff dimension dimH of
sets of points Ef (h) sharing the same Hölder exponent h with dimHEf (h) < 1,
when the signal is composed of a finite number of Hölder exponents h. How-
ever, it cannot approximate the value of these exponents. This fact is illus-
trated with the help of the Cantor set and its generalisations.
These results show that the LPM is a good method to study the kind of sig-

nals presented above, compared to the WLM which is unable to distinguish the
two Hurst indexes in the concatenation of two independent fractional Brow-
nian motions, the non-concave part of the concatenation of two independent
log-normal cascades and to detect the Cantor set when it is related to the
regularity of the function.
Moreover, it is usual in practice to perform two regressions when applying

a multifractal formalism: one corresponding to the smallest scales and the
second corresponding to higher scales (see Chapter 6). We show that the LPM
can compute the exponents related to largest scales, with an approximation
of the same order of magnitude as with the WLM. Let us notice that these
exponents are less well approximated than those at smallest scales, and thus
their interpretation on real-life signals must be done carefully.
The last part of this chapter presents a use of the generalised profile νf,σ(·) ,

defined in the context of the spaces Sν,σ(·) which are a generalisation of the
spaces Sν with the help of the admissible sequences. Let us recall that the
asymptotic behaviour of ||f − Px0 ||L∞(B(x0,2−j)) is of the form

σj = 2−hj(x0)τj ,
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where τ = (τj)j∈N is an admissible sequence which is negligible compared
to (2j)j∈N. On simulations of theoretical signals of size 220, we can de-
tect the sequence τ within the Hölderian behaviour. More precisely, com-
paring the obtained approximation of the Hölder exponent with the gener-
alised profiles associated to the sequences σ whose correction τ belongs to
{(
√

log log 2j)j∈N, (log log 2j)j∈, (
√

log 2j)j∈N}, we see that the profile associ-
ated with the corresponding correction of the Hölderian behaviour gives the
best approximation. This allows to detect the Khintchin Law on simulations
of the Brownian motion. Let us notice that, for real-life signals, it is very
difficult to distinguish a noise from the sequence τ . Nevertheless, the method
associated to the generalised profile νf,σ(·) should help to detect an unknown
Hölderian behaviour in theoretical signals for which the noise can be min-
imised. A second application could be found in the study of processes for
which one can obtain many realisations.





Chapter 6
Study of the Fractal Structure
of Mars’ Topography (< 15 km)

This chapter studies the fractal structure of Mars’ topography. The surface
roughness of Mars is an intensively studied subject within the scientific

community (see [3, 85, 87, 95, 112, 113, 123, 125, 118, 114, 5] for example).
Identifying the best possible landing sites for rovers or future manned missions
and finding out the geophysical processes that shape the face of the planet are
among the most common reasons to analyse Mars’ topography.
These studies usually reveal two distinct scaling regimes in the topography

of Mars (one at small scales, the other at larger scales), while the scale break
varies from one work to another. The Hölder exponents (usually called in
physics the power-law exponents or Hurst exponents) associated with these
scaling laws, appear to differ according to the region considered for the study
(cratered terrains, smoother plains, ice cap, etc.) but some common features
can still be noticed among the different works. These exponents are sometimes
used to claim that Mars’ topography is a monofractal or multifractal field,
which may depend on the definition of mono- or multifractality adopted by
the authors.
Moreover, the studies mentioned above examine one-dimensional (1D) along-

track series following North-South trajectories or some different regions that
display distinct features (craters, plain, ice cap, etc.) but without an analy-
sis of the whole surface of Mars. This implies that the two-dimensional (2D)
nature of the topographic field has not been taken into account. For this
reason, we began in 2016 a complete study of the roughness of Mars in 1D
and 2D, published in [42]. More precisely, we took global longitudinal and
latitudinal topographic profiles into account, and perform a thorough local
two-dimensional analysis which keeps the 2D aspect of the data. We also
showed that such an analysis allows to recover the main features of the sur-
face of Mars. So far as we know, this was the first complete study of the
planet Mars in 2D. The method used was the WLM; at that time, the LPM
was not yet fully operational. Moreover, one of our goals was also to con-
vince researchers that the wavelet-based methods are suitable candidates for
the study of scaling properties of planetary surfaces. Before publishing this
article, we have presented a preliminary 1D study in the conference [41].
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The goal of this chapter is to complement this previous study with the LPM,
and to show that the simultaneous use of the WLM and the LPM allows to
get additional information about the fractal nature of signals. The complete
study of the roughness of Mars at small scales with the WLM is presented and
we do a similar study with the LPM. We have shown in [42] that a scale break
occurs at ≈ 15 kilometers; this is in good agreement with [3, 87, 95]. This
implies that, in order to study the roughness of Mars at small scales, the first
five scales j are sufficient to perform the study with a wavelet-based method.
A study at larger scales is presented in [42] with the WLM. Such a study
has not been performed yet with the LPM. The main reason is, as already
mentioned in Section 5.1.3, that this kind of study is more delicate, since the
exponents detected at larger scales are less well approximated than those at
smallest scales. Before using the LPM at larger scales on real-life signals, it is
necessary to further investigate the efficiency of this method for such scales,
by looking at the influence of the size of the signal on the approximation of the
exponents. Section 5.1.3 shows however that the first results are promising.
The first section presents a state of the arts on the study of the planet Mars,

and the data used for our analysis. The second section presents the complete
study done with the WLM at small scales. As mentioned above, each method
uses a different criterion to sort the mono- and multifractal signals. In [42], the
criterion used is the linear correlation coefficient of the points of the function
q 7→ ηf (q) (see Section 1.7). However, following a talk with A. Arneodo, it has
become clear that this criterion is not optimal for several reasons: it is strongly
influenced by the interval in which q varies, and by a few extreme values of
the wavelet coefficients. It has been shown in Section 4.5 that these extreme
values, that are present in the signals related to the topography of Mars [40],
modify the behaviour of ηf (q). Moreover, we have seen in Section 5.1.1 that
the WLM tends to not see the multifractality in some cases. Consequently, it
is more difficult to know if the value of the linear correlation coefficient of the
points (q, ηf (q)) reflects the fractal behaviour of f , or the presence of extreme
values of wavelet coefficients. For the same reasons, the coefficient c2 of the
Taylor expansion of ηf is not necessarily a better choice; in the case of the
planet Mars, it gives similar results as the linear correlation coefficient. For
these reasons, this section presents the correlation as a parameter of the WLM
allowing another classification of signals than the usual mono- and multifractal
distinction. Indeed, this coefficient remains important, since we can link it to
some physical properties of the topography of Mars.
It is possible to refine the computation of the function ηf , for example by

removing the extreme values of the wavelet coefficients, but this requires a
preprocessing before using the WLM. We prefer an approach requiring fewer
manipulations of the data. The LPM allows precisely to proceed without
this kind of manipulations, given its robustness (see Section 4.5). Therefore
Section 6.3 gives a methodology to study real-life signals with the LPM, and
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more precisely a criterion to distinguish the mono- and multifractality. This
method is applied on the longitudes and the latitudes of the planet Mars.
In addition to present an answer to A. Arneodo’s issue, this section shows
that the LPM can be successfully applied to real-life signals, and it is thus
a suitable candidate for the study of scaling properties of planetary surfaces.
This section ends with presenting a 2D study of the roughness of Mars with
the LPM. This analysis allows to have additional information about the local
properties of the regularity of Mars.
The results presented in Section 6.2 are a collaboration with A. Deliège and

S. Nicolay and have been published in [42]. The results presented in Section 6.3
are a collaboration with S. Nicolay and L. Reynaerts, and they are a part of a
work in progress that will be the subject of a forthcoming article. Computa-
tional resources have been provided by the “Consortium des Équipements de
Calcul Intensif” (CÉCI), funded by the “Fonds de la Recherche Scientifique
de Belgique” (F.R.S.-FNRS) under Grant No. 2.5020.11.
This chapter is structured as follows:

6.1. State of the Arts and Data . . . . . . . . . . . . . . . 167
6.2. A Complete Study of the Roughness of Mars in

1D and 2D with the WLM (< 15 km) . . . . . . . . 169
6.2.1. WLM in Practice . . . . . . . . . . . . . . . . . . . . 169
6.2.2. Results for the One-Dimensional Analysis . . . . . . 170
6.2.3. Results for the One-Dimensional Analysis: Localisa-
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6.2.5. Results for the Two-Dimensional Analysis: Detec-
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6.3.3. Results for the Two-Dimensional Analysis . . . . . . 184

6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 190

6.1 State of the Arts and Data

In this section, a short review is given concerning the scaling properties of
Mars’ topography, obtained during the past two decades. Numerous works
about the scaling properties of Mars’ topography have been conducted using
several tools, such as median differential slopes [85, 118], root mean square
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(RMS) slope and deviation [114], wavelets [95], power spectral density (PSD)
[3] and statistical moments [87] [123]. Let us first note that the power-law
exponent β obtained with the PSD method is related to the Hurst (scaling)
exponent H obtained with other methods as β = 2H + 1 [87, 114]. From now
on, β will be automatically replaced by H = (β− 1)/2, so that only H is used
to facilitate comparisons.
The value of the exponent H obviously depends on the scales chosen and

these scales vary from one work to another. The first study using the PSD
method [3] displays two different regions of Mars: a cratered one and a smooth
one. The power spectrum of both sites display a power-law withH ≈ 1.2 (< 10
km). Such results are in agreement with those obtained in [95] on the analysis
of Mars polar topography. Using the variance of a wavelet transform of the
data, it appears that H ≈ 1.25 (< 24 km). A study of the whole gridded
surface of Mars using the PSD was later carried out in [112], where statistical
confirmation of the different scaling regimes is brought. It is suggested that
H ≈ 1.4 (< 3.3 km). One can see that, even tough there are common features
between these works, there seems to be no consensus on the value of H.
Slightly different results are found when other methods are used. For exam-

ple, authors in [114] use the RMS deviation to compute the Hurst exponent
of 30-kilometers long profiles and so covering the planet with small grids. It
appears that the distribution of the exponents H follows a Weibull distribu-
tion with mean 0.7. In the same spirit, authors in [113] computed generalised
structure functions (based on surface elevation increments) of order 1 to 12
related to nine distinct sites on Mars which led to exponents H ≈ 0.75− 0.9.
More recently, in [87], a multifractal formalism based on the statistical mo-
ments of several orders relying on Haar fluctuations was used. It turns out
that this computation of H gives H ≈ 0.76 (< 10 km).
Consequently, drawing on these works on the surface roughness of Mars, it

seems that PSD-based and wavelet-based methods and those relying on (some
kinds of) statistical moments of fluctuations display an exponent H ≈ 1.2−1.4
with the former methods and H ≈ 0.7− 0.9 with the latter (< 25 km).
In this chapter, we use one of the topographic maps generated from the

Mars Orbiter Laser Altimeter (MOLA) Mission Experiment Gridded Data
Records (MEGDRs) [124], which are global topographic maps of Mars created
by combining altimetry values from the PEDR data acquired over the entire
MGS mission (about 600 million measurements). These data are collected
during the Mars Global Surveyor mission from 1997 to 2001. MEGDRs are
available at 4, 16, 32, 64 and 128 pixels per degree and are available at

http://pds-geosciences.wustl.edu/missions/mgs/megdr.html.

In order to have as many scales as possible at our disposal, the 128-pixel-per-
degree map is naturally chosen. Let us note that this map almost represents
the whole planet; the latitude ranges from 88◦ S to 88◦ N. More details about

http://pds-geosciences.wustl.edu/missions/mgs/megdr.html
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the mission, the data and the MOLA experiment can be found in [124, 125]
and on the website mentioned above. These data are already used in [3] and
[95].

6.2 A Complete Study of the Roughness of
Mars in 1D and 2D with the WLM (< 15
km)

This section presents a complete study of the roughness of Mars with the WLM
at the scales j taken between 0 and 4. This choice is justified in [42, 40]. We
first recall the implementation of the WLM and some key values to sort the
signals. The results for both the 1D and 2D signals are presented. We finish
by showing that the value of the Hölder exponent in 2D allows to detect major
surface features of Mars.

6.2.1 WLM in Practice

Let us briefly explain how to implement the WLM (the method is presented
in Section 1.7) on a real-life signal f . For a fixed q, the value ηf (q) is approx-
imated by the slope of the function

j 7→ logSf (j, q)
log 2 .

In practice, we have only access to a finite number of the scale j and this
function is not necessarily linear; it is often a piecewise linear function. This
implies the existence of two (or more) distinct scaling regimes. These kind of
signals is met in the study of the roughness of Mars (e.g. Figure 2 in [87],
Figure 3 in [113] and Figure 1 and 5 in [42]). Consequently, the scales chosen
to compute the slope is a crucial point of the algorithm, and influence the
approximation of the Hölder spectrum. In this work, we choose the scales
j = 0, . . . , 4. This choice is justified in [42, 40].
If the function

q ∈ R 7→ ηf (q)

displays a linear behaviour, the signal is said monofractal at the scales used
to build ηf ; otherwise it is multifractal at those scales. In practice, we must
choose an interval for the values of q, and this choice strongly influences this
distinction. There exists several methods to determine if a function is linear
or not. Moreover, the values of ηf can also be also strongly influenced by
some extreme values of the wavelet coefficients (see Section 4.5). For all these
reasons, we prefer not to set up all the parameters needed to develop a method
making a clear distinction between the mono and multifractality using the
WLM. We propose in Section 6.3.1 a new method for such a distinction, with
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the help of the LPM, which requires a minimum of parameters and which is
more robust than the WLM.
However, we still study the linear behaviour of ηf on a chosen interval cen-

tred at the origin, because it can be relied with some physical properties of the
planet Mars. We take the simplest approach: the linear correlation coefficient
c. From numerical experiments on Mars, we set that ηf is “linear enough”,
if the associated linear correlation coefficient c is greater than 0.98 in the 1D
case and 0.97 in the 2D case, due to the fewer number of wavelet coefficients
available in this context. In this case, the Hurst exponent characterising the
irregularity of the surface is assimilated to the slope of ηf . Otherwise, when
ηf “is not linear enough”, the slope of the best-fit (in the least square sense)
linear regression of ηf gives a scaling exponent which does not fully represent
the irregularity of the surface, but gives a criterion to sort the signals.
Let us note that, in order to limit the influence of anomalously large co-

efficients in the computations, the values of q range from −2 to 2 for the
one-dimensional study and from −1.5 to 1.5 in the two-dimensional case. The
difference comes again from the fact that we grid the map in the latter case
(see next section) and we thus have less wavelet coefficients due to shorter
signals. In this work, we use again the third-order Daubechies wavelet [39]
and the 2D analysis uses a tensor product-based technique (see Section 1.5.3).

6.2.2 Results for the One-Dimensional Analysis

We perform the WLM on one-dimensional latitudinal and longitudinal bands:
in this framework, 22528 latitudinal and 46080 longitudinal topographic pro-
files are analysed.
As far as the longitudinal signals f are concerned, more than 99.7% of them

have an associated function ηf “linear enough”, with respect to the criterion
set in the previous section, i.e. the corresponding ηf has a linear correlation
coefficient c greater than 0.98. This can be seen on the top left histogram
in Figure 6.1. The exponents H extracted as function of the longitude and
the histogram of their distribution are also represented in Figure 6.1 (middle
left and bottom left). The mean value of H is 1.15 with a standard deviation
of 0.06. As expected, such results are in agreement with PSD- and other
wavelet-based methods [3, 95].
Regarding the latitudinal signals, it appears that 92.1% have an associated

function ηf “linear enough”. Such a drop in the proportion with the longitudes
may seem surprising at first, but a few reasons may contribute to explain it:
the crustal dichotomy of Mars, the presence of polar caps, the fact that the
map is actually a projection of the planet, the North/South trajectory of the
orbiter, among others. Moreover, if we only keep latitudes between 80◦S and
80◦N , then more than 96.7% of the signals have a function ηf “linear enough”,
and this percentage rises above 99.9% if we allow c > 0.975; this can be noted
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on the top right histogram in Figure 6.1 (with latitudes kept from 80◦S to
80◦N). Considering only these restricted latitudes, the mean value of H is
1.05 with standard deviation 0.13. The influence of latitude can be clearly
seen in Figure 6.1 and such a latitudinal pattern is in agreement with [114].
Besides, a clear difference appears between the two hemispheres: the mean
value of H is 0.98 in the North and 1.12 in the South.
Let us note that the results of the longitudinal case remain almost unchanged

when poles are removed and that the clear difference of shape in the histograms
of Figure 6.1 and the differences in the values of H may indicate a slight
anisotropy of the surface roughness (< 15 km), as mentioned in [5].

6.2.3 Results for the One-Dimensional Analysis: Lo-
calisation of the Values with Strong Correla-
tion Coefficients

To complete the study of the 1D analysis of Mars’ topography, we briefly
discuss the spatial distribution of the bands with a function ηf , “linear enough
or not”. For that purpose, Figure 6.2 shows a topographic map of Mars in
false colours. On the top of the map (resp. on the right), red lines indicate
the few longitudinal (resp. latitudinal) bands exhibiting a linear correlation
coefficients c < 0.98. The analysis carried out on a band is somehow a “global”
analysis, compared to the more “local” 2D analysis performed in the next
section.
That being said, it appears in Figure 6.2 that a large part of the North-

ern hemisphere displays a function ηf “not linear”. This could be the result
of the fact that the topographic profiles at these latitudes are smooth and,
from time to time, interrupted by a crater or an anomalously irregular pat-
tern. Therefore, both the wavelet coefficients related to the smooth behaviour
and those associated with the rougher one are present, which globally results,
quite logically, to a function ηf “not linear”. Moreover, some sites of Mars
seem to have an impact on the global characterisation of the fractal nature
of a band. Indeed, regions such as Hellas Planitia (50◦S 70◦E), Elysium
Mons (25◦N 174◦E), Olympus Mons (20◦N 225◦E) and the Tharsis region
(0◦N 250◦E) probably influence both longitudinal and latitudinal analyses.
These explanations should be investigated in more details in future works,
since the influence of possible artefacts cannot be completely excluded.

6.2.4 Results for the Two-Dimensional Analysis

Let us now examine the results of the two-dimensional WLM performed on
the topographic map of Mars. Such a study is, to our knowledge, the first
of its kind. Contrary to [5] and [54] where the two-dimensional multifractal
detrended fluctuation analysis is used to study a grayscale image of a relatively
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Figure 6.1.: Top: Histograms of the distribution of the linear correlation coeffi-
cients c (related to the functions ηf , see text) for the longitudinal
(left) and latitudinal (right) analyses. The data are subdivided
into 1000 equally spaced bins. Middle: Exponent H as a function
of longitude (left) and latitude (right). The red lines indicate the
topographic profiles with c < 0.98. Bottom: the corresponding
histograms of the distributions of H.
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Figure 6.2.: Topographic map of Mars in false colours (dark blue corresponds
to an altitude of roughly -8100 meters and dark red to 21200
meters). On the top of the map (resp. on the right), red lines
indicate the few longitudinal (resp. latitudinal) bands having a
linear correlation coefficients c < 0.98.

small part of Mars, we aim at examining the whole surface, where data are
actual topographic measurements. For that purpose, the map used in the
one-dimensional case is first gridded into squares of 1024× 1024 pixels (which
will be called tiles in the following) thus giving ≈ 1000 tiles to analyse. Such
tiles correspond to windows of 8◦ × 8◦ on Mars. The choice of the tile size is
rather subjective but is a good compromise between a local analysis (size not
too large) and the statistical meaning of the results (size not too small). In
a different approach, a similar resolution (5◦ × 5◦) is used in [112], where a
more detailed justification of such a choice is provided. In order to increase
the statistical significance of the following results, the grid is also shifted 512
pixels rightward, then downward and finally both rightward and downward,
giving us a total number of 3696 tiles to work with. Let us recall that, due
to the restricted number of data available in such tiles, the parameter q now
ranges from -1.5 to 1.5 and the threshold for the coefficient c for the function
ηf to be considered as “linear enough” is now 0.97.
Not surprisingly, the two-dimensional analysis of Mars’ topography reveals

that the function ηf has a behaviour “linear enough”. Indeed, 96.1% of the
considered tiles have a function ηf with a linear correlation coefficient c greater
than 0.97, as shown in Figure 6.3. As seen in the spatial distribution of
these coefficients (Figure 6.3), the regions with a function ηf with a behaviour
“not linear enough” are mostly located around Hellas Planitia (50◦S 70◦E),
Amazonis Planitia (25◦N 180◦E) and Acidalia Planitia (25◦N 330◦E).
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The mean of the exponents H is 1.12, with standard deviation 0.13, which is
consistent with the one-dimensional analysis; their distribution is represented
in Figure 6.3. One can note that this histogram is somehow bimodal as the
one corresponding to the latitudinal study, suggesting that the latitudinal
pattern previously observed has some influence in this case. This is confirmed
in Figure 6.4, which shows the longitudinal and latitudinal average of H of the
2D analysis. It can also be noted that these curves display a similar behaviour
as those obtained by averaging the exponents of the 1D case by blocks of 1024
longitudinal and latitudinal bands. Besides, the difference between the two
hemispheres is similar to the 1D case: the mean value of H is 1.07 in the
North and 1.17 in the South.
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Figure 6.3.: Top: Histograms of the distribution of the linear correlation coef-
ficients c (related to the functions ηf , see text) and the exponents
H for the 2D analysis with the WLM. The data are subdivided
into 100 equally spaced bins. Bottom: The spatial distribution of
the coefficients c, where the tiles with c < 0.97 are all coloured in
dark blue.
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Figure 6.4.: Left (resp. right): the blue line indicates the mean of the expo-
nents H longitudinally (resp. latitudinally) in the 2D case. The
red line represents the mean of the exponents H of the 1D case
by blocks of 1024 longitudinal (resp. latitudinal) bands. In both
cases, the blue and red curves display a similar behaviour.

6.2.5 Results for the Two-Dimensional Analysis: De-
tection of Major Surface Features

In this last section, we show that the spatial distribution of the scaling expo-
nents H obtained from the two-dimensional analysis of Mars is not “random”.
Indeed, it is possible to detect major surface features of Mars in the spatial
distribution of these exponents, which is an extra argument in favour of the
effectiveness of the WLM. The identification of a particular feature is merely
qualitative and subjective. In other words, we do not use any algorithm to
determine whether a pattern is detected or not; such a decision may depend
on the expectations of the reader for a feature to be detected. Nevertheless,
as shown below, there is often no point denying that some characteristics are
clearly identified.
For that purpose, we consider 9 of the most famous sites of the Red Planet:

Hellas Planitia (A), Isidis Planitia (B), Elysium Mons (C), Vestitas Borealis
- Northern plains (D), Olympus Mons (E), Tharsis (F), Valles Marineris (G),
Argyre Planitia (H) and Acidalia Planitia (I). These regions are represented in
Figure 6.5. Let us recall that the analysis carried out in the previous section
was only performed on a sample of tiles of 1024 × 1024 pixels, not all the
possible ones. The value of H corresponding to a tile is associated to the
central pixel of the tile and, in order to fill in the gaps, the missing values are
interpolated using a 2D cubic spline. Let us note that the interpolation method
used is not of primary importance; it is only used for more comfortable visual
results and the interpolated values are not used in any statistical analysis
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in this paper. The maps representing the spatial distribution of the scaling
exponents H are displayed in Figure 6.5.

0 60 120 180 240 300 360
−88

−44

0

44

88

longitude

la
ti
tu

d
e

A

B

C

D

E

F
G

H

I

−8100

−775

6550

13875

21200

0 60 120 180 240 300 360
−88

−44

0

44

88

longitude

la
ti
tu

d
e

A

B

C

D

E

F
G

H

I

0.78

0.935

1.09

1.245

1.4

Figure 6.5.: Top: the topographic map of Mars in false colours. Bottom: the
map representing the spatial distribution of the exponents H com-
puted with the WLM. The regions of interest are Hellas Plani-
tia (A), Isidis Planitia (B), Elysium Mons (C), Vestitas Borealis
- Northern plains (D), Olympus Mons (E), Tharsis (F), Valles
Marineris (G), Argyre Planitia (H) and Acidalia Planitia (I). It
can be noted that most of these regions are clearly detected.

Among the 9 features of interest, it seems reasonable to say that sites A,
B, D, F, G and H can be identified on the map, whereas regions C and E are
more difficult to see and the site I is less visible. However, this last site can
be detected thanks to the linear correlation coefficients (see Figure 6.3), as
the sites A, C and D. Let us note that, as already mentioned, poles appear
to behave differently than their surroundings but this may be due to some
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artefacts such as the projection used to generate the maps. Also, the typical
crustal dichotomy and the border of that feature (the vast Vestitas Borealis
and Northern plains in a broad sense) are detected on the map.

6.3 A Complete Study of the Roughness of
Mars in 1D and 2D with the LPM (< 15
km)

This section presents the first results obtained with the LPM on real-life sig-
nals. These results have not been published yet. The goal of this study is
twofold: first to show that the LPM is a suitable candidate for studying the
fractality of real-life signals, and more particularly, the properties of plane-
tary surfaces, and secondly, to show that the LPM allows to obtain additional
information compared to the WLM.
Section 6.3.1 gives a methodology to study real-life signals with the LPM.

More precisely, we propose a method to distinguish the mono- and the mul-
tifractality. This approach is applied on the 1D and 2D analysis of Mars’
topography. We first show that we obtain similar results concerning the val-
ues of the Hurst exponent compared to previous studies, and we also discuss
about the multifractality of the bands of Mars. Finally, Section 6.3.3 presents
the results about the two-dimensional study and shows that some additional
information about the roughness of Mars’ topography is obtained, comparing
with the WLM.

6.3.1 A Method to Distinguish the Mono- and Multi-
fractality with the Help of the LPM

This section presents a method based on the LPM to determine if a real-life
signal f is monofractal or multifractal. More precisely, this method allows
two detections: the first one detects if there exists an exponent h such that
df (h) is strictly smaller than n, n being the dimension of the domain of f ,
and the second one detects if f has several Hölder exponents whose associated
iso-Hölder sets have a full-Lebesgue measure.
Let us begin with the first detection. From Chapter 4, it suffices to find a

real h (with a bisection method for example), such that the function

C > 0 7→ ν̃Cf (h) (77)

has a stabilisation with a value strictly smaller than n.
Let us recall that, it is possible to detect some values strictly smaller than

n on numerical simulations of monofractal signals (see Section 4.1 for the case
of fractional Brownian motions). We must thus define a threshold M close
to n for which, if there exists h such that the value of the stabilisation of the
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function (77) is smaller than M , then the signal is considered multifractal.
From Figure 4.7, which shows the smallest value obtained for a stabilisation
on fractional Brownian motions, it seems reasonable to take M = n− 0.05.
Let us notice that for the LPM, we compute separately the increasing part

and the decreasing part of the spectrum, with the help of the functions ν̃+
f and

ν̃−f respectively. Consequently, the method also allows to know if the spectrum
df has an increasing part or not, and a decreasing part or not.
The second detection presented in this section allows to know if f has sev-

eral Hölder exponents whose associated iso-Hölder sets have a full-Lebesgue
measure. This kind of signals is studied in Section 5.1. Let us recall how to
detect these Hölder exponents: the smallest (resp. the greatest) Hölder expo-
nent Hmin (resp. Hmax) such that df (Hmin) (resp. df (Hmax)) is equal to n, is
approximated as the greatest (resp. the smallest) h such that the function

C > 0 7→ ν̃−,Cf (h) (resp. C > 0 7→ ν̃+,C
f (h))

has all its value equal to n. In the case of a monofractal signal, the approxima-
tion of Hmin is close to Hmax (see Section 4.3). We must thus give a threshold
N for which if |Hmin − Hmax| is greater than N , then the signal is consid-
ered having (at least) two Hölder exponents, whose associated iso-Hölder sets
have a full-Lebesgue measure. In view of Chapter 4 and Chapter 5, it seems
reasonable to take N = 0.05.
In conclusion, a real-life signal f is considered as monofractal if the two

following conditions are satisfied:

1. there does not exist an exponent h such that the functions

C > 0 7→ ν̃−,Cf (h) and C > 0 7→ ν̃+,C
f (h)

have a stabilisation with a value smaller than M = 0.95,

2. the distance |Hmin −Hmax| is smaller than N = 0.05.

If one condition is not satisfied, f is considered as multifractal. In this case,
several scenarios are possible:

1. if there exists h such that the function C > 0 7→ ν̃+,C
f (h) has a stabili-

sation with a value smaller than M = 0.95, then f has a spectrum with
an increasing part,

2. if there exists h such that the function C > 0 7→ ν̃−,Cf (h) has a stabili-
sation with a value smaller than M = 0.95, then f has a spectrum with
an decreasing part,

3. if the distance |Hmin −Hmax| is greater than N = 0.05, then f has (at
least) two Hölder exponents whose the associated iso-Hölder sets have a
full-Lebesgue measure.
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The next sections apply these methods on one-dimensional latitudinal and
longitudinal bands of the planet Mars and on the tiles that grid the map of
mars.

Remark 6.3.1. If |Hmin−Hmax| < 0.05, f has only one Hölder exponent H ν̃

such that df (H ν̃) = n. In this case, this exponent is approximated by

H ν̃ = Hmin +Hmax
2 . (78)

Let us recall that to sort the signals with the WLM, we have decided to
compute the slope of the function

q ∈ [−2, 2] 7→ ηf (q),

for all signals f , even if ηf is not linear (see Section 6.2.1). In Section 5.1.1, we
have seen that this slope is close to H ν̃ , in some cases. Consequently, we also
compute H ν̃ for all signals, even if |Hmin − Hmax| > 0.05. This value allows
to sort the signals and also to compare the results obtained with those of the
WLM.

6.3.2 Results for the One-Dimensional Analysis

In this section, we compute the exponent H ν̃ defined in (78), for each one-
dimensional latitudinal and longitudinal bands. Figure 6.6 showsH ν̃ extracted
as the functions of longitude and latitude. These functions are similar to their
equivalent obtained with the WLM (see Figure 6.1). The mean value of the
exponent for the longitudinal signals is 1.18, with a standard deviation of 0.08.
Regarding the latitudinal signals, the mean value of the exponent is 1.06, with
a standard deviation of 0.14. Moreover, the influence of the latitude is clear:
the mean value is 0.99 in the North and 1.13 in the South. Such results are in
agreement with the WLM (see Section 6.2.2) and other wavelet-based methods
(see [3, 95]). It confirms a slight anisotropy of the surface roughness.
Let us now look at the histograms of these exponents on Figure 6.7. Regard-

ing the latitudinal signals, the histogram is similar to its equivalent obtained
with the WLM (see Figure 6.1): there is a main peak close to 1.2 and a second
close to 1.05. The case of the longitudinal signals is more interesting: as for
the WLM, we have the main peak close to 1.2, but we have a second peak
close to 0.98, which is not present in the case of the WLM.
Figure 6.8 shows on the topographic map of Mars, the location of the few

longitudinal bands havingH ν̃ between 0.95 and 1, i.e. those forming the second
peak of the histogram obtained with the LPM. We clearly see that most of the
bands are located at the same place: between longitudes 190◦ and 220◦. To
explain this specific location of these bands, one way to look at the criterion
related to the distance |Hmin −Hmax|.
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Figure 6.6.: Approximation of the exponent H ν̃ defined in (78) for each lon-
gitude and latitude. As for the WLM, we keep the latitudes from
80◦S to 80◦N.
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Figure 6.7.: Histograms of the distributions of the Hölder exponent defined in
(78) on one-dimensional longitudinal and latitudinal (with lati-
tudes kept from 80◦S to 80◦N) bands with the LPM.

Figure 6.9 shows the longitudinal and latitudinal bands where

|Hmin −Hmax| < N,

with N = 0.05, i.e. the bands f considered as having only one Hölder exponent
h such that df (h) = 1. We notice that for the longitudes, the bands located
between 190◦ and 220◦ (i.e. those that stand out in Figure 6.8) seem to have
(at least) two Hölder exponents whose the associated iso-Hölder sets have a
full-Lebesgue measure. Moreover, when we look the values |Hmin −Hmax| for
these bands, we see that they are greater than 0.25.
We notice that almost 50 percents of the longitudinal bands have values

for |Hmin − Hmax| smaller than N = 0.05 and this percentage rises to 70 if
N = 0.08. Regarding the latitudinal bands, we have some 35 percent for
N = 0.05, and this percentage rises to 60 if N = 0.08. This difference between
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Figure 6.8.: Topographic map of Mars in false colours. On the top of the
map, red lines indicate the few longitudinal bands exhibiting a
dominant Hölder exponent between 0.95 and 1
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Figure 6.9.: Topographic map of Mars in false colours. On the top of the
map (resp. on the right), red lines indicate the longitudinal bands
(resp. latitudinal) whose the value of |Hmin − Hmax| is smaller
than 0.05, meaning that there exists exactly one Hölder exponent
whose the associated iso-Hölder set has a full-Lebesgue measure.
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the longitudinal and latitudinal bands confirms again the slight anisotropy in
the topographic field.

Remark 6.3.2. Let us go back to the longitudinal bands located between
190◦ and 220◦. There remains an important question: why are these bands,
satisfying |Hmin −Hmax| > 0.05, highlighted when comparing the LPM’s and
the WLM’s histograms, while other signals satisfying the same condition are
not?
Let us recall that the slope of the function

q 7→ ηf (q)

seems to give the average value between Hmin and Hmax, when we have two
processes, one is associated to Hmin and the other one to Hmax. This fact
seems true when the processes have the same weight in the signal considered
(see the end of Section 5.1.1). It seems reasonable to think that the slope does
not give the average value between Hmin and Hmax when, within the same
signal, the two processes have different weights. This could be an explanation
for what happens for the longitudinal bands located between 190◦ and 220◦.

To end this section, let us study a last parameter presented in the previous
section: the detection of an exponent having a value smaller than M = 0.95,
for the stabilisation of the functions

C > 0 7→ ν̃−,Cf (h) and C > 0 7→ ν̃+,C
f (h).

Figure 6.10 shows the longitudinal and latitudinal bands for which the
method does not detect an exponent h with a value of the stabilisation smaller
than M = 0.95. More than 99 percent (resp. 95 percent) of the longitudinal
bands (resp. latitudinal) have a spectrum with an increasing part, and there
are 72 percent (resp. 62) which have a spectrum with an decreasing part. If
we take M = 0.8, we have 95 percent (resp. 70 percent) of the longitudinal
bands (resp. latitudinal) whose the spectrum has an increasing part, and there
are 51 percent (resp. 44) whose the spectrum has an decreasing part. This
difference between the longitudes and the latitudes may come from that the
crustal dichotomy of Mars, the presence of polar caps, the fact that map is
a projection of the planet, the North/South trajectory of the orbiter, among
others.
The multifractality may seem surprising, because it goes against most stud-

ies done in the field. Here are some elements to justify these results. First, we
have seen in the previous chapters that the WLM (and consequently, similar
methods based on a structure function such as the DFA), may not detect the
multifractality of a signal: either the scaling function does not contain the
information about the multifractality (as the concatenation of two Brownian
motions), either the criterion of mono/multifractality is hardly reliable to a
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Figure 6.10.: Topographic map of Mars in false colours. On the top of the
map (resp. on the right), red lines indicate the longitudinal
bands (resp. latitudinal) for which the method does not detect
an exponent h with a value of the stabilisation of the function
C > 0 7→ ν̃+,C

f (h) smaller than 0.95, while the green ones corre-
spond to a stabilisation of the function C > 0 7→ ν̃−,Cf (h) smaller
than 0.95.

physical property of the signal. Consequently, there is no consensus on the
efficiency of these methods to distinguish the mono- and the multifractality.
On the other hand, these methods are well-known to correctly approximate
the (dominant) Hurst exponent, and in this case, our method gives similar
results (this Hurst exponent is defined as H ν̃ with the LPM). Consequently,
the LPM seems a suitable candidate for the study of scaling properties of plan-
etary surfaces. This method is radically different than the other ones (since it
is not based on a structure function), and we think that it allows to override
certain defect of the previous methods.
These results give a positive answer to the question of A. Arneodo, for who

it seemed that our study with the WLM does not support the hypothesis of
the monofractality in these signals. We confirm his intuition: most of the
longitudinal and latitudinal bands on the planet Mars have a multifractal
behaviour (< 15 km).
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6.3.3 Results for the Two-Dimensional Analysis

Let us now analyse the Mars’ topography with the LPM, keeping the 2D
aspect of the data. The same strategy as for the WLM is used: the map is
gridded into tiles of 1024× 1024 pixels with a shift of 512 pixels (more detail
at the beginning of Section 6.2.4) and the two-dimensional LPM is performed
on each tile. Let us notice that the LPM does not require modifications in its
algorithm when passing in two dimensions, compared to the WLM for which
the range of the parameter q has been modified.
To begin with, Figure 6.11 shows the map of the spatial distribution of the

exponents H ν̃ computed with the LPM. Let us recall that the identification
of a particular feature is merely qualitative and subjective. We will later see
a first objective criterion, deduced from the histograms of the exponents, to
sort the roughness of Mars’ topography.
As for the WLM, this map allows to identify some major surface features

of Mars, such as Hellas Planitia (A), Isidis Planitia (B), Vestitas Borealis -
Northern plains (D), Tharsis (F), Valles Marineris (G) and Argyre Planitia
(H). The identification of the two regions Elysium Mons (C) and Olympus
Mons (E) is less obvious, but (C) seems more visible compared to the map
obtained with the WLM.
This map also shows that the distribution of the values of the exponents

seems to be different between the WLM and the LPM. Indeed, the values are
between 0.78 and 1.4 for the WLM, while they are between 0.74 and 1.6 for
the LPM. The mean of the exponents H ν̃ is 1.16, with standard deviation
0.14. This mean is slightly larger than the one obtained with the WLM. The
difference between the two hemispheres is still present: the mean value of H ν̃

is 1.11 in the North and 1.2 in the South.
Figure 6.12 shows the histograms of the distributions of the exponents Hmin,

Hmax and H ν̃ . Let us recall that the exponent H ν̃ is the equivalent of the
exponent H of the WLM, in the sense that it is used to characterise the
regularity of the signal and allows to sort the signals. The distribution of H ν̃

has a main peak located on the left, and a second peak on the right. This is
the opposite of the WLM (see Figure 6.3).
Let us now explore the results in further detail to give an explanation of the

difference between the distribution of the exponents H and H ν̃ . Let us recall
that this last one is defined as

H ν̃ = Hmin +Hmax
2 .

The histograms of Hmin and Hmax also have two peaks, where the main peak is
on the left. This implies that the difference is not due to a different behaviour
of the functions ν̃−f and ν̃+

f . However, the main peak for the histogram of
Hmin is located in the interval [0.9, 1], while that of Hmax is in [1.1, 1.2]. This
therefore suggests the presence of signals that do not have only one dominant
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Figure 6.11.: Top: the topographic map of Mars in false colours. Bottom:
the map representing the spatial distribution of the exponents
H ν̃ computed with the LPM. The regions of interest are Hel-
las Planitia (A), Isidis Planitia (B), Elysium Mons (C), Vestitas
Borealis - Northern plains (D), Olympus Mons (E), Tharsis (F),
Valles Marineris (G), Argyre Planitia (H) and Acidalia Plani-
tia (I). It can be noted that most of these regions are clearly
detected.

exponent, but at least two. This will be confirmed later in the study of the
distance |Hmin − Hmax|, which is thus a first explanation of the difference
obtained between the WLM and the LPM.
To complete the study of the spatial distribution of the values of the expo-

nents, Figure 6.13 shows two maps of Mars, one with the help of the WLM
and the other with the help of the LPM, each divided into three zones: a
first zone corresponding to the exponents smaller than 1, a second zone to the
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Figure 6.12.: Histograms of the distribution of the exponents Hmin , Hmax and
H ν̃ .

exponents belonging to the interval [1, 1.1] (that is corresponding to the tiles
belonging to the main peak of the histogram of H ν̃) and a third zone to the
exponents larger than 1.1.
The threshold 1.1, which corresponds to the value separating the two peaks

of the exponents’ distributions for each method, seems to play an important
role in the characterisation of Mars’ topography. For both of the methods, the
boundary separating the exponents with a value smaller and larger than 1.1
is the same.
The exponents with a value smaller than 1.1 correspond to a site containing

the poles and, in the North, an area extending to the crustal dichotomy, its
boundary and the zones (E) and (F). However, this site behaves differently for
each method: the WLM tends to give exponents smaller than 1, while the LPM
gives exponents larger than 1. Let us recall that, as already mentioned, the
analysis of poles is more delicate, due to some artefacts such as the projection
used to generate the maps. However, we can not explain this difference only
by these artefacts, because this difference extends beyond the poles.
To understand this difference, let us now look at the distances |Hmin−Hmax|.

Figure 6.14 gives the map representing the spatial distribution of these dis-
tances. This map shows that the majority of the tiles having an exponent
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Figure 6.13.: Map of Mars divided into three zones: a first zone corresponding
to the exponents smaller than 1 (dark blue), a second zone to
the exponents belonging to the interval [1, 1.1] (light blue) and a
third zone to the exponents larger than 1.1 (green).

smaller than 1.1 have a distance |Hmin − Hmax| > 0.15. These tiles seem to
have (at least) two dominant exponents. In this case, neither H ν̃ nor the ex-
ponent H obtained with the WLM correspond to the Hölder exponent (from
a theoretical point of view). As already mentioned in the previous sections,
there thus exist (at least) two different phenomena, which do not necessarily
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occurs in the same proportion. This can explain the difference between the
WLM and the LPM on this site. The majority of the tiles having H ν̃ > 1.1
seems to have only one dominant exponent, for which H ν̃ approximates this
exponent.
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Figure 6.14.: Map representing the spatial distribution of the distances
|Hmin −Hmax|.

To complete the study of the distance |Hmin−Hmax|, let us notice that 36%
of the tiles have a distance smaller than 0.05, 55% have a distance smaller
than 0.1 and 2% have a distance larger than 0.25.
To conclude the analysis with the LPM, it remains to check the existence

of an increasing and a decreasing part of the spectra of the tiles. Figure 6.15
shows the map representing the spatial distribution of the smaller stabilisation
detected for the functions C 7→ ν̃+,C

f (h) and C 7→ ν̃−,Cf (h).
We clearly see that the site corresponding to the exponents smaller than 1.1

tends to have a spectrum without increasing and decreasing part. Moreover,
the other site (with the exponents larger than 1.1) contains some tiles having
spectra without increasing and decreasing part, but it also has some tiles with
a spectrum having an increasing or a decreasing part.
Let us recall that the WLM shows the existence of the tiles with a correlation

coefficient c smaller than 0.97. When we look the map giving the spatial
distribution of c (Figure 6.3), we see that when c < 0.97, the LPM indicates
that the spectrum has an increasing or a decreasing part. This confirms that
when c is small, the signal is indeed multifractal but if c is close to 1, the
signal is not necessarily monofractal; this can be explained by the fact that
the regression is performed on a small number of scales. Moreover, when
the signal is multifractal, the slope of the linear regression of ηf does not
necessarily correspond to the dominant Hölder exponent (from a theoretical
point of view), whileHν does, as soon as there exists only one dominant Hölder
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Figure 6.15.: Map representing the spatial distribution of the smaller stabilisa-
tion detected for the functions C 7→ ν̃+,C

f (h) and C 7→ ν̃−,Cf (h).

exponent. Let us notice that this last hypothesis is not always verified in this
zone (see Figure 6.14). All these reasons can explain the difference between
the histograms of exponents obtained with the WLM and the LPM, when the
exponent is larger than 1.1.
Finally, let us notice that 62% (resp. 58%) of the tiles have all the sta-

bilisations of their functions C 7→ ν̃+,C
f (h) (resp. C 7→ ν̃−,Cf (h)) larger than

the threshold 1.95, and this percent rises to 72% (resp. 67%) if the threshold
becomes 1.9. This result is very different compared to these obtained for the
one-dimensional analysis done with the LPM, where we have more than 95% of
the signals with a spectrum having some stabilisation smaller than 0.95. This



190 Chapter 6. Study of the Fractal Structure of Mars

is not surprising, because the two-dimensional analysis is done on local signals
(tiles of size 1024×1024 pixels), while the one-dimensional analysis is done on
signals extending along the whole planet (latitudes and longitudes). It seems
reasonable to think that these last signals have a multifractal behaviour, while
local signals have spectra with a discrete support.

6.4 Conclusion

We use the MOLA data from the Mars Global Surveyor mission to study
the surface roughness of Mars at small scales (< 15 km) with the WLM and
the LPM. For each methods, we first focus on the one-dimensional latitudi-
nal and longitudinal topographic profiles of the complete 128-pixels-per-degree
map of the planet. In these scales, the two methods give similar results for
the mean scaling exponent: with the WLM (resp. the LPM), H ≈ 1.05 (resp.
H ν̃ ≈ 1.06) for the latitude, and H ≈ 1.15 (resp. H ν̃ ≈ 1.18) for the longitude.
Moreover, a latitudinal trend also appears with each method, as well as indi-
cations of a slight anisotropy in the topographic field, though such statements
have to be confirmed via several analyses. Regardless the values of the scaling
exponents, we also show that our results are in agreement with previous semi-
nal studies, thus confirming that the wavelet-based methods are well-suited to
study the irregularity of celestial bodies. The comparison between the WLM
and the LPM allow to highlight some sites and to make assumptions about
the roughness of the planet: for example, the analysis suggest the existence
of two processes with different weights for the longitudinal bands located be-
tween 190◦ and 220◦. Moreover, the one-dimensional analysis does with the
LPM gives a positive answer to the question of A. Arneodo, by confirming the
multifractal behaviour of most of longitudinal and latitudinal bands on the
planet Mars.
The results obtained in the 2D analysis allow to show the importance of

analysing the data with two radically different methods: the WLM, which is
based on a structure function, and the LPM which is not. The mean scaling
exponent obtains with the WLM is H ≈ 1.12, while the exponent provides
by the LPM is H ν̃ ≈ 1.16. The analysis of the histograms of the exponents
obtained with the two methods has highlighted several phenomena. First, the
threshold 1.1 for the value of the exponents seems to be an invariant between
the two methods: the tiles having an exponents with a value smaller than 1.1
correspond to the poles and in the North, it extends roughly to the crustal
dichotomy. Secondly, the analysis suggests that the roughness of this last site
contains several monofractal processes with different weights. Contrariwise,
the roughness of the other site (with the exponents larger than 1.1) contains
some mono- and multifractal processes having only one dominant exponent.
The 2D analysis also gives information of the scaling law at a “local” level,

which allows us to show that the spatial distribution of the exponents recovers
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some of the most characteristic features of the surface of Mars. To our knowl-
edge, such a complete 2D analysis on the fractal nature of Mars’ topography
was made for the first time in [42], which has been partly transcribed in this
chapter. The analysis with the LPM confirms these results.
Further investigations are needed to fully understand the Martian topogra-

phy. Nevertheless, it appears that the WLM and the LPM are useful tools in
the present framework and that the comparison between these two methods
gives some additional information about the roughness of Mars’ topography.
The results provided in this chapter could be used as a solid basis for further
investigation on the scaling properties of the surface roughness of Mars. The
topography of other celestial bodies could be systematically studied in future
works.
Finally, this chapter also shows that the LPM is a wavelet-based method able

to characterise the regularity of real-life signals. It is not based on a structure
function (unlike the WLM and the DFA for example), and hence allows to
obtain results interesting to compare to the results of the others. Moreover, it
is robust and allows to have some criteria to study the multifractality of the
signal, not requiring a lot of additional parameters, unlike the WLM.
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