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Abstract 
Grasslands are an important component of the global terrestrial carbon (C) balance 

and are widely used for grazing around the world. Because of their C sequestration 

potential, grasslands are often seen as an important way to mitigate CH4 and N2O 

emissions associated with cattle production systems. However, nowadays, grassland 

C sequestration potential is still highly uncertain because C sequestration processes 

are highly affected by soil types and weather conditions. Grazing also affects the C 

cycle in grasslands through plants consumption, cattle respiration, natural 

fertilization through excreta, and soil compaction. In addition, other management 

practices such as fertilization, biomass harvesting and manure spreading can also 

have an influence on grasslands C sequestration potential.  

In southern Belgium, cattle production is an important component of the 

agricultural sector with grassland covering around 45% of the utilized agricultural 

lands. The Belgian Blue is a famous breed that is widely used in Wallonia for beef 

production. In this context, because of the importance of pastures in Walloon 

production systems, this work focuses on computing a complete C budget of a 

grazed permanent grassland in relation with weather variability, grazing and 

management. The studied pasture is a permanent pasture, part of a commercial farm 

located in Dorinne and grazed by Belgian blue for more than 50 years. The 

productivity of the pasture is enhanced using mineral and organic fertilizers 

following usual management practices of the region.   

The main objectives of this work were to build a robust methodology to build a 

complete C budget at the pasture scale and to quantify the soil C content variations 

and assess its uncertainties. To do so eddy covariance (EC) CO2 flux measurements 

were carried out during 5 years in addition to non CO2 C flux measurements in order 

to obtain a complete C budget at the pasture scale. We present the 5-years 

measurements based C budget and its uncertainties. The results showed that, despite 

the high stocking rate, the old age of the pasture and weather conditions variations, 

the site acted as a relatively stable CO2 sink (net ecosystem exchange, NEE) that 

was further enhanced by lateral organic C fluxes as C imports (organic fertilization, 

feed complements) were higher than C exports in form of meat. As result, on 

average over 5 years, the site acted as a net C sink with net C sequestration rate of 

−100 ± 50 g C m
−2 

yr
‒1

. To go further, this C sequestration rate was compared to the 

CH4 emissions of the cattle which were estimated from EC measurements in a 

separate work as well as to IPCC tier 1 N2O emission estimates. The results showed 

that around 70% of the emitted CH4 and N2O were offset by C sequestration. 

However, this greenhouse gas budget was only computed at the pasture scale and 

does not account for other emissions at the barn or in the crop. Hints are given to 

extend this greenhouse gas budget to the entire farm in further work. 

We also investigated the impact of rotational (RG) and continuous grazing (CG) 

on NEE dynamics and annual values, by measuring CO2 fluxes using eddy 

covariance in two adjacent pastures during a complete grazing season. The results 

showed that NEE dynamics were greatly impacted by the grazing method. 
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Following grazing events on the RG parcel, net CO2 uptake on the RG parcel was 

greatly reduced compared to the CG parcel. During the following rest periods, this 

phenomenon progressively shifted towards a higher assimilation. This behavior was 

attributed to sharp biomass changes in the RG treatment and therefore sharp changes 

in plant photosynthetic capacity. In terms of annual NEE values, no significant 

difference between the two treatments was observed.  

During this work, we also highlighted two important methodological issues. The 

first one was associated with the high frequency loss correction of the eddy 

covariance CO2 fluxes. We showed that the choice of the cospectrum used to 

implement this correction had great influence on NEE estimates which was an 

important component of the C budget. We compared two approaches to do this high 

frequency loss correction based on either local (sensible heat) cospectra or well-

known Kansas cospectra models. We found that the local cospectrum differed from 

the Kansas cospectrum shape leading to very different correction factors. Night 

fluxes measured by eddy covariance were found to be in good agreement with 

chamber based ecosystem respiration estimates when corrected with local cospectra 

and to be overestimated when corrected with Kansas cospectra. The resulting error 

acts as a selective systematic error on annual NEE that was as high as 71-150 g C m
‒

2
 yr

‒1
.  

The second methodological issue highlighted concerns the way animal respiration 

is accounted for in annual C budgets. Using EC for flux measurements, cow 

respiration may or may not be added to soil and vegetation exchanges depending on 

their location respective to the area influencing the measurements (called footprint). 

It is often hypothesized that, over a year, cattle are, on average, distributed evenly 

over the field so that their respiration is measured in a representative way by the EC 

flux tower. We tested this hypothesis by comparing daily cow respiration rate per 

livestock unit estimated by postulating a homogeneous cow repartition over the 

whole pasture with three other estimates based on animal localization data, animal 

scale carbon budget and confinement experiments. The study showed that cow 

respiration was under estimated with a bias of around 60 g C m
‒2

 yr
‒1

 because of low 

cow presence in the footprint especially during the night. Consequently, we propose 

to compute separately cow-free NEE and cow’s respiration. For the former we 

propose a method based on cattle presence detection using CH4 fluxes, elimination 

of data with cattle and gap filling on the basis of data without cattle. For the latter 

we presented and discussed three independent methods (animal localization with 

GPS, animal scale carbon budget, confinement experiments) to estimate the cattle 

respiration rate.   
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Résumé 
Les prairies sont une composante importante du bilan terrestre mondial de carbone 

(C) et sont utilisées comme pâturage dans le monde entier. En raison de leur 

potentiel de séquestration du carbone, les prairies sont souvent considérées comme 

un moyen important d'atténuer les émissions de CH4 et de N2O associées aux 

systèmes de production bovin. Cependant, de nos jours, le potentiel de piégeage du 

carbone dans les prairies est encore très incertain. De plus, les bilans C des prairies 

sont très variables en fonction des conditions pédoclimatiques et de leur gestion. En 

effet, les processus annuels de séquestration du carbone sont fortement influencés 

par des variables météorologiques telles que la température, les précipitations et le 

rayonnement. On sait aussi que le pâturage affecte directement les échanges de CO2 

dans les prairies via la consommation de plantes, la respiration du bétail, la 

fertilisation naturelle et le compactage du sol. De plus, d'autres pratiques de gestion 

comme la fertilisation minérale, la récolte et la fertilisation organique peuvent aussi 

avoir une influence sur le bilan carbone des prairies.  

Dans le sud de la Belgique, la production bovine est une composante importante 

du secteur agricole avec des prairies couvrant environ 45% des terres agricoles 

utilisées. La vache Blanc Bleu Belge est une race réputée et largement utilisée en 

Wallonie pour la production de viande bovine. Au vu de l'importance des pâturages 

dans les systèmes de production wallons, ce travail se concentre sur le bilan carbone 

d’une prairie à l'échelle de l’écosystème prairial en relation avec les conditions 

météorologiques, le pâturage et la gestion. La pâture étudiée est unee prairie 

permanente au sein d'une ferme commerciale située à Dorinne et pâturée par des 

vaches Blanc Bleu Belges depuis plus de 50 ans. La prairie est fertilisée avec des 

engrais minéraux et organiques selon les pratiques de gestion habituelles de la 

région.   

L'objectif principal de ce travail était d'élaborer une méthodologie robuste pour 

établir un bilan C complet à l'échelle de la prairie afin de quantifier les variations du 

stock de C du sol et d'évaluer ses incertitudes. Pour ce faire, des mesures de flux de 

CO2 par covariance de turbulence ont été effectuées sur une durée de 5 ans 

combinées à des mesures flux latéraux de carbone dans le but d'obtenir un bilan C 

complet à l'échelle de la prairie. Nous présentons le bilan carbone basé sur 5 années 

de mesure ainsi que ses incertitudes. Les résultats ont montré que, malgré la charge 

en bétail élevée, l’âge de la prairie et les variations météorologiques, le site a agi 

comme un puits de CO2 (échange net de l’écosystème) relativement stable avec un 

taux de séquestration de carbone moyen de -100 ± 50 g C m
−2

 ans
−1

. Pour aller plus 

loin, ce chiffre a été comparé aux émissions de CH4 des animaux mesurées sur le 

site et aux émissions de N2O estimées via la méthode tier 1 du proposée par le 

GIEC. Environ 70% des émissions de CH4 et N2O sont compensées par la 

séquestration de C. Ce bilan gaz à effet de serre ne tient toutefois pas en compte les 

émissions à l’étable et celles associées aux cultures servant à nourrir les animaux.  

Nous avons également étudié l'impact du pâturage rotatif (RG) et du pâturage 

continu (CG) sur la dynamique et les valeurs annuelles de NEE, en mesurant les flux 
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de CO2 par covariance turbulence dans deux pâturages adjacents et ce, pendant une 

saison complète de pâturage. Les résultats ont montré que la dynamique de la NEE 

est fortement influencée par le mode de pâturage. Après chaque confinement sur la 

parcelle RG, l'absorption nette de CO2 était considérablement réduite par rapport à la 

parcelle CG. Ensuite, au cours des périodes de récupération suivantes, l’échange a 

progressivement basculé vers une assimilation plus élevée. Ce comportement a été 

attribué aux changements soudains de la biomasse aérienne dans le traitement RG 

qui ont causé d’importantes modifications de la capacité photosynthétique de la 

plante. En ce qui concerne les valeurs annuelles de la NEE, aucune différence 

significative n'a été observée entre les deux traitements.  

Pendant ce travail, nous avons également indentifié deux points méthodologiques 

importants. Le premier est associé à la correction en fréquence des flux de CO2 

mesurés par covariance de turbulence. Nous avons montré que le choix du cospectre 

utilisé pour mettre en œuvre cette correction avait une grande influence sur les 

estimations annuelles de la production nette de CO2 de l'écosystème (PNE) qui 

constitue une composante importante du bilan carbone. Nous avons comparé deux 

approches pour faire cette correction basées soit sur un cospectre local (chaleur 

sensible) soit sur  le cospectre de Kansas. Nous avons constaté que la forme du 

cospectre local différait de la forme du cospectre de Kansas, entraînant des facteurs 

de correction très différents. Les flux nocturnes mesurés par covariance de 

turbulence se sont révélés en accord avec les mesures de respiration réalisées à l’aide 

de chambre lorsqu'elles sont corrigées avec un cospectre local et surestimées 

lorsqu'ils sont corrigés avec le cospectre de Kansas. L'erreur qui en résulte agit 

comme une erreur systématique sélective et a un impact important sur les flux 

annuels de carbone qui atteignaient 71-150 g C m
‒2

 an
‒1

.  

La seconde question méthologique concerne la manière d’inclure la respiration du 

bétail dans le bilan. Dans les prairies pâturées, la respiration totale de l'écosystème 

correspond à la somme de la respiration du sol et de la végétation et de la respiration 

des animaux. Il est souvent fait l'hypothèse que, sur une année, les bovins sont en 

moyenne répartis uniformément sur le terrain, de sorte que leur respiration est 

mesurée de manière représentative par la tour à flux. Nous avons testé cette 

hypothèse en comparant le taux de respiration quotidien des vaches par unité de 

bétail, estimé en postulant une répartition homogène des vaches sur l'ensemble du de 

la pâture, avec trois autres estimations basées sur des données de localisation du 

bétail, le bilan carbone à l'échelle d’une bête et des expériences de confinement. 

L'étude a montré que la respiration annuelle des vaches était sous-estimée avec un 

biais d'environ 60 g C m
‒2

 an
‒1

 en raison de la faible présence des vaches dans le 

footprint de la tour, surtout pendant la nuit. Par conséquent, nous préconisons de 

calculer séparément la PNE et la respiration des animaux. Pour la première citée, 

nous proposons une méthode basée sur la détection de la présence du bétail à l'aide 

de flux de CH4, l'élimination des données en présence le bétail et le comblement des 

données manquantes. Pour la seconde, nous présentons et discutons trois méthodes 

indépendantes (localisation des animaux à l'aide de GPS, bilan carbone à l'échelle de 

l’animal, expériences de confinement) pour estimer la respiration du bétail.   
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1. Cattle and greenhouse gas emissions 
According to the Food and Agriculture Organization (FAO), livestock production 

is responsible for around 14.5% of worldwide anthropogenic greenhouse gas 

emissions (Gerber et al., 2013). Around 44% of those emissions are in form of CH4 

while the remaining are distributed between N2O (29%) and CO2 (27%). This 

emission includes emissions associated with feed production (fertilization including 

production of fertilizers, energy use, land use change…), non-feed production (farm 

equipment, farm buildings), direct livestock emissions and other post farm activities 

such as transport to slaughter (for more details see table 1 of Gerber et al., 2013). It 

however does not include changes in carbon stocks from land use constant 

management. More specifically cattle dominate the livestock production sector’s 

emissions by contributing to around 65% of the sector’s emissions among which 

41% is associated with the production of meat (from both beef and dairy cattle) and 

the remaining with the production of milk.  

Nowadays, CH4 emissions through enteric fermentation represent around 44% of 

cattle associated emissions (Figure 1-1). Emissions associated to feed production, 

including pasture management and fertilization represents around 36% of cattle 

emissions while remaining emissions are associated to land use changes and fossil 

fuel consumption in the feed supply chain. If those estimates are of course affected 

by uncertainties, there is no discussion that cattle are major contributors to 

anthropogenic GHG emissions. 

 

Figure 1-1: Emissions of greenhouse gases associated to the production of meat and milk 

for cows. Figure taken form Gerber et al., (2013).   
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Because of these emissions, ruminants are often poorly considered in scientific 

literature as well by popular media (Garnett et al., 2017). However, an increasing 

number of studies highlight the fact that the lands grazed by the ruminants are very 

important carbon stocks and can act as important carbon sinks thereby offsetting a 

considerable part of the emissions. Improving the management of these grasslands is 

often seen as a way to mitigate livestock related emissions (Pellerin et al., 2013).     

Nonetheless, the emission estimates are highly uncertain (Herrero et al., 2011) for 

various reasons. Actually, there is a huge diversity in cattle production systems with 

very different climate, landscape, management, animal feed consumption and animal 

breed that could result in very different greenhouse gas emissions (Lesschen et al., 

2011). Very often, the lack of data and understanding of biological and biophysical 

processes associated to a specific production system is problematic when trying to 

find strategies to account its associated emissions (Garnett et al., 2017).  

2. Classification of livestock and cattle production 
systems  
In order to narrow things down, livestock systems are often classified into three 

main categories: mixed crop-livestock systems, landless systems and grazing 

systems (Garnett et al., 2017; Serré and Steinfeld, 1996):   

Mixed crop-livestock systems: From more than 10% to 90% of the dry matter 

intake of the animals comes from grass. This system is the most frequent in cattle 

meat and milk production. It is however important to highlight that this category is 

not well defined in term of animal diet with, for example, grass proportion that can 

vary from 11% to 90% of the animal feed.   

Landless systems: Less than 10% of dry matter fed to animals is farm-produced 

and annual stocking rates are above 10 livestock units per hectare and per year. 

These systems are often referred as industrialized or confined systems. This system 

is of course not specific to ruminants.     

Grazing systems: Specific to ruminants, in these systems, more than 90% of dry 

matter comes from rangelands, pastures and annual forages with average annual 

stocking rate lower than 10 livestock units per hectare and per year. Less than 10% 

comes from feed supplements.  

Even within those categories, huge variations can still be observed.  For example, 

mixed systems can vary from all farm or locally produced feeds to systems where 

feeds comes from more distant locations. In the same way, the use of fertilizers is 

also not well defined. A grazing system could consist of mostly pastures with very 

low stocking rates and almost no mineral fertilizers while others could be more 

intensive. Variations in pasture grazing management also exist. Pastures can be 

continuously grazed with low stocking densities but long grazing periods or 

rotationally grazed by alternating periods with high stocking densities and rest 

periods.  
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Overall, all these variations, in term of management, used grassland surfaces, 

animal breed but also pedoclimatic conditions, could affect biological and 

biophysical processes resulting in variable GHG emissions.  

3. GHG exchanges associated with cattle 
production 
A typical livestock production farm exchanges all three main GHG that can be 

separated between several components (Figure 1-2). Only the most important items 

in term of GHG exchanges are described below.  

- Machines emit CO2 through fuel consumption.  

- The stables emit all three GHG mainly because of cattle respiration (CO2), 

enteric fermentation (CH4) and manure decomposition (CH4 and N2O).  

- The crop field exchanges CO2 mostly in form of photosynthesis and 

ecosystem respiration (Moors et al., 2010) and emits N20 because of crop 

fertilization (Bouwman et al., 2002). At the field scale, the field also loses C 

in form of non CO2 carbon when the crop is harvested and gains C when 

fertilized with organic fertilizers (Smith et al., 2010). Depending on inputs 

and outputs, the soil can act as a carbon source or sink (Ceschia et al., 

2010a; Ciais et al., 2010). 

- The pasture also exchanges CO2 mostly in form of photosynthesis as well as 

soil, plants and cattle respiration. At the field scale, the pasture also loses C 

in form of non CO2 carbon when the grass is harvested or when milk and 

meat is exported and gains C when fertilized with organic fertilizers. 

Depending on inputs and outputs, the soil can act as a carbon source or sink 

(Soussana et al., 2007, 2010). Cattles emit CH4 because of enteric 

fermentation. N2O is emitted because of grassland fertilization as well as 

animal droppings induced emissions (Brown et al., 2001; Flechard et al., 

2007). 

- Manure emits both CH4 and N2O (Petersen et al., 2013).  
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Figure 1-2: Schematic view of the greenhouse gases involved at the farm scale.  

The weight of each component in the budget varies according to the farm 

production system. In landless systems, most of the emissions are located in the 

stables. Carbon storage in ecosystems is of course totally out of the equation. The 

GHG budget of a landless exploitation will mostly depend on the breed 

transformation efficiency and diet (Harper et al., 1999) and the management of 

manures (Mathot et al., 2012; Petersen et al., 2013). In addition, cattle associated 

GHG emissions also include off farm emissions linked to the production and the 

transport of the food given to the animals.  

At the opposite, in grazing systems, an important part of the emissions occurs at 

the pasture. The soil carbon storage (or emission) can become an important 

component of the GHG budget (Soussana et al., 2010). Lots of variations can still be 

observed as grazing systems can vary from very extensive pastures with almost no 

fertilization and very low stocking rates to more intensive ones. These variations can 

of course affect the GHG budget of the farm in several ways (Allard et al., 2007). 

An extensive system would use more land and probably induce more CH4 emissions 

per unit of production because of low forage quality (Beauchemin et al., 2008). On 

the other side, the more intensive system would rely more on mineral fertilizers 

which are energy consuming for their production (Ramírez and Worrell, 2006) and 

can be associated with N2O emissions. Both systems could also result in differences 

in term of soil carbon storage that will be introduced at section 1.6.  

Mixed crop-livestock farms are more or less situated between the two other 

systems. The importance of carbon storage in the total GHG budget depends, in 

addition to many other variables, on the proportion of grasslands area. The total 

livestock GHG balance will also depend on the proportion of locally cultivated and 

imported feed as well as the origin of the latter. As mixed crop-livestock systems are 



Chapter 1 

31 

 

very diverse in many terms, so is the relative importance of the different terms in 

their GHG budget.  

When looking at C storage in grasslands, the role of the grazing lands carbon 

sink/source activity of the grassland can vary from non-existent in landless system to 

potentially very important in grazing and mixed systems. Therefore, studies, 

assessing carbon and GHG of well-defined production systems are therefore much 

needed in order to better take into account local specificities such as the C 

absorption potential in grasslands which can greatly vary depending on pedoclimatic 

conditions and management (Soussana et al., 2007). This is especially important in 

regions where grasslands are an important component of livestock production 

systems.  

4. Regional context: cattle production in Wallonia 
In 2015, GHG emissions from the agricultural sector were estimated to 8.5% 

(9897 kt CO2éq) of the total GHG emissions in Belgium at the national level 

(Belgium’s greenhouse gas inventory, 2017). This emission does not include soil 

carbon stocks variations in agricultural lands which are accounted for in Land Use, 

Land-Use Change, and Forestry category (LULUCF). It includes enteric 

fermentation, which was the main source of emissions (46.4%), manure 

management related emissions (20%), N2O emissions from soil (32.3%) the 

remaining being associated with liming activities and urea application. On the other 

hand, in Wallonia, grassland carbon storage was estimated to 480 kt CO2 (Agence 

Wallonne de l’Air et du Climat, personal communication).  

In Wallonia, the agricultural sector is highly dominated by cattle breeding and 

grasslands cover an important part of the utilized agricultural land (UAL). In 2014, 

more than 69% of the Walloon farmers were possessing bovines among which, 80% 

were typical Belgian Blue breed suckler cow holders. This represents a total 

population of 1 150 000 heads with 275 000 suckler cows and 210 000 milk cows 

(StatBel, 2017). Permanent grasslands cover around 43% (304 400 ha in 2017) of 

the total region’s UAL while temporary grasslands cover around 5% of UAL 

(StatBel, 2017). These grasslands are mainly used as pastures to produce fresh grass 

and grass silage to feed the cattle. These numbers highlight the importance of the 

cattle sector in Wallonia as well as the role of grasslands in production systems. In 

typical Walloon mixed beef crop-livestock system, around 50% of the feed ratio is 

in form of fresh grass and 30% in form of grass silage (around 30%) (Cellule 

d’information viandes, 2017). The rest of the feed consists mainly of maize silage, 

concentrates, beet pulps and spelt.  

5. Carbon sequestration in grasslands 
In its narrow sense, grassland can be defined as a ground covered by grasses, with 

little or no trees. However, unlike forests, grasslands are variously defined (Dixon et 

al., 2014) which makes quantifying the world grassland cover difficult. According to 

FAO (Suttie et al., 2005), grasslands covers around 40.5% of worldwide ice-free 

land area and are therefore one of the most important ecosystem on earth. Among 
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those grasslands, around 2600 Mha (which correspond to around 20% of earth’s land 

area) are estimated to be grazed by domestic animals (Henderson et al., 2015). More 

specifically, pastures, are defined as land devoted to the production of introduced or 

indigenous forage for harvest primarily by grazing (Allen et al., 2011).  

  Grasslands (as defined by the FAO) are important soil carbon stores that can be 

estimated to 343 Pg C which is nearly 50% more than worldwide in forests soils 

(Conant et al., 2017). Carbon can be stored either in its organic form (soil organic 

carbon, SOC) or in its mineral form when soil minerals contain carbon. Even if, on a 

long timescale, inorganic carbon can vary in response to management and climate, 

changes in SOC are much faster in response to management and  is what is referred 

too when talking about carbon sequestration(Post and Kwon, 2000).  

To store carbon, plants firstly assimilate CO2 to build plant tissues and grow 

(figure 1-3). Then, while most of the absorbed CO2 is re-emitted through plant 

autotrophic respiration, some of it is accumulated in their roots and plant litter 

(Dignac et al., 2017). Some of the assimilated carbon is further re-emitted through 

soil heterotrophic respiration. If undisturbed, and depending on climate, soil 

management, soil microbial composition, fertilization, and many other variables, 

some organic matter can accumulate in the soil (SOM).  

Plants bring organic matter to the soil through their plant foliage litter and through 

their roots turnover but also by rhizodeposition (Jones et al., 2004). Rhizodeposition 

is a process by which living roots release C compounds directly to the surrounding 

soil (Jones et al., 2004). In grazed grasslands, organic matter is also brought to the 

soil in form of animal excretions. A part of this unprotected organic matter is then 

stabilized into more stable forms following mainly three mechanisms (Jones and 

Donnelly, 2004; Six et al., 2002). The first one (1) is the stabilization of the SOM 

through chemical bindings between soil minerals (clay and silt) and SOM (chemical 

stabilization). The second (2) is the biochemical stabilization caused by the 

complexing processes between substrates such as lignin and polyphenols and soil 

particles. Last (3), the SOM is physically protected by soil aggregates that act as 

barriers against microbes and enzymes. SOM can be protected from decomposition 

when positioned in pores too small for bacteria and fungi or when inside larger 

aggregates in anaerobic conditions. In grasslands, the formation of aggregates is 

favored by worms that mix digested plant residues to soil particles. When compared 

to arable crops, carbon sequestration is favored in grasslands because more organic 

carbon is returned to the soil and because a greater part of this carbon is chemically 

and physically stabilized (Soussana et al., 2004; Soussana and Lemaire, 2014). 

When stabilized in the deep soil, its residence time may be long (from 1 to >1000 

years, (Fontaine et al., 2007)).  
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Figure 1-3: Schematic representation of the carbon sequestration process in grassland.  

Through these mechanisms, grassland can therefore constitute a net carbon sink 

towards the atmosphere (Conant et al., 2001; Soussana et al., 2007). This carbon 

sequestration in grasslands soils could, at least partially, compensate cattle CH4 

emissions as well as N2O emissions resulting from fertilization and excreta 

(Hörtnagl et al., 2018; Soussana et al., 2010). However, it is important to emphasize 

that this carbon storage is fragile and time limited and so is its potential in term 

GHG emissions mitigation. Indeed, after a few decades, if management and 

conditions are stable and favorable, carbon stocks will reach an equilibrium (Smith, 

2014; Stewart et al., 2007). Added to that, soil carbon sequestration is reversible 

(Soussana and Lemaire, 2014) so that C can eventually be re-emitted during a 

particular climatic event (Iii et al., 2008; Reichstein et al., 2013) or other soil 

disturbance such as pasture renovation (Drewer et al., 2017; Merbold et al., 2014; 

Rutledge et al., 2014) or land use change from pasture to crop or plantation 

(Freibauer et al., 2004; Guo and Gifford, 2002; Soussana et al., 2004). Practices like 

ploughing mixes soil layers and break soil aggregates tend to accelerate SOM 

decomposition (Conant et al., 2007) .  
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6. Measuring soil carbon sequestration 
Measuring the carbon storage of a pasture require to either measure all the fluxes 

of carbon entering and leaving the pasture and compute a complete carbon balance 

or to directly measure changes in soil organic carbon stocks.  

6.1. Carbon balance approach 
The carbon balance approach consists in measuring all the C fluxes entering and 

leaving an ecosystem for a certain period. When summing all these fluxes together, 

the imbalance of the carbon budget (net biome productivity, NBP) corresponds to 

the soil carbon sink or source activity depending on the sign of the imbalance 

(Jérôme et al., 2013; Soussana et al., 2007). In this work, fluxes were computed 

from the atmospheric point of view. As a result, a C flux leaving the ecosystem is 

accounted positively as a C emission while a flux entering the ecosystem is 

accounted negatively.  

The main fluxes involved in the carbon balance of a grazed pasture are fully 

described at chapter 3. Here is a brief description (Figure 1-4): 

 

Figure 1-4 : Illustration of the main carbon fluxes involved in the carbon balance of a 

grazed pasture.  

 Gross primary productivity (GPP), which refers the rate at which carbon (CO2) 

is fixed through photosynthesis, and total ecosystem respiration (TER), 

including the cattle respiration. The difference between GPP and TER is the 

net ecosystem exchange (NEE). NEE is usually measured at the ecosystem 

scale using the eddy covariance technique described at chapter 2.  

- Carbon export through CH4 emission, mostly emitted by the cows through 

enteric fermentation.  
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- Other non CO2 carbon exports such as the carbon exported through harvest, 

meat production and leaching.  

- Other non CO2 carbon imports such as feed supplements and manure.  

This flux measurement approach allows studying the seasonal, annual and inter-

annual variations of C flux dynamics and budgets (Klumpp et al., 2011; Peichl et 

al., 2011) as well as studying the impact of several management practices and 

weather variations on the carbon balance with relatively short term experiments 

(among others : Allard et al., 2007; Merbold et al., 2014; Rutledge et al., 2017a, 

2017b). However, flux measurements can potentially be affected by systematic 

and random errors (Baldocchi, 2003; Richardson et al., 2006) that can significantly 

affect the overall NBP calculation when summed up. Great care should therefore 

be taken in order to avoid or correct these errors. In addition, if flux measurements 

can easily be repeated over time, these cannot be easily spatially repeated. Finally, 

because of usual inter-annual variability, several years of data are needed in order 

to provide reliable carbon storage (or emission) estimates. As synthesized in a 

review (Jérôme et al., 2013), the C balance approach showed that grasslands 

generally acted as C sinks but with highly variable intensities depending on 

management and pedoclimatic conditions.  

6.2. Soil carbon stock variations 
Changes in SOC can also be directly measured in the soil. Because of intrinsic 

SOC spatial variability, direct SOC measurements requires extensive soil sampling 

to a depth of 100 cm divided in different layers (Arrouays et al., 2018; Skinner and 

Dell, 2015). In addition, as the temporal variability is low compared to the SOC 

spatial variability, the measurements time scale must be relatively long (around a 

decade) in order to observe significant SOC changes overtime (Goidts and van 

Wesemael, 2007). It’s therefore not easy to understand mechanisms that affect 

carbon sequestration on shorter timescales. Compared to the carbon balance 

approach, this technique allows spatially repeated sampling that can be used to better 

understand C sequestration spatial variability. These kinds of measurements are also 

potentially less affected by biases and systematic errors when compared to the flux 

approach. The main source of uncertainty associated may result from bulk density 

estimates especially in agricultural soils where bulk density may vary because of 

ploughing (Goidts and van Wesemael, 2007; Wendt and Hauser, 2013). This 

problem is of course reduced in permanent grasslands.   

7. Impact of grazing on soil carbon sequestration 
Grazing animals impact the C cycle and the soil carbon both directly and indirectly 

(Jérôme et al., 2014) animals remove C from the pasture when eating biomass. Most 

of this C is directly reemitted in form of CO2 respiration. Only the non-digestible C 

is returned to the soil as dung. Therefore, increasing the stocking rate of a pasture 

may lead to increased C losses. When overgrazing is reached, plants are not able to 

recover from defoliation quickly enough leading to their death. Grazing also impacts 

plant carbon uptake by reducing their gross primary productivity through defoliation 
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(Jérôme et al., 2014). On the other hand, at low rate, grazing can stimulate CO2 

uptake by removing plant materials before seed rise. Indeed, as grasses regrow after 

being eaten, the plant will continue to uptake some CO2 from the atmosphere. This 

regrowth of course depends on nutrients, water and N availability and weather 

conditions. 

 In certain conditions, grazing animals can also help carbon sequestration by 

improving nutrient cycling. Indeed, at moderate grazing intensity, excretal returns 

favor nutrient cycling and increase primary production (De Mazancourt et al., 1998; 

Soussana and Lemaire, 2014). However, under too high stocking rates, herbivores 

uncouple C and N cycles leading to environmental problems such as nitrate 

leaching, N2O and ammonia emissions (Soussana and Lemaire, 2014). Indeed, when 

eating biomass, a small amount of the nitrogen contained in the plants is used to 

produce meat and milk while most of the ingested C is emitted in form of CH4 or 

exported as milk. A major parts of N returns to the soil in form of dung (25-40%) 

and urine (60-85%) (Oenema et al., 1997). N is therefore not returned evenly on the 

pasture locally decreasing the C:N ratio of organic matter so that the risk of N 

leaching, ammonia and N2O emissions are increased under high stocking density. 

In term of grazing management, options for the farmers to promote carbon 

sequestration are, among others to adapt the average stocking rate and grazing 

schedules or increased grassland species diversity (Rutledge et al., 2017a). 

Generalizing an ideal stocking rate is probably an impossible task as the optimal 

stocking rate depends on many variables such as climate, vegetation and soils. 

Concerning the changes in grazing timings, there is still nowadays no scientific 

evidence that the use of improved grazing management such as rotational grazing 

can favor carbon sequestration (Garnett et al., 2017). As a result, local studies are 

much needed in order to carefully take into accounts local specificities when trying 

to assess the C sequestration potential of a grazed pasture.  

8. Objectives of the project 
In order to better include these local specificities when evaluating GHG emissions 

of the sector, a study assessing the GHG and carbon budget of a representative 

pasture based Belgian Blue breed farm was much needed. In this context, the project 

"Establishment of the carbon balance of a Walloon farm practicing the suckling 

system: effects of climate and grazing management" was carried out. Regarding the 

importance of pastures in Walloon production systems; this project focuses on 

carbon and its role in the GHG balance at the pasture scale with the following main 

objectives (Jérôme, 2014):  

Objective 1: Establishing a robust methodology to build a complete carbon budget 

of a grazed pasture and to assess the associated uncertainties.   

Objective 2: Building a complete C and CH4 budget  

Objective 3: Testing management strategies that could refine the GHG budget of 

Walloon production systems thereby contributing to improve these systems 

durability.  
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To fulfill these objectives, long term eddy covariance CO2 fluxes (see chapter 2), 

biomass and other related C fluxes measurements started in 2010 in an intensively 

managed pasture grazed by Belgian Blue cows. Farming activities (fertilization, 

animal stocking rates) on the pasture were carefully monitored and additional micro-

meteorological data were also acquired in order to identify the drivers responsible 

for CO2 flux variations. Jointly, eddy covariance CH4 fluxes were measured at the 

same site (Dumortier et al., 2017). These measurements were carried in order to 

build a complete C and CH4 budget of the studied pasture and study the impact of 

weather variations, grazing (Jérôme et al., 2014) and management activities on the C 

balance of the pasture.  

9. Description of the studied farm 
The studied farm is a commercial farm located in the village of Dorinne in the 

Condroz region. The farm is mixed-crop livestock farm with 45 ha of permanent 

grasslands and 100 ha of crop fields. Permanent grasslands are mostly used for 

grazing with occasional harvesting to produce winter forage. Among these cultivated 

lands, around 7 ha are used for maize production, 2 ha for alfalfa, 2 ha of ray-grass 

and 12 ha of forage winter cover. All these cited productions are used to feed the 

cattle. The herd is constituted of 235 Belgian Blue heads with 95 calving per year. 

During the grazing season, the cows are mostly fed by grazing, additional feeds 

being given only when grass production is not sufficient. During winter, the animals 

are fed following the food ration described at table 1-1.  

To fulfill the objectives of the project, we selected a pasture of 4.2 ha that is 

mostly used for grazing during the grazing season. The pasture is (almost) 

continuously grazed by Belgian Blue cows from March to mid-November with 

varying starting and ending dates depending on weather conditions. On average, the 

annual stocking rate was around 2.3 livestock units (LU) per ha and per year with 

relatively small between-year variations. The pasture is fertilized with an average N 

fertilization rate of 120 kg N ha
-1

 yr
-1

. A more complete description of the site and its 

management will be provided at chapter 3. 
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Table 1-1 : food rations of the cows during the winter season. The data were provided by 

the farmer and correspond to the average food ration of the cows during winter 2017-2018.  

Food 

Proportion 

of dry matter 

Wheat straw 15,3% 

protiwanze MF 8,0% 

Maize silage 36,3% 

Beet pulps 4,3% 

Grass silage 12,8% 

Winter cover forage 22,3% 

10. Objectives of the thesis 
In the scope of this project, this work aims at fulfilling the following objectives: 

Objective 1: Establishing a robust methodology to build the complete carbon 

budget of a grazed pasture and to assess its associated uncertainties.   

Objective 2: Building a complete carbon budget of this reference pasture to 

determine if the pasture act as a carbon source or sink and to quantify it. 

Objective 3: Testing the impact of grazing strategies on the CO2 fluxes dynamics 

and on the C sink or source intensity of the pasture.  

To fulfill these objectives, this study was divided into different chapters: 

 Chapter 2: The eddy covariance method.  

In this chapter, a general overview of the eddy covariance methodology 

extensively used in this work is given.   

Chapter 3: Establishment of Carbon the carbon balance of a grazed pasture 

Article 1 : Gourlez de la Motte, L., Jérôme, E., Mamadou, O., Beckers, Y., 

Bodson, B., Heinesch, B., Aubinet, M., 2016. Carbon balance of an intensively 

grazed permanent grassland in southern Belgium. Agricultural and Forest 

Meteorology 228–229, 370–383.  

In this chapter, the carbon balance of the studied pasture is established by 

combining eddy covariance CO2 fluxes measurements with other organic C fluxes 

during five complete years. The methodology used to obtain all the different terms 

of the budget is fully described. The paper aims at answering the following 

questions: is an intensively managed grassland grazed by Belgian Blue cattle 

with a high stocking rate a C sink or source? What is its strength? How do 

grazing interact with the C budget? What are the main sources of uncertainties when 

computing the C budget?  

Chapter 4: Eddy covariance high frequency loss correction 

Article 2 : Mamadou, O., Gourlez de la Motte, L., De Ligne, A., Heinesch, B., 

Aubinet, M., 2016. Sensitivity of the annual net ecosystem exchange to the 
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cospectral model used for high frequency loss corrections at a grazed grassland 

site. Agricultural and Forest Meteorology 228–229, 360–369. 

In this chapter, we highlighted a key methodological issue associated with the use 

of the eddy covariance technique for measuring CO2 fluxes that was discovered 

when writing chapter 3. This article focuses on the impact of the reference 

cospectrum used to correct high frequency losses on annual NEE estimates which 

are critical for the establishment of the C budget.   

Chapter 5: Impact of grazing timing on grassland net ecosystem exchange. 

Article 3 : Gourlez de la Motte, L., Mamadou, O., Beckers, Y., Bodson, B., 

Heinesch, B., Aubinet, M., 2018. Rotational and continuous grazing does not affect 

the total net ecosystem exchange of a pasture grazed by cattle but modifies CO2 

exchange dynamics. Agriculture, Ecosystems & Environment 253, 157–165. 

This chapter focuses on different impacts of grazing animals on the net ecosystem 

exchange of the pasture and, especially on the impact of grazing strategies by 

comparing the CO2 fluxes measured in a continuously grazed pasture to the CO2 

fluxes measured in a rotationally grazed one.  

Chapter 6: Impact of cattle respiration on annual NEE 

Article 4: Gourlez de la Motte, L., Dumortier, P., Beckers, Y., Bodson, B., 

Heinesch, B., Aubinet, M., 2019. Herd position habits can bias net CO2 ecosystem 

exchange estimates in free range grazed pastures. Agricultural and Forest 

Meteorology 268, 156–168. 

This chapter focuses on how cattle location habits can impact annual NEE estimates 

through their respiration. In this article, multiple strategies are proposed in order to 

compute unbiased NEE that include cattle respiration in a representative way.  

Chapter 7: General discussion, conclusion and perspectives.  

11. Personal contribution to the research presented 
in this manuscript 
This manuscript is the result of a team work that started in 2010 when 

measurements started at the Dorinne Terrestrial Observatory. My work was 

primarily focused on analyzing, computing and communicating the different results 

of this work. The technical maintenance of the site was successively done by Henry 

Chopin, Frederic Wilmus, Gino Mancini, Alain Debacq and Alwin Naiken. Biomass 

measurements were successively done by Jean Christophe Pector and Melissa 

Lhonneux. The data acquisition and quality control was successively done by 

Elisabeth Jérôme, Ossenatou Mamadou, Pauline Buysse and myself. All the 

presented research has been written in collaboration with the co-authors of each 

chapter.  

The writing process of chapter 3 (Article 1) was started by Elisabeth Jérôme who 

wrote a first version based on the data collected from 2010-2013 during her Ph.D 

thesis (Jérôme, 2014). After the discovery of an important methodological issue 

fully described in the next chapter, we decided to rewrite the paper as some 

conclusions in the former version were wrong. The new version (based on the 
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former one) was written by myself. It was also decided to add two supplementary 

years of data (2014-2015) to strengthen the paper.  

Chapter 4 (Article 2) has been published by Ossenatou Mamadou who wrote the 

paper. I participated in the data analysis in order to assess the impact of the used 

reference cospectrum on the computation of the C budget. I also participated in the 

redaction process by rereading and commenting the intermediate versions.   

In chapter 5 (article 3), I was responsible for analyzing the data and writing the 

paper.  

For chapter 6 (Article 4), Pierre Dumortier was responsible for the GPS data 

acquisition and analyses. He did all the necessary computation linked to the GPS 

campaigns and participated in the redaction process. For my part, I analyzed the data 

and wrote the paper.  
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1. General principle and main interest  
The eddy covariance technique is a micrometeorological method that allows 

vertical gas exchanges between a surface (typically an ecosystem) and the 

atmosphere be captured at a high resolution time rate. This method, central to the 

project, was extensively used to continuously measure the vertical CO2 (and other 

gases) flux between the studied grassland and the atmosphere. A complete updated 

description of the eddy covariance method has been given by Aubinet et al., 

(2012b). Here is an overview of the method. 

Over an ecosystem, when turbulence is sufficiently developed, gas transport is 

mainly due to turbulence, gas diffusion being considered negligible when compared 

to the turbulent transport. The eddy covariance theory is based on the mass 

conservation equation of a scalar:  

1 1 1 1
( ) ( ) ( ) ( )s s s s

m m m m

s

V V V V
u v w S

t x y z
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   
   

  (2.1) 

where Vm is the dry air molar volume s  the molar dry mixing ratio (mole mole
-1

) 

of a given scalar (here CO2), which correspond to the ratio of the scalar number of 

moles to those of dry air, u, v and w are the three components of wind speed (m s
-1

) 

according to the x, y and z axis and Ss is the absorption or production rate of the 

scalar (mole m
-3 

s
-1

). 

Each variable can be decomposed (assuming stationary conditions) between a 

temporal mean (marked by an overbar) and a fluctuation (marked by a prime)

' w w w , by the so-called Reynolds decomposition. If we apply this decomposition 

to u, v, w and χs to equation 2.1, average for a given period and integrate on a control 

volume of area 2Lx2L and height hm: 
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(2.2) 

where term I correspond to scalar storage in the volume control, term II 

corresponds to the advection (horizontal and vertical), term III and IV are the 

transport by turbulence and term V the source/sink strength. If we further make the 

following assumptions:   

- the surface is flat and homogeneous (horizontal gradients nullify) 

- constant dry air molar volume 

- conditions are stationary  
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- the mixing ratios and turbulent fluxes are representative of the whole volume 

then horizontal integration is unnecessary and equation 2.2 can be simplified as : 

0 0
0 0

1 1 1 1 1
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   (2.3) 

where Fs is the net ecosystem exchange for the component s,term I corresponds to 

the change of storage of the scalar between the soil and the measurement height 

(often called the storage term), term IIa represents the vertical advection term 

resulting from dry air density temporal variations in the air below hm, term IIb 

represents the horizontal advection and term III is the turbulent transport term and 

term IV is the source/sink of the scalar in the control volume.  

Most of the time, term IIa and IIb can be considered negligible. As a result, the 

source/sink FS can be described as the sum of the covariance of vertical wind 

speed and dry mixing ratio of the studied gas at height hm and the change of 

storage of this scalar below hm: 

0
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Usually, the covariance is calculated on a 30-min time basis from high frequency 

(usually 10-20 Hz) wind and mixing ratio measurements. For low height masts, 

similar to those used over grasslands and croplands, the storage term is often 

computed from a single concentration measured at hm. If the measured scalar is CO2, 

this scalar flux (FCO2) corresponds to the net CO2 exchange (net CO2 ecosystem 

exchange, NEE). 

If the above assumptions are most often well respected during the day, the 

simplifications made in equation 2.4 cannot be applied at night, during low turbulent 

conditions. In these conditions, the horizontal (equation 2.2) and vertical advection 

terms are not negligible. Because the advection terms cannot be measured with a 

single tower, a specific filtering of night data is needed as described in section 3 of 

this chapter.  

Measuring gas fluxes on 30-min time resolution allows a faithful capture of the 

temporal variability of the studied flux. The missing data can also be filled in order 

to get seasonal to annual complete time series that can be summed to obtain gas 

fluxes over longer periods and compute annual/seasonal gas budgets (Falge et al., 

2001; Moffat et al., 2007). Finally, these high time resolution measurements allow 

studying the impact of  specific periods or events on the annual flux such as 

droughts (e.g. Ciais et al., 2005; Hussain et al., 2011; Jongen et al., 2011), biomass 

harvests (Jones et al., 2017; Wohlfahrt et al., 2008) and others. This method has 

been widely used to measure CO2 fluxes in all kind of ecosystems (e.g. Baldocchi et 

al., 2017) but also other gases such as CH4 (e.g. Nicolini et al., 2013), N2O (e.g. 
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Jones et al., 2011; Kroon et al., 2010; Nicolini et al., 2013; Lognoul et al., in press) 

and volatile organic compounds (e.g. Laffineur et al., 2013; Bachy et al., 2016).  

2. Eddy covariance and supporting instrumentation 
Measuring GHG fluxes exchanged between an ecosystem and the atmosphere by 

eddy covariance requires the use of a fast three dimensional anemometer and a fast 

gas analyzer (CO2, CH4, N2O…). The anemometer is positioned on a mast above the 

canopy level (Figure 2.1). The air is pumped at the height of the anemometer in an 

analyzer and the dry mixing ratio of the gas is measured. Both wind speed and gas 

mixing ratio are measured at high frequency (generally 10 or 20 Hz).   

 

Figure 2-1 : General overview of the eddy covariance flux tower and other meteorological 

sensors installed at the Dorinne Terrestrial Observatory 



Carbon balance of an intensively managed pasture 

46 

 

This eddy covariance system is associated with a micro meteorological station 

measuring several variables such as air and soil temperatures, air and soil humidity, 

precipitations, atmospheric pressure and radiation. All the data are registered by a 

data data logger. These are frequently collected (around once a week) on site using 

memory cards. A more complete description of the instrument set up used in this 

study is given in chapter 3. 

3. Flux computation, corrections and quality 
control 

3.1. Data acquisition, quality control and corrections 

Measuring GHG exchanges between an ecosystem and the atmosphere requires a 

relatively complex and specific treatment (Aubinet et al., 2012b, 2000) described at 

figure 2.2.   

 

Figure 2-2 : Schematic representation of the eddy covariance data acquisition procedure. 

Created by Elisabeth Jérôme, adapted from Aubinet et al

First, high frequency data must be collected and the covariance must be computed 

from raw data (Rebmann et al., 2012). All the computations have been done using 
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the EDDYSOFT software package (EDDY Software, Jena, Germany, Kolle and 

Rebmann, 2007). To do so, the time lag between the acquisition of wind speed and 

gas concentration must be computed. This delay is mostly due to differences in 

electronic signal treatment, separation between sensors and air travel through tubes 

in closed-path analyzers. Coordinate rotation must be applied in order to align the z 

axis perpendicular to the streamlines.  

Once computed, these “uncorrected” fluxes must be corrected for high frequency 

losses and the so-called WPL density fluctuation correction (Webb et al., 1980). The 

correction procedures are fully described in Foken et al., (2012b). High frequency 

losses are mainly due to inadequate sensor frequency response, sensor separation 

and air transport through the tube in closed path analyzers. Because this high 

frequency correction can significantly affect the results, a specific methodological 

work was carried for this correction. The procedure used to do this frequency 

correction will be fully described at chapter 4.  

Once fluxes are computed and corrected, flux data quality must be controlled in 

order to keep only reliable data. The procedure is also completely described in 

Foken et al., (2012b). Briefly, out of plausible range data must be removed using 

despiking algorithms (Vickers and Mahrt, 1997). Then, unsteady state data must be 

filtered as they do not meet the stationarity assumption needed to obtain relevant EC 

fluxes and the the turbulent flux is no longer representative of the scalar source/sink 

(Foken and Wichura, 1996). 

It is well known that NEE computed following equation 2.3 under estimate the 

actual CO2 source/sink during low turbulence conditions (Aubinet et al., 2012a). 

During these conditions, there is strong evidence that eddy covariance measurements 

are affected by systematic errors mostly due to stable atmospheric conditions, 

extended footprint (cfr. Section 3.3), and the advection terms being non negligible in 

equation 2.2 as well as nonstationary conditions (Aubinet, 2008). Data under low 

turbulence must therefore be discarded. In this case this was done by filtering data 

under low friction velocity, u*, a measure of the intensity of turbulence. After the 

application of all these filters, around 20-60% of the data are rejected (Papale et al., 

2006). 

3.2. CO2 flux data gap filling  

After these operations, gaps in flux data time series must be filled in order to 

compute annual sums (Falge et al., 2001; Moffat et al., 2007). In this work, CO2 

fluxes data were filled using the time-moving look up table algorithm developed by 

Reichstein et al., (2005). The algorithm fills the data with fluxes averaged in similar 

environmental conditions. Meteorological variables used by the algorithm are the air 

temperature (Tair), the vapor pressure deficit (VPD) and the global radiation (Rg). In 

this work, The gap filling was made using the REddyProc online tool (Reichstein et 

al., 2005). 
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3.3. Footprint concept 

Ideally, eddy covariance measurements must be made over perfectly homogeneous 

terrain to avoid horizontal advection with a terrain that outreach the source of area of 

the measurement (footprint, Rannik et al.,(2012)). Roughly, the footprint (FP) can be 

defined as the area seen by the flux tower for a given period and reflects the 

contribution of each pixel (sub area) in the area to the measured flux. In case of 

inhomogeneous terrains, the measured flux depends on the strength of each 

sources/sinks as well as on their respective contribution to the footprint (Rannik et 

al., 2012). The relationship between the source/sink distribution and the vertical flux 

over an area measured at the origin of a coordinate system with no contribution from 

downwind can be computed as (Leclerc and Thurtell, 1990):  

0

F(0,0) (x, y,z)S(x, y,0)dxdy

 



        (2.3) 

where F is the measured flux measured at height z, S the surface source/sink and ϕ 

the footprint weighting function (m
2

). Depending on the location of a source/sink 

from the eddy flux tower and micrometeorological conditions, the contribution of a 

given sink/source will vary as illustrated at figure 1-3. 

 

Figure 2-3: Illustration of crosswind integrated flux footprint function in stable and 

unstable conditions for an observation height of 2.5m using the Korman and Meixner (2001) 

model.  

Over perfectly homogeneous terrain, evaluating the footprint function is not needed 

as sources/sinks are spread evenly on the field. In practice, this condition is rarely 

met so that footprint evaluation is often necessary for flux interpretation. In sites 
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such as grazed pastures, cows act as moving sources of CO2 (through their 

respiration) and CH4 (enteric fermentation) that are usually not spread evenly in the 

field. Therefore, to evaluate their contribution to the measured CO2 flux or simply 

compute the flux emitted by each animal, information about their location and 

strength of their contribution to the footprint is needed (Felber et al., 2015, 2016b). 

In addition, in our study, the footprint area was sometimes larger than the studied 

pasture so that a correction factor based on the footprint model had to be 

implemented for fluxes coming from the studied parcel only (see chapter 6). 

Different models allow computing this footprint function in order to weight the 

contribution of the different sink/sources. The FP function can be derived either 

from analytical (Kormann and Meixner, 2001), Lagrangian dispersion stochastic 

approaches (Kljun et al., 2015, 2002) or large eddy simulations (Leclerc et al., 

1997). In this work, we used the analytical model developed by Korman and 

Meixner (2001) as this model seemed to be the best choice to reproduce the 

emission by an artificial source (Dumortier et al., 2019).  

3.4. Partitioning of NEE 

As previously introduced (figure 1-4), the NEE is the sum of the gross primary 

productivity (GPP) and the total ecosystem respiration (TER): 

NEE=TER-GPP    (2.4) 

In grazed sites, the total ecosystem respiration is the sum of the respiration of the 

soil and vegetation and the respiration from grazing animals. Obtaining GPP and 

TER is very important to better understand the process that affects NEE. To do this 

partitioning, we used the fact that, at night, GPP is zero so that NEE is equal to TER. 

The TER at night was modelled as an exponential response to temperature and this 

relationship was used in daytime to obtain TER and further on GPP. In this work, we 

used the procedure developed Reichstein et al., (2005) and available to the research 

community as the REddyProc online tool.  

In a grazed pasture, the measured NEE (also referred as NEEtot) is the sum of the 

NEE of the soil and vegetation (NEEpast) and the respiration of the cows (Rcows) 

(Felber et al., 2016b): 

NEEtot=NEEpast+Rcows    (2.5) 

If we hypothesize that, on a yearly basis, cattle are spread homogeneously on the 

field (homogeneous cow distribution hypothesis), we can assume that Rcows is 

included in a representative way in NEEtot. Annual NEEtot measurements are in this 

case considered representative of the whole ecosystem. This hypothesis was 

explicitly used from chapter 3 to 5 to characterize the net CO2 exchange of the 

ecosystem on a yearly basis. Later on, this important hypothesis was tested when 

sufficient data about cow location (namely GPS data and CH4 fluxes) in the footprint 

were available. The method and the results of this investigation are fully detailed in 

chapter 6. Eventual consequences are also fully discussed in the final discussion and 

conclusions section.  
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Abstract 
Grasslands are an important component of the global carbon balance, but their 

carbon storage potential is still highly uncertain. In particular, the impact of weather 

variability and management practices on grassland carbon budgets need to be 

assessed. This study investigated the carbon balance of an intensively managed 

permanent grassland and its uncertainties by drawing together 5 years of eddy 

covariance measurements and other organic carbon exchanges estimates. The results 

showed that, despite the high stocking rate and the old age of the pasture, the site 

acted as a relatively stable carbon sink from year to year, with a 5-year average net 

biome productivity of -161 [-134 -180] g C m
-2

 yr
-1

. Lateral organic carbon fluxes 

were found to increase the carbon sink because of high carbon imports (organic 

fertilization, feed complements) and low carbon exports in form of meat compared 

to dairy pastures. The cattle stocking density was adapted to grass production, which 

itself depends on weather conditions and photosynthesizing area, in order to 

maintain a steady meat production. This resulted in a coupling between grazing 

management and weather conditions. As a consequence, both weather and grazing 

impacts on net ecosystem exchange were difficult to distinguish. Indeed, no 

correlation was found between weather variables anomalies and net ecosystem 

exchange anomalies. This coupling could also partly explain the low C budget inter-

annual variability. The findings in this study are in agreement with those reported by 

other studies that have shown that well-managed grasslands could act as a carbon 

sinks. 
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1. Introduction 
Grasslands cover 40% of the Earth’s ice-free land surface (Steinfeld et al., 2006) 

and are characterized by soils with a high soil carbon (C) content (Conant et al., 

2001). They therefore constitute an important component of the global C balance 

(IPCC, 2007). Studies assessing the C balance under grasslands are relevant because 

grassland C sequestration can play an important role in mitigating the total 

greenhouse gas emissions from livestock production systems (Lal, 2004; Soussana et 

al., 2010). There is a strong need, therefore, to accurately evaluate grassland C 

sequestration (Herrero et al., 2011). 

Grassland C sequestration can be determined directly by measuring changes in soil 

organic carbon (SOC) stocks or indirectly by measuring the balance of C fluxes at 

the system boundaries. Contrary to studies based on SOC change measurements 

(Goidts and van Wesemael, 2007; Lettens et al., 2005a, 2005b; Meersmans et al., 

2009), studies assessing the total C grassland budget by combining eddy covariance 

measurements with measurements of other C fluxes enable investigations to be made 

of seasonal, annual and inter-annual C flux dynamics and budgets (Byrne et al., 

2007; Gilmanov et al., 2010; Klumpp et al., 2011; Mudge et al., 2011; Peichl et al., 

2012, 2011; Soussana et al., 2010; Zeeman et al., 2010). They also enable the impact 

of specific management practices or weather conditions to be analyzed (Aires et al., 

2008; Allard et al., 2007; Ammann et al., 2007; P. Ciais et al., 2010; Harper et al., 

2005; Heimann and Reichstein, 2008; Hussain et al., 2011; Jaksic et al., 2006; 

Jongen et al., 2011; Klumpp et al., 2011; Peichl et al., 2012; Suyker et al., 2003; 

Teuling et al., 2010).  

The results of these studies reveal strong site-to-site variability because of 

differences in pedoclimatic conditions and management practices: they report 

increases as losses or no change in soil C balances (Soussana et al., 2010). Grassland 

C balance and the impact of environmental conditions and management practices on 

this balance are still not well understood (Mudge et al., 2011; Soussana et al., 2010). 

Grazing is known to directly affect the carbon dioxide (CO2) net ecosystem 

exchange (NEE) via livestock respiration and indirectly via biomass consumption, 

natural fertilization trough excreta and soil compaction (Jérôme et al., 2014). A high 

stocking rate could impact the carbon budget by either reducing growth primary 

productivity (GPP) through defoliation (Jérôme et al., 2014) but also by stimulating 

GPP by removing less productive plant material before withering. The land use and 

the management prior to the study could also affect the carbon budget. Indeed, 

interventions such as ploughing, reseeding, land use change from a crop field to a 

grassland and improved management could still increase the CO2 accumulation 

many years later before reaching an eventual equilibrium (Smith, 2014).  

The main objective of this research was to assess the total C balance of a grazed 

grassland located in Wallonia (southern Belgium) by measuring all C fluxes 

exchanged at the system boundaries, using the eddy covariance method, direct 

measurements made in the field, estimates by the farmer and  literature data when no 

measurements were available. The study site has been a permanent grassland since it 
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was used for grazing (probably more than a century). It has been intensively 

managed with high stocking rates (around 2 Livestock units (LU) per hectare per 

year) and the application of mineral and organic fertilization for more than 40 years.  

This paper also attempts to answer a few specific questions: (i) is a grassland 

established for more than a century and intensively managed for more than 40 years 

with a stocking rate exceeding 2 LU per hectare a C sink or a source? (ii) How do 

management practices and weather conditions affect the C budget? (iii)What are the 

main sources of uncertainties and how robust is the methodology used to establish 

the C budget? The research covered 5 years of measurements, providing an 

opportunity to assess the grassland C budget on monthly and annual scales, evaluate 

its uncertainties and identify some drivers linked with weather or grassland 

management 

2. Material and method: 

2.1. Carbon balance of the pasture 
The net balance of C fluxes exchanged at the system boundaries, commonly 

known as net biome productivity (NBP, g C m
-2

 yr
-1

), was defined by Soussana et al. 

(2010) for temperate grazed grassland as (Figure 2-1): 

 

Figure 3-1 : Carbon (C) cycle of the grazing animal. Solid arrows represent C 

components of the net biome productivity (see Equation 1). Dashed arrows represent 

internal C fluxes. 

   
CO2 CH4 manure import harvest product leach

NBP F     F     F     F   F     F     F         

 (3.1) 

where FCO2 is the net ecosystem carbon dioxide (CO2) exchange, corresponding to 

the difference between gross CO2 uptake via photosynthesis (gross primary 

productivity, GPP) and CO2 loss via respiration (total ecosystem respiration, TER, 

including cattle respiration); FCH4 is the C lost through methane (CH4) emissions by 
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grazing cattle (the CH4 fluxes from the soil were considered as negligible as their 

magnitude was only 2.5% of the cattle fluxes according to Dumortier et al., (2017)); 

Fmanure and Fimport are the lateral organic C fluxes imported into the system through 

manure and/or slurry application and supplementary feed, respectively; Fharvest and 

Fproduct are the lateral organic C fluxes exported from the system through mowing 

and animal products (meat), respectively and Fleach represents organic and/or 

inorganic C losses through leaching. Throughout this paper, we adopt the 

micrometeorological convention that fluxes from the ecosystem are positive and that 

fluxes to the ecosystem are negative. A negative NBP therefore corresponds to C 

uptake.  

2.2. Site description 
The research was carried out at the Dorinne terrestrial observatory (DTO) (50° 18’ 

44’’ N; 4° 58’ 07’’ E). Dorinne is 18 km south/south-east of Namur, in the Condroz 

region in Belgium. The Condroz region is characterized by a succession of 

depressions and crests with soils suitable for arable land use (mainly cereals and 

sugar beet) and pastures for cattle breeding (Goidts and van Wesemael, 2007). The 

climate is temperate oceanic. The mean annual air temperature is 10°C, the annual 

precipitation is 847 mm and the main wind directions are south-west (IRM, 2011) 

and north-east. The field is bordered on the south-west by a cultivated field and by 

pastures on the north-east. The research site is a permanent grassland covering 4.22 

ha and dominated by a large colluvial depression exposed south-west/north-east. 

This depression is situated on a loamy plateau with a calcareous and/or clay 

substrate. The altitude varies from 240 m (north-east) to 272 m (south). So far as we 

know, the field has never been cultivated and has been permanent grassland since it 

started being used for grazing (probably for more than a century). It has been 

intensively used for cattle grazing, with the application of organic (cattle slurry and 

manure) and inorganic fertilizers, for about 40 years. The grassland species 

composition is: 66% grasses, 16% legumes and 18% other species. The dominant 

species are perennial ryegrass (Lolium perenne L.) and white clover (Trifolium 

repens L.). There has been no renovation of the grass vegetation (ploughing – 

resowing) for more than 50 years. Flux measurements have been taken since spring 

2010. The data given in this study cover 5 full years of measurements from 12 May 

2010, when the eddy covariance measurements began, to 12 May 2015.  

2.3. Grassland management 
The field was intensively managed and grazed during the growing season by 

Belgian Blue cattle (heifers, suckler cows, breeding bulls, calves). The rotation 

between stocking (periods with cattle) and recovery periods without cattle (rest 

periods) depended on herbage growth and its consumption by cattle. In this context, 

weather conditions limited the grazing pressure, which was adjusted when 

necessary. Feed (corn silage, hay and a mixture of straw and ProtiWanze®, a by-

product of bio-ethanol production) was distributed when necessary to supplement 

grass shortage (drought or beginning/end of the grazing season). Fertilizers, 

including mineral and organic fertilizers, were applied at various times to the field 
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throughout the growing season (Table 2-1). The reference unit used for calculating 

LU is the grazing equivalent of one 600 kg liveweight (LW) adult dairy cow 

producing 3,000 kg of milk annually, without additional concentrated feed (Eurostat, 

2013). Breeding bulls and suckler cows correspond to 1 LU, and heifers and calves 

to 0.6 and 0.4 LU, respectively. 

Table 3-1: List of management activities at the Dorinne Terrestrial Observatory. Weighing 

values are presented with a 95% confidence interval. 

 

10-Mar-10 fertilization: compost (t FM ha
-1

) 11.0

25-Mar-10 fertilization: 10/8/4 + selenstar® (Se) (t ha
-1

) 0.6

3-Jun - 6-Jun-10 cut-harvest (t DM ha
-1

) 2.7

10-Jun-10 fertilization: 24/0/0 + selenstar® (Se) (t ha
-1

) 0.2

20-Jun - 11-Jul-10 supplements: corn silage/mixture (t FM ha
-1

) 0.9

Jul-10 scattering of livestock droppings

31-Jul - 21-Aug-10 supplements: mixture (t FM ha
-1

) 1.1

5-Aug-10 heifers weighing (kg animal
-1

) 436 ± 13

7-Sep - 22-Nov-10 supplements: mixture (t FM ha
-1

) 3.5

Sep-10 scattering of livestock droppings

164

2011

26-Jan-11 heifers weighing (kg animal
-1

) 549 ± 20

20-Feb-11 fertilization: compost (t FM ha
-1

) 12.0

9-Mar-11 fertilization: 18/5/5 + Mg (t ha
-1

) 0.4

22-Mar-11 liming: magnesian lime (t ha
-1

) 1.5

9-Apr - 23-Apr-11 supplements: mixture (t FM ha
-1

) 0.4

13-May-11 fertilization: 10/8/4 + selenstar® (Se) (t ha
-1

) 0.3

3-Nov - 2-Dec-11 supplements: hay (t FM ha
-1

) 0.3

162

19-Mar-12 fertilization: 10/8/4 + selenstar® (Se) (t ha
-1

) 0.4

24-Mar - 2-Apr-12 supplements: mixture (t FM ha
-1

) 0.3

30-May-12 fertilization: n27 (t ha
-1

) 0.2

13-Jul-12 fertilization: n27 (t ha
-1

) 0.2

31-Oct-12 - 14-Nov-12 supplements: hay (t FM ha
-1

) 0.1

148

3-Apr-13 fertilization: 10/8/4 (t ha
-1

) 0.4

3-Apr-13 scattering of livestock droppings

13-Jul-13 fertilization: n27 (t ha
-1

) 0.2

10-Sep-13 scattering of livestock droppings

94

2015

11-Mar-15 fertilization: 10/8/4 (t ha
-1

) 0.3

15-Mar-15 scattering of livestock droppings

30

Total fertlization for 2011 (kg N ha
-1

 )

Total fertlization for 2012 (kg N ha
-1

 )

Total fertlization for 2013 (kg N ha
-1

 )

2012

2013

Total fertlization for 2015 (kg N ha
-1

 )

2010

Before the start of the experiment

Total fertlization for 2010 (kg N ha
-1

 )
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2.4. CO2 flux measurements  
The CO2 flux was measured using the eddy covariance technique. This involved 

using a three-dimensional sonic anemometer (CSAT3, Campbell Scientific Ltd, UK) 

coupled with a fast CO2-H2O non-dispersive infrared gas analyzer (IRGA) (LI-7000, 

LI-COR Inc., Lincoln, NE, USA) to measure fluxes of CO2, latent heat, sensible heat 

and momentum. The system was installed on a mast at a height of 2.6 m above 

ground in the middle of the field and was surrounded by a secured enclosure. Air 

was sucked into the IRGA through a tube (6.4 m long; inner diameter 4 mm) by a 

pump (NO22 AN18, KNF Neuberger, D) with a 12 l min
-1

 flow. Data were sampled 

at a rate of 10 Hz. Zero and span calibrations were performed for CO2 and H2O 

about once a month. Pure nitrogen (Alphagaz 1, Air Liquide, Liege, Belgium) was 

used for the zero and 350 µmol mol
-1

 mixture (Chrystal mixture, Air Liquide, Liege, 

Belgium) for the span. 

FCO2 was computed half-hourly as the sum of the turbulent flux measured by the 

eddy covariance system and of the storage term (Foken et al., 2012a). Flux 

computation was performed using the EDDYSOFT software package (EDDY 

Software, Jena, Germany,  Kolle and Rebmann, 2007) and the 10 Hz time series 

data. All the computation and correction procedures used were the standard 

procedures defined within the context of the EUROFLUX – CARBOEUROFLUX – 

CarboEurope IP networks (Aubinet et al., 2012b, 2000). Double rotation was applied 

to wind velocity in order to align the streamwise velocity component with the 

direction of the mean velocity vector (Rebmann et al., 2012). Fluxes were corrected 

for high frequency losses following an original procedure based on the sensible heat 

cospectra. The complete procedure has been described by (Mamadou et al., 2016). 

The turbulent fluxes were scrutinized using a stationary test with a selection 

criterion of 30% according to (Foken et al., 2012b; Foken and Wichura, 1996). Data 

were separated between night and day using a photosynthetic photon flux density 

(PPFD) criterion, with a threshold of 5 µmol m
-2

 s
-1

. In order to avoid night CO2 flux 

underestimation, CO2 fluxes measured under low nighttime turbulence conditions 

were filtered (Aubinet et al., 2012a; Goulden et al., 1996). A critical threshold of u
*
 

was determined at the point where the relationship between u* and the bin averaged 

temperature normalized nighttime FCO2 flattens.  A value of 0.13 m s
-1

 was found 

and measurements with u
*
 below this value were systematically discarded. 

Net ecosystem exchange (NEE) gaps were filled using the online REddyProc 

gapfilling and flux partitioning tool (Reichstein et al., 2005). The reference 

temperatures used to fill the gaps was the soil temperature at a depth of 2 cm. NEE 

partitioning into GPP and TER was also calculated using the same tool and same 

reference temperature.  

Measurement footprint was calculated using an analytical model following 

Kormann and Meixner (2001). On average, during instable conditions, 77% of the 

footprint area was covered by the measured pasture. During stable conditions, this 

footprint area is much larger. However, most of the fluxes measured during stable 

conditions were discarded by the u* filtering (Dumortier et al., 2017).   
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In order to investigate inter-annual variability, flux (NEE, GPP, TER) and weather 

variable anomalies (temperatures, radiation, soil humidity…) were computed as 

follows: first, monthly and annual sums (for fluxes and precipitation) or averages 

(for other weather variables) were calculated. For each variable, a 5-year average 

was computed and anomalies for a given year were calculated as the difference 

between the variable (monthly/annual sum or average) for the considered year and 

its 5-year average.  

2.5. Meteorology 
Supporting measurements included air temperature and relative humidity 

(RHT2nl02, Delta-T Devices Ltd, Cambridge, UK), soil temperature (Pt 1000) at 

depths of 2, 5, 10, 25 and 50 cm and soil moisture (ThetaProbe, Delta-T Devices 

Ltd, Cambridge, UK) at depths of 5, 25 and 50 cm, gross and net radiation (CNR4, 

Kipp & Zonen, Delft, The Netherlands), rainfall (tipping bucket rain gauge, 52203, 

R.M. Young Company, Michigan, USA) and atmospheric pressure (144S BARO, 

SensorTechnics, Puchheim, Germany). Meteorological data were sampled at a rate 

of 0.1 Hz and averaged (summed for precipitation) every 30 min. Data were 

recorded on a data logger (CR3000, Campbell Scientific Ltd, UK). Raw eddy 

covariance data, sampled at 10 Hz, and half-hourly meteorological data were then 

stored on a 2 GB compact flash card. Growing degree days (GDD) were computed 

in order to evaluate the impact of winter temperatures on NEE. GDD was calculated 

as the sum of daily mean air temperatures above 0°C from 1 January (Theau and 

Zerourou, 2008) to 31 March. 

2.6. Biomass measurements 
2.6.1. Herbage mass 

Herbage mass in the field (HM) was deduced from herbage height (h) 

measurements with a rising plate meter. The mean canopy height was determined 

manually by measuring the center height of a light-weight plate of 0.25 m² dropped 

onto the canopy at 60 points in the field. This estimation was then converted into 

HM using allometric relationships fitted on to direct sampling measurements. 

Samples were taken from the field (nine sample surveys, providing about 20-25 

samples per survey) and from three secured enclosures (weekly measurements, see 

Section 2.6.2) during the stocking periods between 12 May 2010 and 11 May 2012. 

The samples were mowed at a height of 0.05 m using battery-powered hand clippers 

and a quadrat (0.5 × 0.5 m). They were then dried at 60°C in a forced-air oven until 

constant weight was achieved. A relationship between grass height difference before 

and after the cut and harvested dry matter was established: 
2HM 2.4 h 203.7 h (R² 0.77;n 381)         (3.2) 

where n is the number of samples. 

2.6.2. Grass growth under grazing 

Three secured enclosures from which animals were excluded were installed in the 

field to assess grass growth under grazing over a period (Ri). Each enclosure 

consisted of five strips (0.5 × 2 m). By successively cutting the strips, grazing was 
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simulated and the HM accumulation under grazing was deduced from the canopy 

height measurements. Measurements were conducted over 5 weeks during the 

stocking cycle. On week 1, strip 1 was mowed and each week thereafter strip 1 and, 

successively, strips 2 to 5 were mowed. A weekly HM accumulation was obtained 

from the difference between average initial and final grass height of each strip and 

equation 2 for each secured enclosure. Ri was calculated as the average HM 

accumulation for the three secured enclosures over a given period.  

2.7. Organic carbon exports and imports influencing net 

biome productivity 
FCH4 was estimated as a constant fraction of the ingested dry matter (dry matter 

intake, DMI) by cattle during grazing using the dimensionless methane conversion 

factor Ym, which is the methane emitted per kg of DMI. We assumed a typical Ym 

value of 6% (Lassey, 2007). The DMI corresponded to the sum of the HM intake by 

cattle during grazing and the dry matter of supplementary feed imported. Fmanure and 

Fimport were calculated by multiplying the imported mass by its dry matter fraction 

and its dry matter C content (Table 2-2). Fharvest was estimated by multiplying the 

HM difference in the field before and after the cut with the grass C content (Table 2-

2). Fproduct was estimated by multiplying the daily cattle LW gain for a growing 

animal, fixed at 0.647 kg LW animal
-1

 day
-1

 based on in situ measurements 

conducted in Year 1, with a concentration factor of 0.165 ± 0.002 kg C (kg LW)
-1

 

for Belgian Blue (Mathot et al., 2012). As it was not possible to measure Fleach at 

DTO, it was fixed at 7 ± 7 g C m
-2

 yr
-1

, based on the work of Schulze et al. (2009). 

Table 3-2 : Dry matter fraction (% DM) and dry matter C content (% C) used to calculate 

the net biome productivity (NBP) components linked to management practices. 

 

C content analyses of samples taken in situ (herbage, complementary feed, 

compost) were conducted by the Forest Ecology and Ecophysiology Unit at the 

Institut National de la Recherche Agronomique (INRA) (UMR 1137 INRA-UHP) 

using the Dumas method (Dumas, 1831). After drying and grinding (Cyclotec – 1 

mm screen), the samples were analyzed using an elemental analyzer (NCS2500, CE 

instrument Thermo Quest, Italy). 

NBP components Sample taken in situ % DM Origin % C Origin

Fmanure Compost 21

Drying: 60°C in a forced-air 

oven until constant weight 

was achieved

36

Corn silage 44 40

Straw + ProtiWanze® 45 42

Hay 85 42

Fharvest Grass -

Difference in grass height 

before and after harvest 

converted to herbage mass 

dry matter using equation 2

42

Fimport

Grinding: Cyclotec - 1 mm screen  

Laboratory: Forest Ecology and 

Ecophysiology Unit, Institut National 

de la Recherche Agronomique - 

INRA) (UMR 1137 INRA-UHP).                                                                                            

Method: Dumas, 1831.        

Analyzer: Elemental analyzer 

(NCS2500, CE instrument Thermo 

Quest, Italy).

Data provided by the farmer
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2.8. Other carbon fluxes 
In order to analyze in detail all the C fluxes exchanged in this grassland and 

specifically those linked to grazing, we established the C cycle of the animals. It 

sought to estimate the components described in the sections below (Figure 2-1). 

2.8.1. Cattle forage mass consumption and above-ground net primary 

productivity 

For a period of interest (stocking or rest period), HM in the field was measured at 

the beginning (HMi,beg) and end (HMi,end) of the period, following the procedure 

described in Section 2.6.1. During grazing periods, the grass growth under grazing 

Ri was deduced from secured enclosure measurements, following the procedure 

described in Section 2.6.2. 

From these measurements, we deduced the C intake through HM consumption by 

cattle during grazing (Cgrazing,i) as (Macoon et al., 2003): 

 grazing,i content i,beg i,end iC C HM HM R      (3.3) 

where Ccontent is the grass C content obtained from laboratory measurements.  

We also deduced the above-ground net primary productivity (ANPPi). It was 

computed as: 

 i grazing,i content t 1 tANPP C C HM HM     

(3.4) 

where  t 1 tHM HM  , accounted only when positive, is the un-grazed biomass 

(biomass refusal because of excretions, trampling…) and Cgrazing i was zero during 

rest period. Annual Cgrazing and ANPP were obtained by summing Cgrazing,i and ANPPi 

for all periods of interest. 

2.8.2. Livestock carbon dioxide losses at grazing 

Livestock CO2 emissions (FCO2,livestock) were estimated from the C intake 

measurements. As most of the C ingested was digestible and therefore respired 

shortly after intake, we obtained: 

  pr oductCH4i nt akel i vest ockCO2, FFCOMDF 
  (3.5) 

where OMD (%) is organic matter digestibility and Cintake is the sum of Cgrazing and 

Fimport. 

In the same way, livestock C excreted (Cexcretions) was estimated as: 

intakeexcretions CNOMDC      (3.6) 

where NOMD (%) is non-organic matter digestibility. 

OMD and NOMD values were obtained from the near infrared reflectance 

spectrometry analyses (NIRS system monochromator 5000-1100 to 2498 nm 

wavelength by 2 nm steps; Decruyenaere et al., (2009) of samples taken in situ 

(herbage, supplementary feed). After the samples were dried and ground (Cyclotec – 

1 mm screen), analyses were conducted at the Walloon agricultural research center 

(CRA-W). 
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2.9. Uncertainty assessments 
Eddy covariance fluxes are affected by uncertainties due to the presence of both 

random and systematic errors (Baldocchi, 2003; Hollinger and Richardson, 2005; 

Richardson et al., 2006). Systematic errors are due mainly to the underestimation of 

night fluxes measured during low turbulent conditions (Ammann et al., 2007; 

Rutledge et al., 2015) and to high frequency losses. In both cases, a correction 

procedure was applied, as described in Section 2.4. As these procedures are 

themselves not exact, however, residual uncertainties remain, mainly because of the 

choice of the correction parameters (u* threshold for night flux correction, cut-off 

frequency for high frequency correction). 

In order to assess the overall uncertainty of our measurements, we considered four 

main sources of uncertainty: the random error affecting both measured fluxes and 

filled data ( r ) resulting from the random character of turbulence and affecting not 

only measurements but also gap filled data; an additional systematic error resulting 

from the procedure used to fill the data (
gf ; i.e., two errors associated with the gap 

filling) and remaining uncertainties after the application of the night flux (u* 

threshold chosen to filter the nighttime data [ u* ]); and frequency corrections  (cut-

off frequency used for the spectral correction [
0f ]).  

Estimation of the random uncertainty ( r ) 

The term r  combines the random error that affects both measured and filled data. 

This was calculated adapting a procedure described by Dragoni et al.(2007). The 

procedure follows three steps. First, the random error for the measured half-hourly 

flux ( m ) was computed using the successive days approach developed by Hollinger 

and Richardson (2005). In this approach, m is estimated as the absolute difference 

between two valid successive day fluxes at the same hour and during similar weather 

conditions (maximum PPFD range of 75μmolm
-2

s
-1

, maximum Ts range of 3°, 

maximum horizontal wind velocity range of 1ms
-1

). The standard deviation of this 

error, m( )  , was then computed for flux classes (same number of observations) 

and a relationship between m( )   and flux magnitude was established (Richardson 

et al., 2006).  

This gave at DTO: 

  2

CO2 CO2σ 0.11 F 1.47   for  F 0     (R 0.90)     m   (3.7a) 

  2

CO2 CO2σ    0.30 F 0.08   for  F 0    (R 0.97)    m   (3.7b) 

In the second step, a similar approach was used for the filled data. All valid half-

hourly data were marked as artificial gaps and filled using the online REddyProc 

gapfilling tool (Reichstein et al., 2005). This gave a measured value (
2COF ) and a 

modelled value ( M ) for each non-missing NEE value. The standard deviation of the 

residue (
gf( )  ) was calculated as CO2(F M)   for pre-made flux classes with a 
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same number of observations. A relationship between 
gf( )  and the flux magnitude 

was then established. This gave: 

  2

gf CO2 CO2σ 0.075 F 1.86   for  F 0     (R 0.87)         (3.8a) 

  2

gf CO2 CO2σ    0.15 F 0.9   for  F 0    (R 0.71)       (3.8b) 

Finally, in the third step, a Monte Carlo simulation was used to estimate the annual 

random uncertainty. A random error ( s ) was generated for each half-hourly NEE 

value assuming a double exponential distribution (Hollinger and Richardson, 2005) 

with a zero mean, a standard deviation of m( )   for measured values and 
gf( )   for 

filled values. Simulated NEEs values were then calculated as NEEs=NEE+ s and the 

annual NEE calculated as the sum of NEEs. This process was repeated 100 times and 

r was calculated as the standard deviation of the 100 annual NEEs values.  

Estimation of the gap filling uncertainty (
gf ) 

As described above, the gap filling procedure led to a random error that is included 

in the r  term. Another non-random source of uncertainty linked to this procedure 

was identified, however. The preceding approach supposes that the mean residual 

gap filling residue (
gf̂ ) is zero in each flux class. This was, however, not the case 

(Figure 2-2), as we found that it differed from zero for high absolute fluxes. This 

would mean that the gap filling procedure underestimates high fluxes both at night 

and during the day. In order to test the potential influence on annual sums, we 

conducted another Monte Carlo simulation, but this time used distributions with the 

corresponding 
gf̂  as means for filled data. 

gf  was then calculated as the difference 

between the average of the 100 annual NEEs and the actual NEE value for each 

year.  
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Figure 3-2: Relationship between the flux magnitude and the mean residuals for 

flux classes. Residual values are calculated as the difference between the measured 

flux and the flux calculated by the gap filling procedure. All values are given in 

μmolm
-2

s
-1

.    

Estimation of the u* threshold uncertainty ( u* ) 

In order to estimate u* , annual NEE was calculated by filtering the nighttime data 

using plausible u
*
 thresholds around 0.13 (0.08-0.18) and filling the data. u*  was 

then calculated as half the difference between the annual NEE values calculated 

using those thresholds (Rutledge et al., 2015).  

Estimation of the cut-off frequency uncertainty (
0f ) 

In order to estimate
0f , the standard deviation of the cut-off frequency 

distribution (0.05 Hz) was calculated. New linear regressions of the correction factor 

as a function of the wind velocity were established for two new cut-off frequencies 

0.37 ± 0.05 Hz for stable and unstable conditions. The fluxes were then corrected 

using the regression parameters and an annual NEE was calculated for both cut-off 

frequencies. 
0f was then calculated as half the difference between those values. 

Estimation of the total NEE uncertainty ( NEE ) 

These sources of NEE uncertainties were combined following the random error 

propagation rules. 
gf was added as a positive one-sided uncertainty. For the 5-year 

average uncertainty, 
gf , u*  and 

0f  were simply averaged while r was averaged 

following the random error propagation rule.     

Estimation of the total NBP uncertainty ( NBP ) 
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In order to estimate uncertainties for C flux other than NEE, we considered that 

errors associated with data obtained from the farmer amounted to 10% (Ammann et 

al., 2007) and then randomly cumulated this error with uncertainties associated with 

laboratory measurements. 

By assuming the independence and normality of the different error sources, NBP 

standard deviation ( NBP
) was calculated by squaring each error term, totaling the 

resulting values and then taking the square root of the sum (Mudge et al., 2011).  

3. Results 

3.1. Meteorological conditions and management practices 
Both air and soil temperatures and PPFD followed a typical seasonal pattern that 

did not really differ from one year to another. The highest temperature values 

(around 17°C) were observed during summer in July and August (Figure 2-3 a and 

b), whereas the highest PPFD values (around 450 µmol m
-2

 s
-1

) were observed from 

May to July (Figure 2-3 c). Precipitation was widespread throughout the year. 

(Figure 2-3 f). The soil water filled pore (WFP) space at 5cm, calculated as the ratio 

of SWC and SWC at saturation, dropped to 32% in May 2011. Low precipitation, 

high vapor pressure deficit (VPD) values (Figure 2-3 e) and high temperatures 

occurred during the same period, suggesting a drought event. The summer of 2013 

was also a dry period, with less than average precipitation in July and August, 

leading to low WFP (38%). At the end of March, GDD was 531°C day in 2014 

(highest value), 426°C day in 2011, 410°C day in 2012 and 194°C day in 2013 

(lowest value). The low GDD in 2013 is a result a prolonged snow period and colder 

temperatures until mid-April.  
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Figure 3-3: Monthly means of a) air temperature (TA), b) soil temperature at a depth 

of 2 cm (TS2), c) photosynthetic photon flux density (PPFD), d) soil water filled pore 

(WFP) space at a depth of 5 cm, e) vapor pressure deficit (VPD), and f) monthly 

precipitation totals (PPT). Circles connected by a continuous line indicate the 5-year 

averages of monthly total precipitation. Stars connected by an unbroken lines 

represent the last 30-year local normal precipitation averages for the Institut Royal 

Météorologique’s Ciney station, 15 km south-east of the study site. 
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Over all 5 years of the study, annual averages were within a narrow range for the 

main environmental variables: air temperature TA = 9.6°C ((9.0-10.3), soil 

temperature at a depth of 2 cm TS2 = 10.1°C (9.6-10.9), PPFD = 239 µmol m
-2

 s
-1

 

(214–249), VPD = 2.00 kPa (1.72-2.29), WFP = 0.82% (72–89) and precipitation 

PPT = 628 mm (508–672) (Table 2-3a). The annual averaged air temperatures and 

cumulated precipitation were significantly lower than the 30-year local normal 

averages (10°C and 847 mm, respectively, reported by the Institut Royal 

Météorologique’s Ciney station, 15 km south-east of the site). 

Grazing started on different dates, depending on grass availability and technical 

constraints. It began as early as 24 March in 2012 and as late as 3 May in 2014 

because of delay in the experimental set up installation (Figure 2-4). In 2010, it 

began only on 12 June, but was preceded by a harvest on 3 June 2010. In 2013, it 

started only on 25 April because of low temperatures. The average stocking rate was 

the lowest in 2010 because a considerable amount of biomass had been harvested in 

June 2010 and was therefore not available for cattle. On average, cattle grazed for 

160 days yr
-1

 (from 134 to 202 days yr
-1

) and the average stocking density during 

stocking periods was 5.3 LU ha
-1

 (from 7.5 to 2.2 LU ha
-1

 with four one – day 

confinement periods around 10-12 LU ha
-1

). The annual average stocking rate, 

including stocking and rest periods, was therefore 2.3 LU ha
-1

year
-1

.  

The average grass height in the field varied from 4 to 10 cm during the grazing 

season and reached a minimum value of 3cm in end November (Figure 2-4). Every 

year, the stocking density was always lower at the end of the grazing season when 

biomass availability was the lowest and the highest from May to mid-September 

when grass availability was the highest. Rest periods occurred generally when grass 

height went down to 5cm or below with a notable exception in 2014, when a 

permanent grazing was organized for experimental purpose. Overall, 19 rotations 

between rest and stocking periods were observed during grazing seasons from 2010 

to 2013. These adaptations of the stocking density and the grazing duration to grass 

availability, following usual management practices, induces indirectly some link 

between grazing management and weather conditions as the latter control, at least 

partly, grass growth.   
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Figure 3-4: Cattle stocking rate (LU/ha) throughout the study period and herbage 

height. A stocking rate of zero designates rest periods. 

3.2. Monthly dynamics of NEE, TER and GPP 
The 5-year average of monthly TER and GPP values both followed a seasonal 

cycle, being minimal in winter and maximal in summer, but not at the same time: 

GPP reached its maximum value (about 310 gC m
-2

 month
-1

) between April and 

June, whereas TER reached it (about 280 gC m
-2

 month
-1

) between June and August 

(Figure 2-5). As a result, the monthly 5-year average NEE showed a continuous CO2 

uptake during spring and early summer (March- July), reached its maximum uptake 

in April, fell to zero around mid-summer (August) and moved to continuous CO2 

emission in autumn and winter. This shift from a CO2 sink to a source occurred 

earlier than observed in other temperate ecosystems, such as forests (Aubinet et al., 

2002; Falge et al., 2002), probably as the result of grazing that limits vegetation 

photosynthesizing area and, as a consequence, the GPP.  
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Figure 3-5: Monthly totals of the a) net ecosystem exchange (NEE), b) total 

ecosystem respiration (TER) and c) gross primary productivity (GPP). The dark 

black continuous line indicates the 5-year average for each month. 
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A highly significant linear relationship was found between monthly TER and GPP 

(pvalue<0.001, R
2
=0.84), (Figure 2-6, a). The slope of the regression was 0.72. This 

dependence should be treated with caution however, because self-correlation 

between TER and GPP could also derive from the partitioning method used to 

compute these fluxes (Vickers et al., 2009).  

 

Figure 3-6 : Correlation between a) monthly total ecosystem respiration (TER) and 

monthly gross primary productivity (GPP), b) anomalies in monthly total ecosystem 

respiration (TER) and anomalies in monthly gross primary productivity (GPP), c) 

anomalies in monthly total ecosystem respiration (TER) and anomalies in net 

ecosystem exchange (NEE) and d) anomalies in monthly gross primary productivity 

(GPP) and anomalies in net ecosystem exchange (NEE). 

In order to assess the impact of meteorological conditions on the C budget inter-

annual variability, flux (GPP, TER and NEE) and weather variable (Ts, VPD, WFP, 

PPFD and precipitation), various anomalies were also investigated. A significant 

relationship was found between TER and GPP anomalies (pvalue<0.001, R
2
=0.42), 

(Figure 2-6, b). The slope of the regression was 0.48 (pvalue<0.001). NEE 

anomalies were correlated with GPP anomalies (pvalue<0.001, R
2
=0.43) but not 

with TER anomalies (pvalue>0.05, Figure 2-6, c and d). Monthly GPP and TER 

anomalies were also both correlated with Ts anomalies (pvalue<0.001, data not 

shown), but no such relationship was found for NEE. Here again, we cannot exclude 

the dependence partly resulting from the partitioning method used to compute TER 

and GPP. No other significant relationship was found between monthly CO2 flux 

component anomalies (GPP, NEE, TER) and other meteorological variables.  
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3.3. Carbon budget of the pasture 
The 5-year C budget reveals that the pasture behaved each year as a significant C 

sink (Table 2-3c). The 5-year average annual NBP was -161 [-134 -180] g C m
-2

 yr
-1 

(values in brackets indicate error bounds). This observation is in agreement with 

most European studies of C fluxes in grasslands, which have found that grasslands 

generally act as a net C sink (Allard et al., 2007; Ammann et al., 2007; Jaksic et al., 

2006; Mudge et al., 2011; Peichl et al., 2011; Rutledge et al., 2015; Zeeman et al., 

2010). Let’s note however, that such agreement was not a priori obvious, in view of 

the high management intensity and the old age of the pasture. The site has indeed 

been a grassland for probably more than a century and the average annual stocking 

rate of 2.3 LU ha
-1

 was more than twice the rate observed for most other intensively 

grazed European grasslands studied (1 LU ha
-1 

in Klumpp et al. (2011), from 0.12 to 

1.32 LU ha
-1 

in Soussana et al. (2007)).  
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Table 3-3 : Annual and 5-year averages for the 5 years of measurements made at the 

Dorinne Terrestrial Observatory. The 5-year averages are calculated from 12 May 2010 to 12 

May 2015. Annual values are given only for the complete years (2011-2014). Consequently, 

the average given in fifth column is not the average of the four first columns. All fluxes and 

uncertainties were rounded to the unity. An uncertainty of zero means that it is < 0.5. a) 

Weather variables: air temperature (TA), soil temperature at a depth of 2 cm (TS2), 

photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), soil water filled 

pore (WFP) space at a depth of 5 cm and yearly cumulated precipitation (PPT). b) 

Information on grazing conditions: number of grazing days and average stocking rate (SR). 

c) Carbon fluxes included in the net biome productivity (NBP) budget (see equation 1): total 

ecosystem respiration (TER); gross primary productivity (GPP); net ecosystem exchange 

(FCO2); C lost through methane emissions by cattle (FCH4); C imported through manure 

applications (Fmanure) and through supplementary feed (Fimport); C exported through harvest 

(Fharvest) and as meat (Fproduct); organic and/or inorganic C lost through leaching (Fleach). d) 

Other carbon fluxes of interest: above-ground net primary productivity (ANPP), C intake 

through grass consumption by cattle (Cgrazing), C intake by cattle (sum of Cgrazing and Fimport), 

livestock CO2 emissions (FCO2,livestock) and livestock C excreted (Cexcretions).  

 
 

Looking to the carbon budget (Table 2-3 c), it appears that the main terms were, in 

order, NEE, Fimport and Fmanure (Table 2-3c). NEE ranged from -193g C m
-2

 in 2014 to 

-52 g C m
-2

 in 2011. The high 5 years average Fimport value is mainly due to the 

importation in 2010 of an important C amount (about -100 g C m
-2

) as a feed 

(a) Environmental variables

TA (°C)

TS (°C)

PPFD (µmol m
-2

 s
-1

)

WFP %

SWC (m
3
 m

-3
)

PPT (mm)

(b) Management

Total of grazing days

Average SR (livestock unit ha
-1

)

(c) NBP components (g C m
-2

 y
-1

)

TER

GPP

NEE -52 -159 -102 -193 -141

FCH4-C 14 ± 1 12 ± 1 8 ± 1 10 ± 1 12 ± 1

Fmanure -111 ± 18 0 ± 0 0 ± 0 0 ± 0 -22 ± 4

Fimport -18 ± 1 -11 ± 1 0 ± 0 0 ± 0 -26 ± 2

Fharvest 0 ± 0 0 ± 0 0 ± 0 0 ± 0 8 ± 1

Fproduct 9 ± 0 4 ± 0 0 ± 0 0 ± 0 3 ± 0

Fleach 7 ± 7 7 ± 7 7 ± 7 7 ± 7 7 ± 7

NBP -160 -147 -87 -176 -161

(d) Others C fluxes (g C m
-2

 y
-1

)

ANPP

Cgrazing

FCO2,livestock

Cexcretions

392

372

273

102

385

323

232

86

[-25 -64] [-140 -176] [-85 -111] [-158 -218] [-115 -158]

[-127 -183] [-127 -156] [-69 -98] [-141 -200] [-134 -180]

355

312
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9.6

228

84

249

230
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365
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supplement (Table 2-1). This feed was imported to compensate for the harvest in 

June that year (40 g C m
-2

) and the low precipitation from May to July (Figure 2-3 

f), which could have limited grass regrowth. These fluxes affected the 5-year mean 

budget, but did not appear in the yearly budgets because they occurred in the 

incomplete year, 2010. Except this contribution, feed supplements remained low 

compared with NEE. No feed supplements were imported into the field in 2013 and 

2014 because the farmer adjusted the stocking rate such that grass regrowth was 

enough to feed the cattle.  

Fmanure corresponds with the C imported into the field through organic fertilization. 

It was the most important part of the NBP budget in 2011. As organic fertilization 

occurred only once during the study period its impact on the average budget was 

finally small. This is representative of the real management of the pasture as, 

according to the farmer, organic fertilization frequency is not higher than once every 

5 years.  

3.4. Inter-annual variability of the carbon budget 
Apart from 2013, when it dropped to -87 g C m

-2
, the NBP did not vary 

significantly from year to year, remaining at about -161 g C m
-2

, which indicates a 

relatively stable annual C budget. These budgets, however, were obtained under 

contrasting weather conditions and, on a monthly scale, some differences in NEE 

were notable.  

In 2011, a peak emission (NEE anomaly ≈+50 g C m
-2

) was observed in August 

(Figure 2-5), however, an important amount of C had also been imported through 

organic fertilization (Table 2-3c) in February in the same year. These two events 

impacted the annual NBP in opposed ways and compensated each other. In 2014, the 

first half of the year (February to June) was characterized by an above-average CO2 

uptake (Figure 2-5a), due to mild winter conditions. However, later in July, an 

emission peak occurred (NEE anomaly ≈+80 g C m
-2

), due to below-average GPP 

(Figure 2-5c). Here again, these events, although significant at monthly scale did not 

affect the annual NBP due to mutual compensation. Finally, in 2013, the beginning 

of the year was characterized by prolonged cold and snowy conditions, which 

induced below-average GPP, TER and NEE values, which probably partly explains 

the lower NEE for this year.  

4. Discussion 
The effects of weather and management practices on the C budget are not always 

easy to discern. A major reason for this is that weather and management might be 

inter-related by several processes. Indeed, as suggested at section 3.1, a link between 

grazing management and grass availability and hence, meteorological conditions 

might exist. Therefore, in order to facilitate the discussion, the effects of climate and 

management that have been clearly identified will be discussed first separately, after 

which their combined effects will be assessed when possible.   
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4.1. Weather impact  
The absence of relationship between NEE anomalies and weather variables 

anomalies (Section 3.2) suggests that, apart from the possible response of TER and 

GPP to temperature, the inter-annual variability of monthly fluxes could not be 

explained by any overall response to weather conditions. However, despite this 

absence of relationship, some weather effects were identified for specific periods 

without cattle.  

The relationship between GPP and GDD was found to be similar for three 

successive years, from 2012 and 2014 (Figure 2-7). As a result, the inter-annual 

differences between cumulated GPP at the end of March were explained by the 

GDD. In particular, the high GPP in spring 2014 (375 g C m
-2

) was explained by the 

high GDD (about 550°C day) resulting from mild winter conditions, whereas the 

low GPP in spring 2013 (125 g C m
-2

) was explained by a lower GDD (around 

190°C day) indicating colder winter and spring. This resulted in differences in GPP, 

TER and NEE of, respectively 250, 120 and 130 g C m
-2

 between those years. In 

2011, however, the GPP increase with GDD was delayed and slower (cumulative 

GPP around 100 g C m
-2

 for 300° day and around 180 g C m
-2 

in 2012 and 2014) 

probably because of the high temperatures (Figure 2-3a) and low radiation (Figure 

2-3c) in February. This led to an early increase in GDD associated with low PPFD, 

leading to a low GPP/GDD ratio. 

 

Figure 3-7 : Evolution of (a) the cumulated gross primary productivity (GPP) and (b) the 

evolution of the cumulated net ecosystem exchange (NEE) in relationship to the cumulated 

growing degree days (GDD) from 1 January to 31 March. 

The high TER values observed in 2011 could have resulted from either high 

temperatures or the organic fertilization and liming in February that year. In order to 
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identify the most probable cause, the normalized respiration at 10°C (R10) was 

calculated for each year by fitting an exponential relationship onto the valid night 

fluxes (Lloyd and Taylor, 1994). As no significant difference between R10 values in 

2011 and in the other years was found we concluded that high TER observed in 

2011 resulted more probably from the high temperatures (Figure 2-3 and b) rather 

than from an increase in emission due to organic fertilization.  

4.2. Management impact  
The 5-year averaged GPP and TER values reached 2226 and 2085 g C m

-2  
yr

-1
, 

respectively, and were larger than all the values obtained by a multi-site analysis 

(Gilmanov et al., 2007) of 19 European grasslands (maximum values: 1874 and 

1621 g C m
-2

 yr
-1

 for GPP and TER, 
 
respectively). They were closer to the values 

observed in an intensive grassland study by Mudge et al. (2011) (2194 and 1999 g C 

m
-2

 yr
-1 

for GPP and TER, respectively), but lower than those reported by Zeeman et 

al. (2010) (2647 and 2583 g C m
-2

 yr
-1

 for GPP and TER, respectively). These high 

values are probably due to a high biomass production, itself resulting from intensive 

management and fertilization (120 kg N ha
-1

 yr
-1

 on average, Table 2-1). This was 

confirmed by the annual ANPP values (Table 2-3 d) that reached 355 g C m
-2

 on 

average, which is higher than the average production in Wallonia permanent cut 

grasslands  (on average,  250 g C m
-2

 for the 2008-2010 period; (SPW, 2010)). In 

comparison, Klumpp et al. (2011) reported a much lower values of 95 g C m
-2 

ANPP 

and about 1650 g C m
-2

 TER and GPP.  

These results suggest that, even in presence of a very high grazing pressure, high 

C assimilation could probably be maintained at the DTO thanks to intensive nitrogen 

fertilization and natural fertilization through excreta. Similar results were found by 

Allard et al. (2007), who showed that an intensively grassland could maintain a C 

sink activity over time while an extensively managed one could not.  

The lateral fluxes resulting from C import or export as manure, feed supplement, 

harvest or meat production had clear effects on C balance. On average, lateral 

organic C fluxes increased the C sink magnitude. This observation differs from the 

findings reported in other studies (Allard et al., 2007; Ammann et al., 2007; Byrne et 

al., 2007; Jaksic et al., 2006; Mudge et al., 2011; Peichl et al., 2011; Rutledge et al., 

2015; Zeeman et al., 2010) and is because C imports through organic fertilization 

and feed supplements exceeded C exports. Indeed, C exports were much lower than 

in those studies as only one harvest occurred during the 5 years and C exports 

through meat (Fproduct) were much lower than C exports in form of milk in dairy 

pastures (Byrne et al., 2007; Jaksic et al., 2006; Mudge et al., 2011; Rutledge et al., 

2015; Zeeman et al., 2010). C exports through meat were low mainly because the 

field was most of time occupied by fully grown cattle.  

Land use and management prior to the study are suspected to affect the carbon 

assimilation of a pasture for about a century before reaching equilibrium (Smith, 

2014). As the pasture was intensively managed for more than 40 years, we can argue 

that this hypothetic equilibrium was not reached yet a DTO. This observation is 

therefore in agreement with the assumption made by Smith (2014) that equilibrium 
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should only occur after several decades (and at least more than 40 years) under 

continuous management.    

4.3. Combined weather and management impact 
Maintaining a steady meat production and optimizing grass consumption require a 

careful herd management from the farmer by continuously adapting stocking density 

to grass availability. As grass regrowth depends on weather conditions and 

photosynthesizing area, it is logical to conclude that management is achieved in 

response to weather conditions. As a result, grass height is subjected to small 

variations all over the season, being maintained in a range of 5-10 cm (Figure 2-4). 

As a consequence of this link, impacts of climate and management on NEE are 

difficult to distinguish and sometimes they compensate each other. This could 

explain why no clear relationship between NEE and weather anomalies was found 

(Wayne Polley et al., 2008) and, reciprocally, why grazing impact on CO2 flux 

dynamics was difficult to discern on both the monthly and seasonal scales (E. 

Jérôme et al., 2014).  

Possible indirect impacts of grazing are the decrease of GPP because of 

photosynthesizing area reduction following grass consumption but also a decrease of 

TER via a decrease in autotrophic respiration. The latter is notably supported by the 

strong coupling observed between GPP and TER. However, an investigation made at 

DTO by Jérôme et al. (2014)  showed that as the impact of grazing intensity on GPP 

was observed, no such impact was observed on dark respiration suggesting therefore 

a larger impact of grazing on GPP than on TER. Indeed TER may not only be 

impacted negatively through defoliation but also positively trough cattle and feces 

respiration.   

A direct impact of grazing is the increase of TER due to cattle respiration to the 

TER. This effect is not easy to discern as the number of cattle within the footprint 

varies and is not known (Felber et al., 2016b). To do so, we studied the animal C 

budget (Figure 2-1, Table 2-3 d). It appeared that around 70 % of total ingested C 

(Cgrazing + Fimport) was lost through cattle respiration (FCO2,livestock). Assuming an ideal 

case where animals are spread evenly over the field at all times so that their 

respiration signal becomes a constant part of the eddy covariance measurements 

footprint and considering an average stocking rate of 2.3 LU ha
-1 

yr
-1

, this 

represented around 11% of the TER on average.  

4.4. Uncertainties 
The 5-year average NBP uncertainty was [+27 -19] g C m

-2 
yr

-1 
(Table 2-3c). The 

main factor influencing NBP uncertainty was NEE, which itself was affected the 

choice of the u* threshold and the gap filling (Table 2-4). A comparison of the u* 

corrected and uncorrected fluxes in Table 2-4 suggests that, on average, the night 

flux underestimation led to an overestimation of the annual sink of about 61 gCm
-

2
yr

-1
. However, an uncertainty results from this correction. An uncertainty of 0.05 m 

s
-1

on the u* threshold led to an uncertainty of 17 g C m
-2

yr
-1

 for annual sums.  The 

random uncertainty, when important on a half-hourly scale, decreases with time 
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because of the partial compensation when summed. As a result, it did not exceed 6 g 

Cm
-2

yr
-1

 on an annual scale or 2 g C m
-2

yr
-1

 on a 5-year scale. The additional 

uncertainty resulting from the non-annulation of the mean residual error in the gap 

filling procedure (see Section 2.9), however, led to a systematic flux 

underestimation estimated to be 19 g C m
-2

yr
-1

.  

Table 3-4 : Annual NEE uncertainty components and correction effects. All the values are 

given in g C m
-2 

yr
-1

. The ‘no spectral’ correction value is the NEE value with no spectral 

correction, but with the u* filter. The ‘no filter’ value is the value with no filter, but with the 

spectral correction. The corr. values correspond to the annual NEE values with both u* and 

spectral corrections. 

 

Another critical choice was those of the reference cospectrum used for the spectral 

correction. The use of a local cospectrum (average sensible heat cospectra) was 

chosen instead of a theoretical cospectrum (Kansas cospectrum, Kaimal et al., 1972). 

This methodological choice had a major impact on CO2 fluxes. Therefore, before 

presenting this budget, a supplementary validation of the correction procedure had 

been implemented using in situ respiration measurements. Fluxes corrected with the 

local cospectra were found to be in good agreement with the respiration 

measurements while fluxes corrected with the Kansas cospectra were found 

overestimated. The details of the procedure and the validation are presented in a 

paper by (Mamadou et al., 2016). Finally, even by taking all uncertainties into 

account, the fact that the pasture acts as a significant C sink each year remains a 

robust finding (Table 2-3 c). 

5. Conclusion 
This study established and analyzed the total C budget of grassland grazed by 

Belgian Blue cattle by combining data from CO2 eddy covariance measurements 

with other C fluxes and their uncertainties. CO2 fluxes (NEE) and non CO2 fluxes in 

form of manure (Fmanure) and feed complements (Fimports) were the main fluxes 

affecting the C budget, highlighting the need to include them. The results showed 

that the pasture acted as a relatively stable C sink each year despite the high stocking 

rate and the old age of the pasture. Both management and weather conditions were 

found to influence C fluxes. Important C imports through organic fertilization as 

well as low C exports through meat production helped to maintain a carbon sink. 

The N fertilization also probably helped to maintain the C sink activity thanks to an 

improved GPP. However, fertilization could also induce N2O emissions that could 

affect the grassland greenhouse gas budgets. These fluxes were not measured. GPP 

Year No spectral corr Corr No filter Corr.

2011 -64 -52 ± 5 -145 -52 ± 9 + 24 ± 6 + 27 - 12

2012 -146 -159 ± 5 -259 -159 ± 16 + 8 ± 5 + 19 - 18

2013 -98 -102 ± 1 -136 -102 ± 7 + 14 ± 5 + 17 - 9

2014 -177 -193 ± 3 -269 -193 ± 22 + 26 ± 6 + 35 - 23

5-year mean -135 -141 ± 2 -202 -141 ± 17 + 19 ± 2 + 26 - 17

Total Uncertaintyσu*σf0

Spectral correction U* correction

σgf σr

Random Gap filling
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and NEE were affected by low temperatures at the beginning of the year, before the 

grazing season. Indeed, these weather conditions could have caused a delay in grass 

growth and GPP that could not always be offset during the rest of the year.   

The low inter-annual variability of the C budget and its independence to weather 

variables anomalies could partially be explained by management practices that 

adjusted the stocking rate according to grass availability which itself responds to 

weather conditions. It could also been obtained partly by chance as (i) we didn’t 

experience really extreme years and (ii) in some years, compensation between 

events with high and low accumulation occurred. The findings in this study are in 

agreement with those reported by other studies that have shown that well-managed 

grasslands could act as a C sinks. Further studies should focus on comparing 

different grazing management practices in order to better quantify and understand 

their impact on grassland C storage. Our study also highlighted the need to evaluate 

the uncertainties linked to flux measurements and to assess the sensitivity of the C 

budget to methodological choices, such as those linked with spectral correction and 

the nighttime flux filtering criterion choice, in order to assess how defensible annual 

C budgets are.  
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Abstract 
Given the increasing use of the eddy covariance technique to estimate CO2 fluxes, 

more attention needs to be paid to the measurement method used. Among other 

procedures, the way high frequency loss corrections are established and, more 

particularly, the choice of the cospectrum shape that is used to implement the 

correction appears particularly important in this regard. In this study, we compared 

three approaches to high frequency loss correction for CO2 fluxes measured by a 

closed path eddy covariance system and evaluated their impact on the carbon 

balance at the Dorinne Terrestrial Observatory (DTO), an intensively grazed 

grassland site in Belgium. In the first approach, the computation of correction 

factors was based on the local cospectra, whereas the other two were based on 

Kansas cospectra models. The correction approaches were validated by comparing 

the nighttime eddy covariance CO2 fluxes corrected with each approach and 

chamber-based total ecosystem respiration estimates. We found that the local 

cospectra differed from the Kansas cospectra shape, although the site could not be 

considered as difficult (i.e., fairly flat, homogeneous, low vegetation, sufficient 

measurement height). The Kansas cospectra have more spectral power at high 

frequencies than the local cospectra under (un) stable conditions. This difference 

greatly affected the correction factor, especially for night fluxes. Night fluxes 

measured by eddy covariance were found to be in good accord with total chamber 

based ecosystem respiration estimates when corrected with local cospectra and to be 

overestimated when corrected with Kansas cospectra. As the difference between 

correction factors was larger in stable than unstable conditions, it acts as a selective 

systematic error and has an important impact on annual carbon fluxes. On the basis 

of a 4-year average, at DTO the errors reach 71-150 g C m
-2

 y
-1

 for net ecosystem 

exchange (NEE), 280-562 g C m
-2

 y
-1

 for total ecosystem respiration (TER) and 209-

412 g C m
-2

 y
-1

 for gross primary productivity (GPP), depending on the approach 

used. We finally encourage site PIs to check the cospectrum shape at their sites and, 

if necessary, compute frequency correction factors on the basis of local cospectra 

rather than on Kansas cospectra.  
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1. Introduction 
In the past few decades, measurements of CO2 fluxes using the eddy covariance 

(EC) technique have greatly increased around the world (Aubinet et al., 2012b; 

Baldocchi et al., 2012; Mizoguchi et al., 2008). These data are valuable for testing 

and improving the land-atmosphere flux parameterizations used in climate models 

(Bonan et al., 2011; Chang et al., 2013; Kato et al., 2013; Melaas et al., 2013). They 

are also useful for upscaling exercises (Jung et al., 2011; Papale and Valentini, 2003; 

Tramontana et al., 2015; Xiao et al., 2012; Yang et al., 2007) and for estimating the 

annual net ecosystem carbon exchange (Aubinet et al., 2009; Papale et al., 2015). 

Robust data are needed to prevent biases in the model outputs, as well as for the 

estimation of the total greenhouse gas (GHG) emissions. However, the (EC) method 

can fail to represent accurately surface fluxes due to a physical limitation of 

instrumentation (Massman and Lee, 2002), micrometeorological limitations 

(Aubinet et al., 2012; chapter 5), footprint heterogeneity or the turbulent nature of 

the transport process (Richardson et al., 2006b). In addition to other biases, however, 

EC measurements are known to be affected by high frequency losses, especially 

when using a closed-path infrared gas analyzer (IRGA) to measure molar 

concentrations (Aubinet et al., 2012b; Fratini et al., 2012; Ibrom et al., 2007; 

Mammarella et al., 2009; Runkle et al., 2012). Such losses need to be properly 

quantified and corrected.  

Several methods dealing with high frequency losses in CO2 measurements have 

been proposed in the literature. All of them involve computing the correction factor 

as a ratio between the integral of a reference cospectrum and the integral of the 

product of this cospectrum with a transfer function (Horst, 1997; Massman, 2000; 

Moore, 1986). A major difference between methods lies in the procedure used to 

compute the transfer function based either on a priori (theoretical or empirical) 

(Horst, 1997; Massman and Clement, 2004; Massman, 2000; Moncrieff et al., 1997; 

Moore, 1986) or a posteriori (experimental) methods (Aubinet et al., 2001; De 

Ligne et al., 2010; Fratini et al., 2012). All these methods have weaknesses and 

strengths and, although some progress has been made (Fratini et al., 2012), there is 

still some debate as to which method should be used to correct high frequency loss 

in EC measurements, particularly for CO2 fluxes. Herein, the choice of the reference 

cospectrum used to estimate the correction factor has been investigated, using 

Kansas cospectra (Eugster and Senn, 1995; Horst, 1997; Mammarella et al., 2009; 

Massman, 2000; Moore, 1986) or local cospectra (Aubinet et al., 2001; Fratini et al., 

2012) being used for this purpose. So far as we know, however, the impact of the 

reference cospectrum choice on the annual carbon balance has never been discussed.  

This question was investigated at the Dorinne Terrestrial Observatory (DTO), an 

intensively grazed experimental grassland site in Belgium. The impacts of three high 

frequency loss correction approaches on CO2 fluxes were compared. In the first, 

called the ‘local approach’, the local (sensible heat) cospectrum was taken as a 

reference cospectrum, whereas the other two, the ‘Kansas approaches’, used Kansas 
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parameterization (Kaimal et al., 1972) as reference cospectra. The difference 

between the two latter approaches is discussed below (section 3.3). 

The approaches were evaluated by comparing the nighttime EC fluxes, corrected 

with each approach, with total ecosystem respiration (TER) estimates obtained from 

a 4-month chamber measurement campaign at the site. From this, the most realistic 

approach has been selected. A quantitative evaluation of the impact of the three 

correction approaches on the annual carbon balance at the DTO was finally made 

using 4 years of measurements.  

2. Material and methods 

2.1. Site description 
The study site is grazed grassland at Dorinne, 18 km South/South-East (SSE) of 

Namur, Belgium (50° 18’ 44’’ N; 4° 58’ 07’’ E), covering an area of 4.22 ha. The 

vegetation of the site is homogenous in terms of the prevailing wind direction. The 

site is slightly sloping. It is characterized by a colluvial topography with a South-

West/North-East (SW/NE) orientation and an altitude that varies from 240 m (NE) 

to 272 m (S) (1 – 2 % slope). The dominant soils are colluvic regosols type, 

according to the FAO classification. The grassland species composition is 66% 

grasses (Lolium perenne L., Holcus lanatus L., Poa trivialis L.), 16% legumes 

(Trifolium repens L.) and 18% of other species (e.g., Taraxacum sp. Ranunculus 

repens L.). The mean canopy height was measured manually and varied around 0.1 

m, from which we deduced the zero-plane displacement height to be of the order of 

0.067 m. A detailed micrometeorological description of the site has been given by 

Gourlez de la Motte et al. (submitted) and Jérôme et al. (2014).  

The EC system, which measured CO2, sensible heat and water vapor fluxes, 

consisted of a three-dimensional sonic anemometer (CSAT3, Campbell scientific, 

Ltd, UK) installed on a mast at 2.62 m above the ground and a closed-path CO2/H2O 

gas analyzer IRGA (LI-7000, LI-COR Inc., Lincoln, NE, USA) maintained in a 

climate-controlled enclosure. Sample air was drawn from the inlet through a 6.45 m-

long polyurethane tube (4 mm inner diameter) into the analyzer by a pump (N022 

AN18, KNF, Neuberger, D) at a flow rate of 11 SLPM. Two PTFE filters (Swagelok 

2µm and ACRO 50 1 µm, GELMAN, USA) were placed upstream of the inlet and 

the IRGA, respectively, in order to prevent any pollution of the measurement 

chamber. Zero and span calibrations were performed for CO2 about once a month. 

Pure nitrogen (Alphagaz 1, Air Liquide, Liège, Belgium) was used for the zero and 

350 µmol mol
-1

 CO2 nitrogen mixture (Crystal mixture, Air Liquide, Liège, 

Belgium) for the span. Data were recorded automatically on a data logger (CR3000, 

Campbell Scientific Ltd, UK) at a rate of 10 Hz and stored on a 2GB compact flash 

card. 

2.2. Eddy covariance measurements  
2.2.1. Data processing and selection 

Half-hourly sensible heat and CO2 fluxes were computed from the 10 Hz time 

series data, using the EDDYFLUX software (Kolle and Rebmann, 2007) and 
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following the standard procedures defined by Aubinet et al. (2000). A stationarity 

test was performed after Foken and Wichura (1996). Data for which the stationarity 

criterion (threshold of 30%) was not satisfied for sensible heat or CO2 fluxes and 

data affected by peaks (step change larger than 10μmol mol
-1

 for CO2 concentration 

and 5m s
-1 

for wind speed components) were rejected from the dataset. Finally, 

uncorrected CO2 fluxes lower than -2 μmol m
-2

 s
-1

 were discarded from the dataset to 

avoid unrealistic correction factors (Hollinger et al., 1999). Nighttime data measured 

under low turbulence conditions were discarded using a critical u* threshold of 0.13 

m s
1

 (Jérôme et al., 2014). The resulting selection was then segregated into two 

groups corresponding to stable and unstable stratification.  

2.2.2. Correction approaches and calculation of the annual carbon balance  

Three frequency correction approaches were compared. They were applied to 

stable and unstable datasets. During the validation phase, the fluxes corrected using 

each approach were compared with independent estimates, based on dynamic closed 

soil chamber measurements (Norman et al., 1992). For this comparison, only eddy 

covariance data collected during the chamber measurement campaigns were used. 

This fell between May and August 2015 and the set comprised 1100 half-hourly data 

for stable conditions and 2020 half-hourly data for unstable conditions. This 

comparison enabled us to determine the most realistic correction approach. In a 

second step, the three correction approaches were extended to the whole dataset, 

between 2011 and 2014, in order to estimate the impact of the selected approach on 

annual flux estimates. To this end, the corrected annual carbon budgets were 

computed following the standard procedure of daytime and nighttime data 

separation, u*-filtering (Jérôme et al., 2014), flux partitioning and gap filling. 

Especially, the net ecosystem exchange (NEE) was gap-filled as well as decomposed 

into its components (gross primary productivity (GPP), and total ecosystem 

respiration (TER)) using the online gap filling and flux partitioning tool (Reichstein 

et al., 2005).  In both cases, the same data selection procedure was applied.  

2.2.3. Computation of correction factors  

The general procedure followed to compute the correction factors is illustrated on 

Figure 1.  
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Figure 4-1: Diagram of the three correction approaches developed at the Dorinne 

Terrestrial Observatory.  ‘L’ is the local approach based on the sensible heat cospectrum, K1 

and K2 are the Kansas approaches based on the Kansas cospectra. 

We computed the frequency correction factor (Φ) as (Moore, 1986): 

Φ =  
∫ 𝐶𝑤𝑠(𝑓) 𝑑𝑓

∞

0

∫ 𝐶𝑤𝑠(𝑓) 𝛿(𝑓)𝑑𝑓
∞

0

         (4.1) 

where, 𝐶𝑤𝑠(𝑓) is the ‘ideal’ or undamped cospectral density of the vertical wind 

speed (𝑤) and the scalar dry molar fraction (𝑠), and 𝛿(𝑓) is the transfer function of 

the EC system describing the response characteristics of the system and involving 

high-cut filtering effects (Aubinet et al., 2012b). Implementing (Eq. 1) therefore 

requires knowledge of the transfer function and undamped cospectral density.   

𝛿(𝑓) was deduced from the normalized ratio of CO2 and sensible heat cospectral 

densities: 



Chapter 4 

 

85 
 

𝛿(𝑓) =  𝑁𝐹𝑇  
 𝐶𝑤𝑐(𝑓)𝑑𝑓

 𝐶𝑤𝑇(𝑓)𝑑𝑓
      (4.2) 

where NFT is the normalization factor computed by assuming scalar similarity, i.e. 

proportionality of undamped CO2 and sensible heat cospectra. Consequently, NFT 

was computed as described in Aubinet et al. (2000):   

𝑁𝐹𝑇 =   
∫ 𝐶𝑤𝑇(𝑓)𝑑𝑓

𝑓2

𝑓1

∫ 𝐶𝑤𝑐(𝑓)𝑑𝑓
𝑓2

𝑓1

       (4.3) 

where, f1 and f2 are limit frequencies, chosen arbitrary to be low enough for the 

attenuation be negligible but high enough for the number of points used to estimate 

the integrals to be sufficient and the uncertainty on the normalization factors to be 

low (Aubinet et al., 2000).  

For each half-hour, these densities were calculated using the EDDYSPEC software 

(Kolle and Rebmann, 2007) and following the procedure described  by Foken et al. 

(2012b) and De Ligne et al. (2010). A nonlinear Lorentzian equation (Eugster and 

Senn, 1995) was then fitted on their ratio: 

 

𝛿(𝑓) =  
1

1+(
𝑓

𝑓𝑐𝑜
)2

        (4.4) 

where, f represents the natural frequency and fco the cut-off frequency of the 

system for the CO2. Cut-off frequency (𝑓𝑐𝑜) was deduced from the fitting as well as 

its 95% confidence interval (𝜎𝑓𝑐𝑜
). Only half-hourly data for which (𝜎𝑓𝑐𝑜

) were lower 

than 0.1Hz were retained for further analysis. This corresponded approximately to 

55% of the initial dataset. From this dataset, the modal value in the 𝑓𝑐𝑜  distribution 

was calculated and kept for the remaining analysis. The same transfer function was 

used in all approaches. 

Undamped cospectral densities could be computed in two ways: local (L) and 

Kansas (K) approaches. Fundamental to the three approaches is the assumption of 

cospectral similarity of scalars in the atmospheric boundary layer (Aubinet et al., 

2012b; Fratini et al., 2012; Massman and Clement, 2004).  

In the local approach, the local (sensible heat) cospectrum was chosen as the 

undamped cospectrum. The approximation is reasonable because the sensible heat 

measurements are largely unaffected by cospectral attenuation (cut-off frequency: 

0.37±0.05 Hz). The computation was made as above, using a fast Fourier transform 

algorithm implemented with EDDYSPEC software (Kolle and Rebmann, 2007) on 

segments of 4,096 data points.  

In the Kansas approach, undamped cospectral densities were estimated using the 

Kansas cospectra models for sensible heat described by Kaimal et al. (1972):  

𝑓𝐶𝑤𝑇 (𝑓)

𝑤′𝑇′̅̅ ̅̅ ̅̅ ̅
=   {

11𝑛

(1+13.3𝑛)7/4       for 𝑛 ≤ 1 

4𝑛

(1+3.8𝑛)7/3      for    𝑛 ≥ 1
   (4.5) 

in unstable conditions and,  
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𝑓𝐶𝑤𝑇 (𝑓)

𝑤′𝑇′̅̅ ̅̅ ̅̅ ̅
=   {

     
0.81(𝑛/𝑛0)

1+1.5(𝑛/𝑛0)2.1          (4.6) 

with  𝑛0 = 0.23(1 + 6.4𝜁)
3

4    
in stable conditions. In Eq. (5) and (6), 𝑛 is a dimensionless frequency defined as: 

𝑛 =  𝑓(𝑧𝑚 − 𝑑)/𝑢̅  ; 𝑑 (m) is the zero plane displacement height; 𝑧𝑚 (m) is the 

measurement height; 𝑢̅ (m s
-1

)  is the wind speed; 𝜁 =  (𝑧𝑚 − 𝑑)/𝐿𝑀𝑂 is the stability 

parameter; 𝐿𝑀𝑂 (m) is the Monin Obukhov length and   𝑤′𝑇′̅̅ ̅̅ ̅̅   is the measured 

covariance of the vertical wind speed and the air temperature.  

The correction factor was then computed every half hour by combining in Eq (1) 

the transfer function and the reference cospectrum computed every half hour. 

Depending on the approach, local or Kansas cospectra were used.  

In the local approach (L) and in the first Kansas approach (K1), a regression was 

fitted on the relation between half hourly correction factors and wind speed, 

separately for stable and unstable conditions. A linear regression was chosen, 

according to (Aubinet et al., 2001 or Fratini et al., 2012) (see section 3.1, Fig. 4). 

Non linearities in this response, as predicted by Massman and Clement (2004) and 

Wohlfahrt et al. (2005) were not taken into account here as they mainly result from a 

sensor separation effect, which, in the present case, is small compared to the tube 

attenuation effect. The effective correction factor was then estimated every half hour 

using this regression and wind speed data. In the second Kansas approach (K2), a 

correction factor was directly applied to the half hourly data. The difference between 

the first and the second Kansas approaches was then in their computation procedure. 

This allowed comparing more easily the local approach and the first Kansas 

approach; both followed indeed the same procedure for the computation of the 

correction factors.  

2.3. Chamber-based TER estimates 
2.3.1. Soil/grass efflux measurements 

Eighteen CO2 efflux measurement campaigns were held between May and August 

2015. The measurements were taken between 10 am and 6 pm in four sectors that 

had been delimited around the EC tower. Three of them were situated SSW of the 

tower and the fourth was NE of the tower. These are the two dominant wind 

directions at the site. Some 28 soil collars, 15.5 cm high and 10 cm in diameter, 

were inserted into the soil (including the present grass) at least 3 days before the 

chamber soil/grass respiration measurements.  

The measurements were taken manually with an EGM-4 IRGA analyzer (PP 

Systems, Haverhill, MA) connected to an SRC-1 chamber (PP Systems, Haverhill, 

MA). In total, 450 independent measurements were made. For each measurement 

there were three repetitions and the CO2 concentration in the soil chamber was 

recorded every 4.8 s. One single measurement lasted for 120 s if the maximum 

change, fixed at 50 ppm, allowed in CO2 concentration was not reached. It was 

automatically stopped when the maximum was reached. Finally, soil temperature 

(H-I 145 T-Shaped Thermometer, HANNA instruments, USA) at a depth of 5 cm 
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and soil moisture (Theta probe ML2X, Delta–T Devices, UK) at a depth of 0-5 cm 

were measured manually near the soil collars. 

The soil/grass respiration RS (µmol m
-2

 s
-1

) was calculated based on the increase in 

CO2 in the chamber over time (Eq. 7) (Suleau et al., 2011), according to:  

 

𝑅𝑆 =  
𝑃𝑎𝑡𝑚×𝑉

𝑅× 𝑇𝑠×𝑆
×

𝑑𝑐

𝑑𝑡
      (4.7) 

 

where, 𝑅 = 8.314 J K
-1 

mol
-1

 is the gas constant; 𝑃𝑎𝑡𝑚 (Pa) is the atmospheric 

pressure; 𝑉 (m
3
) is the chamber volume; 𝑆 (m

2
) is the soil surface area intercepted by 

the collar; Ts (K) is the soil temperature; and 𝑑𝑐/𝑑𝑡 (µmol mol
-1

 s
-1

) is  the rate of 

CO2 concentration increase within the chamber.  

A quality criterion was applied to the data, with measurements being discarded if 

the quality of the linear regression was not sufficient (R
2
 < 0.90). Afterwards, they 

were averaged per soil collar to capture the variability between repetitions and thus 

their associated uncertainties 

2.3.2. Cattle respiration estimate 

As the pasture is grazed, total ecosystem respiration (TER) also includes cattle 

respiration, which is captured by EC measurements but not by soil/grass chambers. 

Total chamber based TER estimates (RST) were thus obtained by summing in situ 

soil/grass respiration and an estimate of cattle respiration based on the analysis 

performed by Jérôme et al. (2014) at the same site. They estimated the average 

emission per livestock unit as 2.59 kg C LU
-1

 day
-1

. On this basis, as during our 

measurement campaigns the average stocking rate reached 4 LU ha
-1

, we computed 

the averaged cattle respiration as 1.02 µmol m
-2

 s
-1

. It is worth noting, that cattle 

respiration probably varied during the measurement campaigns because it would 

also have depended on cattle repartition in the footprint and on daily stocking rate 

changes. The impact of these variations is however limited as, in average, cattle 

respiration corresponds to about 12 % of soil/grass respiration. 

2.4. Validation of the correction  
The three high frequency loss correction approaches were evaluated by comparing 

the corrected nighttime CO2 fluxes (RSL, RSK1 and RSK2) and the chamber-based TER 

estimates (RS).  

Nighttime hours were defined as periods when global radiation was lower than 10 

W m
-2

. Eddy fluxes were computed half hourly as the sum of the turbulent flux 

measured by the EC system and of the storage term (Foken et al., 2012a). In order to 

avoid the biases (e.g. the decrease of soil/grass respiration when anaerobic 

conditions prevail and depress aerobic microbial activity) that can occur when soil is 

saturated by water (Knowles et al., 2015; Luo and Zhou, 2006), data corresponding 

to soil water content at a depth of 5 cm that were higher than 30% were discarded 

from both nighttime EC and in situ soil CO2 efflux measurements. These represented 

15% and 2% of in situ soil CO2 efflux measurements and nighttime eddy covariance 

data respectively.  
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In order to get rid of the temperature dependence of TER, both corrected nighttime 

EC fluxes (RSL, RSK1 and RSK2, ndata = 493) and total chamber based respiration 

measurements (RST, ndata = 381) were first binned into soil temperature classes 

containing 40 elements each. However, as these estimates were not obtained during 

similar temperature conditions, the comparison could be made only on the 

overlapping temperature ranges. To this aim, a second data sorting was made, 

constituting two classes of variable sizes covering the temperature ranges 16±2°C 

and 20±2 °C. Flux averages (𝑚𝑖) and standard errors (𝜀𝑖) were calculated for each 

class. The normalized difference (𝑢𝑜𝑏𝑠) between the averaged chamber-based TER 

and averaged nighttime EC fluxes corrected by each approach was calculated for 

both temperature classes following :  

𝑢𝑜𝑏𝑠 =
𝑚1−𝑚2

√𝜀1
2+𝜀2

2
      4.7 

The difference between the two estimates was considered as significant at α = 0.05 

if uobs > 1.96 (Dagnelie, 2011). 

The most realistic approach to high frequency loss correction was selected from 

this comparison. 

The statistical tests, models and figures were made using R software (R version 

3.1.2) and Matlab R2014b (Mathworks, Inc., USA) for numerical cospectral 

analyses. 

3. Results and discussion 

3.1. Cospectral analyses and correction factors  
Figure 2 presents the normalized local and Kansas cospectra (Eqs. 5-6) and their 

averages on the selected half-hourly dataset, separately for stable and unstable 

conditions. In stable conditions, the local cospectrum reached a -4/3 slope in the 

inertial range, as expected, but in unstable conditions the Kansas cospectrum have 

more spectral power than the local one. At lower frequencies, the differences were 

more apparent: in both stable and unstable conditions, the Kansas cospectrum was 

larger than the local cospectrum between 0.1 and 1 Hz and smaller than local 

cospectrum at lower frequencies (n < 0.1 Hz).  
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Figure 4-2: Ensemble of normalized Kansas (red dots) and local (sensible heat) cospectra 

(green dots) during unstable (left) and stable (right) conditions in log-log space. The red and 

green lines represent their respective averages. 

These differences in shape clearly affect correction factors, those calculated using 

the local cospectrum (ΦL) being systematically lower than those calculated with the 

Kansas cospectra (ΦK1, ΦK2). By considering a transfer function for both 

atmospheric stability conditions with the estimated modal value of the cut-off 

frequency (0.37 Hz) (Fig. 3), the deviation reached 9% in average between ΦK1 and 

ΦL and 16% in average between ΦK2 and ΦL.  



Carbon balance of an intensively managed pasture 

90 

 

 

Figure 4-3: Undamped (grey color) and damped (black color) cospectra, considering a 

Lorentzian transfer functions with a cut-off frequency modal value of 0.37 Hz; a) and b) 

local cospectra; c) and d) : Kansas cospectra; for unstable (a and c) and stable (b and d) 

conditions. 

In all cases, there was a clear increase in the correction factors with increasing 

wind speed (Fig. 4), as predicted by theory (Aubinet et al., 2012b). The estimated 

regression parameters, however, were found to be much higher for the first Kansas 

approach than for the local approach (Table 1). The difference was particularly large 

during stable conditions, where the regression slopes differed by a factor greater 

than two (Fig. 4b, 4d).  It was smaller during unstable conditions (Fig. 4a, 4c), but 

nevertheless reached 37% (Table 1).   
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Figure 4-4: Cospectral correction factors for the local and Kansas approaches as a function 

of wind speed, during unstable conditions (a, c) and for different stable stratifications (b, d) 

obtained with the cut-off frequency of 0.37 Hz during the investigated period. Black dotted 

line (ζ < 0) and, maroon (0< ζ < 0.02), black (0.02≤ ζ < 0.04), red (0.04≤ ζ < 0.06), blue 

(0.06≤ ζ < 0.2) and green (ζ ≥ 0.2) solid lines, represent the linear regressions. The 

numerical values of the regression parameters and their 95% confidence intervals are given 

in Table 1.  
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Table 4-1 Slopes, intercepts and their 95% confidence intervals of the linear regression 

obtained between the correction factors and wind speed during the investigated period (from 

May to August 2015), separately for unstable and different stable conditions and for the first 

Kansas (K1) and the local (L) approaches. ndata represents the number of the half hourly 

data that was used in the linear regression for each stability condition. 

 

3.2. Evaluation of the correction procedure 
The evolutions with temperature of the different estimates of total ecosystem 

respiration are presented in (Fig. 5). As expected, the temperature ranges did not 

coincide exactly, due to the difference between nighttime and daytime temperatures. 

Over the 18 measurement campaigns, the soil temperature at a depth of 5 cm varied 

between 16 and 27°C in the day and between 9 and 22°C at night. Figure 5 suggests 

however that, in the common temperature range, the average total chamber – based 

TER (RST) was closer to the eddy fluxes corrected using the local approach (RSL) 

than to the others.  

Slope Intercept Slope Intercept

ζ < 0 0.08 ±0.006 1.044±0.0024 0.11±0.001 1.06±0.0005 1251

0< ζ < 0.02 0.08±0.065 1.151±0.016 0.17±0.010 1.021±0.002 73

0.02 ≤ ζ < 0.04 0.07±0.056 1.158±0.017 0.20±0.011 0.992±0.003 92

0.04 ≤ ζ < 0.06 0.09±0.089 1.12±0.031 0.21±0.015 0.99±0.005 61

0.06 ≤ ζ < 0.2 0.07±0.063 1.162±0.026 0.21±0.043 1.089±0.018 150

ζ ≥ 0.2 0.14±0.194 0.984±0.093 0.25±0.155 1.206±0.074 31

Stability ranges
Local approach  Kansas 1 approach

ndata
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Figure 4-5: Relationship between total ecosystem respiration and soil temperature for the 

corrected eddy covariance data (closed symbols) and for chamber-based TER estimates 

(open symbols): RSL (black circles) RSK1 (black diamonds) and RSK2 (black squares). Each 

point on the graph is an average of 40 measurements. The errors bars represent the 95% 

confidence intervals. Only complete data classes are represented in the figure. 

In order to make the comparison more substantial, the different TER estimates 

were gathered in two classes covering the temperature ranges 16±2°C and 20±2°C, 

respectively, and their averages were compared. Results are given in Table 2. It 

appears first that, in both temperature classes, the normalized differences (uobs) 

between chamber-based and eddy covariance TER estimates are all positive, 

suggesting that eddy covariance estimates are always larger than chamber-based 

estimates. However, these differences are not significant (p > 0.05) for fluxes 

computed with the local approach while they are highly significant (p < 0.001) for 

the fluxes computed with the Kansas 1 and Kansas 2 approaches. This suggested 

clearly that both Kansas approaches provided significantly higher estimates than the 

total ecosystem respiration while the local approach gave more compatible 

estimates. Some uncertainties still affect the comparison procedure, however. First 

cattle respiration was estimated as an average. This does not take changes in daily 

stocking rate and in cattle position in the footprint. As a result, an uncertainty 

remains on this term. Another issue is the choice of the reference temperature that 

was used to sort respiration data, which could have influenced the comparison 

between eddy covariance and chamber based TER estimates. In the present study we 

chose soil temperature at 5 cm, which appears reasonable as soil contributes largely 

to TER. Air temperature would have been a good alternative too and this choice 

would have slightly increased the difference between chamber-based and eddy 

covariance TER estimates. Indeed, chamber fluxes were collected during the day 

when air temperatures were higher than soil temperature while eddy covariance 
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fluxes were taken from nocturnal periods when air temperatures were lower than soil 

temperatures. This would have induced in Figure 5 a shift to the right of chamber-

based estimates and a shift to the left of the eddy covariance estimates. This would 

have increased again the mismatch between Kansas and chamber-based estimates 

but also resulted in a less good agreement between local and chamber-based 

estimates. Clearly, more extensive chamber campaigns, including both night and day 

measurements, would be necessary to refine this comparison.  

  Table 4-2: Results of the comparison at similar temperature between total chamber-based 

(RST) and eddy covariance TER estimates corrected with different approaches (RSL, RSK1 and 

RSK2). ndata represents the number of data in each class. p represents the probability level. 

 

3.3. Impact of the reference cospectrum choice and correction 

approach on CO2 fluxes 
3.3.1. Half hourly fluxes 

The analysis was extended to the daytime EC data and the deviation between the 

local and Kansas approaches was quantified by comparing corrected CO2 fluxes 

with the local approach and both Kansas approaches. The differences were estimated 

to be 14 and 28% for the nighttime CO2 fluxes (Figs. 6a, 6b) and 4 and 9% for the 

daytime CO2 fluxes (Figs. 6c, 6d).  The fact that these differences were larger at 

night than during the day suggests that the error resulting from an incorrect 

correction might have acted as a ‘selective systematic’ error (Moncrieff et al., 1996; 

Rannik et al., 2004), as in the case of the u*-filtering correction (Moncrieff et al., 

1996; Aubinet et al., 2001). Therefore, because the error had a greater impact on the 

positive fluxes than on the negative fluxes, it would be expected to result in 

important biases in annual sums.  

Temperature 

class
RST RSL RSK1 RSK2

Mean ± sterr 16 8.12 ±0.35 8.50 ±0.17 9.55 ±0.19 10.67 ±0.21

(ndata) (59) (144) (144) (144)

20 9.39 ±0.16 9.96 ±0.31 11.44 ±0.40 12.77 ±0.47

(202) (89) (89) (89)

RSL-RST RSK1-RST RSK2-RST

16 0.38 1.43 2.55

20 0.57 2.04 3.38

16 0.96 3.55 6.19

(p=0.33) (p < 0.001) (p < 0.001)

20 1.62 4.76 6.81

(p = 0.055) (p < 0.001) (p < 0.001)

uobs

Difference
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Figure 4-6: Correlation between the CO2 fluxes corrected by the Kansas and local 

approaches during (a, b) nighttime and (c, d) daytime; a and c first Kansas approach; b and d 

second Kansas approach during the investigated period: May to August 2015. 

3.3.2. Annual sums 

The preceding analysis clearly showed that the choice of the cospectral correction 

approach was critical at the DTO. In order to evaluate the impact of such choice on 

the annual fluxes, the correction procedures were extended to the 2011-2014 dataset. 

Over these 4 years, the average flux difference  between L and K1 or L and K2 

amounted to 412 and 209 g C m
-2

 y
-1

 for GPP (Fig. 7a), 562 and 280 g C m
-2

 y
-1

 for 

TER (Fig. 7b) and 150 and 71 g C m
-2

 y
-1

 for NEE (Fig. 7c). The relative differences 

ranged from 9 to 19% (GPP) and 14 to 27% (TER) between L and K1 and between 

L and K2, respectively. This shows that the choice of reference cospectrum could 

significantly affect all fluxes (GPP, TER) and, in this case, change the site from 

being a net C sink to being a weak net C source. The fact that the approaches based 

on the Kansas cospectral corrections gave the highest estimates of all annual fluxes 
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could be attributed to the site-specific cospectral shape obtained, whatever the 

atmospheric stability conditions, because the Kansas correction factors were always 

larger than those computed with the local cospectra.  

 

Figure 4-7: The 4-year (2011-2014) average and their standard errors of the annual 

estimates of (a) gross primary productivity (GPP, g C m
-2

 y
-1

), (b) total ecosystem respiration 

(TER, g C m
-2

 y
-1

) and (c) net ecosystem exchange (NEE, g C m
-2

 y
-1

) corrected with the 

local (L), first (K1) and second (K2) Kansas approaches, respectively, at the Dorinne 

Terrestrial Observatory (DTO). 

3.3.3. Shape of the cospectrum 

The main reason for these differences was that the local cospectrum differed from 

the cospectrum shape proposed by Kaimal et al. (1972). Let remark that these 

differences appear although both site choice and tower design were made taking the 

standard requirements (Munger et al., 2012) into account. The site is almost flat (a 
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relative slope of 1-2% in the NE direction) and has homogeneous vegetation in 

terms of prevailing wind direction. The measurement height is 2.62 m, much higher 

than the vegetation canopy, which rarely exceeds 30 cm in height. Although there 

are a few sparse trees in the footprint area, they are far way and we considered them 

unlikely to have created a flow distortion that would have explained the observed 

differences, particularly in the inertial subrange. The presence of a valley in the 

North-West direction is expected to be of small importance because it corresponds 

to infrequent wind occurrences. This suggests that cospectra differing from Kansas 

shape can be met even at sites that meet recommended quality criteria.  

Previous literature provides some examples not only above complex sites 

(Massman and Clement, 2004; Sakai et al., 2001; Su et al., 2004), where 

measurements were made in the roughness sublayer in which turbulent flow is 

known to be affected by the size of roughness elements (Kaimal and Finnigan, 1994) 

but also at a flat land site (Smedman et al., 2007), at a pasture and a flat paddocks 

sites (Laubach et McNaughton, 2009 and over a smooth playa (McNaughton et al., 

2007). By investigating how these cospectral models fitted in situ data at two 

forested sites, Su et al. (2004) found that their Kansas cospectra differed from those 

of sensible heat in both stability conditions, and in particular were more sharply 

peaked in the inertial subrange. During neutral atmospheric conditions and above a 

flat terrain and a rocky mountain site, Massman and Clement (2004) reported similar 

results as those obtained by Su et al. (2004). Smedman et al. (2007) however, argued 

that these differences were determined by the dynamics of the whole boundary layer 

rather than being simply dependent on the surface boundary conditions. An 

alternative parameterization of the heat cospectral density have also been proposed 

by Wohlfahrt et al. (2005) and Massman and Clement (2004). In view of the 

numerous differences reported between local cospectrum and Kansas cospectra, 

even at sites that could not be considered as difficult (in the sense of Finnigan, 

2008), it can be expected that other sites will experience similar problems. Given the 

impact of the cospectrum shape on both high frequency correction and annual 

carbon balance, we therefore recommend that site PIs systematically check the 

cospectrum shape at their sites and, if necessary, compute frequency correction 

factors on the basis of local cospectra rather than on Kansas cospectra. Finally, the 

corrected fluxes should be validated when possible.  

4. Conclusion  
In this study, we compared three approaches to high frequency loss correction; all 

based on the Monin-Obukhov similarity, and evaluated their impact on the annual 

carbon balance at the Dorinne Terrestrial Observatory, an intensively grazed 

grassland site in Belgium. The CO2 fluxes were measured using a closed-path eddy 

covariance system. The results showed that the correction factor based on the local 

cospectra was more appropriate and gave more realistic estimates of nighttime CO2 

fluxes when compared with total chamber-based TER estimates than the correction 

factors computed with Kansas cospectra. This is because the shapes of sensible heat 

cospectra at the DTO were found to differ from the Kansas shapes, having less 
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spectral power at high frequency than the Kansas cospectra. This led to an 

overestimation of the cospectral correction factor, which averaged over 4 months, of 

4-9% in the daytime and 14-28% in the nighttime CO2 fluxes, depending on the 

approach. The impact on annual sums is huge. Especially, at the DTO, the choice of 

Kansas rather than local cospectra reversed the annual carbon balance from being a 

net C sink to being a weak C source.  

As the DTO is not a complex site, we suspect that many sites could be affected by 

a similar problem and we thus strongly advocate site PIs to apply the spectral 

correction on the basis of locally established cospectra rather than on Kansas 

cospectra. Although challenging, a comparison between eddy covariance and 

chamber-based TER estimates could help validating the correction procedure.  
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Abstract 
Grassland carbon budgets are known to be greatly dependent on management. In 

particular, grazing is known to directly affect CO2 exchange through consumption 

by plants, cattle respiration, natural fertilisation through excreta, and soil 

compaction. This study investigates the impact of two grazing methods on the net 

ecosystem exchange (NEE) dynamics and carbon balance, by measuring CO2 fluxes 

using eddy covariance in two adjacent pastures located in southern Belgium during a 

complete grazing season. Rotational (RG) grazing consists of an alternation of rest 

periods and short high stock density grazing periods. Continuous grazing (CG) 

consists of uninterrupted grazing with variable stocking rates. To our knowledge, 

this is the first study to assess the impact of these grazing methods on total net 

ecosystem exchange and CO2 exchange dynamics using eddy covariance. The 

results showed that NEE dynamics were greatly impacted by the grazing method. 

Following grazing events on the RG parcel, net CO2 uptake on the RG parcel was 

reduced compared to the CG parcel. During the following rest periods, this 

phenomenon progressively shifted towards a higher assimilation for the RG 

treatment. This behaviour was attributed to sharp biomass changes in the RG 

treatment and therefore sharp changes in plant photosynthetic capacity. We found 

that differences in gross primary productivity at high radiation were strongly 

correlated to differences in standing biomass. In terms of carbon budgets, no 

significant difference was observed between the two treatments, neither in 

cumulative NEE, or in terms of estimated biomass production. The results of our 

study suggest that we should not expect major benefits in terms of CO2 uptake from 

rotational grazing management when compared to continuous grazing management 

in intensively managed temperate pastures. 
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1. Introduction 
Livestock total greenhouse gas (GHG) emissions represent 14.5% of all 

anthropogenic GHG emissions (IPCC, 2014), among which cattle production 

represents 41% of the sector’s emissions (Gerber et al., 2013). Therefore, there is a 

strong need to find and evaluate levers to mitigate these GHG emissions. During the 

last decade, several studies suggested that grasslands could act as important carbon 

(C) sinks (Klumpp et al., 2011; Mudge et al., 2011; Peichl et al., 2011; Rutledge et 

al., 2015; Soussana et al., 2007, 2010) with a notable site to site variability 

depending on several factors, such as pedoclimatic conditions and management 

practices. Maintaining and increasing the C sink activity of grasslands by improving 

their management has been identified as a lever to reduce the sector’s GHG 

emissions (Pellerin et al., 2013; Soussana and Lemaire, 2013).  

Grassland C balance and net ecosystem exchange are known to be greatly 

impacted by management (Smith, 2014; Soussana and Lemaire, 2013). The annual 

net carbon dioxide ecosystem exchange (annual NEE) is known to be directly 

impacted by grazing intensity through cattle respiration and indirectly through 

biomass consumption, natural fertilisation in the form of excreta, and soil 

compaction (Felber et al., 2016b, 2016a; Jérôme et al., 2014; Rong et al., 2017). The 

fertilisation rate also affects grassland carbon balance and carbon dioxide (CO2) flux 

dynamics (Allard et al., 2007; Ammann et al., 2007; Klumpp et al., 2011; Skinner, 

2013). Several studies assessing CO2 fluxes and total C balance in rotational grazing 

(Campbell et al., 2015; Felber et al., 2016b; Mudge et al., 2011; Peichl et al., 2011; 

Rutledge et al., 2015), continuous grazing systems (Allard et al., 2007; Gourlez de la 

Motte et al., 2016; Klumpp et al., 2011) or both (Soussana et al., 2007) have been 

carried out. In those studies, grazing impacts on CO2 exchanges were not easy to 

discern as they were blurred by CO2 flux responses to meteorological variables. 

Studies comparing CO2 and C exchanges of both grazing methods in similar 

pedoclimatic conditions are very scarce (Chan et al., 2010; Cowie et al., 2013; 

Sanderman et al., 2015). These cited studies investigated the impact of rotational and 

continuous grazing by comparing direct soil organic carbon (SOC) measurements in 

different pastures. However, the lack of exactly similar management (stocking rates, 

fertilization etc.), pedoclimatic conditions and inherent SOC random variability 

between the investigated farms made differences difficult to analyze.  

This research investigates the impact of two conventional cattle grazing methods 

on the CO2 flux dynamics and its implication for the C balance. The first method, 

continuous grazing (CG), consists of uninterrupted grazing with variable stocking 

rates. It favours the ingestion of growing biomass thereby maintaining a relatively 

low standing biomass on the field during the whole grazing season. When well 

managed this method maintains a relatively stable grass height in the field by 

adjusting the stocking density to forage mass. This common system is not labour 

intensive and is well adapted to humid grasslands where grass production remains 

steady. The second method, rotational grazing (RG, also known as multi paddock 

grazing), consists of an alternation of short grazing periods (around 5 days) with 
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high stocking densities and rest periods. During grazing periods, the forage mass 

accumulated during the preceding rest period is quickly eaten by the cattle leading to 

a rapid grass height shortening. This grazing system is commonly used in cattle 

production and has several advantages. First, it is very easy to keep an ungrazed 

paddock for harvest and therefore reduce forage loss. It is also easier to adapt the 

rotations to grass growth and maintain high productivity as well as good animal 

nutrition. It also facilitates operations such as fertilisation after grazing, scattering of 

livestock droppings, and the harvest of uneaten biomass because of cattle rejections, 

flowering etc. On the other hand, rotational grazing requires more workforce than 

continuous grazing, a good soil carrying capacity, and more drinking infrastructure 

across paddocks.  

The main objectives of this study are to assess the impact of these two grazing 

methods on CO2 flux dynamics as well as implications for the C balances. For this, a 

full grazing season (14
th
 April to 17

th
 November) monitoring of CO2 turbulent fluxes 

using the eddy covariance (EC) method was performed simultaneously over two 

adjacent pastures managed according to these two grazing methods.  

2. Material and methods 

2.1. Site description and grassland management 
This research was performed at the Dorinne Terrestrial Observatory (DTO) (50° 

18’ 44’’ N; 4° 58’ 07’’ E) in southern Belgium. The mean air temperature is 10 °C 

and annual precipitation is 847 mm. Briefly, the site consists of two adjacent 

intensive permanent grasslands both similarly managed by the same farmer before 

the experiment (Figure 1). The carbon balance and management of one of the 

pastures has been described in detail in a preceding paper (Gourlez de la Motte et al. 

(2016)), the second one has been added and fully equipped for the present 

experiment. Both pastures have been grazed by Belgian Blue cattle and fertilised 

using organic and mineral fertilisers for more than 40 years. According to the farmer 

there has been no vegetation restoration for more than 40 years. The grassland 

species composition is mainly grasses, with legumes and other species. The 

dominant species are perennial ryegrass (Lolium perenne L.) and white clover 

(Trifolium repens L.). The main wind directions are south-west and north-east. The 

site used for this study is part of a commercial farm so that stocking rates, 

fertilization rates and other management practices are, as much as possible, 

representative of the common practices in beef cattle farms around the region.  



Chapter 5 

 

103 

 

 

 

Figure 5-1: Plan of the measurement site with both the rotational grazing parcel (RG) and 

the continuous grazing parcel (CG). Cumulative footprint contributions for the whole 

measurement season are illustrated by the dashed lines. Contribution levels are given in the 

labels for each line. 

The continuous grazing treatment (labelled “CG”) was operated on a 4.2 ha 

pasture. The pasture was fertilised in March 2015 with 7 kg N ha
-1

 just before the 

beginning of the experiment. The field was continuously grazed from 14
th
 April 

2015 to 17
th
 November 2015 (220 days) with a varying stocking rate depending on 

forage availability and weather conditions (Figure 2). The annual stocking rate was 

2.1 LU ha
-1

.  

In order to simulate rotational grazing (labelled “RG”), a plot of 1 ha was 

delimited within a bigger pasture for the purpose of the experiment (Figure 1). The 

field was grazed with an alternation of high stocking density periods and rest periods 

(Figure 2). A total of six grazing periods, each an average of six days with a 

stocking density of 19.3 LU ha
-1

 were carried out, leading to 36 days of grazing and 

an average annual stocking rate of 1.9 LU ha
-1

. The cattle were confined in the 

parcel when grass height was between 10 and 15 cm. The stocking densities and 

grazing duration were adapted, so that similar stocking rates were obtained for both 

treatments with stocking densities and grazing durations in agreement with common 

practices in the region.  
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Figure 5-2: Cattle stocking density (a) and herbage height (b) throughout the grazing 

season in the CG and RG parcels. A stocking density of zero designates rest periods. 

Throughout the paper, all variables labelled “RG” concern the rotational grazing 

treatment and all variables labelled “CG” concern the continuous grazing. 

Differences between the two treatments are always calculated as RG–CG and 

labelled using the symbol “Δ”. The reference unit used for calculating LU is the 

grazing equivalent of one 600 kg liveweight (LW) adult dairy cow producing 3000 

kg of milk annually, without additional concentrated feed (Eurostat, 2013). Breeding 

bulls and suckler cows correspond to 1 LU, and heifers and calves to 0.6 and 0.4 

LU, respectively.  

2.2. Instruments and setup 
2.2.1. CO2 flux measurements 

The CO2 fluxes were measured simultaneously on both fields with two eddy 

covariance setups each using a three-dimensional sonic anemometer (CSAT3, 

Campbell Scientific Ltd, UK) coupled with a closed-path CO2/H2O gas analyser 

IRGA (LI-7000, LI-COR Inc., Lincoln, NE, USA). On the CG parcel, the system 

was installed at 2.6 m height on a mast in the middle of the field. Air was pumped 

into the analyser through a polyurethane tube (6.45 m long; 4 mm inner diameter) by 

a pump (NO22 AN18, KNF Neuberger, D) at a 12 l min
-1

. A more detailed 

description of the CG set up can be found in (Gourlez de la Motte et al., 2016). The 

system was identical for the RG parcel and was installed at 1.92 m height on a mast 

on the border of the parcel. This disposition and height was chosen in order to 

optimise the footprint under south-west wind direction (Figure 1). 
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2.2.2. Ancillary measurements 

Meteorological sensors were installed on the CG mast and are described in 

Gourlez de la Motte et al. (2016). Measurements included air temperature and 

relative humidity (RHT2nl02, Delta-T Devices Ltd, Cambridge, UK), soil 

temperature and soil moisture (ThetaProbe, Delta-T Devices Ltd, Cambridge, UK), 

global and net radiation (CNR4, Kipp & Zonen, Delft, The Netherlands), rainfall 

(tipping bucket rain gauge, 52203, R.M. Young Company, Michigan, USA) and 

atmospheric pressure (144S BARO, SensorTechnics, Puchheim, Germany).  

The herbage height was measured with a rising plate meter of 0.25 m
2
 at 60 

equidistant points in each field. Measurements on the field were taken once a week 

during the grazing season in the CG parcel and just before and after cattle 

confinements in the RG parcel. Previously (Gourlez de la Motte et al., 2016), an 

allometric relationship was established for the site to convert herbage height to 

herbage mass (HM). To establish this, direct samples were taken from the field 

underneath secured enclosures. Then, the relationship between grass height and 

harvest dry matter (DM) was computed. Samples were clipped from within0.5×0.5m 

quadrats. DM was obtained by drying the samples at 60°C using a forced air-oven. 

Biomass carbon content (Ccontent) was measured from laboratory measurements using 

the Dumas method (Dumas, 1831). The analyses were conducted by the Forest and 

Ecophysiology unit at the Institut National de la Recherche Agronommique (INRA).  

Three secured enclosures were also used to obtain grass growth (HMgr) under 

grazing for the CG treatment.  

Cattle C intake through biomass consumption was deduced from biomass 

measurements for a given period using:  

 int ake content beg end grC C HM HM HM  
   (5.1) 

where HMbeg and HMend are the herbage mass at the beginning and at the end of 

the period.  

2.3. Eddy flux computation and data processing 
Half hourly CO2 fluxes were computed following the procedure defined by the 

EUROFLUX-CARBOEUROFLUX-CarboEurope IP networks (Aubinet et al., 2000, 

2012) and were fully described in Gourlez de la Motte et al. (2016). Briefly, CO2 

fluxes were calculated as the sum of the turbulent flux and of the storage term 

(Foken et al., 2012) using EDDYSOFT software package (EDDY Software, Jena, 

Germany, Kolle and Rebmann (2007)). A double rotation was applied to wind 

velocity (Rebmann et al., 2012). Fluxes were corrected for high frequency loss on 

both masts following the procedure proposed by Mamadou et al., (2016). They were 

later filtered using a stationarity criterion according to Foken et al. (2012b) and low 

friction velocity (u*) (Aubinet et al., 2012a). The u* threshold value was 0.13 ms
-1

 

for the CG set up and 0.10 ms
-1

 for the RG set up. These thresholds were determined 

at the u* value where the relationship between u* and bin averaged temperature 

nighttime NEE flattens. 
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The complete CG dataset from 14
th
 April to 17

th
 November consists of 10608 30-

min flux measurements. After filtering, the data consisted of 5276 30-min flux 

measurements corresponding to a data coverage of around 50%. Because of the 

limited RG parcel size, some fluxes had to be discarded when the parcel contribution 

to the footprint was not sufficient. To do that, we used the footprint evaluation tool 

proposed by Neftel et al. (2008). This tool calculates the contribution of a delimited 

surface (φ, in %) to the flux footprint relying on an analytical model (Kormann and 

Meixner, 2001) for the footprint function evaluation. Cumulative footprint 

contributions for the whole grazing season are illustrated in Figure 1. The fluxes 

within the RG data set were automatically discarded when the contribution of the 

parcel to the footprint was less than 65%. As a result, fluxes measured under north-

east wind conditions were automatically discarded. We tried, if possible, to confine 

the cattle when the parcel was within the measurement footprint. Confinements were 

advanced or delayed only when weather forecasts indicated a favorable wind 

direction change within a few days. Otherwise, confinements were done regardless 

of wind direction. After filtering, the RG data consisted of 3490 30-min fluxes 

corresponding to a data coverage of 33%. 

Missing NEE data were filled following Reichstein et al. (2005). This algorithm 

fills the gaps using time-moving look up tables with data from time periods with 

similar environmental conditions. We adapted those look up tables so that data gaps 

occurring during confinements were not filled using rest periods data and vice versa. 

Filtering the data with too low footprint contribution and adding this condition 

should ensure that grass height is relatively steady during the time window used to 

fill the data in order to limit possible biases (Merbold et al., 2014). 

2.4. Instruments validation before the experiment 
In order to make sure that both eddy covariance systems measured fluxes 

identically, an instrument validation was carried out before the start of the 

experiment during 11-17th June 2014. To do so, both eddy covariance systems were 

placed next to each other in the CG parcel at the same heights (2.62m). All the 

needed corrections described above were made and a regression between fluxes 

measured by both systems was computed. The slope of the regression was not 

significantly different than one (R2=0.97, no intercept) indicating that both systems 

effectively measured identical fluxes. 

2.5. Regression and data analysis  
In order to remove the influence of the most important meteorological variables 

controlling NEE (radiation and temperature), a function describing NEE response to 

those variables was fitted on seven days times series and relevant physiological 

parameters were deduced from these. The objective was to assess how the variation 

of those parameters was affected by the grazing method. To do so, both data sets 

were divided into grazing and rest periods according to the RG treatment’s grazing 

schedule so that a grazing period corresponds to a period when both parcels were 

grazed, while rest periods correspond to periods when only the CG parcel was 
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grazed. A total of six grazing periods and seven rest periods were identified. Each of 

the rest periods were divided into seven day windows and a daytime NEE light 

response curve was fitted for each window. Grazing periods were not divided as 

their duration was mostly less than seven days. We used a modified Michaelis 

Menten light response curve (Falge et al., 2001; Lasslop et al., 2010) including 

temperature sensitivity to respiration (Lloyd and Taylor, 1994; Reichstein et al., 

2005): 

ref

ref

PPFD

day 10 0

ref 0 s 0
PPFD

ref

PPFD G 1 1
NEE Rd exp E ( )

PPFD T T T T
PPFD G (1 )

PPFD

   
     

    

  (5.2) 

where Gref is the gross primary productivity at a reference photon flux density 

(PPFDref). PPFDref was fixed at 1500 μmol m
-2

 s
-1

 and GPPFDref was therefore named 

G1500 throughout the paper. The traditional Michaelis Menten equation was modified 

in order to obtain G1500 instead of gross primary productivity at light saturation 

because light saturation was not reached at the end of the season. Rd10 (μmol m
-2

 s
-1

) 

is the dark respiration normalised at reference temperature (Tref) set at 10 °C. The 

other parameters are α, the quantum light efficiency (μmol CO2 μmol
-1

 photons), T0 

which was set at -46.02°C  (Reichstein et al., 2005) and the respiration sensitivity to 

temperature E0. Ts (°C) is the averaged soil temperature at 2 cm for the time 

window. A fixed long term E0 value deduced from the annual response of nighttime 

u*-filtered NEE to soil temperature was used for each regression. The standard 

errors (ε) of the coefficients were also computed.  

In order to compare the regression coefficients, normalised differences (uobs) 

between two parameters (c) of the same time window were computed as follows: 

RG CG
obs

2 2

RG CG

c c
u




  
      (5.3) 

Differences between two coefficients were considered significant (α = 0.05) when 

|uobs| > 1.96.  

2.6. Cattle respiration 
2.6.1. Estimation of cattle respiration from eddy covariance fluxes 

The net ecosystem exchange (NEE) measured by eddy covariance is the sum of 

cow respiration (Rcows) and soil and vegetation net exchange (Felber et al., 2016). 

The procedure used to estimate Rcows is described in Figure 3. First, we selected 

valid nighttime fluxes in the RG data set. Then, the data set was divided into periods 

with cows in the field (total ecosystem respiration, TER) and periods without cows 

(ecosystem respiration, ER) according to the grazing schedule. Then, as ER is 

sensitive to soil temperature, a two parameter exponential equation (Lloyd and 

Taylor, 1994) was fitted on the ER data set (see Equation 1) and a modelled 

ecosystem respiration (ERm) was computed using this equation. As ERm is 

representative of the average respiration response to soil temperature without cows, 

the average Rcows can be computed as: 
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cowsm obs(TER ER ) / n R       (5.4) 

where obsn
 is the number of valid TER observations. Then the average estimated 

respiration for one livestock unit ( cowE ) was calculated as  

cows

cow
LU

R A
Ê

n


       (5.5) 

where LUn  is the average number of livestock units in the field and A the surface 

of the field.  

 

Figure 5-3: Flowchart of the cattle respiration calculation. 

2.6.2. Estimation of cattle respiration from ingested biomass 

Cattle respiration was also estimated from ingested biomass by assuming that only 

a fraction of the ingested C is re-emitted in the form of CO2 as described by Gourlez 

de la Motte et al., (2016). During a grazing event, cattle respiration was estimated as 

follows: 

int ake CH4 C
cow

LU

((OMD C ) F )
E

n̂

 


    (5.6) 

where OMD (%) is the digestible organic matter and Cintake the ingested C during 

grazing. OMD was obtained from near infrared reflectance spectrometry analysis 
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(Decruyenaere et al., 2009) of samples taken in situ. FCH4-C was estimated as a 

fraction of ingested DM using a constant methane emission factor fixed at 6% of 

DM intake (Lassey, 2007).  

3. Results and discussion 

3.1. Grazing method impact on carbon dioxide flux dynamics 
Daily averaged NEECG and NEERG showed different patterns during the grazing 

season. Daily averaged NEECG showed mostly net CO2 uptakes from the start of the 

grazing season until late June and then shifted to mostly net CO2 emissions for the 

rest of the year (Figure 4a). This early shift was previously observed at the same site 

by Gourlez de la Motte et al., (2016) and was attributed to grazing that limits gross 

primary productivity by limiting photosynthetic capacity. In contrast, NEERG 

showed different dynamics (Figure 4b). Considerable CO2 emission peaks were 

observed during grazing events predominantly because of cattle respiration followed 

by a progressive shift towards CO2 uptake during rest periods. Prolonged CO2 

uptake events were observed in August and October at the end of the rest periods. 

This led to more pronounced CO2 emissions on the RG treatment during cattle 

confinement compared to the CG treatment, and more pronounced CO2 uptake after 

several days of recovery (Figure 4c). Similar switches from a source to a sink were 

previously observed after grazing or cutting because of rapid changes in standing 

biomass (Nieveen et al., 2005; Peichl et al., 2012; Rogiers et al., 2008; Rutledge et 

al., 2015; Wohlfahrt et al., 2008). It is noted that a long gap between the 5
th
 and 6

th
 

confinements could not be filled because of prolonged north-west wind direction 

conditions.  
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Figure 5-4: Daily means of (a) net ecosystem exchange of the CG parcel (NEECG), (b) net 

ecosystem exchange of the RG parcel (NEERG) and (c) differences between NEERG and 

NEECG (ΔNEE = NEERG–NEECG). Confinement periods on the RG parcel are colored in 

grey. 

Herbage heights in RG were similar at the beginning of each rest period. However, 

the height was mostly stable in the CG parcel due to continuous grazing, while grass 

grew quickly in the RG parcel during rest periods (Figure 2). These differences in 

standing biomass caused by the grazing method could have impacted gross primary 

productivity as well as the total ecosystem respiration and therefore NEE dynamics. 

In order to identify which processes were responsible for the observed differences in 

NEE dynamics a regression analysis was carried out to compute G1500, the gross 

primary productivity at high radiation, and Rd10, the dark respiration normalised at 

10 °C.  
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Figure 5-5: Evolution of (a) gross primary productivity at high radiation (G1500) and (b) 

normalised differences between the two coefficients (uobs). Confinement periods on the RG 

parcel are coloured grey. Horizontal dashed lines correspond to the 95% level of confidence 

(±1.96). 

During each rest period, notable differences in G1500 dynamics could be observed 

(Figure 5). At the beginning of each rest period, just after the cattle confinement, 

G1500 was lower on the RG parcel. This difference progressively shifted towards a 

higher G1500 at the end of the rest period. This behaviour was less visible for the last 

rest period at the end of the growing season when grazing intensity was very low on 

the CG parcel because of low biomass production. As a result, ΔG1500 was 

significantly correlated (p value < 0.05) to the difference of herbage height between 

the two parcels (confinement periods excluded, Figure 6). This correlation illustrates 

the influence of grass height on gross primary productivity (GPP) and the plant’s 

photosynthetic capacity. The impact of fast changes in vegetation heights due to 

rotational grazing on gross primary productivity at high radiation was also observed 

by Felber et al., (2016b) using a similar approach and by Campbell et al., (2015) 

using an automated phytomass index analysis (Lohila et al., 2004).   

It is also notable that G1500 was systematically lower (less assimilation) on the RG 

parcel following the confinements even when grass heights were similar on both 

parcels. This may be due to a reduced regrowth rate after intensive grazing. Indeed, 

following intensive grazing, the ratio of leaf area per plant weight is reduced thereby 

limiting its regrowth rate (Oesterheld and McNaughton, 1991).  

No similar impact of grazing on Rd10 dynamics was observed. No significant 

correlation (p value > 0.05) was found between ΔRd10 and the difference of herbage 
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height between the two parcels (Figure 6). These results are in agreement with 

another investigation made at the same site (Jérôme et al., 2014) that found a 

decrease in gross primary productivity at light saturation during grazing periods and 

an increase during rest periods, but no impact of grazing intensity on normalised 

respiration at 10 °C, probably due to opposing effects of grazing on the total 

ecosystem respiration. Therefore, in our study, the observed switch from a CO2 

source to a CO2 sink after a grazing event on the RG parcel was more likely to be 

due to changes in photosynthetic capacity rather than processes influencing the total 

ecosystem. Other studies have also shown that changes in NEE after grazing or 

cutting were more driven by changes in GPP rather than changes in ER (Rogiers et 

al., 2008; Wohlfahrt et al., 2008). 

 

 

Figure 5-6: Relationship between differences in herbage height and (a) differences in dark 

respiration normalised at 10 °C (ΔRd10) and (b) differences in gross primary productivity at 

high radiation (ΔG1500). 

During confinements, NEERG was found to be greatly affected by cattle 

respiration. Indeed, cattle respiration was estimated at 3.0 ± 0.8 kg C LU
-1

 d
-1

 (see 

section 3.3). The average stocking density during cattle confinement was 19.3 LU 

ha
-1

 while it was 3.5 LU ha
-1

 on average in the CG parcel. Therefore, this difference 
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of stocking densities should have led to a contribution of 4.5 ± 1.2 μmol m
-2

 s
-1

 to 

ΔNEE on average. Nighttime NEERG was 3.4 μmol m
-2

 s
-1

 higher on average than 

NEECG during confinement, which is within the error bound of the estimated cattle 

respiration. Therefore, it is more likely that differences in total ecosystem respiration 

during confinements were mostly due to cattle respiration (Felber et al., 2016b; 

Jérôme et al., 2014). The higher difference observed during the daytime (5.7 μmol 

m
-2

 s
-1

) can be explained by the gross primary productivity reduction in the RG 

parcel because of defoliation during confinement.  

Cattle respiration could also have had an impact on measured NEECG dynamics. 

However, on short term measurements (daily to monthly), the contribution of 

moving emissions spots like cattle are highly uncertain and variable because of 

uneven spatial and temporal cattle distribution within the footprint (Dumortier et al., 

2017; Felber et al., 2016b). This probably explains why no clear impact of cattle 

respiration could be observed on short term NEECG dynamics.   

3.2. Biomass production and consumption 
A total production of 6270 kg DM ha

-1
 and from 6470 to 7420 kg DM ha

-1
 were 

estimated on the CG parcel and the RG parcel respectively leading to a rather small 

difference between the two treatments. For the RG treatment, the lower value is 

obtained by considering zero growth during confinements while the higher value is 

obtained by using the same grass growth as the CG treatment (around 950 kg DM 

ha
-1

). Considering a zero growth might underestimate the annual grass production 

regarding the length of those events (a total 36 days). However, assuming identical 

growth rate is also unlikely as growth should have been highly constrained once 

trampled and grazed. We note that similar forage production between rotational and 

continuous grazing has previously been observed (Briske et al., 2008; Popp et al., 

1997) but under very different climatic conditions and farm management than in our 

study. 

3.3. Estimation of cattle respiration  
Cattle respiration was estimated from eddy covariance measurements following 

the procedure described in section 2.4.1. A R10 value of 5.6 μmol m
-2

 s
-1

 and a E0 

value of 238.4 K were obtained from the fit of the exponential equation on nighttime 

fluxes without cows. Rcows on the RG parcel was 6.1 ± 1.6 μmol m
-2

 s
-1

 leading to an 

Ecow value of 3.0 ± 0.8 kg C LU
-1

 d
-1

. Values are presented with their 95% 

confidence intervals. Cattle respiration was also independently estimated from 

ingested biomass. A value of 2.5 kg C LU
-1

 d
-1

 was estimated which is within the 

uncertainty of the estimated value using eddy covariance. 

The cattle respiration value estimated from eddy covariance was not significantly 

different from the value of 2.59 ± 0.58 kg C LU
-1

 d
-1

 obtained from eddy covariance 

at the same site and from the value obtained from ingested biomass by Jérôme et al. 

(2014). Jérôme et al. (2014) also used confinement experiments to estimate cattle 

respiration but followed a different methodology. In that experiment, cattle 

respiration was estimated by calculating the average difference between fluxes just 
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before and after the confinement experiment under similar environmental 

conditions. A different method was proposed in this study because the confinement 

periods were longer (average 6 days vs. 1 day) and the changes in standing biomass 

were very different leading to non-similar conditions before and after confinement. 

Other limitations of confinement experiments to estimate cattle respiration were 

widely discussed by Jérôme et al. (2014). In a similar way, Felber et al. (2016b) 

estimated a cattle respiration value of 4.6 kg C head
-1

 d
-1

 for dairy cows using either 

a precise grazing schedule or animal positioning system and eddy covariance.  

The total contribution of cattle respiration to NEE (Rcows) could also be estimated 

by upscaling Ecow to the entire year using the grazing schedule for both parcels. The 

total Rcows was 230 ± 61 g C m
-2

 yr
-1

 for the CG parcel and 208 ± 55 g C m
-2

 yr
-1

 for 

the RG. The difference of contribution of cattle respiration to ΔNEE is therefore 

around 22 g C m
-2

 yr
-1

. This scaling up assumes spatially homogenous cattle 

distribution over time so that their respiration signal becomes a constant part of the 

eddy covariance measurements signal. This hypothesis is more likely to be met for 

the RG treatment as fluxes are discarded when the measurement footprint is outside 

the parcel increasing the probability that the herd is in the system footprint (Jérôme 

et al., 2014). For the CG parcel, this hypothesis is less likely to be met (Felber et al., 

2016b) as herds can or cannot contribute to the CO2 flux depending on wind 

direction and herd position in the field. However, as suggested by Dumortier et 

al.(2017) for methane flux measurements at DTO, this hypothesis is more likely to 

be reached when integrating fluxes over long periods.  

3.4. Impact of grazing method on cumulative net ecosystem 

exchange 
In order to assess the impact of the grazing method on the cumulative NEE, the 

data sets were divided into seven periods. The first period started at the beginning of 

the grazing season and ended at the beginning of the first confinement (Table 1, 

Figure 7). Then, each rotation corresponds to the cattle confinement and its resting 

period until the start of the next rotation. For each rotation cumulative NEERG 

increased during confinement leading to a positive difference between cumulative 

NEERG and NEECG (ΔNEE). Then, cumulative ΔNEE stagnated for a few days and 

eventually started to decrease if the rest period was long enough. After the last 

confinement, cumulative ΔNEE stagnated because of very limited photosynthetic 

activity at the end of the grazing season. Cumulative ΔNEE could therefore be 

negative (NEERG < NEECG) or positive depending on the length of the rest period 

and when it occurred in the grazing season. ΔNEE ranged from -30 to 41 g C m
-2

 

(Table 1). It was negative for the two rotations with the longest rest periods. For 

these two rotations, neutrality (NEERG = NEECG) was obtained after a recovery 

period of 31 and 27 days. We also noticed that the 4
th
 rotation’s recovery period 

lasted for 28 days leading to a budget close to neutrality (ΔNEE = +8 g C m
-2

). 

Although these observations lack replicates, we can argue that the time needed to 

reach neutrality should be around four weeks depending on weather conditions and 
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stocking densities. It is also important to note that rest period fluxes were similar at 

the end of the season when grass growth was practically zero.  

 

Figure 5-7: Evolution of cumulative NEE and ΔNEE (ΔNEE = NEERG–NEECG). The data 

set is divided into 7 periods indicated by vertical dashed lines. Confinement periods on the 

RG parcel are coloured grey. 

When accounting only for periods that could be completely filled, NEERG was –88 

g C m
-2

 and NEECG was –74 g C m
-2

 leading to a ΔNEE of –14 g C m
-2

. Accounting 

for the difference in cattle respiration due to a difference in stocking densities shifts 

NEERG to –66 g C m
-2

 which leads to a cumulative ΔNEE of +8 g C m
-2

. At DTO, 

for the CG parcel, an average uncertainty for the annual cumulative NEE of +26 

(upper range) and –17 (lower range) g C m
-2

 yr
-1

 were estimated by Gourlez de la 

Motte (2016). When considering both the lower data coverage and the fast changes 

in standing biomass in the RG treatment, we can presume that the uncertainty in RG 

treatment is even greater. Therefore, this very small difference in NEE is not likely 

to be significant. It may also be noted that no significant difference in terms of 

annual productivity and ingested biomass was observed between the two treatments. 

This leads to the conclusion that, in our study, no significant difference in total NEE 

could be observed between the two grazing methods assuming similar stocking 

rates. Similar conclusions have been observed using direct soil organic carbon 

measurements comparing rotationally grazed and continuously grazed grasslands 

with similar management for at least a decade (Chan et al., 2010; Cowie et al., 2013; 

Sanderman et al., 2015). It is more likely that grassland carbon budgets depend more 

on the stocking and fertilisation rates than the grazing method (Allard et al., 2007; 

Klumpp et al., 2011; Soussana and Lemaire, 2013).  
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Table 5-1: Starting and ending dates (in year 2015), cumulative net ecosystem exchange 

for the continuous grazing (NEECG), rotational (NEERG) grazing treatments, difference in net 

ecosystem exchange between those treatments (ΔNEE= NEERG – NEECG), stocking densities 

and grazing durations for each period. The first period starts at the beginning of the grazing 

season (14
th

 April 2015) and ends at the beginning of the first confinement. Next periods 

correspond each to a confinement followed by its restoration period. The 5th period marked 

with * is incomplete because of too low data coverage.  

 

The absence of significant difference between the two treatments assumes no 

inherent variability in terms of annual NEE between the two parcels. Although this 

hypothesis is widely used by other studies using  paired eddy covariance 

measurements to study management impact on CO2 fluxes (eg. Allard et al., 2007; 

Cowan et al., 2016; Klumpp et al., 2011; Skinner, 2013), Rutledge et al.,(2017a) 

found that this strong assumption was not always met. Indeed, by measuring C 

fluxes in each block during one complete year before the experiment, they found 

significant differences between the blocks that could not easily be attributed to large 

pre-treatment differences in term of management, soil types and site history. In this 

experiment, we tried to limit those possible biases as much as possible by choosing 

two adjacent pastures with very similar soil, site history and management.  

3.5. Conclusion 
To our knowledge, this study is the first to compare the impact of rotational and 

continuous grazing in terms of CO2 flux dynamics and C budget measured by eddy 

covariance. It was carried out in an intensively managed pasture grazed by Belgian 

Blue suckler cows located in southern Belgium. The results showed that despite CO2 

fluxes showing very different dynamics between the two grazing management 

systems, overall NEE sums were very similar. Although no significant differences in 

term of cumulative NEE was observed, it is important to emphasise that this result is 

Period 

n° Dates

Duratio

n 

Stocking 

density 

NEECG 

(gCm-
Confinem

ent (days)

Rest 

periods 

Stocking 

density 

NEE 

(gCm-2)

ΔNEE 

(gCm-2)

1 14/04-6/05 23 2,8 -92 -- 23 0 -119 -27

2 6/05-17/06 42 3,6 -123 5 37 20,7 -153 -30

3 17/06-8/07 21 4,5 13 6 15 23,3 32 19

4 8/07-11/08 34 5 49 6 28 21,1 57 8

5* 11/08-31/08 20 3,9 17 7 13 18,9 22 5

6 31/08-19/10 49 3,2 26 4 45 20,1 -4 -30

7 19/10-20/11 32 1,9 36 8 24 16,1 77 41

221 3.5* -74 36 185 19.3* -88 -14

Rotational grazingContinuous grazing

Total/average*
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highly dependent on the stocking rates and the length of the rest periods. Shorter rest 

periods (with similar stocking densities) on the RG treatment could have led to an 

overall reduced photosynthetic capacity of the pasture, thereby emphasising the need 

to maintain a suitable stocking rate. The strong link between gross primary 

productivity at high radiation and herbage height also highlights the strong need to 

account for continuous biomass changes when modelling or studying the 

relationship of NEE to other environmental variables (Campbell et al., 2015; Lohila 

et al., 2004).  
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Abstract 
The eddy covariance (EC) technique has been widely used to quantify the net CO2 

ecosystem exchange (NEE) of grasslands, which is an important component of 

grassland carbon and greenhouse gas budgets. In free range grazed pastures, NEE 

estimations are supposed to also include cattle respiration. However, cattle 

respiration measurement by an EC system is challenging as animals act as moving 

points emitting CO2 that are more or less captured by the EC tower depending on 

their presence in the footprint. Often it is supposed that, over the long term, cattle 

distribution in the pasture is homogeneous so that fluctuations due to moving 

sources are averaged and NEE estimates are reasonably representative of cattle 

respiration. 

In this study, we test this hypothesis by comparing daily cow respiration rate per 

livestock unit (LU) estimated by postulating a homogeneous cow repartition over the 

whole pasture with three other estimates based on animal localization data, animal 

scale carbon budget and confinement experiments. 

We applied these methods to an intensively managed free range grassland and 

showed that the NEE estimate based on a homogeneous cow repartition was 

systematically lower than the three other estimates. The bias was about 60 g C m
–

2
 yr

–1
, which corresponded to around 40% of the annual NEE. The sign and the 

importance of this bias is site specific, as it depends on cow location habits in 

relation to the footprint of the EC measurements which highlight the importance of 

testing the hypothesis of homogeneity of cattle distribution on each site. 

Consequently, in order to allow estimating the validity of this hypothesis but also 

to improve inter site comparisons, we advocate to compute separately pasture NEE 

and grazer’s respiration. For the former we propose a method based on cattle 

presence detection using CH4 fluxes, elimination of data with cattle and gap filling 

on the basis of data without cattle. For the second we present and discuss three 

independent methods (animal localization with GPS, animal scale carbon budget, 

confinement experiments) to estimate the cattle respiration rate.    
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1. Introduction 
Grasslands cover around 40% of Earth’s land area (Steinfeld et al., 2006) and are 

therefore one of the most important ecosystems on earth. More specifically, 

pasturelands are dedicated to the production of forage for harvest by grazing, 

cutting, or both. These lands constitute important carbon (C) stocks estimated at 

343 Pg C, which is nearly 50% more than the carbon stored in worldwide forest soils 

(Conant et al., 2017). They can therefore act as important carbon sinks  that can play 

an important role in mitigating livestock production-related GHG emissions 

(Hörtnagl et al., 2018; Soussana et al., 2007). There is therefore a strong need to 

accurately quantify grassland C sequestration.  

The most used technique to quantify CO2 exchanges between grasslands and the 

atmosphere is the Eddy Covariance (EC) technique (Aubinet et al., 2012b). In 

addition, by combining net CO2 ecosystem exchanges (NEE) obtained with this 

technique with other non-CO2 carbon export and import measurements, a complete 

ecosystem carbon budget (net biome productivity, NBP) can be obtained (Soussana 

et al., 2007). Studies measuring NBP showed that pastures could act as important C 

sinks that could at least partially offset the CH4 and N2O emitted in the pasture, 

depending on management and pedoclimatic conditions. Study sites were either 

grazed (Allard et al., 2007; Felber et al., 2016a; Gourlez de la Motte et al., 2016; 

Klumpp et al., 2011; Nieveen et al., 2005; Rutledge et al., 2015, 2017b, 2017a; 

Wayne Polley et al., 2008), mown (Ammann et al., 2007; Merbold et al., 2014; 

Wohlfahrt et al., 2008), or both (Jones et al., 2017; Mudge et al., 2011; Skinner, 

2008; Skinner and Dell, 2015; Zeeman et al., 2010).  

Flux measurements over grazed pastures are especially challenging. In the 

presence of cattle, the total net ecosystem exchange (NEEtot) of a pasture can be 

partitioned between the net ecosystem exchange without grazing animals (NEEpast) 

and the total respiration of the animals on the field (Rcows) (Felber et al., 2016b): 

NEEtot = NEEpast + Rcows    (6.1) 

which can further be combined with other C exports and C imports to obtain the 

NBP of a pasture :  

NBP = NEEtot − Cexports + Cimports   (6.2) 

However, as cattle act as moving CO2 sources their emissions either will or won’t 

be captured by the measuring system, depending on the presence of the cattle in the 

footprint area. Although Rcows is a small flux compared to gross primary productivity 

(GPP) and the total ecosystem respiration (TER), it can be of the same order of 

magnitude as NEEtot. Even if its magnitude may vary from site to site, 

Rcows around 200 g C m
–2

 yr
–1

 may be expected in pastures with a high stocking rate 

(Jérôme et al., 2014). Therefore, an under- or overestimation of this flux could 

lead to a non-negligible systematic bias in annual NEEtot values and therefore in 

annual NBP.  

Historically, most of the studies on grazed sites assumed (explicitly or not) that,  

averaged over a grazing season, cattle were spread evenly over the field so that their 
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respiration signals become a part of NEEtot and are correctly estimated by EC. 

Although most often not verified, this hypothesis was commonly (sometimes 

implicitly) used for free range grazed pastures where the presence or not of cattle 

within the footprint at a given time is not easy to assess (Byrne et al., 2007; Gourlez 

de la Motte et al., 2016; Jaksic et al., 2006; Klumpp et al., 2011; Zeeman et al., 

2010).  

When the pasture is divided into several paddocks for rotational grazing this 

hypothesis is not met, but the presence of cattle in the footprint is much easier to 

assess so that the computation of NEEpast is possible by filtering fluxes affected by 

cattle respiration. In an intensively rotationally grazed site with multiple paddocks, 

Skinner (2008) advocated that fluxes affected by cattle respiration should be 

removed as CO2 fluxes were very erratic in the presence of a high stocking density 

within the footprint. He proposed to filter out the fluxes from paddocks affected by 

cattle respiration, compute NEEpast, and account for the biomass ingested by the 

animals as C exports and the animal excretions as C imports, thereby considering 

cattle to be external to the system.  More recently, several studies also identified this 

problem and adapted their methodology to exclude grazer respiration and thus, 

compute NEEpast (Felber et al., 2016a; Hunt et al., 2016; Rutledge et al., 2017a, 

2017b).  Kirschbaum et al., (2015) also highlighted the need to filter fluxes in the 

presence of high stocking density in the footprint in order to obtain good agreement 

between modelled and measured CO2 fluxes in a rotationally grazed pasture.  

Alternatively, Felber et al. (2016b) used GPS trackers on cows in combination 

with a footprint model to separate fluxes with and without cattle respiration. Animal 

positions were then used to estimate a reference respiration rate per animal. In order 

to verify the hypothesis that NEEtot includes Rcows in a representative way, they 

compared this respiration rate value to the respiration rate calculated considering a 

homogeneous cattle distribution on the pasture. For their site, a rotationally grazed 

multi-paddock pasture, they found that on a yearly basis animal respiration was 

included in NEEtot in a representative way suggesting that there were no correlations 

between the animal positions and the wind direction. However, this result is site 

specific and such observations has yet to be verified for continuously grazed 

pastures (Felber et al., 2016b). In those sites the animals are allowed to move freely 

in the pasture so that, if cattle are more likely to remain grouped in specific areas of 

the pasture such as shade areas or near water/feed supplies, which is very probable, 

NEEtot
 
would be biased in a way and to an extent that depends on the position of 

these specific areas relative to the footprint. 

The aim of the present study is to test different methods to verify if the 

contribution of grazing animal respiration is adequately represented in the NEE 

measured in a continuously grazed pasture. The methods were applied at the 

Dorinne Terrestrial Observatory (DTO), an intensively managed pasture with a high 

annual stocking rate (>2 livestock units (LU) per hectare). A solution is also 

proposed to correct cow respiration values if not estimated properly. Conclusions 

and consequences regarding the computation of the carbon budget of the pasture are 

also discussed. Advantages and drawbacks of the different methods proposed in the 
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paper are discussed and more general guidelines are provided for researchers who 

aim to measure consistent NEE and cow respiration rates in grazed pastures.  

2. Materials and methods 

2.1. Site description and grassland management 
The method was tested at the Dorinne Terrestrial Observatory (DTO) (50° 18’ 

44’’N; 4° 58’ 07” E) in southern Belgium. The site consists of a 4.2 ha intensively 

managed permanent pasture grazed by Belgian Blue beef cattle with an average 

stocking rate of about 2.3 LU ha
–1

 yr
–1

. Cattle are usually on the field from April to 

mid-November and are free to graze throughout the whole pasture at all times. The 

pasture is fertilized with an annual nitrogen fertilization of around 120 kg N ha
–1

 

(excluding cow excreta). The main wind directions are South-West and North-East 

during anticyclonic weather conditions. The locations of the flux tower, water 

trough, hedges, feeding place, and fences are described in Figure 6-1 and have not 

changed since the start of the measurements in 2010. The carbon (Gourlez de la 

Motte et al., 2016) and the methane (Dumortier et al., 2017) budgets of the site have 

been presented in previous studies. The vegetation is mainly composed of ryegrass 

(Lolium perenne L.) and white clover (Trifolium repens L.). The site is a commercial 

farm with management that is, as much as possible, representative of the common 

practices on beef cattle farms around the region. Breeding bulls and suckler cows 

correspond to 1 LU, heifers and calves to 0.6 and 0.4 LU, respectively. 

 

Figure 6-1: Schematic map of the site.  During confinements, internal fences were closed 

and the cattle were confined in the south-west part of the pasture. Figure taken from 

Dumortier et al., 2017. 
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2.2. Flux measurements and processing 
The CO2 flux was measured with an eddy covariance setup using a three-

dimensional sonic anemometer (CSAT3, Campbell Scientific Ltd, UK) coupled with 

a closed path CO2/H2O gas analyzer IRGA (LI-7000, LI-COR Inc., Lincoln, NE, 

USA). The system was installed at a height of 2.6 m in the middle of the field. Air 

was pumped into the analyzer through a polyurethane tube (6.45 m long; 4 mm inner 

diameter) by a pump (NO22 AN18, KNF Neuberger, D) with a flow of 12 l min
−1

. A 

more detailed description of the CO2 set up can be found in (Gourlez de la Motte et 

al., 2016).  

The CH4 flux was measured using the same anemometer on the same mast coupled 

with a fast CH4 analyzer (PICARRO G2311-f, PICARRO Inc, USA). Air was 

pumped into the analyzer using a heated tube (6.85 m long, 6 mm inner diameter). A 

more detailed description can be found in Dumortier et al. (2017).  

Half hourly CO2 and CH4 fluxes were computed following the standard procedure 

defined by the CarboEurope IP network (Aubinet et al., 2012b, 2000). CO2 fluxes 

were calculated as the sum of the turbulent flux and of the storage term (Foken et al., 

2012) using the EDDYSOFT software package (EDDY Software, Jena, Germany, 

(Kolle and Rebmann, 2007)). They were corrected for high frequency loss following 

the procedure proposed by Mamadou et al. (2016). They were later filtered for 

stationarity using a selection criteria of 30%, according to Foken et al. (2012b). CH4 

fluxes were calculated using the EddyPro® (LI-COR Inc, Lincoln, NE, USE) open 

source software (Version 6). A double rotation was applied to wind velocity for both 

fluxes (Rebmann et al., 2012). Both CO2 and CH4 fluxes were filtered for low 

turbulence using a friction velocity (u*) threshold of 0.13 m s
–1

. This threshold was 

determined as the u* value where the relationship between u* and the temperature 

normalized nighttime CO2 flux flattens. A more detailed description of CO2 and CH4 

flux computation can be found in Gourlez de la Motte et al. (2016) and Dumortier et 

al. (2017), respectively. Note that, in this study, the requirement for the CH4 flux 

quality is low as the fluxes are only used as a tool to assess the presence or absence 

of cows in the footprint (binary test).  

2.3. Meteorological measurements 
Meteorological measurements included air temperature and relative humidity 

(RHT2nl02, Delta-T Devices Ltd, Cambridge, UK), soil temperature and soil 

moisture (ThetaProbe, Delta-T Devices Ltd, Cambridge, UK), global and net 

radiation (CNR4, Kipp & Zonen, Delft, The Netherlands), rainfall (tipping bucket 

rain gauge, 52203, R.M. Young Company, Michigan, USA), and atmospheric 

pressure (144S BARO, SensorTechnics, Puchheim, Germany). 

2.4. General description of the methodology 
A methodology was developed to assess if cow respiration is included in a 

representative way in annual NEEtot estimates and, if needed, to make the necessary 

corrections. The main steps of this methodology are:  
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First (homogeneous approach), average cattle respiration rates per LU were 

computed postulating a homogeneous cow repartition over the whole pasture on an 

annual timescale. For this, CH4 fluxes were used as a tool to detect the presence of 

cattle in the footprint and filter NEEtot to compute the net ecosystem exchange of the 

pasture without cow respiration (NEEpast) for extensive data sets. Both NEEtot and 

NEEpast data sets were gap filled and total annual Rcows values were then computed 

by subtraction of these two estimates. The average annual cattle respiration rates per 

LU (Ecow) was then deduced by dividing Rcows by the average stocking density on the 

pasture (SDp).  

Secondly, as a tool of comparison, three reference cow respiration rates per LU 

were computed. The first (GPS approach) consists in localizing the animals with 

GPS trackers during several measurement campaigns in order to compute the 

stocking density in the footprint (SDf) as proposed by Felber et al. (2015, 2016b). 

The second (confinements approach) consists in constraining the movement of the 

animals on the pasture by confining them to a small part of the field in the main 

wind direction and for a short period in order to compare fluxes during this period 

with fluxes during animal-free periods, just before and after the confinement 

(Gourlez de la Motte et al., 2018; Jérôme et al., 2014). The third method (animal C 

budget approach) consists in building a complete carbon budget at the animal scale 

by estimating the ingested biomass and measuring its carbon content and 

digestibility (Gourlez de la Motte et al., 2018, 2016). 

Finally, the respiration rates obtained considering a homogenous stocking density 

on the field at the annual scale were compared to reference respiration rates in order 

to verify if animal respiration was measured in a representative way. A significantly 

lower value would indicate a lower than average cow presence in the footprint, 

while a higher value would indicate the opposite. A procedure is also proposed to 

correct the fluxes in case cow respiration would not be measured in a representative 

way.   

2.5. Stocking density in the footprint and on the pasture 
Both the homogeneous and the GPS approaches rely on stocking density 

estimates. The homogeneous approach (average stocking density, SDp) rely on the 

average number of LU on the whole field (navg), which was carefully monitored by 

the farmer during the whole grazing season, and corrected (factorφ) to take into 

account the average pasture contribution to the footprint: 

avg

p

n
SD

A


       (6.3), 

where A is the total pasture area. The average pasture contribution to the footprint 

φ was computed for every half hour, using an analytical footprint model (Kormann 

and Meixner, 2001) designated hereafter as the KM model. This correction was 

necessary as, very often, the footprint area was bigger than the pasture. It supposes 

there are no cattle in the footprint area outside of the experimental area, which is the 

case in the main wind direction (SW) where the pasture is bordered by a crop field. 
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In the other directions, the pasture is surrounded by other pastures where some cows 

may be present from time to time. As a result, around 80% of the cumulated 

footprint is coming from the pasture and from the crop. The remaining contribution 

is coming from pastures that may, sporadically, be polluted by other cows. To take 

this into account, an uncertainty of 10% was accounted for SDp. 

The second estimate (geolocation-based stocking density, SDf) is based on 

geolocation tracking. The individual contribution of each animal was estimated half-

hourly using the KM model and was summed as (Felber et al., 2016b): 

SDf = ∑ ∑ nijϕijji
navg

ndetected 
    (6.4), 

where i and j represent the position of each cell on a 2D grid, nij is the number of 

animals in the cell ij, ϕij is the value of the footprint function in the cell ij (m
–2

) and 

ndetected the number of LU detected for a specific half hour. For each half hour, the 

position of some animals was unknown (calves were not tracked and not all 

geolocation devices were always operational), the calculated SDf was thus corrected 

in order to also include undetected or unaccounted animals. The resulting average 

correction factor (
navg

ndetected  
) was of 1.47. 

Both SDp and SDf depend on the model used to compute the footprint function and 

its associated uncertainties. The footprint model used in this study was thus carefully 

selected through an artificial source experiment run by (Dumortier et al., 2019) at 

the same site.   

2.6. Homogeneous approach for Ecow 
In the homogeneous approach (Figure 6-2), annual Rcows were computed using 

equation 6-1. For the determination of NEEpast, CH4 fluxes were used as a cow 

detection tool, considering that CH4 fluxes emitted by the cattle were much higher 

than those exchanged by the soil and the vegetation (Dumortier et al., 2017). The 

advantage of this CH4 flux filtering approach is that it can be used throughout the 

year, even outside GPS tracking campaigns. Annual CO2 flux data series were 

filtered in order to only keep data when net ecosystem exchange was unaffected by 

cow respiration (NEEpast).  
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Figure 6-2: Flow chart of the procedure used to estimate cow respiration rates per livestock 

unit (Ecow) using either GPS campaigns or assuming a homogeneous cow repartition in the 

field (CH4 approach). Both procedures are similar, differing in their way of assessing the 

presence of cows in the footprint (FP) and of assessing the stocking density (stocking density 

in the pasture (SDP) for the CH4 filtering approach, or stocking density in the footprint (SDf) 

for the GPS method). Gaps in total net ecosystem exchange (NEEtot) were filled only for the 

CH4 approach. Gaps in pasture net ecosystem exchange (NEEpast) were filled for both 

approaches. Figure modified after Felber et al., (2016b). 

The CH4 flux threshold used for filtering was calibrated during the GPS tracker 

campaigns: cows were considered to be absent when SDf was lower than 2×10
–

5
 LU m

–2
. The CH4 flux threshold was then fixed in order to keep a maximum of 

events without cows and a minimum of events with cows. The best compromise 

(>85% of events without; <10% of events with cows) was obtained for a value of 

25 nmol CH4 m
–2

 s
–1

.  

Missing NEE data were filled for both NEEpast and total NEEtot data sets using the 

online REddyProc gap filling and flux partitioning tool (https://www.bgc-

jena.mpg.de/bgi/index.php/Services/REddyProcWeb, (Reichstein et al., 2005)). This 

algorithm uses time-moving look up tables and finds fluxes measured in similar 

meteorological conditions to fill the data. Meteorological variables used by the 

algorithm are the air temperature (Tair), the vapor pressure deficit (VPD), and the 

global radiation (Rg). Rcows was then obtained by subtracting filled NEEtot and 
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NEEpast data series, and average monthly/annual respiration rates per LU (Ecow,hom) 

were obtained by dividing this result by monthly/annual average SDp.  

The uncertainties on Ecow,hom , besides those affecting SDp, are due to uncertainties 

affecting Rcows estimation, which itself depends on NEEtot and NEEpast estimates 

during grazing periods. To be complete, the uncertainties on NEEtot and NEEpast 

were computed for the whole year but were combined only during grazing periods to 

estimate uncertainties on Rcows.  

Annual NEE estimates are typically affected by different sources of random and 

systematic errors: 

1) Random errors affecting both the measured fluxes and the gap filling 

procedure (Dragoni et al., 2007; Richardson et al., 2006). 

2) Error associated with the additional gaps in NEEpast due to cow presence.  

3) A residual uncertainty associated with the choice of the u* threshold used to 

filter fluxes under low turbulence conditions (Aubinet et al., 2018).  

4) A residual uncertainty associated with the choice of the cut-off frequency 

for the high frequency loss corrections (Gourlez de la Motte et al., 2016; 

Mamadou et al., 2016). 

Each sources of error were computed separately: 

 (1) The random error on half-hourly fluxes was computed using the successive 

days approach developed by Hollinger and Richardson, (2007). In this approach, 

half hourly errors on measured fluxes (εm) were computed as the absolute difference 

between two valid successive day fluxes with similar weather. A regression between 

bin-averaged NEE (same number of observations per bin) and the standard deviation 

of the error (σ(εm)) was established separately for positive and negative flux values 

for NEEtot (Felber et al., 2016b; Gourlez de la Motte et al., 2016) : 

 

 

2

m

2

m

σ 0.11 NEE 1.47   for  NEE 0     (R 0.90)

σ    0.30 NEE 0.08   for  NEE 0    (R 0.97)

       


     

  (6.5), 

and for NEEpast : 

 

 

2

m

2

m

σ 0.1 NEE 1.02   for  NEE 0     (R 0.84)

σ    0.21 NEE 0.22   for  NEE 0    (R 0.94)

       


     

  (6.6) 

 For both data sets, random noise was then added to half-hourly NEE assuming an 

exponential distribution (Richardson and Hollinger, 2007) with zero mean and a 

standard deviation σ(εm) (Monte Carlo simulation (Dragoni et al., 2007)). Data were 

then filled and annual NEE values were computed. The operation was repeated 100 

times and the random error was computed as 2σ (standard deviation) of the 100 

annual NEE values.  

(2) The error due to additional gaps in NEEpast was estimated using the following 

procedure. First, missing data in the NEEpast data set were filled. Then, gaps initially 

present in NEEpast except those due to cow presence were re-added. Noise was also 
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added to the gap filled data using equation 6-6.  By doing so, we obtain a data set 

without cow respiration influence but with the same number of gaps as the NEEtot 

data set. Then, a number of gaps corresponding to the amount of additional gaps due 

to cow presence in the footprint were randomly added to the data set only during 

grazing periods. The operation was repeated 100 times and the annual NEEpast were 

computed. The error was computed as 2σ of the 100 annual NEE values. 

(3) The uncertainty associated with the choice of the u* threshold was estimated 

by computing annual NEE values by varying the u* threshold within a plausible 

range of 0.13 ± 0.5 m s
-1

 (Gourlez de la Motte et al., 2016). The error was computed 

as 2σ of the computed values.  

(4) The uncertainty associated with the choice of the cut-off frequency amounted 

to only 2 g C m
-2

 yr
-1 

on average at our site and was therefore neglected (Gourlez de 

la Motte et al., 2016).  

The different sources of uncertainties were combined following Gaussian 

propagation rules to estimate annual uncertainties on NEEtot and NEEpast. 

Finally the uncertainty on Rcows was computed. As Rcows is computed as the 

difference between NEEtot and NEEpast which are computed from the same data sets 

(with additional gaps for NEEpast), the last two sources of errors nullify. The error on 

Rcows is therefore the combination of (1) the random error affecting both NEEtot and 

NEEpast during grazing events only and (2) the error due the presence of additional 

gaps in NEEpast (also only during grazing events). The resulting uncertainty on Rcows 

was computed by combining these terms following Gaussian error propagation rules. 

The magnitude of each error term during grazing periods is computed for both years 

in Table 6-1. The uncertainty on Ecow, hom was computed by adding the relative errors 

on Rcows with the relative error of 10% on SDp.  

Table 6-1: Sources of uncertainties for annual Rcows values. Values are provided in g C m
-2

 

yr
-1

 but are accounted only during grazing period. Random error (2σ) on NEEpast and NEEtot 

were computed by adding some random noise in the data during grazing periods only. The 

error due to the additional gaps in NEEpast was computed by randomly adding gaps in NEEpast 

data set. The uncertainty or Rcows (2σ) was computed by combining the different error terms 

following Gaussian error propagation. 

  Random  Gap filling   

  NEEpast NEEtot NEEpast Rcows 

2013 14 12 8 20 

2015 17 15 9 24 
 

2.7. Heterogeneous approaches for Ecow 
2.7.1. GPS approach 

Four cattle geolocalization campaigns were organized (Table 6-2). During each 

campaign adult cattle positions and behavior were recorded using lab-made 

geopositioning trackers attached to the cows’ necks. The trackers included a GPS 
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module (FASTRAX, UP501), 4 batteries (3.8 V, 2000 mAH) and a communication 

antenna which allowed distant detection of malfunctions. In order to reach one 

month of autonomy, the devices only turned on once every 5 minutes, waited for the 

acquisition of at least 3 satellite signals (which typically took about 30 s), and 

recorded the position before turning off. Although the devices’ autonomy was 

approximately one month, some batteries had to be replaced during the 

measurements, leading to some data loss. The GPS module precision was assessed 

by leaving the device motionless at a known position for 41 days. During this test, 

50% of the points were found within 3 m, 76% within 5 m, and 95% within 11 m. 

The GPS approach uses a partly similar procedure to the homogeneous approach, 

differing only by three steps. First, the criterion used to filter the data with the 

presence of cows and compute NEEpast is based on SDf instead of the CH4 flux. The 

filtering used a threshold of SDf  > 2×10
–5

 LU ha
–1

. Secondly, only the NEEpast data 

set was gap filled. As result, a valid Rcows value is computed to be the difference 

between a valid NEEtot measurement and a filled NEEpast. Finally, the cattle 

respiration rate per LU (Ecow,GPS) was deduced as the slope of the linear regression 

between Rcows and SDf (Felber et al., 2016b). Only the best gap filling quality 

NEEpast values were kept for the regression (time window used by the gap filling 

routine lower than 15 days and all meteorological variables available (Reichstein et 

al., 2005)).  

Table 6-2: Description of the GPS campaigns. 

Period Time frame 
Duration 
(days) 

Number 
of 

cows/calves 

Main wind 
direction 

n°1 Spring 
2014 

27 May 2014 - 25 Jun 
2014 

30 
17-19/17-

19 
N-E 

n°2 Spring 
2015 

14 Apr 2015 - 7 May 
2015 

24 12/0 S-W 

n°3 Summer 
2015 

14 Aug 2015 - 2 Sep 
2015 

20 12/10 S-W 

n°4 Fall 2015 
19 Oct 2015 - 2 Nov 

2015 
15 8/0 S-E 

 

The uncertainty on Ecow,GPS was computed as 2 times the standard error associated 

to the slope of the regression. This random error on the slope of the regression is the 

result of errors affecting booth Rcows (section 2.6) and SDf estimates. The random 

uncertainty associated with the computation of SDf include three main sources of 

uncertainties which are the random error on GPS measurements, the fact that the 

position of some cows (calves and instrument failures) was unknown for certain 

periods as well as the use of the KM footprint function to weight the animals’ 

contribution. It however does not include uncertainties associated with the choice of 

the footprint model as stated at section 2.5.  
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2.7.2. Confinements approach 

Confinement experiments specifically designed to estimate the cattle respiration 

rate per LU were carried out at DTO. The methodology and the results are fully 

described and discussed in a previous paper (Jérôme et al., 2014). Briefly, the 

method consists of confining the entire herd for one day on a small part of the 

pasture located in the main wind direction. By confining the cows in the main wind 

direction area (Figure 6-1) and by filtering the fluxes according to wind direction, 

the probability that the cows are in the footprint area is greatly increased. The 

designated paddock was not grazed the day before or the day after the confinement. 

Fluxes measured during the confinement periods were then compared to the fluxes 

measured one day before and after: 

i i 24h

cows,conf

obs

(NEE NEE, )
R

n





    (6.7) 

Where Rcows,conf is the average respiration of all the cows in the confinement area, 

NEEi is the NEE at a given hour during the confinement, NEEi±24h is the NEE at the 

same hour 24 h before and after the confinement, and nobs the number of valid paired 

NEE observations. To make sure that these differences were due to cow respiration 

and not to micrometeorological variability, only data pairs with similar conditions 

were kept (soil and air temperature within 3°C, wind speed 3 m s
–1

 and photon 

photosynthetic flux density (PPFD) within 75 μmol m
–2

 s
–1

). The experiment was 

repeated four times. The average livestock respiration rate (Ecow,conf) during the 

confinement was then obtained by converting the average difference in terms of 

kg C LU
–1

 d
–1

 by dividing Rcows,conf by SDc (stocking density during confinements), 

computed using Equation 6-3 considering φ as the average contribution of the 

confinement area to the footprint, A the confinement area and navg the number of 

animals in this area. By doing so, we consider a homogeneous repartition of the 

cows in the confinement area which is more realistic as cattle are confined in a 

smaller area that is within the footprint extent, ensuring that cows are contributing to 

the measured flux. In the present study, the results obtained from this former study 

were used but note that this latter footprint correction was not implemented in 

Jérôme et al. (2014) (i.e. φ was considered equal to 1).  

The uncertainty on Ecow,conf was computed as 2 times standard error of the average 

Ecow,conf. Note that, again, this uncertainty estimate does not account for uncertainties 

associated with the choice of the footprint model. 

2.7.3. Animal carbon budget approach  

Another possibility to estimate the cow respiration rate per LU is to compute a 

complete carbon budget at the animal scale when the animal is on the pasture (C 

fluxes at the barn are not included). This carbon budget was computed from ingested 

biomass estimates, combined with their C content and digestibility. The 

methodology and the results are fully described and discussed in a former paper 

(Gourlez de la Motte et al., 2016). Figure 6-3 describes the C fluxes involved in the 

C budget of an animal. Briefly, to build this C budget, the C ingested in dry matter 
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(Cintake) was estimated using biomass measurements combined with laboratory dry 

matter C content measurements.  

 

Figure 6-3: Illustration of the fluxes involved in the carbon (C) budget of a cow. Ecow,budg 

corresponds to the respiration of a cow estimated from the carbon budget, FCH4-C the 

methane emitted by the cow, Cexcretions the C lost in excretions, and Cintake the C ingested 

through biomass consumption. 

To do so, herbage heights were measured almost once a week during the grazing 

season using a 0.25 m
2
 rising plate herbometer over 60 points covering the whole 

field. Previously, an allometric equation between the herbage height and the herbage 

mass (HM, dry matter) was calibrated in order to convert herbage heights into HM 

(Gourlez de la Motte et al., 2016). For this, samples were directly harvested in the 

field and protected enclosures with a 0.25 m
2
 quadrat. Herbage heights were 

measured right before and after being sampled. The samples were then dried using a 

forced-air oven to obtain their dry matter content. A relationship between grass 

height differences and harvested dry matter content was then established. Biomass C 

content was determined by laboratory measurements of samples following the 

dumas method (Dumas, 1831). Three secured enclosures were used to obtain grass 

growth rates during grazing periods (HMgr,i). Cattle C intake through biomass 

consumption for a given period i was computed as:  

int ake,i content,grass beg,i end,i gr,i content,feeds import,iC C (HM HM HM ) C F     (6.8)  

where HMbeg,i and HMend,i are the herbage mass at the beginning and at the end of 

the period i (weekly), Ccontent,grass the C content of grass in the field, Ccontent,feeds the C 

content of feeds supplements and Fimport,i the dry matter ingested in form of feed 

supplements. This equation was used on a weekly basis and the annual Cintake was 

computed by summing all the periods. Note that, when HMbeg,i>HMend,I, this biomass 

is accounted negatively and is therefore considered uneaten.  
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The C lost by the animal through excretions (Cexcretions) was computed as the 

fraction of non-digestible ingested carbon. Digestible and non-digestible organic 

matter contents were obtained by analyzing the biomass samples collected almost 

every week in the field using near infrared reflectance spectrometry analysis 

(Decruyenaere et al., 2009). Cow CH4-C emissions were estimated using a constant 

fraction of the ingested biomass, which was 6% (Lassey, 2007). The meat 

production term (Fproduct) was estimated from live weight gain measurements but was 

negligible compared to other fluxes. Finally the CO2 cow respiration (Ecow,budg) was 

computed by closing the C budget of the animal. The results obtained from this 

former study were directly used in the present paper. 

In lack of a suitable method to evaluate the uncertainty associated with this 

method, no error bound was computed for Ecow,budg. Note that the main factor 

influencing Ecow,budg uncertainty should be the uncertainty on dry biomass intake 

which is especially challenging to estimate in continuously grazed pastures.  

2.8. Alternative NEEtot determination 
As direct NEEtot estimates rely on the homogeneity hypothesis assuming an even 

distribution of the grazing animals, significant biases may appear if this hypothesis 

is not met. An alternative annual NEEtot may then be provided by computing NEEpast 

(using CH4 filter, see section 2.6) and Rcows independently and by summing them 

using equation 6-1. Rcows can be obtained by combining the cow respiration rate per 

LU obtained by one of the three methods detailed above (Section 2.7) with the 

average stocking density (SDp). The uncertainty on the up scaled Rcows was 

computed by adding the relative errors on both the concerned Ecow and SDp. The 

choice of the used respiration rate depends on the available data and the site 

configuration and is fully discussed in Section 4.     

3. Results 

3.1. Animal positions on the pasture and footprint area 
Cow positions were recorded every 5 minutes during the GPS campaigns. From 

these position measurements, cow distribution maps were computed for both 

daytime (global radiation >2.5 W m
-2

) (Figure 6-4, a) and nighttime (Figure 6-4, b). 

Typical annual wind roses (year 2015) are presented for these conditions. The maps 

show that, during the day, cattle visited the whole pasture with a slightly more 

important presence in the south-west direction. They also tend to cluster near the 

water trough and near the border with an adjacent pasture in the north-west. During 

the night, the cows tend to cluster in the north-east part of the pasture near the 

hedge. Consequently, during the nights, an important part of the pasture (essentially 

the south-western part), which is under the main wind direction, is not visited at all. 

Therefore, this observation suggests that the night stocking density in the footprint 

(SDf) should be quite low when the wind is blowing from the south-west, which 

would imply an underestimation of cow respiration during these periods. This 

statement was confirmed when comparing SDf to SDp during the GPS campaigns 

(Table 6-3). When the wind was coming from the south (campaigns n°2 to 4) SDf 
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observed during the nights were much lower than SDp, while being much closer to 

SDp when observed during the day. This behavior was much less visible during 

campaign n°1 when the wind was mainly blowing from the north-east.  

 

Figure 6-4: Cow distribution maps during the GPS campaigns for both days (a) and nights 

(b). The same scale is used for both maps. The numeric scale of the color map is given for a 

comparison purpose. One unit corresponds to the presence of one animal in a pixel of 5×5m
-2

 

during 5 minutes. Areas colored in white are areas that are never visited by the herd. The 

average wind rose for the year 2015 is also presented both during the day (c) and during the 

night (d). For interpretation of the colors in this figure, the reader is referred to the electronic 

version of this article. 
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Table 6-3: Comparison of the average stocking densities on the pasture (SDp) with the 

average stocking density in the footprint (SDf) for the GPS measurement campaigns. The 

averages calculated are for all data from all campaigns combined. 

Campaign 
n° 

Main 
wind 

direction 

SDp 
(LU ha–1

) 
Day SDf 

(LU ha–1
) 

Night SDf 
(LU ha–1

) 
SDf 

(LU ha–1
) 

SDf/S
Dp 

1 N-E 4.9 2.7 3.9 3.1 0.64 

2 S-W 1.9 1.2 1.1 1.1 0.59 

3 S-W 2.7 3.2 1.0 2.3 0.85 

4 S-E 1.3 1.4 0.5 0.9 0.70 

Average ─ 2.7 2.2 1.7 2.0 0.75 

 

In addition, in regard to the shape of the footprint function (Kormann and 

Meixner, 2001), the contribution of the animals to the footprint also depends on their 

distance from the tower. Given the clustering of the cattle, particularly at night, their 

contribution could be low if clustered far away from the flux tower. This was 

investigated by comparing the average SDf to SDp during the night when the wind 

was blowing from the north-east (campaign n°1). On average, during these periods, 

SDf (6.9 LU ha
-1

) was higher than SDp (4.9 LU ha
-1

). This observation show that, at 

our site, the low SDf observed at night were due to low cow presence in the footprint 

and not that much to their distance from the tower.   

On average, SDf was 25% lower than SDp during the campaigns. This result 

however cannot be directly extrapolated to the entire year in terms of cow 

respiration, as the north-east wind conditions were over represented in the data when 

compared to yearly wind direction statistics (data not shown).  

Nevertheless, the cow distribution maps clearly show that the cows are not evenly 

distributed on the pasture, especially during the night. 

3.2. Cow respiration rate per LU considering a homogeneous 

cow repartition 
3.2.1. Validation of the CH4 flux filtering approach  

In order to validate the CH4 flux filtering approach, NEEpast was computed during 

GPS tracking campaigns by using both the CH4 and the cow presence (GPS) 

criterion. The results show that, after gap filling, very similar NEEpast were obtained 

when using both partitioning methods for each campaign (Table 6-4) with 

differences in NEEpast that varied only from 0 to 4 g C m
–2

.
 
Identical differences 

between Rcows were observed, as they were computed as the difference between 

NEEtot (which was the same for both methods) and NEEpast.  
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Table 6-4: Gap filled net ecosystem exchange of the pasture without cow influence 

(NEEpast) using the CH4 cow presence filtering criterion and the GPS criterion for each GPS 

campaign. 

  CH4 filter GPS filter 
Campai
gn n° 

NEEpast (g C 
m–2) 

NEEpast (g C 
m–2) 

1 –68 –68 
2 –98 –98 
3 23 22 
4 17 13 

   

 

Figure 6-5: Evolution of the gap filled total cow respiration (Rcows), the net ecosystem 

exchange including cow respiration (NEEtot) and the net ecosystem exchange excluding cow 

respiration NEEpast for both 2013 (a) and 2015 (b). Grazing periods are indicated in grey. (c) 

Evolution of stocking densities on the field for both years. 
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3.2.2. Discriminating NEEtot into NEEpast and Rcows 

The CH4 flux filtering approach was then applied to two years of measurements. 

After filtering, the NEEtot data set consisted of 8579 (49%) and 8432 (48%) valid 

fluxes (Table 6-5) in 2013 and 2015 respectively, while the NEEpast data set 

consisted of 6911 (39%) and 6325 (36%) valid fluxes. Cumulative NEEtot, NEEpast, 

Rcows and stocking densities are shown in Figure 6-5 for 2013 and 2015. The same 

trend can be observed for both years. At the beginning of the year, NEEtot and 

NEEpast were identical as there were no animals on the pasture. Then, the curves start 

to deviate from each other because of the animal. At the end of the year, when no 

animals were on the pasture, the curves evolve again in parallel. The total annual 

Rcows amounted to very similar values of 112 ± 20 and 111 ± 24 g C m
–2

 yr
–1

 in 2013 

and 2015 respectively.  

Table 6-5: Number of valid net ecosystem exchange measurements, including the cow 

respiration rate (NEEtot) and excluding it (NEEpast), annual gap filled sums of both net 

ecosystem exchange and the total gap filled annual respiration Rcows for both 2013 and 2015. 

Note that error bar on Rcows are not the combination of the error bars on annual NEEtot and 

NEEpast (see section 2.6). 

Year 
valid 

NEEtot 
valid 

NEEpast 
NEEtot  

(g C m–2) 
NEEpast  

(g C m–2) 
Rcows 

(g C m–2) 

2013 8579 6911 –102 ± 22 –214 ± 24 112±20 

2015 8432 6325 –188 ± 31 –299 ± 32 111±24 
 

3.2.3. Cow respiration rate per LU (Ecow,hom) 

Cow respiration rates could be computed monthly and annually from Rcows data 

sets assuming a homogeneous cow distribution on the pasture. The annual SDp were 

very similar and amounted to 1.4 and 1.5 LU ha
–1 

in 2013 and 2015 respectively. As 

a result, the average annual cow,homE amounted to 2.0 ± 0.6 and 2.0 ± 0.6 kg C LU
–

1
 d

–1
 for both years (Figure 6-6, a, Table 6-6) with relatively consistent values every 

month except in November. During this month, SDp was very low making Rcows 

difficult to compute. To check if Ecow,hom was the same during the day and during the 

night, Ecow,hom was calculated separately from day (Figure 6-6, b) and from night 

fluxes (Figure 6-6, c). The Ecow,hom value was much higher when calculated from 

daylight fluxes (2.4 and 2.6 kg C LU
–1

 d
–1

 in 2013 and 2015) than from night fluxes 

(1.4 and 1.0 kg C LU
–1

 d
–1

 in 2013 and 2015), confirming that the cow presence in 

the footprint is much higher during the day than during the night, as already 

suggested by the cow repartition maps.  
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Figure 6-6: Mean cow respiration rates per LU in 2013 and 2015 computed from (a) all the 

data (Ecow,hom), (b) daylight data (Ecow,hom,day, global radiation >2.5 W m
-2

), and (c) night data 

(Ecow,hom,night) considering a homogeneous cow repartition. Average monthly/annual 

respiration rates per LU were obtained by dividing total annual/monthly cow respiration 

(Rcows) by monthly/annual average SDp. Annual values are marked by lines while circle 

markers correspond to the monthly values. 

3.3. Cow respiration rate per LU with considering 

heterogeneous cow repartition 
3.3.1. GPS trackers (Ecow,GPS) 

A linear regression between the stocking density in the footprint (SDf) and the 

total cow respiration Rcows was carried out on a half hourly basis in order to compute 

Ecow,GPS (Figure 6-7). All GPS tracker campaigns were grouped together for a total of 

803 data points available for the regression. The slope of the regression was 

3160 ± 491 μmol CO2 LU
–1

 s
–1

 (p value < 0.001, R
2
 = 0.1) which corresponds to an 
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average Ecow,GPS of 3.2 ± 0.5 kg C LU
–1

 d
–1

. The intercept of the regression was 

forced to zero as it was not significantly different from zero (p value = 0.96).  

The linear regression is affected by important random noise. This uncertainty 

results in a relatively low R
2
 and rather large error bounds on Ecow,GPS. Such a large 

dispersion was expected in view of the random error at the half hourly scale when 

computing Rcows as described at section 2.6 as well as in view of the uncertainties 

associated with the use GPS combined to the KM footprint function to compute SDf 

(section 2.7.1). 

 

Figure 6-7: Linear regression between the total respiration of the cows in the footprint 

(Rcows) on a half-hourly time scale and the weighted stocking density in the footprint (SDf). 

The fitted line (y = 3160x SE = 245, R
2
 = 0.1) corresponds to a daily cow respiration rate of 

3.2 ± 0.5 kg C LU
–1

 d
–1

. The uncertainty bound is given as 2SE. 

3.3.2. Confinement experiments (Ecow,conf) 

A total of 4 confinement experiments were carried out in 2012 as detailed in 

Jérôme et al. (2014). After applying all selection criteria, 44 pairs of NEE data were 

available for the analysis. The data from two of the experiments could not be used 

because of inappropriate wind direction. Before footprint correction, Jérôme et al. 

(2014) found a cow respiration rate of 2.59 ± 0.58 kg C LU
–1

 d
–1

. On average the 

contribution of the confinement area to the footprint was 71% during the 

experiments. As a result, after the footprint correction, Ecow,conf was found to be 

3.6 ± 0.8 kg C LU
–1

 d
–1

, which is within the error bounds of Ecow,GPS.  
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3.3.3. Animal scale carbon budget (Ecow,budg) 

The daily carbon budget of an animal on the pasture was computed (Figure 6-8). 

The results correspond to the average C budget for 5 years (2010-2014) of grazing at 

DTO. All the results are detailed in Gourlez de la Motte et al. (2016) but with 

different units (g C m
–2

 yr
–1

). On average, cows ingested 9.5 kg of dry matter per day 

(8.9 kg from grazing and 0.6 from feeds). Around 87% of total above ground net 

primary productivity was eaten by the cows.  The measured forage and feeds 

digestibility amounted to around 70% which corresponded to a daily cow respiration 

rate Ecow,budg of 2.9 kg C LU
–1

 d
–1

. This value is in the error bounds of both Ecow,GPS 

and Ecow, conf. However, it’s important to note that this budget varied from one year to 

another. In 2013, the productivity of the pasture was the lowest, so that the estimated 

Cintake of the cattle amounted to only 2.9 kg C LU
–1

 d
–1

 (6.8 kg of dry matter) with a 

cow respiration rate of only 2.0 kg C LU
–1

 d
–1

, which is much lower than the 5-year 

average value. According to the farmer, such a low dry matter intake is not realistic 

and would have resulted in supplementary feeds given to the cows (which was not 

the case in 2013). It is therefore very likely that this respiration rate is under-

estimated. Contrastingly, the highest Cintake was observed in 2011 with value as high 

as 5.1 kg C LU
–1

 d
–1 

resulting in a respiration rate per LU as high as 3.5 kg C LU
–1

 d
–

1
. These unexpected variations highlight the difficulty to obtain robust Cintake 

estimates in continuously grazed pastures as discussed at section 4.3. For these 

reasons, only the 5-years averaged Ecow,budg value was used as a tool of rough 

comparison.  

 

Figure 6-8: Average daily carbon budget of a Belgian Blue beef cow. 

3.4. Bias induced by a non-homogeneous cow distribution 
As shown in Table 6-6, Ecow,hom was significantly (non-overlapping uncertainty 

bounds) than the cow respiration rate per LU estimated using either the GPS (37% 
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lower) or the confinement (45% lower). It was also much lower than the value 

estimated from the carbon budget method (31% lower). This was even more true 

during the night when Ecow,hom was on average 65% lower than during the day. These 

results suggest a low presence of the cows in the footprint, especially during the 

night, as illustrated by the cow repartition maps (Figure 6-4). Despite the different 

methods were applied at different periods (GPS campaigns were carried out in 2014-

2015, confinement experiments were carried out in 2012 and Ecow,hom were measured 

in 2010-2014), which could have induced variations in cow respiration rates, we 

expect these variations to be limited as the herd characteristics and management 

remained the same during the whole experiment.  

Table 6-6: Average footprint contribution of the pasture and stocking density on the 

pasture (SDp), daily average cow respiration rates per livestock unit (LU) computed from a) 

annual gap filled data sets assuming a homogeneous cow repartition on the field from day 

(global radiation > 2.5 W m
-2

, Ecow,hom,day), night (Ecow,hom,night), and all the data (Ecow,hom) and 

b) without assuming this cow repartition and using GPS trackers (Ecow,GPS), confinement 

experiments (Ecow,conf), and the carbon budget of the animal (Ecow, budg). Field scale cow 

respiration rates are also given when computed from the CH4 partitioning (Rcows) and when 

upscaled using Ecow,GPS (Rcows,GPS). The footprint is expressed as the percentage of the flux 

that comes from the field on average for each year according to the KM model. 

  2013 2015 

Footprint % 68% 69% 

SDp (LU ha–1) 1.4 1.5 

Animal scale fluxes (kg C LU–1 d–1) 

a) Homogeneous cow repartition hypothesis 

Ecow,hom 2.0 ± 0.6 2.0 ± 0.6 

Ecow,hom,day 2.4 2.6 

Ecow,hom,night 1.4 1.0 

b) No homogeneous cow repartition hypothesis 

Ecow,GPS 3.2 ± 0.5 

Ecow,conf 3.6 ± 0.6 

Ecow,budg 2.9 

Field scale fluxes (g C m–2 yr-1) 

Rcows,hom 112 ± 20 111 ± 28 

Rcows,GPS 164 ± 41 175 ± 44 

Bias (absolute value) 52  64  
 

In order to assess the magnitude of the bias due to low cow presence in the 

footprint during the night, annual reference Rcows could be computed by scaling up 

the obtained reference Ecow value to the entire year. This can be done by using the 

Ecow values with one of the three methods previously proposed. For illustration 
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purposes, Ecow,GPS was used to quantify and correct the systematic error made at 

DTO. This method was chosen as it seemed to be the most suitable for free range 

pastures as discusses at section 4.3. Nevertheless, similar conclusions would have 

been met using other methods. When scaled up, Rcows,GPS amounted to 164 ± 41 and 

175 ± 44 g C m
–2

 in 2013 and 2015 respectively (Table 6-6), which suggests a 

systematic underestimation of Rcows and thus an overestimation of NEEtot of 52 and 

64 g C m
–2

 yr
-1 

(51% and 34% of NEEtot,) in 2013 and 2015. As a result, new NEEtot 

(computed as NEEpast + Rcows,GPS) values were –50 ± 48 and –122 ± 55 g C m
–2

 yr
–1

 

(the error bounds were computed by quadratically adding errors on annual NEEpast 

and Rcows,GPS).  

4. Discussion 

4.1. Using methane fluxes as a NEEtot partition tool  
The CH4 flux filtering approach has proven to be a useful tool to partition NEEtot 

and disentangle the net ecosystem exchange of the soil and the vegetation (NEEpast) 

from the respiration of the cows. The results at DTO showed that similar NEEpast 

values were obtained using this method and the GPS tracker method.  

Compared to the GPS method, the main advantage of the CH4 flux filtering 

approach is that it can be more easily used routinely, whereas the use of GPS 

trackers requires specific instrumentation that is not commercially available, and is 

man-power consuming. The use of the CH4 flux filtering approach was also 

supported by Felber et al., (2016b, Figure 13) who found a good correlation between 

measured CH4 fluxes and cow respiration in the EC footprint. To do so, CH4 fluxes 

must be available, but these are more and more frequently measured at grazed sites 

(Coates et al., 2018; Dengel et al., 2011; Dumortier et al., 2017; Felber et al., 2015; 

Jones et al., 2017) thanks to the increasing availability of fast and precise CH4 

sensors. This method can therefore be used on larger data sets as long as CH4 fluxes 

are measured (which we advocate).  

The method cannot be used to estimate consistent cow respiration rates per LU 

when the cows are not evenly distributed on the pasture, but is promising as a 

partitioning tool of NEEtot into NEEpast and Rcows, which is the first step needed to 

check if Rcows is measured in a representative way and to correct NEEtot estimates if 

this is not the case. The successful application of the partitioning method in the 

present study overrules the statement by Felber et al. (2016a) that the computation of 

NEEpast would not be possible for continuously grazed pastures as no sufficient and 

defined periods without cows in the footprint would be available. 

4.2. Biased NEE estimates because of a non-homogeneous 

cow repartition  
The application of the methodology at the DTO site showed that NEEtot estimates 

based on direct EC measurements were subject to a non-negligible bias of about 

60 g C m
–2

 yr
–1

 because of non-homogeneous cow repartition resulting in an 

underestimation of Rcows. This underestimation implies that the carbon sink activity 
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of the pasture was considerably overestimated when using NEEtot values to compute 

its net biome productivity. The NBP (including cow respiration, equation 6-2) of the 

pasture was computed for 5 years (2010-2014) in a previously published paper using 

NEEtot estimates and other non CO2 carbon fluxes (Gourlez de la Motte et al., 2016). 

Those results showed that the pasture acted as a C sink every year with an average 

NBP value of –161 g C m
–2

 yr
–1

 (lowest absolute in 2013: –87 g C m
-2

, highest 

absolute value in 2014: –176 g C m
–2

) and an average annual stocking rate of 

2.3 LU ha
–1

. If we assume that the NBP was affected by the same bias of 

≈ 60 g C m
–2

 yr
–1

 (around 37% of NBP) every year because of cow respiration 

underestimation, the corrected average NBP is reduced (in absolute values) to ≈ –

100 g C m
–2

 yr
–1

. The magnitude and sign of this bias is of course site specific so 

that, depending on the site configuration, the wind direction, and the gregarious 

behavior of the animals, it can lead to either positive or negative systematic errors. 

This must therefore be verified on a case by case basis. It is important to highlight 

the fact that gregarious behaviors of the animals on free range pastures are expected, 

at least for cows (Hassoun, 2002) and sheeps (Dumont and Boissy, 2000). The 

methodology presented in this paper may be used at each site to detect and, if 

necessary, estimate this bias and correct C budgets accordingly. 

4.3. Method to measure a reference cow respiration rate per 

LU 
In this paper, three methods were proposed and tested at DTO to estimate a 

reference Ecow that does not assume a homogeneous cow repartition in the pasture 

and that can be used as a basis of comparison to check if Rcows is measured in a 

representative way. This respiration rate per LU can also be used to correct Rcows if 

necessary.  

The GPS tracker method appeared to be very useful as it provided an improved 

understanding of animal location habits. The distribution maps have proven to be a 

useful tool to detect heterogeneous cattle distributions. The use of GPS devices 

combined with footprint models also provides a more realistic stocking density in 

the footprint (Felber et al., 2015, 2016b). This footprint function is however also the 

subject of several uncertainties (Dumortier et al., 2019). Finally, the GPS tracking 

method has the advantage of not disturbing the behavior of the cows when 

compared, for example, to confinement experiments.  

The confinement method gave consistent results when compared to the other 

methods. This method is less time consuming than the use of GPS trackers and 

doesn’t require any specific equipment. This is true especially in intensive 

rotationally grazed pastures where confinement is expected (Gourlez de la Motte et 

al., 2018). Confinement in rotational grazing systems can be exploited to compute 

Ecow,conf as shown by Gourlez de la Motte et al. (2018). If the rotations are longer 

than one day, an adapted procedure is proposed in the cited paper. However, 

confinement also has several drawbacks. First, very similar weather conditions and 

wind direction during and after the confinement must be met in order to compare the 

fluxes from the same area. Secondly, the respiration may also be modified 
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(especially for free range pastures) as confinements may alter the cow’s feeding 

behavior and activity. In addition, confinement experiments are based on the 

hypothesis of a homogeneous cow repartition. This is more realistic as confinement 

is exerted in a smaller area that is within the footprint extent, ensuring that cows are 

contributing to the measured flux. However, it cannot be determined to what extent. 

This source of uncertainty should however be lowered when replicating confinement 

experiments and when using daily fluxes as cows tend to spread more evenly during 

the day. Finally, as stated above, cow contribution cannot be weighted by using a 

footprint model which may lead to other biases. 

The animal carbon budget approach requires an estimation of the Cintake of the 

cows which requires reliable biomass growth measurements as well as forage 

digestibility measurements for the whole grazing season. These types of 

measurement are time consuming but are often carried out at grazed EC sites 

(Gourlez de la Motte et al., 2016; Klumpp et al., 2011; Rutledge et al., 2017b; 

Skinner, 2008; Skinner and Dell, 2015). Estimating the Cintake of cows is especially 

difficult in continuously grazed sites where grass growth during grazing must be 

estimated. This was done at the DTO by simulating grazing using protected 

enclosures. However, it is not easy to ensure that grass growth observed in these 

protected enclosures is representative of the whole pasture. In short rotation grazing 

sites, the regrowth can be considered negligible, making the computation of Cintake 

easier and more reliable (Skinner, 2008). Another option to compute Cintake is to 

estimate the energy requirements of the animals for maintenance, activity, and 

grazing and convert this energy into dry matter intake (and then Cintake) (IPCC, 

2006a) or, for dairy cows, using equations based on milk yields and the lactation 

week of the cows, as proposed by Felber et al. (2016a).   

5. Conclusions and recommendations 
The results of this study highlight the necessity to carefully check if cow 

respiration is measured in a representative way by the EC system when dealing with 

grazed pastures. To do so, monitoring the presence and number of cows on the field 

is highly advised (Figure 6-5, c). For beef cattle, monitoring the presence of the 

cattle on the field is easier as off pasture times are greatly reduced. For dairy cattle, 

the task is a bit more difficult as the cows often leave the pasture for milking. These 

milking periods must therefore be accounted for as well. Measuring the CH4 fluxes 

is also highly advisable as it allows the computation of NEEpast which is the first step 

of the proposed methodology and can be used for any kind of pasture (i.e., 

continuous grazing, rotational grazing, etc.) grazed by ruminants. Finally, estimating 

a reliable cow respiration rate as a reference is also required. For this last step, three 

methods are proposed and the choice of the method can differ depending on the 

available data and the configuration of the site. As a general rule, combining two or 

three methods is always better as their comparison gives the most defensible results.  

For a continuously grazed site, the GPS campaigns are very useful as they allow 

the habits of the herd to be assessed without disturbing their behavior. However, 

organizing these campaigns can be time consuming and requires expensive 
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equipment. As an alternative, the use of digital camera combined with an animal 

detection software have also proven to be a valuable tool to detect the presence of 

cows in the EC footprint (Baldocchi et al., 2012a). If GPS (or any other localization 

devices) monitoring is not available, repeated confinement experiments are cheap, 

relatively easy to implement, and also provide consistent results. Combining these 

confinement experiments with animal C budget estimates is advised in order to 

check the consistency of the results. Using only the animal C budget is less 

advisable as Cintake estimates may be uncertain for continuously grazed pastures.  

For rotationally grazed sites composed of several paddocks, GPS trackers may be 

avoided. In these sites, the cows are constrained to a relatively small paddock so that 

their location is known. Combining a footprint model (or simply wind direction) 

with a precise grazing schedule allows correct assessment of the presence of cows in 

the footprint in order to compute NEEpast, as shown by Felber et al. (2016b). If 

available, CH4 fluxes can still be used as a partitioning tool. For these sites, the 

confinement method should be preferred as cattle are already expected to be 

confined (Gourlez de la Motte et al., 2018). Again, it’s advisable to combine the 

confinement experiments with an animal carbon budget in order to constrain the 

Ecow,conf value to obtain more defensible estimates. For rotationally grazed sites, 

another solution would consist in computing NEEpast and excluding the grazers from 

the ecosystem. When computing NBP, the grazers are therefore considered to be an 

agent of C export (by grazing) and import (by excretions) (Felber et al., 2016a; 

Rutledge et al., 2017a, 2017b; Skinner, 2008). This solution requires reliable 

biomass measurements and/or animal performance data in order to compute Cintake 

and Cexcretions. For this reason, using this solution for continuously grazed sites is less 

advisable. Note that, if the estimation of Ecow and Cexcretions are estimated from the 

animal C budget, both methods are equivalent and give the same results.  

Finally, the results of this study highlighted how grazers can significantly affect 

NEE values reported in grazed grassland studies. Therefore, a consistent approach to 

report CO2 fluxes derived from eddy covariance in grazed ecosystems is needed in 

order to allow better NEE inter-site comparisons. In this line of thought, we 

advocate that, when possible, NEEpast and grazers respiration should be computed 

separately in both continuously and rotationally grazed systems. By excluding 

grazer’s respiration, the reported NEEpast, which correspond to the NEE of the 

vegetation and soil only, would be more comparable to the values reported by other 

grazed grassland studies as well as those reported by mown meadows. This would 

also help modelers as it would allow the computation of both fluxes separately 

(Kirschbaum et al., 2015). In this sense, continuously measuring CH4 fluxes in 

grazed ecosystems has proven to be very useful to obtain consistent NEEpast values.   
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1. Validity of the flux approach 
In this work, soil carbon storage was estimated by building a complete carbon 

budget (NBP) of the pasture. This approach requires the measurements of several 

fluxes that may be affected by some random and systematic error. One of the main 

objectives of this work was to develop a robust methodology to compute a complete 

carbon budget of grazed pasture and assess uncertainties associated with the method. 

More specifically, two main sources of systematic error affecting annual NEE and 

NBP were identified. In both case, we proposed a method to correct the errors.  

The first systematic error that we identified was linked to the choice of the 

cospectral model used for the high frequency loss correction. Indeed, in chapter 4, 

we showed that the choice of the cospectrum used to correct the data had a major 

impact on annual NEE values reaching errors as high as 71-150 g C m
-2

 yr
-1

. By 

comparing the fluxes measured by eddy covariance with chamber flux 

measurements, we showed that using a local cospectrum for the high frequency loss 

correction should be preferred instead of using a generic one (Kansas cospectrum).  

The second systematic error highlighted in this work is more specific to grazed 

sites and is linked to the cow distribution on the field. Indeed, in grazed pastures, 

cattle act as moving sources of CO2 that will or will not be measured by the eddy 

covariance system, depending on their location and wind conditions. In the first part 

of this work (chapter 3 and 5), in the absence of sufficient additional data on the 

herd position habits, we explicitly made the hypothesis that, on average over a 

complete year, the distribution of the cows on the field could be considered as 

homogeneous so that their annual respiration was deduced from the flux tower data 

in a representative way. When enough GPS and CH4 flux data became available, a 

procedure was developed to verify this hypothesis (chapter 6) and the results 

highlighted that it was not the case, this hypothesis causing an under estimation of 

cow contribution to NEE of around 60 g C m
–2

 yr
–1

.  

Once these two sources of error were carefully identified and corrected, residual 

uncertainties affecting NBP had to be estimated. As a reminder, the NBP of the 

ecosystem can be computed using (equation 3.1):  

   
tot CH4 manure import harvest product leach

NBP NEE     F     F     F   F     F     F        

For a complete description of the different variables, the reader is referred to 

chapter 3. As mentioned at chapter 6, NEEtot should be computed by separating 

NEEpast and Rcows: 

tot past cows
NEE NEE  + R    

The residual uncertainty on NBP after all the needed correction can be computed 

by combining the different error terms of each variable of equation 3.1. Note that a 

first uncertainty analysis was proposed in chapter 3. The estimated error bound must 

however be adapted as the partitioning of NEEpast in its two components results in 

new sources of residual uncertainties.  
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For NEEpast, the uncertainty was computed by combining (1) a random error term 

affecting both measured and filled data, (2) an error due to the additional gaps in the 

data set because of cow presence in the footprint, (3) a residual uncertainty 

associated with the choice of the u* threshold used to filter fluxes under low 

turbulence conditions and (4) a residual uncertainty associated with the choice of the 

cut-off frequency for the high frequency loss corrections. The method used to 

compute these terms is fully described at chapter 6.  

Rcows was computed by upscaling the cow respiration rate per LU measured with 

the GPS approach (Ecow,GPS) to the entire year using the annual stocking density on 

the pasture (SDp). The uncertainty on Rcows was computed by combining the 

uncertainty on Ecow,GPS with the uncertainty on SDp as described in chapter 6.  

In the absence of a better approach,, the uncertainty on the other terms of NBP was 

computed, by considering a 10% error on the other terms of NBP. All the different 

error terms were combined following Gaussian propagation rules.  

In 2013 and 2015, NEEtot could be partitioned in its NEEpast and Rcows components. 

By combining both sources of error, the total uncertainty on corrected NEEtot values 

amounted to 48 and 55 (52 on average) g C m
-2

 yr
-1

 in 2013 and 2015 respectively. 

The total uncertainty associated with the other components of NBP amounted to 8 g 

C m
-2

 yr
1

. Note that, if this last source of uncertainty may look small, these fluxes 

only amount to 20 g C m
-2

 yr
-1

 when summed which is much smaller than NEEpast 

and Rcows. As a result, the average uncertainty on NBP was mostly due to 

uncertainties associated to NEEpast and Rcows computation and amounted to around 

52 g C m
-2

 yr
-1

 which can further be rounded to 50 g C m
-2

 yr
-1

 which is in the higher 

range of the uncertainty bounds proposed by Baldochi, (2003) for annual NEE 

estimates for all kind of ecosystems. This uncertainty bound was also very similar to 

the uncertainty on NBP computed for a dairy farm in new Zealand (±54 g C m
2

 

yr
1

, Rutledge et al., (2015)) but a bit lower than the uncertainty bound estimated for 

a dairy farm in Switzerland (± 62 g C m
2

 yr
1 

Felber et al., (2016a) mostly because 

of higher C imports and exports resulting in higher absolute uncertainties for those 

components.  

One of the main remaining questions concerning the uncertainties is their 

combination especially when trying to compute uncertainties affecting annual NEE 

estimates. In this work, in the absence of a better approach, we combined all the 

different sources of errors following Gaussian error propagation rules. By doing so, 

we consider that all these sources of uncertainties are uncorrelated. Further work is 

needed in order to better understand and take into account the eventual correlations 

between the different sources of uncertainties.   

2. Corrections regarding cow respiration 
In this section, conclusions regarding the carbon budget (chapter 3) and the 

comparison between rotational and continuous grazing (chapter 5) are revised in 

regards to the systematic error highlighted in chapter 6.  
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2.1. Impact on the carbon budget 
The C budget of an intensively managed permanent grassland grazed by Belgian 

Blue cattle was computed for a period of 5 years (2010-2014). The results showed 

that, despite its old age and its intensive management, the pasture acted a C sink 

every year (chapter 3, article 1). However, because, on an annual time scale, cow 

respiration was under-estimated at DTO, the average annual NEE computed in 

chapter 3 was biased. The corrected NBP value, given in Chapter 5, was -100 ± 50 g 

C m
-2

 yr
-1

. Note that despite this important correction, the pasture still acted as a 

significant C sink and that the analysis made in chapter 3 are still valid. Indeed, CO2 

fluxes and (NEE and Rcows) are still the main components of the computed NBP and 

all the considerations made on CO2 fluxes dynamics as well as weather and 

management impact on NBP are still valid.  

2.2. Impact on the grazing timing experiment 
An experiment was designed to better understand the impact of rotational and 

continuous grazing on the pasture CO2 exchange dynamics (chapter 5). Again, cattle 

distribution was explicitly considered homogeneous for the CG treatment. For the 

RG treatment, as mention in the paper the hypothesis is more likely to be met as 

fluxes were discarded when the footprint area was outside the confinement parcel 

thereby increasing the probability that the herd is in the footprint. Nevertheless, as 

already stated in the paper, all the observations on the impact of grazing on NEE 

dynamics are valid for the two parcels as, on a small time scale basis, cow 

respiration only adding noise to the data. However, concerning the cumulative NEE, 

some re-evaluation of the final numbers must be made. 

As the objective of the study was to compare the impact of both managements on 

the NEE of the vegetation, comparing NEEpast of each treatment is more suitable 

than comparing NEEtot. For the CG treatment, NEEpast,CG was computed following 

the methodology fully described at chapter 6. For the RG treatment, NEEpast,RG was 

computed by removing the fluxes measured during confinement experiments before 

filling the data.  

In 2015, for the period of the study (from 14
th
 April to 17

th
 November), revised 

NEEpast,CG and NEEpast,RG amounted to -185 g C m
-2

 yr
-1

 and -235 g C m
-2

 yr
-1

 

respectively leading to a significant difference ΔNEE (NEEpast,RG-NEEpast,CG) of +50 

± 42 g C m
-2

 yr
-1

 between the two treatments. The uncertainty bound was computed 

by considering an uncertainty of 30 g C m
2

 yr
1

 for both NEEpast,CG (table 6-5) and 

NEEpast,RG. However, if we take into account the fact that the average stocking rate 

was slightly lower in the RG treatment (2.1 and 1.9 LU ha
1

 for the CG and RG 

treatment respectively), this difference can be considered non-significant when 

standardizing both NEE to the same stocking rate of 2.0 LU ha
-1

 (normalized 

ΔNEE=29 ± 42 g C m
-2

 yr
-1

). On the other hand, the used uncertainty bound 

estimates is rather conservative. Indeed, this error term includes the error associated 

with the u* threshold used to filter the data. If we consider that the magnitude of this 

error term is very similar for both fields so that this error term can be almost 
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neglected when comparing NEE of both fields (Ammann et al., 2007; Rutledge et 

al., 2017a), the error on ΔNEE is lowered to around 30 g C m
-2

 yr
-1

. As a result, even 

with this lower uncertainty bound, the standardized difference between the two 

treatments is too small to be detected. The NEE standardization by stocking rates is 

however questionable as increasing the stocking rate can be done by either 

increasing the stocking density during the confinement, increasing the duration of 

the rotations or even by adding a new rotation. As each option can probably affect 

NEE in very different ways, one can not be sure that simple standardization is a 

reliable way to compare both treatments. In conclusion, the observed difference 

between the two treatments is relatively small and it is not possible to conclude with 

confidence that this difference is significant and that it is not due to differences of 

stocking rates.  

3. Paired tower experiments to study management 
effects on CO2 fluxes 
A paired tower experiment was carried out at DTO to study the impact of grazing 

strategies on CO2 fluxes dynamics and annual NEE. These approaches allow 

isolating one management practice and study its impact on C sequestration processes 

but also on other gas emissions such as N2O (Drewer et al., 2017). Similar paired 

tower experiments have been carried out in other studies to assess the impact of 

different management practices on CO2 fluxes and C budgets such as pasture 

renewal (Drewer et al., 2017; Rutledge et al., 2017b), increased species diversity 

(Rutledge et al., 2017a), grazing and/or fertilization intensity (Allard et al., 2007; 

Ammann et al., 2007; Klumpp et al., 2011) as well as mowing and grazing (Senapati 

et al., 2014) using relatively short term experiments. 

In this work, the paired experiment was focused on the impact of a management 

practice on NEE. In grazed pasture, such studies should be carried out by comparing 

NEEpast instead of NEEtot in order to reduce uncertainties as highlighted in chapter 6 

especially when comparing grazed and mowed pastures (Senapati et al., 2014). By 

doing so, the uncertainty analysis showed that only differences > 30g C m
-2

 could be 

detected if the experiment is perfectly designed with very similar management 

(during and before the experiment) except the isolated treatment. If the focus of the 

study concerns not only NEE but extends to NBP, uncertainties associated with the 

other fluxes such as cow respiration (but not only) should also be added leading to 

even higher detection limit. Such high differences in term of NEE and NBP for 

different treatments were already highlighted in other paired tower studies for 

pasture renewal (Rutledge et al., 2017b), increased mixed species (Rutledge et al., 

2017a) and fertilization intensity (Ammann et al., 2007). 

Ideally, paired experiments should start their measurements several years prior to 

the treatment in order to evaluate possible pre-treatment differences (Rutledge et al., 

2017a, 2017b). However, these kinds of measurements are expensive and it is 

therefore not always possible to do these measurements for such long periods. In 

such case, it is important to make sure that both soil and management of the two 
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parcels prior to the treatment are as close as possible in order to limit pre-treatment 

associated uncertainties (Rutledge et al., 2017a). Note that these limitations only 

concerns conclusions regarding annual NEE and NBP budgets. Indeed, paired tower 

experiments have proven to be a valuable tool to understand the impact of an 

isolated treatment (in this case grazing management) on CO2 flux dynamics.  

4. Comparing C budget with direct soil sampling 
SOC variations measurements 
As discussed above, the flux approach can be affected by different systematic 

errors. Some of them are well identified and can be corrected. However, despite all 

the efforts, one must not discard the possibility that some unknown systematic errors 

remain. Without crossed data, it’s very difficult to ensure that SOC variations 

derived from the C budget approach are not affected by some errors. Therefore, 

there is a strong need to constrain flux based soil carbon sequestration estimates with 

direct SOC variations measurements. This was done by Skinner et Dell, (2015) in an 

intensively managed grassland. The study compared SOC variations based on direct 

samplings with long term flux based measurements (8 years of data). The results 

highlighted an important C loss in the deep layers that was not explained by the flux 

approach thereby highlighting the possibility of potentially higher than expected C 

leaching and run off. This study also highlighted that sampling as deep as 1m depth 

was required in order to properly compute SOC variations. To do so, long term flux 

measurements are required as around 10 years between each sampling are needed in 

order to faithfully catch SOC variations. In an extensive literature survey, Soussana 

et al., (2010), highlighted that, when averaging several studies, C storage estimated 

using the flux approach was not significantly different than C storage rates obtained 

from SOC variations measurements. However, as previously mentioned, combined 

studies are still lacking. As a perspective of this work, combining the flux approach 

with the direct soil sampling approach would have several advantages. This will be 

done in the future at DTO in the scope of the Integrated Carbon Observation System 

(ICOS) monitoring program. A first soil sampling is intended in 2019 following 

ICOS standardized ICOS protocols (Arrouays et al., 2018).  

An extensive regional assessment of SOC changes in agricultural soil was carried 

in southern Belgium for the period 1955-2005 (Goidts and van Wesemael, 2007) 

with direct soil samplings. The survey showed that grassland in the Condroz region 

(region where Dorinne is located) gained around 23.9 t C ha
-1

 for the whole period in 

the 30 first cm which corresponds to a yearly sequestration rate of 48g C m
-2

 year
-1

 

which is lower than the observed C sequestration rate at DTO. It’s however difficult 

to go further in the comparison for several reasons. First, even if the authors of this 

study tried to sample the territory in homogeneous units, some spatial variation in C 

sequestration rates within the Condroz region unit is expected. Observing a higher 

rate in a given spot is therefore not surprising. Secondly, some temporal variations in 

C sequestration rates are also expected. Last, this study only measured SOC 

variation in the 30 first cm soil layer although SOC changes can occur in the deepest 

layers (Skinner and Dell, 2015).  
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Depending on many variables such as grassland types (temporary vs permanent), 

climatic conditions (Baldocchi et al., 2017), fertilizer supply (Ammann et al., 2007), 

manure management (Hirata et al., 2013; Shimizu et al., 2009) and grazing pressure 

(Allard et al., 2007; Klumpp et al., 2011) as well as past management (Smith, 2014), 

net carbon sequestration varies both in time and space. To assess these variations, 

both approaches have their own strengths and weaknesses. Monitoring CO2 and C 

fluxes using the flux approach has proven very useful to catch short and long term 

temporal variations in the C balance and its drivers at the ecosystem scale. Thanks to 

a high temporal resolution, this method is suitable to assess which mechanisms are 

responsible for temporal variations. The flux method was also successfully used in 

this work but also in other studies (Klumpp et al., 2011; Mudge et al., 2011; 

Rutledge et al., 2015; Soussana et al., 2007) to determine the respective importance 

of each term of the C budget and which processes were the most responsible for 

inter-annual variations not only in grasslands but also in other ecosystems 

(Baldocchi et al., 2017). On the other hand, one of the main weaknesses of the flux 

approach is that, because of high costs and labor requirements, the method cannot 

easily be replicated to faithfully catch C sequestration spatial variability. Studying 

soil sequestration spatial variability can be more easily done using extensive direct 

samplings measurements (Conant and Paustian, 2002; Goidts and van Wesemael, 

2007; Lettens et al., 2005a) combined with modelling (Meersmans et al., 2011).  

One other drawback of the flux approach is that, only the random components of the 

uncertainty will decrease with time while, with the soil samplings approach, 

uncertainties should be reduced when the time between samplings increases. 

5. Carbon storage mitigation role in total GHG 
budget 
Three main GHG are exchanged at the pasture scale: CO2, CH4 and N2O. The 

results of this work showed that the grassland acted as a significant carbon sink 

thereby removing some CO2 from the atmosphere. Jointly some CH4 is emitted 

mostly through cattle enteric fermentation and some N2O is emitted after 

fertilization events as well as by cattle dejections. Therefore, several questions arise: 

is the pasture system a GHG sink or source (in term of CO2-eq)? What is the exact 

mitigation potential of soil C sequestration?  

5.1. Pasture scale CH4 emissions 
During the project, CH4 emissions have been measured at DTO using the eddy 

covariance technique first without cattle localization (Dumortier et al., 2017). The 

whole measurement set-up is described in the cited publication. The results showed 

that most of the CH4 was emitted by the cattle, the exchanges from the continuum 

soil/vegetation being negligible. To go further, EC CH4 measurements were 

performed during the GPS measurements campaigns described in chapter 6.  

The used procedure to compute a CH4 flux by LU was very similar to the one used 

to compute CO2 respiration per LU. Briefly, the stocking density in the footprint 

(SDf) was computed by combining cattle localization measurements with an 
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analytical footprint model (Kormann and Meixner, 2001) as described in chapter 6. 

Then a linear regression between CH4 fluxes and SDf was computed, the slope of the 

regression corresponding to the CH4 flux per LU and per day. This CH4 flux per LU 

could then be up scaled to the entire year using the pasture annual stocking rate. All 

the work has been carried out by Pierre Dumortier and the results presented in this 

manuscript are the results of his work.  

On average, the cows emitted 160 g CH4 day
‒1

 LU
1

 at DTO. This value is higher 

than the value estimated from EC measurements at DTO by considering a 

homogeneous cow repartition (Dumortier et al., 2017) but is very close to the tier 2 

IPCC emission estimate (IPCC 2006, raw energy content of 18.45 MJ kg-1 and 

default conversion factor 6.5%) that amounted to 164 g C m
‒2

 yr
‒1 

. When 

considering an average annual stocking rate of 2.3 LU ha
-1

, the total annual emission 

reached 134 kg CH4 ha
‒1

 yr
‒1

. When considering a 100 year global warming 

potential of 28 (IPCC, 2014), the total emission amounted to 375 g CO2-eq m
‒2

 yr
‒1

.   

5.2. Pasture-scale N2O emissions 
N2O is emitted by the soil during nitrification and denitrification. Nitrification is 

the process where ammonium is oxidizes into nitrite and nitrate. The reaction is 

performed by both autotrophic and heterotrophic bacteria located in the soil under 

aerobic conditions. Denitrification is the reduction of nitrate to nitrite and, at the end 

of the chain reaction N2. The reaction is performed by soil heterotrophic bacteria and 

fungi under anaerobic conditions (Lognoul et al., 2017). In grazed grassland N is 

brought to the pasture in several ways (Figure 7-1) and in different forms (Liang et 

al., 2018). Some N is brought to the soil through organic and mineral fertilization 

(Nfertil), atmospheric depositions (Ndep), plant residuals (Nresid), and in form of cattle 

excreta (dungs and urines) and by the decomposition of the plants. These sources of 

N are brought to the soil in different forms that may be the subject to nitrification or 

denitrification depending among other on their forms and on oxygen availability 

which may result in some N2O emissions. 
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Figure 7-1: Schematic illustration of the N2O emission process in a grazed pasture.  

In the lack of available direct measurements of N2O fluxes at DTO, N2O emissions 

were estimated following tier 1 IPCC methodology and emission factors (IPCC, 

2006a): 

FN2O = (Ndep + Nresid + Nfertil) ∗ f1 + Nexcreta ∗ f2 (7.1) 

where 𝐹𝑁2𝑂 is the flux of N2O, f1 and f2 are the IPCC emission factors with a 

default value of f1=0.01 (0.003-0.03) and f2=0.02 (0.007-0.06). Uncertainty values 

on the emission factors are given in brackets. Nfertil was obtained by averaging data 

from management inventory for the period 2010-2014. Ndep is assumed to be 25 kg N 

ha
-1

 yr
-1

 which is in the higher range of the Ndep estimated by Flechard et al., (2011). 

Nresid is estimated as the proportion of N in uneaten biomass which was estimated to 

be 15% of cattle Nintake. Nintake was measured from feed dry matter intake estimates 

and from dry matter laboratory N content measurements. The dry matter N content 

was relatively stable among samples with an average value of 3±0.04% (error given 

as SE, 167 samples). Nexcreta was considered equal to Nintake as N accumulated in 

meat can be considered negligible.  

The annual average emission rate over the period 2010-2014 was estimated to 3.9 

(0.7-6.0) kg N2O-N ha
-1

, which corresponds to an emission rate of 188 (63-564) g 

CO2–eq m
-2 

yr
-1

, with a major contribution of cattle excreta induced emissions 

(68%). This value is in the same order of magnitude when compared to N2O 

emissions estimated from eddy covariance measurements in an intensively managed 

and grazed grasslands (3.0 kg N2O-N ha
-1

) in Scotland (Jones et al., 2017) but were 

much lower than those observed in an intensively managed rotationally grazed dairy 
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pasture in new Zealand (6.5 kg N2O-N ha
-1

) but with much higher stocking rates and 

very different climatic conditions (Liang et al., 2018). 

This N2O emission is associated with a large uncertainty on both the emission 

factors and the estimation of the total N input. Indeed, the estimation of Nexcreta 

mostly depends on the estimation of cattle dry matter intake which is difficult to 

estimate in continuously grazed pastures. In addition, some other terms of the 

equation are estimated using coefficients from the literature which are also 

associated with uncertainties. However, all these sources of uncertainties are 

probably lower than those associated to the emission factors themselves (Brown et 

al., 2001; Flechard et al., 2007).  

One of the perspectives of this work would be to measure N2O fluxes at the 

pasture scale in order to better quantify the weight of this flux in the pasture’s GHG 

balance and to better understand its drivers (Voglmeier et al., 2018).  

5.3. Pasture scale GHG budget 
The GHG budget at the pasture is shown at figure 7-2. The results showed that no 

term of the budget is negligible when compared to the others, thereby highlighting 

the need to measure all three GHG when computing pasture scale GHG budget. The 

CO2 sink activity of the pasture offset around 70% of the total N2O and CH4 

emissions. The pasture therefore acted as a GHG source. This result is in agreement 

with multi-site studies that showed that C sequestration (or C emission in some 

cases) was an important component of European grasslands GHG balance (P. Ciais 

et al., 2010; Soussana et al., 2007). In the cited studies, grasslands could either act as 

GHG sources or sinks depending on management intensity and on other 

pedoclimatic conditions (Jones et al., 2017).  
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Figure 7-2 : Greenhouse gas budget of the pasture at Dorinne. All the values are given in g 

CO2-eq m
-2

 yr
-1

 considering a global warming potential of 28 for CH4 and 298 for N2O. The 

emission of CO2 amounts to -410 CO2-eq m
-2

 yr
-1

, the CH4 emission to 375 CO2-eq m
-2

 yr
-1 

and the
 
N2O emission to 188 CO2-eq m

-2
 yr

-1
 

In a more recent multi-site analysis from 14 managed grassland sites, Hörtnagl et 

al., (2018) found that every site acted as net GHG sinks, the only exception being a 

site that acted as a CO2 and GHG source right after being ploughed for restoration. 

This study is however misleading because it focuses on CO2 fluxes only, so that the 

reported CO2 sink activity takes only into account the net CO2 exchange between the 

pasture and the atmosphere (NEE) without considering other C exports through 

harvest, CH4-C emissions or (at least not explicitly), animal CO2 respiration. An 

important part of this absorbed CO2 (evaluated from 91 to 1783 g CO2 m
-2

 yr
-1

) is 

stored in the biomass and will be, in major part, reemitted when eaten and respired. 

The CO2 absorption mitigation potential is therefore (largely) overestimated.  

Nevertheless, all these studies (including the present work) are only snapshots of 

the GHG balance at a given period that do not consider the fact that carbon 

sequestration is time limited and so is its GHG mitigation potential (Johnston et al., 

2009; Smith, 2014). On the long term, under similar climate and with constant 

management, soil C stocks will reach equilibrium and no C sequestration will 

happen anymore. As an illustration purpose, this can be simulated by postulating 

that C sequestration rate (NBP) will decrease exponentially from now on and that no 

C sequestration will further happen after 100 years (Garnett et al., 2017). This time 

changing sequestration rate can then be compared with the methane emitted by a 

given stocking rate using a constant emission factor of 160 g CH4 day
-1

 LU
1

 

measured at DTO (figure 7-3). Note that this simulation is only a schematic diagram 

to illustrate how C sequestration potential will decrease. It only accounts for CH4 



Chapter 7 

 

159 

 

emissions and considers the same initial NBP for both stocking rates. When adding 

N2O emissions, the C sequestration potential would be even lowered. The curve 

illustrates the limited mitigation potential of C sequestration when compared to CH4 

emissions and that, on the long term, pastures are not likely to act as continuous C 

sinks. 

 

Figure 7-3 : Cumulative net greenhouse gas balance (CO2-CH4) in CO2-eq between net C 

sequestration (NBP) and CH4 emission for a stocking rate of 1 LU ha
-1

 yr
-1

 and 2.3 LU ha
-1

 

yr
-1

 (stocking rate at DTO). Both curves consider an initial net biome productivity of 367 g 

CO2-eq m
-2

 yr
-1

 and an emission rate of 58 kg CH4 LU
-1

 yr
-1

. Adapted from Garnet et al., 

(2017). 

5.4. From pasture to farm scale 
All the conclusions of this work concerning the C and GHG budget have been 

taken at the pasture scale which was the main focus of this study. As a result, some 

GHG fluxes of importance at the farm scale are not accounted for at the pasture 

scale so that some misinterpretation could be done trying to identify levers to 

mitigate farm scale GHG emissions. The different C and GHG fluxes involved in C 

and GHG budgets of mixed crop-livestock farm are illustrated in a schematic view at 

figure 7-4. We consider a farm that produces all the forage and additional feeds 

given to the animals on site. Fluxes associated to fuel consumptions, energy for the 

buildings and emissions associated with transport are not considered. This farm can 

be divided in three main components: the pastures, the barn and the crops. Note that 

in a real farm however, some C is very often imported into the farm from other 

exploitation mostly in form of feeds for the animals.  
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5.4.1. Carbon budget 

The main fluxes involved at the pasture scale were fully described in the present 

manuscript. In mixed crop-livestock farms, the animals are fed in winter with 

pasture-produced forages and other feeds from crops. When computing NBP at the 

pasture scale, we make the assumption that the entire C contained in harvested 

forage is emitted within a year. This assumption is actually not totally true as some 

of the harvested C will be further contained in the manure produced at the barn that 

will further be spread on pastures and crops resulting in an off-site sequestration 

(Chang et al., 2015; Soussana et al., 2010). The real C sequestration might therefore 

be under or overestimated depending on fraction of grass based manure that is 

returned to the pasture. At our site, the real mitigation potential of the pasture might 

be slightly overestimated as the amount of manure spread on the pasture was slightly 

higher (14 g C m
-2 

yr
-1

)  than the harvested biomass, meaning that some the manure 

spread on the site came from other grasslands or crops. Note however, that at the 

farm scale, these fluxes associated with manure spreading are internal to the system 

so that C gained in some place should be lost elsewhere. As a result, if manure 

spreading can help to reduce soil C losses locally, this action is neutral when looking 

at the whole farm. The same statement can be made for supplemental feeds that are 

only a C transfer from the crops to the pasture. It’s also important to highlight the 

fact that, in this manuscript; the studied pasture was mostly used for grazing. 

Additional mowed grasslands are therefore needed in order to produce the needed 

forage stocks for winter.  

To obtain a complete C budget at the farm scale, changes in SOC in crop fields 

should also be accounted for (figure 7-4). To do so, the easiest way would be to 

compute the C budget by considering only the C leaving or entering the farm 

(NEEpast, NEEcrop, Fproduct and Rcows and CH4-C at the barn and in the pasture). By 

doing so, many C fluxes are considered internal so that fewer components need to be 

estimated. However, this solution would not allow understanding the respective role 

of each ecosystem in the C budget of the farm which would be a major downside. 

Another possibility is to compute the C budget of the farm as the sum of the NBP 

of the pastures and the NBP of the crops. By doing so, to avoid double accountings, 

the C lost in form of CO2 respiration by the animals at the barn should not be 

accounted as it’s already done when accounting the C contained in the harvested 

biomass.  The C budget of a crop field depends, in addition to the absorbed CO2, on 

the amount of C contained in the harvested biomass (Buysse et al., 2017; Ceschia et 

al., 2010b). This harvested biomass can follow three pathways: a part of this 

biomass can be given to the animals at the barn or in the pasture as supplemental 

feeds, the remaining being exported to be further consumed. As a result, if one wants 

to compute the complete C budget associated with livestock production, only a 

portion of the NBP is attributable to the animals depending on the proportion of 

biomass that is effectively given to the animals.  
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Figure 7-4 : Schematic representation of organic carbon (blue arrows), CO2 (red arrows), 

CH4 (yellow arrows) and N2O fluxes involved at the farm scale (figure adapted from Chang 

et al., (2015)).  

As perspective of this work, extending the C budget to the whole farm, including 

the crops needed to produce supplemental feeds as well as mowed meadows used to 

produce winter forage would allow better understand the relationships between the C 

cycles of each components and to develop integrated management practices to 

improve C cycling both in fields and pastures (Lemaire et al., 2014).  

5.4.2. Farm scale greenhouse gas budget 

Concerning the farm scale GHG budget, figure 7-4 highlights the different sources 

of GHG that needed to be included. The most direct way to compute the farm GHG 

budget is to compute only the GHG and C fluxes leaving or entering the farm. These 

are the CO2 fluxes (NEE, and Rcows) in each components, the CH4 emissions from 

animal enteric fermentation, CH4 and N2O fluxes form manure (Petersen et al., 

2013), N2O from pastures and crop fields as well as C exports in form of animal and 

vegetal products. However, as stated above, by doing so, the mitigation potential 

through soil C sequestration cannot be evaluated. To avoid this, the total GHG 

budget (NGBfarm) at the farm scale can be expressed as follow: 

𝑁𝐺𝐵𝑓𝑎𝑟𝑚 = (𝑁𝐵𝑃𝑝𝑎𝑠𝑡 − 𝐶𝐶𝐻4,𝑝𝑎𝑠𝑡 + 𝑁𝐵𝑃𝑐𝑟𝑜𝑝) ×
44

12
+ (𝐶𝐻4,𝑝𝑎𝑠𝑡 + 𝐶𝐻4,𝑏𝑎𝑟𝑛)

× 𝐺𝑊𝑃𝐶𝐻4 + (𝑁2𝑂𝑝𝑎𝑠𝑡 + 𝑁2𝑂𝑏𝑎𝑟𝑛 + 𝑁2𝑂𝑐𝑟𝑜𝑝 ) × 𝐺𝑊𝑃𝑁2𝑂 

where GWP is the global warming potential of the concerned gas . Because only a 

fraction of the harvested crops is given to the animals, only a fraction of the crop 
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related fluxes should be accounted when computing the GHG budget associated with 

livestock production.  

Computing this complete GHG budget would require lots of additional 

measurements that are labor and cost intensive. However, with the development of 

fast N2O gas analyzers, it is now technically possible to measure all the three GHG 

fluxes (Baldocchi, 2014) both in pastures (Hörtnagl et al., 2018; Merbold et al., 

2014) and crop sites using the EC technique. At the barn, CH4 fluxes from enteric 

fermentation can be measured using different techniques such as the SF6 method 

and closed chambers (Hammond et al., 2016) or estimated from feed intakes (IPCC, 

2006b). To complete this GHG budget, CH4 and N2O emissions from manure during 

storage should also be computed. This would allow computing a complete GHG 

budget at the farm scale and, moreover, to evaluate livestock related GHG 

emissions. The gathered data would also help to build a complete life cycle 

assessment of cattle production including soil C sequestration which can be an 

important component. Indeed, when comparing grass-based to confinement dairy 

system, (O’ Brien et al., 2014) showed that grass based systems had the lowest 

carbon footprint when including carbon sequestration while omitting it resulted in 

similar carbon footprint.  

6. Conclusion and perspectives  
In this work, soil C storage in an intensively managed pasture grazed by Belgian 

Blue heifers was studied by building a complete C budget (NBP) at the pasture scale 

by combining eddy covariance fluxes to other non CO2 C imports and exports 

estimates. A specific attention has been paid to some methodological aspects in 

order to compute unbiased C budgets. The main findings of the work are the 

followings:  

- In order to avoid biased annual NEE estimates, a local cospectrum should be 

used instead of a universal one when correcting the CO2 fluxes for high 

frequency losses.  

- The CO2 flux exchanged between the pasture and the atmosphere should be 

partitioned between the exchange of the vegetation (NEEpast) and grazing 

animal’s respiration using, for example, CH4 fluxes. If there is evidence that 

the cows are not distributed evenly on the pasture on a yearly basis, both 

components should be computed separately to avoid biased CO2 flux 

estimates.  

- Once these two major systematic errors were corrected, the remaining 

uncertainties on NBP was estimated to be ≈50 g C m-2 yr
-1

. 

- The annual NBP amounted to -100 ± 50 g C m
-2

 yr
-1

 which show that, over 5 

years, the pasture acted as a significant C sink.  

- A paired tower experiment showed that no significant difference in term of 

NEE should be expected between a rotationally and continuously grazed 

pasture assuming similar stocking rates.   

- The soil C sequestration in the pasture was compared to the cattle CH4 

emission estimated from combined GPS-eddy covariance CH4 fluxes and to 
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tier 1 IPCC N2O emission estimates. The result showed that, in term of 

GHG exchanges, C sequestration compensated around 65% of the CH4 and 

N2O emissions at the pasture scale. 

In addition to this work, the following perspectives were highlighted: 

- Concerning the uncertainty assessment, further work is needed in order to 

better understand and take into account the possible correlations between the 

different sources of uncertainties.   

- Crossing long term soil C sequestration estimated from C budgets with 

values estimated from direct soil samplings would strengthen our confidence 

in soil sequestration estimates.  

- The impact of management practices on C and GHG budgets was tested in 

this work by using paired tower experiments.The method appeared 

promising but only two management practices (continuous vs rotational 

grazing) were tested. More practices could be investigated thanks to this 

method. . In particular, the impact of pasture renovation, grazing and 

fertilization intensity, increased species diversity as well as mowing 

compared to grazing could be assessed using these experiments. This 

approach can also be extended to study the impact of these practices on N 

cycling and N2O emissions.   

- Directly measuring the N2O emitted in the pasture would allow to improve 

the GHG budget at the pasture scale and to better quantify the total GHG 

emissions associated at the pasture scale. Some management practices, such 

as N fertilization, may increase C sequestration but also increase N2O 

emission. Measuring both fluxes (also during paired tower experiments) 

would allow better quantifying the real benefits or losses in term of GHG 

budgets.  

- Confronting our data to existing biogeochemical mechanisitic ecosystem 

scale models such as PaSim (Calanca et al., 2007), cenw (Kirschbaum et al., 

2015), or others (Del Prado et al., 2013) would allow a better understanding 

of the effect on the carbon cycle of weather conditions, grazing and 

management and extreme events, such as drought or heatwaves . It would 

aslo allow us to check the consistency of our conclusions in regards to state 

of the art models  

- In mixed crop-livestock farms, the animals are fed with feeds coming from 

crop production, pastures and mowed meadows. In term of C flows, these 

components are interconnected through manure management and animal 

nutrition. If lots of studies have been carried out to quantify and understand 

C cycling in crops and pastures separately, integrated studies that take into 

account the interconnections between crops, pastures and the barn are highly 

needed. Doing so would allow better understanding of the C transfer from 

the crops to the pastures and vice versa.  

- The GHG budget was quantified at the pasture scale. Extending this GHG 

budget to the farm scale, including GHG emitted at the barn and in crop 

fields is highly needed to quantify the total GHG gas emissions associated 
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with cattle production. These data could further be used in life cycle 

assessments to fulfil this last objective.  
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