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A granular soil REV located on the upstream side of the erosion pipe front is mod-
elled numerically, at the grain scale, by coupling the Discrete Element Method (DEM)
with the Lattice Boltzmann Method (LBM) for the representation of the solid and
fluid phases, respectively. The implementation of DEM follows a standard molecular
dynamics approach and the interactions between grains are regulated by unilateral
contacts and breakable bonds. A synopsis of the LBM scheme is provided, with focus
on the implementation of non-slip conditions for moving boundaries and use of the
Multiple Relaxation Time approach for improved numerical stability. The coupling
scheme is described along with the criteria for setting the numerical parameters of the two
methods. After a “dry” preparation procedure, the numerical REV is tested under fully
saturated conditions and increasing pressure difference. Backward erosion is observed
and a micromechanical inspection of the granular phase suggests that arching through
force chains and the breakage of tensile bonds are prominent resistance and degradation
mechanisms, respectively.

Keywords: backward erosion; piping erosion; discrete element method; lattice
Boltzmann method

1. Introduction

Piping erosion in the foundations of hydraulic works or within embankment dams and dykes
is a frequent and highly damaging phenomenon (da Silveira, 1984; Yen & Tung, 1993;
Zhang, Xu, & Jia, 2009), which motivates a major concern for basin authorities as well as
for companies exploiting water resources.Aconvenient description of the phenomenon rests
upon the distinction of four ordered phases of evolution: initiation, continuation, progression
and breaching (Fell, Foster, & Wan, 2007; Fell & Fry, 2007). Piping erosion may be initiated
within the embankment or its foundation due to concentrated leaks, suffusion, backward
erosion (e.g. at the downstream face of the embankment or of the embankment core) or
due to other hydro-erosion mechanisms. The continuation phase depends on the presence
of filters able to prevent the triggering mechanism from evolving at a larger scale and
forming a pipe. In the progression phase, a formed pipe propagates towards the reservoir,
while enlarging, until the process results into a breach, i.e. in the uncontrolled loss of storage,
possibly in connection with instability phenomena (e.g. collapse of the pipe, slope instability
or overtopping due to settlement of the embankment).

In the last few decades, the increase in hazard and vulnerability due to climate change as
well as the call for a more sustainable exploitation of water resources motivated a larger effort
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on the experimental observation and on the modelling of hydro-erosion mechanisms, with
particular attention for those involved in piping erosion (see Bonelli, 2013; Cheng, Draper,
& An, 2015 and references therein). In this process, two different erosion mechanisms can
be singled out in a rough picture: the enlargement of the pipe is regulated by tangential
erosion caused at the pipe walls by the turbulent flow, while backward erosion induced
by Darcy flow prevails at the upstream-propagating pipe tip. Several experimental, ana-
lytical and numerical studies on the tangential erosion mechanism have lead to substantial
advances in the understanding and modelling of the pipe enlargement kinetics (Bonelli &
Brivois, 2008; Cottereau, Díez, & Huerta, 2010; Lominé, Scholtès, Sibille, & Poullain,
2013; Wan & Fell, 2002, 2004). On the other hand, few experimental works concern the
backward erosion mechanism (Sellmeijer, de la Cruz, van Beek, & Knoeff, 2011; van Beek,
Knoeff, & Sellmeijer, 2011), on which there is a remarkable absence of analytical and
numerical studies. The gap is partially filled by previous modelling of the sand production
problem (Papamichos & Vardoulakis, 2005; Vardoulakis, Papanastasiou, & Stavropoulou,
2001; Vardoulakis, Stavropoulou, & Papanastasiou, 1996), as a closely related erosion
process induced by interstitial laminar flow. However, models specifically proposed for
localised backward erosion in porous media are still very rare (Rotunno, Callari, & Froiio,
in preparation; Wang, Fu, Jie, Dong, & Hu, 2014).

This study aims at calling attention on the conceptual and numerical tools of microme-
chanics of granular materials (Cambou, Jean, & Radjai, 2009) for their application to the
understanding and modelling of piping erosion. Among those tools, the Discrete Element
Method (DEM) is nowadays a standard numerical approach (Radjai & Dubois, 2011) and
its coupling with several candidate methods from computational fluid dynamics is being
proposed for the modelling of fluid-saturated granular materials.

According to a first class of coupled approaches, two separate scales are juxtaposed for
the solid and the fluid phases, i.e. the discrete scale of the single grain and the continuum
scale of Darcy flow, respectively (McNamara, Flekkøy, & Måløy, 2002; Zeghal & El Shamy,
2002). Other coupling schemes rest upon the discretisation of the fluid flow at the scale of
the pores (Chareyre, Cortis, Catalano, & Barthélemy, 2011), or at scales smaller than the
representative grain size (Ladd, 1994a, 1994b; Wachs, 2009).Among the latter, the coupling
between DEM and the lattice Boltzmann method (LBM) is receiving increasing attention
and provides space–time resolution of the fluid flow required for modelling hydro-erosion
phenomena, i.e. of physical situations in which the fluid domain is characterised by complex
geometries and may evolve abruptly (Cui, Li, Chan, & Chapman, 2012; Mansouri, Delenne,
El Youssoufi, & Seridi, 2009).

With regard to piping erosion, coupling with LBM has recently been employed for DEM
modelling of tangential erosion at the walls of the conduit (Lominé et al., 2013; Sibille,
Lominé, Poullain, Sail, & Marot, 2015). Actually, the same numerical tools are employed
in the numerical simulation presented in this study, designed for the micromechanical
investigation of backward erosion at the pipe front.

Section 2 reports on the DEM and LBM schemes, and their coupling, as implemented
in the in-house 2D code used in this study. The numerical simulation procedure is described
in Section 3, along with a micromechanical inspection of the results, before the paper is
closed with some summary remarks.
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2. Discrete numerical modelling

2.1. Granular skeleton

2.1.1. Discrete element approach

DEM has emerged as an effective numerical approach for modelling the mechanical be-
haviour of granular media such as soils, particularly as a tool for numerical experiments at
scales close to the REV and in complement to laboratory tests. An in-house 2D DEM code
was used in this study to investigate the micromechanical (grain-scale) processes underwent
by the granular skeleton in the pipe tip region.

The code was developed following a standard molecular dynamics approach (Cundall
& Strack, 1979). Grains are represented by circular discs and their interactions are modelled
by enabling normal and tangential forces at the contact points. Such forces (referred to as
Fn and Ft , resp.) can result from either a bond between the two grains or a unilateral contact.
The resultant force system on each grain, relative to its mass center, is determined based
on the interaction with neighbouring grains, computed as above, and with the surrounding
fluid, as detailed in Section 2.2. Gravity is neglected. The trajectory of each grain, including
rotation, is computed by time integration of the laws of motion for rigid bodies, via the
standard Störmer-Verlet discretisation scheme (Cundall & Strack, 1979).

2.1.2. Grain-to-grain interactions

Prior to the failure of a bond, the interaction between the two grains is bilateral and
viscoelastic, i.e. according to Figure 1,

Fn = Fn n, with Fn = −kn �xn − cn(�vc · n) (1)

Ft = Ft t, with Ft = −kt �xt − ct(�vc · t) (2)

where �vc = v(1)
c −v(2)

c is the relative velocity of the two representative contact points; n is
the normal unit vector at the contact point, directed as the segment joining the centers of the
two grains and oriented from grain 1 to grain 2 in the figure; t is the tangential unit vector
obtained from n after a counterclockwise rotation;�xn and�xt , obtained by time integration
of �vc · n and �vc · t, are the normal and tangential cumulative relative displacements,
respectively; kn and kt are elastic stiffnesses while cn and ct are viscous constants in the
normal and tangential directions, respectively. The corresponding rheological model is
sketched in Figure 2(a). The failure envelope in Figure 2(b) (continuous line) characterises
the tensile and shear strengths of the bond: the latter is maintained as long as

Fn > −A and |Ft| < μ Fn + C (3)

where the strength parameters A > 0 (bond adhesion), C > 0 (bond cohesion) and μ > 0
(contact friction) are chosen such that C ≥ μA.

As the bond breaks, the normal interaction becomes unilateral and the tangential force
limit is computed on a purely frictional basis (see Figure 2(c) and the dashed line in
Figure 2(b)):

Fn = −kn�xn − cn(�vc · n) for �xn ≥ 0 (4)

Fn = 0 for �xn < 0 (5)

and

Ft =
=: F∗

t︷ ︸︸ ︷
−kt�xt − ct(�vc · t), if |F∗

t | ≤ μ Fn (6)
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Figure 1. Normal and tangential unit vectors (n and t, resp.) at the oriented contact between grain 1

and 2. Relative velocity �vc at the oriented contact vs. the velocities v(1)
c and v(2)

c of the representative
contact points of grain 1 and grain 2, respectively.

Figure 2. Rheological models: for grain-to-grain bonds in (a) and (b), continuous line; for unilateral
grain-to-grain contacts in (c) and (b), dashed line.

Ft = sign(−kt�xt − ct(�vc · t)) |Fn μ|, if |F∗
t | > μ Fn (7)

A more refined model might of course distinguish between the role played by μ in (3) and
in (6), i.e. as a strength parameter and as a contact friction parameter, respectively.

2.1.3. Rigid-wall boundary conditions

Rigid walls, as used in this study for the confinement of the granular assembly, are modelled
as straight lines endowed with translational and rotational degrees of freedom (the rigid
motion being tracked through a reference point moving along with the wall). The interaction
between a wall and the grains, referred to herein as wall-to-grain interaction, is described
by the same model as for grain-to-grain interactions, provided the relative contact velocity
�vc is defined according to the necessary adaptation of Figure 1.
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Figure 3. D2Q9 lattice model.

2.2. Pore fluid

2.2.1. Standard LBM algorithm

Introduced in 1988 by McNamara and Zanetti (1988), LBM was first developed as a
statistical upscaling of lattice-gas cellular automota (LGCA) in order to overcome several
drawbacks of this previous method as a candidate technique for fluid dynamics computations
(e.g. statistical noise Frisch et al., 1987; Frisch, Hasslacher, & Pomeau, 1986; Wolfram,
1994). However, LBM can be derived directly from Boltzmann equation (He & Luo, 1997a)
and was shown to be equivalent to a finite difference approximation to Navier–Stokes
equations for incompressible fluids (Frisch, 1989). In the remainder of this section, the key
elements of the method are recalled, including the core algorithm and some techniques for
the implementation of the boundary conditions (no-slip boundaries and constant pressure
boundaries) employed in this work. The synthetic description also includes a presentation
of the applied scheme for the coupling with DEM.

LBM is a kinetic theory-based numerical approach to fluid dynamics problems. The
method is hinged upon a discrete form of Boltzmann equation and therefore on the deter-
mination of the distribution function f (x, c, t), defined as the probability density for the
presence of a fluid particle with velocity c at position x, as random variables and time
t , as a parameter. To solve f numerically, time is segmented in time intervals of fixed
amplitude �t and the fluid domain is discretised onto a regular lattice. The case of the
two-dimensional rectangular lattice D2Q9 (Qian, D’Humières, & Lallemand, 1992) used
in this study is illustrated in Figure 3, where h is the spacing between neighbouring lattice
nodes. As shown in the same figure, the velocity space is also discretised accordingly, i.e.
reduced to the set {cα}α=0,1,...,N of velocity vectors enabling the fluid particles to hop from
one lattice node on any of its N = 8 neighbouring nodes (or to stay at the current position)
in a time interval �t . The relevant velocity vectors for the D2Q9 model are

cα =

⎧⎪⎪⎨
⎪⎪⎩

0 α = 0

c
(

cos (α−1)π
2 e1 + sin (α−1)π

2 e2

)
, α = 1, 2, 3, 4

√
2 c

(
cos (2α−9)π

4 e1 + sin (2α−9)π
4 e2

)
, α = 5, 6, 7, 8

(8)

where e1 and e2 are the unit vectors of a Cartesian reference system oriented according to
the main lattice directions (i.e. the horizontal and vertical directions in the Figure 3), while
c = h/�t is the characteristic lattice speed.
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Consistent with the above discretisation, at each lattice node the distribution function
takes only N + 1 values fα , with the index α spanning the velocity values. In this setting,
one can refer to

fα(x + cα�t, t + �t) − fα(x, t) = −�t

τ
( fα(x, t) − f eq

α (x, t)) (9)

as the discrete counterpart of a simplified form of Boltzmann equation:

∂ f (x, c, t)

∂t
+ ∂ f (x, c, t)

∂x
· c = − f (x, c, t) − f eq(x, c, t)

τ
(10)

in which c is the microscopic fluid particle velocity, f eq is the distribution function at
thermodynamic equilibrium (the Maxwell distribution is used) while the parameter τ ,
called relaxation time, is a measure of the promptness by which the fluid relaxes towards
thermodynamic equilibrium after a perturbation of the latter. The terms on the r.h.s. of
(9) and (10) are the relevant statistical models for the collisions between fluid particles;
namely, (10) is obtained from the original Boltzmann equation, following the Bhatnagar–
Gross–Krook approximation to the original collision operator, based on the assumption
of small perturbations in thermodynamic equilibrium (Bhatnagar, Gross, & Krook, 1954).
Notice, finally, that negligible body forces are assumed in (9) and (10).

Basic macroscopic quantities such as the mass density ρ are retrieved at each node as
customary in statistical mechanics, by computation of velocity moments, of the appropriate
order, of the distribution function. Denoting by m the mass of the fluid particle, mass and
momentum densities can be computed as:

ρ = m
8∑

α=0

fα, ρu = m
8∑

α=0

fαcα (11)

respectively; or the stress tensor σ can be computed as:

σ = m
8∑

α=0

fαcα ⊗ cα

With the aim to simulate nearly incompressible flows, the method can be specialised
to the low Mach number regime, i.e. for Ma � 1, where Ma = ‖u‖/c is the so-called
computational Mach number (the sound speed in the lattice being cs = c/

√
3).

In the limit as Ma → 0, the Maxwell distribution function can be expressed as:

f eq
α = wα

ρ

m

(
1 + 3

cα · u
c2

+ 9

2

(cα · u)2

c4
− 3

2

‖u‖2

c2

)
+ O(Ma3) (12)

with

wα =

⎧⎪⎨
⎪⎩

4
9 α = 0
1
9 α = 1, 2, 3, 4
1
36 α = 5, 6, 7, 8

Under the assumption of small variations in mass density, i.e.

ρ − ρ0

ρ0
= O(Ma2) (13)

where ρ0 is a reference value, a derivation based on the Chapman–Enskog asymptotic ex-
pansion procedure (He & Luo, 1997b) identifies the corresponding model in the continuum
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limit as the Navier–Stokes equations for incompressible fluids, under negligible body forces,
up to an error of the order O(Ma2) on the mass balance and O(Ma3) on the momentum
balance:

div u = O(Ma2) (14)

ρ0

(
∂u
∂t

+ (grad u) u
)

= −grad p + η div grad u + O(Ma3)

where

p = c2
s ρ, η = ρ0

3

(
τ

�t
− 1

2

)
h2

�t
(15)

are the consistent definitions for the pressure and the dynamic viscosity, respectively.1

2.2.2. Collision and streaming time-substeps

It is of practical convenience to reorganise and decompose (9) as:

f c
α (x, t) = fα(x, t) − �t

τ
( fα(x, t) − f eq

α (x, t)) (16)

fα(x + cα�t, t + �t) = f c
α (x, t) (17)

where the post-collision discrete distribution function f c
α (x, t), defined in (16), carries the

values of fα(x, t) as affected at the relevant node by the collisions taking place “simul-
taneously” and instantaneously at t . The advection of fluid particles, during �t , is then
taken into account separately by (17). The above decomposition is almost dictated by the
numerical implementation of the method, due to the simplification of the algorithm allowed
by the definition of separated collision and streaming time substeps, in reference to (16)
and (17), respectively.

2.2.3. Multiple relaxation time approach

According to (9) and (10), the relaxation of the distribution function is controlled by a
single parameter (i.e. the relaxation time τ ). Some drawbacks of this attractive but strong
simplification, among which a certain degree of numerical instability, were resolved by its
generalisation towards Multiple Relaxation Times (MRT) (d’Humière, 1992; d’Humière,
Ginzburg, Krafczyk, Lallemand, & Luo, 2002; Lallemand & Luo, 2000). The latter approach
is based on the assumption that different velocity moments of the distribution function
relax linearly at different time rates. The relevant moments are assembled as polynomials
of previously defined quantities (mass and momentum densities, stress) and of additional
energy-related terms; they provide the same information as carried by the values of the
distribution function, i.e.
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ′
−4ρ′ + 6e′

4ρ′ − 21e′ + 18(e′)2

ρ′u′
1−5ρ′u′

1 + 6q ′
1

ρ′u′
2−5ρ′u′

2 + 6q ′
2

2(dev σ )′11
(dev σ )′12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′
0

f ′
1

f ′
2

f ′
3

f ′
4

f ′
5

f ′
6

f ′
7

f ′
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where the transformation matrix M is invertible and in which the prime symbol denotes
dimensionless quantities obtained, from the relevant metric quantity, after normalisation by
the lattice units (i.e. m, h and �t). In (18), e is the thermal energy density, q1 and q2 are
Cartesian components of the heat flux vector and dev σ is the deviatoric (viscous) part of
the stress tensor σ .2

According to (18), the single-relaxation-time Equation (9) is replaced by

f ′
α(x + cα�t, t + �t) − f ′

α(x, t) = −
8∑

β,γ=0

M−1
αβ Sβγ (mγ (x, t) − meq

γ (x, t)) (19)

where M−1
αβ and mγ denote the coefficients of M−1 and the elements of m, respectively;

the scalars meq
γ are computed as the mγ but based on the Maxwell distribution function. In

the same equation, Sβγ are the coefficients of the so-called diagonal relaxation matrix S,
defined as

S = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8)

which can be seen as a generalisation of the relaxation parameter �t/τ in (9). Consistently,
(19) reduces to (9) if s0 = s1 = · · · = s8 = �t/τ . It is worth mentioning anyway that s0,
s3 and s5 have no effect on the computation, as these eigenvalues are directly related to the
collision invariants ρ and ρu. The remaining parameters are chosen in the interval (0, 2)

for numerical stability.
Finally, the Chapman–Enskog asymptotic expansion of the MRT model delivers once

more the Navier–Stokes equations for incompressible fluids (Du, Shi, & Chen, 2006), i.e.
(9)–(15), provided one sets s7 = s8 (to enforce isotropy) and the dynamic viscosity is
identified as

η = ρ0

3

(
1

s7
− 1

2

)
h2

�t
= ρ0

3

(
1

s8
− 1

2

)
h2

�t
(20)

2.2.4. No-slip condition for moving boundaries

No-slip conditions at stationary as well as moving solid boundaries, straight or curved, can
be imposed through the standard “bounce-back” scheme (Aidun, Lu, & Ding, 1998; Ladd,
1994a); the actual position of the boundary is discretised on the lattice grid at each time
step of the LBM algorithm and the effect of its motion is computed in terms of momentum
transfer between the fluid and the solid phases. This method, though effective in ensuring
no tangential velocity along the fluid-solid boundary, results in geometric discontinuities,
accompanying the motion of the interface, that produce important fluctuations in the com-
puted hydrodynamic forces. A regularised model was proposed in Bouzidi, Firdaouss, and
Lallemand (2001) and is based on an interpolation procedure enabling to track the boundary
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at arbitrary sub-grid positions, with improved numerical stability.3 To introduce this method,
used in the present study, Figure 4 illustrates the case of a fluid–solid boundary identified as
the circular profile of a grain. The white and black circular marks in the figure are located
at grid nodes in the fluid and solid regions, respectively. The gray circular marks denote
the position (e.g. xb) at which the boundary is crossed by the path from a fluid node to a
neighbouring solid node (xf and xs, resp.). The fluid particles accounted for in the collisions
step at xf are advected from all the neighbouring nodes but those in the solid region. The
missing contributions are computed based on the following heuristic argument, illustrated
for xf and xs in the figure: a fluid particle that is delivered at xf after bouncing on the
boundary at xb would be located, one time step before, at the fictitious fluid node xff , i.e. at
a distance compatible with the path of the particle and the velocities allowed by the lattice
model. Let

q = ‖xf − xb‖
‖xf − xs‖ <

1

2
as in the figure, then the fluid node is located at

xff = 2q xf + (1 − 2q) (xf −�t c8)

where xf − �t c8 is the position of the fluid node back off xf . Consistently, the relevant
missing contribution to the distribution function at xf is computed (at time t + �t) as

f6(xf , t + �t) = 2q f c
8 (xf , t) + (1 − 2q) f c

8 (xf −�t c8, t)︸ ︷︷ ︸
f c
8 (xff , t)

+6ω8ρ

m c2
c8 · vb (21)

where the post-collision value f c
8 (xff , t) of the distribution function at the fictitious fluid

node is computed by interpolation on the neighbouring nodes, and the additional (last)
term on the r.h.s. is representative of the momentum transfer due to the velocity vb of the
boundary at xb. The generalisation to arbitrary relative positions of the fluid-, solid- and
boundary nodes is

fα(xf , t+�t) =
{

2q f c
α̂
(xf , t) + (1 − 2q) f c

α̂
(xf −�t cα̂, t) + 6ωα̂ρ

m c2 cα̂ ·vb, q < 1
2

1
2q f c

α̂
(xf , t) + 2q−1

2q f c
α (xf , t) + 3ωα̂ρ

q m c2 cα̂ ·vb, q ≥ 1
2

(22)

in which the expression for q ≥ 1/2 stems for a similar reasoning and the index α̂ is such
that cα̂ = −cα .

An issue related to the implementation of moving impervious boundaries is the conver-
sion of solid nodes into fluid nodes due to the displacement of the boundary between two time
steps. Namely, the issue concerns the values of the distribution function at the “uncovered”
fluid nodes. As proposed in Aidun et al. (1998), the latter is initialised to the values of
the equilibrium distribution function f eq

α , i.e. the mass density ρ in (12) is computed by
interpolation on the neighbouring fluid nodes, while the macroscopic fluid velocity u in
the same expression is obtained by extension, to the fluid node, of the rigid motion of
the boundary.4 Conversely, the fluid nodes that are turned into solid nodes are temporarily
excluded from the core LBM algorithm described in Sections 2.2.1–2.2.3. However, with
the conservation of fluid mass not being an implicit feature of this scheme, the relevant
accuracy is to be checked throughout the computation (see Section 3.2).

2.2.5. Pressure boundary condition

This condition is assigned at the two opposite, inlet and outlet sections of the rectangular flow
channel (otherwise confined by no-slip boundaries) designed for the numerical simulation
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Figure 4. Lattice grid at a curved fluid–solid boundary.

described in Section 3. In LBM simulations, the pressure p as well as the velocity u of the
flow cannot be assigned directly, but through the values of the discrete distribution function
at the relevant boundary node. The case of an inlet node is sketched in Figure 5: f1, f5 and
f8 are undetermined and can be adjusted in order to enforce the inlet pressure pin, while
the remaining values of the discrete distribution function are determined after the streaming
step as a result of advection from inner nodes. As a first assignment on f1, f5 and f8, the
inlet pressure pin can be imposed directly through the condition

m
8∑

α=0

fα = ρ = pin

c2
s

(23)

according to (11) and (15). A second condition can be deduced from the assumption of null
component of the velocity parallel to the boundary and can be specified as

8∑
α=0

fαcα · e2 = 0

consistently with (11) and with the orientation of the inlet boundary in the figure. The third
condition required to close the system is usually set as proposed in Zou and He (1997), i.e.

f1 − f eq
1 = f3 − f eq

3

which can be read as a bounce-back rule on the non equilibrium part of the discrete
distribution function. The same method applies for the generic outlet node and can be
adapted for nodes at the intersection between pressure and no-slip boundaries.

2.2.6. Validation example: flow past a fixed circular disc

A validation of the LBM algorithm is proposed, based on the boundary value problem in
Figure 6(a). A parabolic profile of horizontal macroscopic fluid velocity is assigned at the



970 D.K. Tran et al.

Figure 5. Generic node at the inlet boundary.

Table 1. Parameters employed for the numerical solution of the boundary value problem in
Figure 6(a). The eigenvalues s0, s3 and s5 of the relaxation matrix are not reported as they have
no effect on the simulation (see Section 2.2.3).

D/h �t (s) c (m s−1) s1 s2 s4, s6 s7, s8

12 4 × 10−5 2.5 1.1 1 1.2 1/0.512
24 10−5 5 1.1 1 1.2 1/0.512

left (inlet) boundary, with the maximum value at the center of the cross section of the flow
channel. At the opposite (outlet) boundary the fluid pressure is maintained at a constant
value pout. The fluid is modelled as incompressible and is characterised by a mass density
ρf = 103 kg m−2 and a dynamic viscosity η = 10−3 N s m−1. A fixed circular disc with
diameter D = 1.2 mm is located in the vicinity of the channel inlet, slightly eccentrically
with respect to the longitudinal symmetry axis. Two different flow regimes are considered:
a steady flow regime, at Re = 20, and an unsteady periodic flow regime, at Re = 100. The
relevant definition of the Reynolds number is Re = ρf ūin D/η, where ūin is the average
value of the norm of the macroscopic fluid velocity at the channel inlet.

The parameters in Table 1 refer to numerical simulations of the boundary value problem
performed with the LBM algorithm implemented in the Authors’ in-house code, following
the MRT approach. Two candidate spatial resolutions were tested, characterised as two
different discretisation of the disc diameter, namely for D/h = 12 and 24. In the same table,
the parameters h, �t , s7 and s8 are constrained by (20), and the remaining eigenvalues of
the relaxation matrix were set following Du et al. (2006). The plots in Figure 6(b) (Re = 20)
and 6(c) (Re = 100) illustrate the results obtained with the highest spatial resolution.

Measurements of the drag force FD and of the lift force FL were performed in the
simulations characterised inTable 1, for comparison with a benchmark of numerical methods
of computational fluid dynamics (Schäfer, Turek, Durst, Krause, & Rannacher, 1996).
The comparison is shown in Table 2, in terms of the non-dimensional drag coefficient
CD = 2 FD/(ρf ū2

in D) and lift coefficient CL = 2 FL/(ρf ū2
in D). The benchmark involved

several work groups using different discretisation schemes for the Navier–Stokes equations
(including finite elements, finite volumes and finite differences) and only one group using
a standard implementation of LBM (cf. the MRT approach used herein).
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(a)

(b)

(c)

Figure 6. Simulations of an incompressible fluid past a fixed circular disc of diameter D = 1.2 mm:
(a) geometric configuration and boundary conditions; (b) norm of the macroscopic fluid velocity
at Re = 20, after the flow has entered steady state; (c) norm of the macroscopic fluid velocity at
Re = 100, for a state of maximum drag force, after the flow has entered the unsteady periodic regime.
The results represented in (b) and (c) were obtained with the highest spatial resolution in Table 1.

The values obtained in Schäfer et al. (1996) from continuum-based methods are reported
in Table 2 as statistics of the most refined simulations proposed by each group in the
benchmark. The results obtained with the Authors’ code, for the highest spatial resolution,
are consistent with the values reported for the continuum-based methods; a less satisfactory
agreement is obtained, as expected, for the lowest spatial resolution, particularly as for the
value of the drag coefficient in the unsteady periodic regime, which is about 8% larger than
the maximum value reported for continuum-based methods.

The measures referred to in Schäfer et al. (1996) as obtained from a standard imple-
mentation of LBM are singled out at the end of the table. The relevant values of the drag
and lift coefficients for the unsteady regime are significantly higher than those referred to
continuum-based methods or obtained with the Authors’ code. However, the information
provided in Schäfer et al. (1996) does not enable to state whether this discrepancy is due to
a low spatial resolution or to other features or parameters of the relevant simulation.

In conclusion, the comparison in Table 2 shows that for the parameters referred in Table 1
to the ratio D/h = 24, the LBM algorithm implemented in the Authors’ code provides an
accurate evaluation of the drag and lift forces for the configuration in Figure 6(a), up to
Re = 100.
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Table 2. Calculated drag (CD) and lift (CL) coefficients for the problem in Figure 6(a): comparison
between the values obtained with theAuthors’code (using the parameters in Table 1) and a compilation
of the results from the benchmark in Schäfer et al. (1996). The values for Re = 20 are measured at
steady state. Those for Re = 100 are measured as maxima over one fluctuation period, after the flow
has entered the unsteady periodic regime.

Re = 20 Re = 100

Numerical method Reference CD CL CD CL

LBM-MRT (D/h = 12) Present 5.7282 0.0112 3.5223 1.0012
LBM-MRT (D/h = 24) Present 5.6175 0.0106 3.2195 0.9109
Continuum-based (min.) Schäfer et al. (1996) 5.5069 0.0105 3.0804 0.7256
Continuum-based (avg.) Schäfer et al. (1996) 5.5770 0.0136 3.2077 0.9686
Continuum-based (max.) Schäfer et al. (1996) 5.6323 0.0329 3.2460 1.0692
Standard LBM Schäfer et al. (1996) 5.8190 0.0110 4.1210 1.6120

2.3. Coupling scheme

2.3.1. Hydrodynamic forces on the grains

The actions exchanged between the fluid and the grains are computed by the LBM algorithm
and summed, in the DEM algorithm, to the resultant forces and force moments acting on
each grain due to contact interactions. The computation of the hydrodynamic actions on a
single grain can be illustrated with reference to Figure 4, in which the curved fluid–solid
boundary can be assumed to represent the profile of a grain. The action on the grain at xb is
computed as the momentum transferred by the fluid node xf per unit time (Ladd, 1994a),5

i.e. as

f(xb) = mh2

�t

(
f c
8 (xf , t) c8 − f6(xf , t + �t) c6

)
and can be generalised for arbitrary boundary nodes (cf. Section 2.2.4):

f(xb) = mh2

�t

(
f c
α̂
(xf , t)cα̂ − fα(xf , t + �)cα

)
(24)

The resultant hydrodynamic force is computed by summation of (24) over the nodes xb
encountered along the boundary of the grain. The analogous sum for the cross products
(xb − xg) × f(xb) provides the resultant hydrodynamic force moment at the mass centre xg
of the grain.

2.3.2. Hydraulic radius

A permeable pore network cannot result in 2D from a connected contact network as
developed by compacted granular assemblies, for geometrical reasons. To overcome this
limitation, the hydraulic radius rh of the grain in the LBM model is set to a smaller value than
the reference radius r of the DEM model. Permeabilities and drag forces of realistic orders
of magnitude (i.e. as expected for 3D assemblies with equivalent grain size distributions)
are enabled for assemblies with millimetric grains by ratios rh/r about 0.8 (Boutt, Cook,
McPherson, & Williams, 2007; Boutt, Cook, & Williams, 2011; Cui et al., 2012).

Arelated issue is that of the minimal size of the fluid gap between two grains, in the LBM
model, as illustrated in Figure 7. For numerical stability, and consistently with the numerical
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Figure 7. Illustration of the hydraulic radius.

scheme for the representation of no-slip moving boundaries illustrated in Section 2.2.4, the
fluid gap should always allow at least two arrays of parallel lattice nodes, i.e.

r − rh >
√

2 h + (�xn)max

2

in which (�xn)max is the maximum expected overlap between grains in the DEM model
and the factor

√
2 refers to the least favourable scenario (i.e. when the centres of the two

grains are aligned along a diagonal direction of the lattice).
An additional requirement concerns the resolution, in terms of lattice nodes, of the

hydraulic radius. As discussed by Yu et al. (2003),

rh

h
> 5

is required for reliable estimates of the hydrodynamic actions on the grains at low-
to-moderate Reynolds numbers (namely for 10 < Re < 100, where the Reynolds number
Re herein refers to the hydraulic radius and the representative fluid velocity in the pore
network).

A numerical issue of relevance in the coupling between DEM and LBM is the significant
difference between the optimal time steps for the two algorithms. The time step �t of the
LBM algorithm is a compromise between several requirements; it is related to the dynamic
viscosity through (20), or through the second equation in (15) for the single relaxation time
model; it enters the definition of the computational Mach number, that can be expressed
as Ma = ‖u‖�t/h and should be kept small enough compared with unity for reasons that
are apparent in Section 2.2.1 (a limit value of 0.1 for Ma is a compromise choice often
encountered in the literature). The time step δt of the DEM algorithm is usually set to a
fraction of the oscillation period for a representative pair of grains:

δt = α

√
π r̄2ρs

kn
(25)

where ρs is the mass density of the grains, r̄ is the average radius in the assembly and α is
of the order of 10−2. Since in general δt < �t , the DEM computation cycles are subcycles
of the LBM cycles, and �t is set to a multiple of δt .
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(a)

(b)

Figure 8. Simulation of backward erosion: geometric configurations (L = 66.8 mm, H = 33 mm),
boundary conditions and initial particle arrangements for the coupled models developed with DEM
(a) and LBM (b).

3. Backward erosion test

3.1. Preparation of the granular specimen

The arrangement in Figure 8(a) represents the numerical specimen employed to model a
granular soil REV located on the upstream side of the pipe face. It consists of 800 circular
grains with mass density ρs = 2.65×103 kg m−2 and radii randomly dispersed in the range
from 0.75 to 0.95 mm.6

The specimen was obtained, with the numerical implementation of DEM described in
Section 2.1, by the procedure reported here below which did not involve fluid–solid cou-
pling. A preliminary “lubricated” isotropic compaction from an initial, randomly dispersed
configuration was performed by convergence of four rigid walls parallel to the horizontal
and vertical directions in the figure. At the end of compaction, after the confining pressure
had reached approximately 30 kN m−1, the walls were maintained at fixed positions till the
grains reached a state of near static equilibrium.All the existing contacts were then converted
to bonds, with the exception of those at the right wall. This wall was then carefully removed
(i.e. slowly translated to the right until all contacts on it were lost) while the left, top and
bottom walls were being hold fixed. From null to low-enough velocities were assigned to
the confining walls for the entire procedure to be performed under quasi-static conditions.

The values of the contact parameters during the above procedure are listed in Table 3.
The normal contact stiffness kn was set according to an expected order of magnitude of
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Table 3. Contact parameters employed during preparation of the specimen.

Initialisation of the bonds

Grain-to-wall

During compaction Grain-to-grain Right wall Other walls After the initialisation

kn (N m−1) 5.4 × 107 5.4 × 107 5.4 × 107 5.4 × 107 5.4 × 107

kt (N m−1) 5.4 × 107 5.4 × 107 5.4 × 107 5.4 × 107 5.4 × 107

cn (N s m−1) 500 500 500 500 500
ct (N s m−1) 500 500 500 500 500
A (N) 0 1 0 106 0
C (N) 0 4 0 106 0
μ 0 0.5 0.5 0.5 0.5

10−4 diameter values for the contact deflection at the target confining pressure.7 Due to
lack of specific information, the tangential contact stiffness kt was set as the same value
as the normal stiffness. In order to let the system dissipate efficiently, the normal and
tangential damping coefficients cn and ct were set at about 80% of the critical value for
harmonic oscillators (normal and tangential, resp.) consisting of two interacting discs with
average diameters. The friction coefficient μ was chosen as an arbitrary, yet sensible value.
However, during compaction, lubricated conditions were prescribed via null values of the
latter parameter and of the contact adhesion and cohesion, A and C , for both grain-to-grain
and grain-to-wall contacts, in order to obtain a dense and highly textured configuration.
The contacts detected at the end of compaction, after relaxation of the specimen, were then
“initialised” as reported in the same table. Namely, grain-to-grain contacts were converted to
viscoelastic bonds. The relevant value of contact adhesion is consistent with an extremely
weak macroscopic tensile traction, with order of magnitude 102 N m−1, and the contact
cohesion was set as a multiple of the contact adhesion. The same holds for grain-to-wall
contacts at the left, top and bottom walls, but with extremely large (actually unattainable)
values of adhesion and cohesion, in order to create monolayers of grains sharing permanent
bonds with the walls. At the right wall, grain-to-wall contacts were not initialised as
bonds, but kept as unilateral lubricated viscoelastic contacts for minimal disturbance of
the specimen during the removal of the wall. New contacts created after the initialisations
of the bonds are considered by default as unilateral frictional-viscoelastic. Finally, the time
step δt of the DEM algorithm was set to 2.5 · 10−7 s consistently with (25).

By the time the right wall had been completely removed, the stress on the left, top
and bottom walls relaxed to negligible values. Meanwhile the bond-related coordination
number (i.e. the average number of grain-to-grain bonds per grain) was reducing from
2.805 to 1.383. Furthermore, after removal of the right wall, the overall population of grain-
to-grain contacts consisted almost entirely of bonds (unilateral contacts were less than
1%). The polar histograms in Figure 9 represent the angular distributions of grain-to-grain
contacts at the initialisation of the bonds and after removal of the right wall. The distributions
refer to the whole population of grain-to-grain bonds, as well as separately to compressive
contacts (bonds and unilateral contacts) or tensile bonds. The inherent anisotropy of the
distributions in the same figure is inherited from the compaction procedure, due to a number
of factors such as limited range of grain diameters, the shape and size of the specimen and
the effect of rigid walls.
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(a)

(b)

Figure 9. Specimen preparation: angular distributions of grain-to-grain contacts after initialisation
(a) and right wall removal (b). The histograms refer to the whole populations of bonds (left), or to the
populations of compressive contacts (bonds and unilateral contacts, center) and tensile bonds (right).
The outer circle in each plot refers to 0.25 coordination number units per angular sector bar (on 18
angular sector bars per π radians). The angle of a grain-to-grain contact is given by the orientation of
the unit vector n in Figure 1.

3.2. Flow-induced erosion of the granular specimen

The coupling of DEM and LBM presented in Section 2 was employed to model the
backward erosion induced by an interstitial fluid flow in the specimen obtained from the
“dry” preparation procedure described in the previous section. The simulation is designed
with reference to the physical situation encountered by a REV at the soil–pipe interface in
the front region, eroded by a water flow exiting the REV across its unconfined face (i.e. the
right face in Figure 8(a)).

With regard to the DEM model, during the erosion test the specimen resulting from
the preparation procedure was confined by a rigid wall on the left, maintained at the same
position as at the end of the preparation procedure, while the degrees of freedom of the black-
coloured grains in Figure 8(a) were locked so as to form two oblique rough boundaries at
the top and the bottom, respectively. As illustrated in Figure 10, the resulting trapezoidal
shape of the REV region, consisting of mobile (gray-coloured) grains, is reminiscent of an
angular sector at the supposedly curved soil–pipe interface in the front region.

How the presence of the ambient fluid affects the contact behaviour is still to be
assessed and more advanced, dissipative contact models are being proposed that include
fluid properties (Nguyen & Ladd, 2003; Tomac & Guierrez, 2013; Yang & Hunt, 2008).
However, a refinement in this sense of the contact model is expected to improve significantly
the quality of the results only when the behaviour of a well-identified granular material is
among the objectives of the numerical simulation, which is not the case in this study. Hence,
the same contact model and parameters as at the end of the preparation procedure were used
for modelling the backward-erosion process.
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Figure 10. Sketch of the granular REV as part of the soil-pipe interface in the front region. The REV
is confined on the upstream (left) side by the soil in the intact region and laterally by the contiguous
interface elements.

With regard to the LBM model, Figure 8(b) represents the hydraulic boundary conditions
implemented in the simulation, as well as the “hydraulic configuration” of the specimen at
the beginning of the test: this is the same configuration as in Figure 8(a), but after reduction in
the radii by a factor of 0.8, according to the hydraulic radius hypothesis (see Section 2.3.2).
An incompressible fluid flow, confined by the impervious walls located at the top and the
bottom of the specimen, was enforced through the REV by the pressure difference

�p = pout − pin < 0 (26)

between the right (outlet) and the left (inlet) boundaries of the fluid domain. As in
Section 2.2.6, the fluid is characterised by a mass density ρf = 103 kg m−2 and a dynamic
viscosity η = 10−3 N s m−1, which are rough estimates for the properties of water at 20 ◦C.
The evolution of the normalised pressure difference −�p/(ρf gL), where g is the standard
gravity acceleration, is plotted in Figure 11(i) for the whole duration of the test. Consistent
with (23), the pressure values pout and pin are actually assigned in terms of mass densities,
i.e. pout = c2

s ρf and pin = c2
s (ρf + �ρ), see (15). The flow being considered here as

incompressible in the sense expressed in Section 2.1, the density ρf is to be understood as
the reference mass density ρ0 in that section and the ratio �ρ/ρf is to be of the same or
higher order than the square of the computational Mach number, consistently with (13).

At the beginning of the simulation, the distribution function at each fluid node was
initialised to the values of the Maxwell distribution f eq

α , computed for the mass density
ρf and for u = 0, where u is the macroscopic fluid velocity as in (12). The set of lattice
parameters controlling directly or indirectly the numerical implementation of the LBM
model was chosen consistently with a number of requirements posed in Sections 2.2–2.3.
In particular, the spacing between neighbouring lattice nodes and the lattice time step
were set as h = 5 × 10−5 m and �t = 10−5 s, respectively. A first requirement on the
two parameters, from (20), refers to the imposed values of dynamic viscosity and mass
density of the fluid. Additionally, the choice of h and �t determines the lattice-related
sound speed cs = c/

√
3 = h/(

√
3�t) which, in turn, affects the assignment of the pressure

boundary condition at the inlet and the outlet of the flow conduit (see Section 2.2.5). Other
requirements on the spacing h between neighbouring lattice nodes can be referred to the
spatial resolution for accurate estimates of the hydrodynamic actions (see Section 2.2.6)
and to the hydraulic radius assumption (see Section 2.3.2). The former of the last two
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Figure 11. Evolution of the test: normalised pressure difference (i) and eroded mass fraction (ii).
Labels refer to t = 0.35 s (a), 0.75 s (b), 0.95 s (c), 1.5 s (d) and 4.0 s (e).

requirements was the most restrictive, and h was set equal to 1/12 of the hydraulic radius
of the smallest grain, corresponding to the ratio D/h = 24 in Section 2.2.6. Accordingly,
the eigenvalues of the relaxation matrix and the characteristic lattice speed c were set as
assessed in that section for the same resolution. Notice, finally, that the value of the mass
m of the fluid particle has strictly no effect on the simulation.

Representative Reynolds numbers for the seepage flow were estimated according to
the definition Re = ρf ūp(2r̄h)/η, where ūp is the average fluid velocity in the pore space
and r̄h is the average hydraulic radius. The values reported in Table 4 are consistent with
those considered in Section 2.2.6 for the validation of the implemented algorithm and of
the relevant parameters.

As stressed in Section 2.2.4, the conservation of fluid mass is not an implicit feature of
the implemented no-slip condition for moving boundaries. Therefore, the total fluid mass
was recorded during the first part of the erosion test, up to t = 1.55 s, i.e. before the first
grain started exiting the fluid domain through the channel outlet. An increase of 0.63% was
measured, which is considered consistent with the required accuracy.
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(a)

(b)

(c)

(d)

(e)

Figure 12. Evolution of the test: compressive and tensile force chains (blue-coloured and red-coloured
lines, resp.) and configurations of the specimen at t = 0.35 s (a), 0.75 s (b), 0.95 s (c), 1.5 s (d) and
4.0 s (e).

Table 4. Values of the Reynolds number for the seepage flow at the time instants identified in
Figure 11.

t (s) 0.35 0.75 0.95 1.5 4.0

Re 7.15 17.81 21.23 33.62 74.65
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(a)

(b)

(c)

(d)

(e)

Figure 13. Evolution of the test: norm of the macroscopic fluid velocity and hydraulic configurations
of the specimen at t = 0.35 s (a), 0.75 s (b), 0.95 s (c), 1.5 s (d) and 4.0 s (e).

3.3. Observed results

The evolution of the erosion process during the test is quantified in Figure 11(ii) in terms
of the eroded mass fraction Mer/M0, where Mer and M0 are the eroded and erodible mass,
respectively. At a given time instant, the eroded mass is defined as the cumulative mass of
the grains having crossed the right vertical limit of the initial configuration of the specimen
(i.e. the dashed line in Figure 8(a)). The erodible mass is the total mass of the movable
(gray-coloured) grains in Figure 8(a).
At the beginning of the test, for low-enough values of the pressure difference, no erosion was
observed. Visual information on the process at this stage is provided in Figures 12(a), 13(a)
and 14(a), corresponding to the marks with label (a) in Figure 11. Even at very low values,
the hydraulic load affects the stress transmission through force chains within the specimen:
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(a)

(b)

(c)

(d)

(e)

Figure 14. Evolution of the test: norm of the hydrodynamic force on each grain for the configurations
of the specimen at t = 0.35 s (a), 0.75 s (b), 0.95 s (c), 1.5 s (d) and 4.0 s (e).

a concentration of compressive and tensile force chains can be observed roughly at the
upstream and downstream sides of the specimen, respectively. The comparison between
Figures 9(b) and 15(a) suggests that the resistance mechanism opposed by the assembly
to the drag forces on the grains is lead by the compressive force chains. Moreover, the
contribution of unilateral contacts is not anymore negligible, compared with contact bonds.

Backward erosion was observed for larger values of the driving pressure difference,
roughly in the branch from (b) to (d) in Figure 11. As shown by the corresponding config-
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(a)

(b)

(c)

(d)

Figure 15. Evolution of the test: angular distributions of grain-to-grain contacts at t = 0.35 s (a),
0.75 s (b), 0.95 s (c), 1.5 s (d). See Figure 9 for definitions and units. Only movable grains are
considered (cf. Figure 9).

urations in Figures 12–14, the eroded mass is detached and transported by the flow in the
form of a large, deformable cluster of grains. A main arch of force chains in the middle of
the specimen can be clearly observed, separating the compressive upstream region from the
downstream region being eroded.

The increasing branch after point (d) of the eroded mass diagram in Figure 11(ii) is to be
referred to previously mobilised grains progressively exiting the right limit of the measure
volume: no significant further detachment of granular material was observed up to point
(e). This was due to the resistance provided by the persisting arch of force chains. However,
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the continuously increasing hydraulic gradient resulted in further loading of the arch until
a global instability appeared after (d). The resulting fluidisation of the specimen, in which
all erodible grains were washed away simultaneously, is represented by the final increasing
branch in the same figure (but it is not represented in Figures 12–14).

The plots in Figure 14 illustrate the evolution of the norm of the hydrodynamic forces
on the grains, during the erosion test, and refer to the same configurations identified in
Figure 11. Spatial variability of the hydrodynamic forces is observed at the scale of the
specimen, with a tendency for lower values towards the downstream side of the granular
region. Some randomness at the scale of a few grain diameters can also be observed,
especially in Figure 14(d) and (e), i.e. for larger values of the imposed hydraulic gradient.
Figure 14(b)–(d) also illustrate the complexity of the interaction between the fluid and solid
phases during the backward erosion process. The simple analysis suggests that an accurate
description of the fluid phase is likely to be an essential ingredient of the modelling of the
observed phenomenon.

Afurther insight into the erosion process is provided by the polar histograms in Figure 15.
The population consisting of both compressive bonds and compressive unilateral contacts
kept essentially constant during the whole process. The population of tensile bonds increased
slightly at the onset of erosion (Figure 15(a) and (b)), during the development of the
weakly tensile region at the downstream side of the specimen. The latter population reduced
progressively as the erosion process went on (Figure 15(b)–(d), corresponding to a reduction
of about 26% of the number of tensile bonds).

These observations are consistent with the conjecture that arching is the dominant
resistance mechanism though tensile resistance contributes by regulating the process in
the region being eroded. However, a thorough analysis should include the role of damage
developed at the downstream eroded region due to the removal of the right wall during
the preparation procedure: a similar role is expected to be played in real situations by the
damage due to stress relaxation at the soil–pipe interface.

4. Conclusions

The numerical test presented in this study was designed to assess the effectiveness of
coupling two discrete numerical methods, namely LBM and DEM, for the micromechanical
investigation of piping erosion. The attention was focused on the mechanisms involved in the
backward propagation of erosion, at the pipe tip, induced by the interstitial fluid flow normal
to the soil–pipe interface. Hence, the study is complementary to previous investigations on
piping erosion, using similar numerical tools, but focused on the mechanism of tangential
erosion at the pipe walls leading to conduit enlargement (Lominé et al., 2013; Sibille et al.,
2015).

The coupled scheme discussed in Section 2 and the testing procedure presented in
Section 3 enabled to observe several interesting features in relation to the targeted
phenomenon. Among the latter, the most distinct effect was the marked arching through
force chains, as a self-organised response of the contact/bond network to drag forces and
couples applied on the grains. Further analyses are required to clearly identify the additional
role of tensile traction and damage at the soil–pipe interface.

Particular care was required for the design of the test, in order to obtain realistic solutions
and to ensure numerical stability. This was made possible by the accurate choice of the
numerical parameters, according to separate as well as relative criteria for the two numerical
schemes and consistently with a validation of the computation of the hydrodynamic actions.
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The improved numerical stability of the MRT approach enabled the required flexibility in
the choice of the LBM parameters.

Further developments, currently in progress, include the use of the DEM—LBM cou-
pling to investigate the effectiveness of available laws for erosion kinetics, for their appli-
cation in the analysis of internal erosion at the scale of hydraulic structures (Rotunno et al.,
in preparation; Zhang, Wong, Leo, & Bui, 2013).
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Notes
1. The term on the r.h.s. of (14) is identified in He and Luo (1997b) as (ρ0c2

s )−1∂p/∂t . Incompress-
ibility is thus enforced in the case of steady flow. As discussed in the same reference, ensuring
incompressibility for unsteady flows implies an additional control on the temporal variations in
the driving pressure.

2. The thermal energy density e and the heat flux vector q can be identified (up to terms of the order
O(M3) as M → 0) as the velocity moments e = m

2
∑8

α=0 fα‖cα‖2 and q = m
2

∑8
α=0 fα‖cα‖2cα.

3. For a review of different models for solid boundary, including their efficiency in terms of numerical
stability, the reader is referred to Yu, Mei, Luo, and Shyy (2003).

4. A different approach can be found, which is based on the extrapolation of the distribution function
from the values assumed at the neighbouring fluid nodes (Lallemand & Luo, 2003).

5. The so-called stress integration approach can be used as an alternative to the momentum approach,
considered here, to compute the hydrodynamic actions on the grains. According to Yu et al. (2003),
the former approach provides less consistent estimates.

6. Consistent with the reduction to a two-dimensional geometry, volume and surface densities are
represented as surface and linear densities, respectively.

7. Estimates of the contact deflection under a given confining pressure can be inferred from the
local elastic properties and the characteristic grain size (Roux & Chevoir, 2005). The expected
values for an assembly of quasi-monodisperse silica spheres, at 30 kPa, are of the order of 10−5

diameter values according to Hertz contact model. However, a more realistic estimate should take
into account those imperfections likely to affect the contact behaviour of a real granular material.
Hence, the normal contact stiffness in Table 3 are consistent with values of contact deflection of
the order of 10−4 diameter values at 30 kNm−1.
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