International Association for Bridge and Structural Engineering

A low-order analytical model to monitor tension in shallow cables with specific end conditions

^a Structural & Stochastic Dynamics, University of Liège, Belgium ^b F.R.S.-FNRS, National Fund for Scientific Research, Belgium mgeuzaine@uliege.be

In order to prevent accidents on aging Walloon bridges, the Wallonia Public Service department has launched a research project which aims at remotely keeping track of tension in their cables.

An accurate and non-intrusive method is to identify tension based on the natural frequencies of the cable measured by means of a wireless accelerometer.

Characteristics of cables monitored:

Thus, the identification procedure is the following:

LIEGE université

- 1. Accurate on site measurements, several sensors
- Natural frequencies f [Hz] \rightarrow H, EI, M, I_M , k
- Mode shape ratios $\rightarrow \ell, x_1, K_0, K_1$
- Light remote measurements, one wireless sensor 2.
- Natural frequencies f [Hz] \rightarrow H(t)

tnic

FREEDOM TO RESEARCH

IABSE

TU/e

<u>∭</u> GHENT

UNIVERSITY

- High levels of tension and/or small axial rigidities
- Flexural rigidities not negligible but small
- Various lengths (short hangers or long stay-cables)
- Arbitrary rotational end restraints
- Bottom anchorage possibly flexible and heavy

The corresponding model is presented hereafter. It provides equations of motion that are solved with a mix of analytical and numerical tools. At first, except μ and Δ , the parameters are not exactly known.

Cable model with specific end conditions (x = sensors)

Parameters of the low-order cable model

[kN] Cable tension parallel to the chord

		Cable tension, parallel to the chord
ℓ	[m]	Length between anchorages
μ	[kg/m]	Mass per unit length of the cable
EI	$[kN.m^2]$	Flexural rigidity of the cable
M	[kg]	Mass of bottom anchorage device
I_M	$[kg.m^2]$	Rotational inertia of M
k	[kN/m]	Transverse stiffness at bottom
K_0	[kN/m]	Rotational stiffness at bottom
K_1	[kN/m]	Rotational stiffness at top
x_1	[m]	Distance from bottom to first sensor
Δ	[m]	Distance between consecutive sensors

March 15-16, 2019

Identification procedure applied to hangers and stay-cables

Young Engineers Colloquium 2019 – YEC 2019 **Belgian and Dutch National Groups of IABSE**