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Abstract

In order to remotely monitor tension in a cable over time, an appropriate method is based on the
natural frequencies of the cable measured by means of wireless accelerometers. In this paper, an
existing method is extended to determine the tension in long or short shallow cables with small
bending stiffness and arbitrary end conditions. First, a low-order analytical model is developed to
compute the dynamic response of a given cable. Then, the unknown parameters such as the end
conditions, the exact length of the cable and the tension in the cable are adjusted, using an
iterative nonlinear least-square algorithm, until the computed natural frequencies and associated
mode shapes match the measured ones. This procedure is finally validated with field
measurements collected on long and short cables.
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1 Introduction 2 Low-order model

Recently, dramatic accidents, such as the collapse
of Ponte Morandi in Genoa, draw attention to the
monitoring of bridges. In this context and as
Walloon bridges are aging, the Wallonia Public
Service department has decided to launch a
research project which aims at remotely keeping
track of the time evolution of tension in cables.
According to [1], the most suitable method to
achieve this is to use the natural frequencies of
the cables to identify their levels of tension. This
technique is accurate, non-intrusive and only
requires wireless accelerometers together with a
communication system.

All cables studied in this project are highly
tensioned, but their flexural rigidities are not
always negligible, although small. Long cables
behave like taut strings while short ones get closer
to beams [2] and typical stay-cables or hangers lie
somewhere in the continuum extending between
these two well-known extremes. Apart from that,
in some cases, the mass and the flexibility of the
bottom anchorage of cables significantly influence
the frequencies and thus have to be taken into
account as well.

In order to describe the dynamic response of a
cable, the low-order analytical model developed
here contains 9 dimensional parameters, or
equivalently 6 dimensionless numbers (see Figure
1 and Table 1).
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Figure 1. Cable model with specific end conditions.

Table 1. Parameters of the low-order cable model.

H [kN] Cable tension, parallel to the chord

¢ [m] Length between anchorages

1 [kg/m] Mass per unit length of the cable
ET | [kN.m?] Flexural rigidity of the cable

M [ke] Mass of left anchorage device (bottom)
Iy | [kg.m?] Rotational inertia of M

k [N/m] [Transverse stiffness at left end (bottom)
Ky [Nm] |Rotational stiffness at left end (bottom)
Ky [Nm] Rotational stiffness at right end (top)
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Figure 2. Validation of the identification procedure where f,, [Hz] is the frequency associated to mode n.
(solid line = measured, dashed line = computed, dotted line = taut string)

3 Identification procedure

A direct analysis of the model is carried out to
understand how the model parameters
respectively affect the dynamic response of
cables. In practice, they are not known from the
outset, except ¢ and, in some cases, ¥.

Therefore, the first step is to precisely measure
the dynamic response of cables to identify their
dimensionless parameters based on natural
frequencies and possibly their lengths using mode
shapes. This step is a specificity of the
identification method we propose and makes it
significantly different from existing methods
which usually disregard mode shapes.

Once parameters are identified, cables are
equipped with wireless accelerometers that
provide daily measurements of natural
frequencies needed to follow the evolution of the
tension in cables over time.

4 Validation

As shown on Figure 2, the procedure has been
validated with natural frequencies measured on
long stay-cables from Lixhe Bridge and on short
hangers from Harchies Bridge (Wallonia, Belgium).

When cables are shorter, the parameter &?
related to flexural rigidity rises, resulting in an
increasing difference between cable frequencies

and taut string frequencies. Obviously, this
difference also depends on the mode observed as
higher ones are characterized by larger
curvatures.

Several additional examples will be detailed in the
presentation.

5 Conclusions

A low-order analytical model of shallow cables
with small bending stiffness and specific end
conditions has been presented. It is exploited by a
two-step identification procedure which has been
defined and validated on cables of any length.
First, model parameters are identified using
natural frequencies and modes shapes. Second,
tension is adjusted based on natural frequencies
measured remotely.
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