

Weighted \mathcal{U} -frequent hypercyclicity

Céline ESSER Celine.Esser@uliege.be

University of Liège - Institute of Mathematics

Lens – October 24, 2018

Joint work with R. ERNST and Q. MENET

イロト イポト イヨト イヨト

Introduction and statement of the problem

Let $T: X \to X$ be a linear operator (X separable Banach space, $\dim X = \infty$).

• T is \mathcal{U} -frequently hypercyclic (ufhc) if $\exists x \in X$ such that $\forall U \neq \emptyset$ open

 $\overline{d}(\{n \ge 0: T^n x \in U\}) > 0.$

The set of such points is denoted $\mathit{UFHC}(T)$ (Shkarin 2009).

• *T* is reiteratively hypercyclic (rhc) if $\exists x \in X$ such that $\forall U \neq \emptyset$ open

 $\overline{Bd}(\{n \ge 0 : T^n x \in U\}) > 0.$

The set of such points is denoted RHC(T) (Bès, Menet, Peris, Puig 2016).

・ロト ・ 四ト ・ ヨト ・ ヨト

For $E \subseteq \mathbb{N}$, the densities used are

• the upper density
$$\overline{d}(E) = \limsup_{n \to +\infty} \frac{\#(E \cap [0, n])}{n+1}$$

• the upper Banach density $\overline{Bd}(E) = \lim_{n \to +\infty} \lim_{n \to +\infty} \lim_{n \to +\infty} \frac{\#(E \cap [n, n+k])}{n+1}$

• the upper Banach density $Bd(E) = \lim_{k \to +\infty} \limsup_{n \to +\infty} \frac{n(2 + k(k) + k(j))}{k+1}$

One has $\overline{d}(E) \leq \overline{Bd}(E)$ hence

$$T \text{ ufhc } \Longrightarrow T \text{ rhc}$$

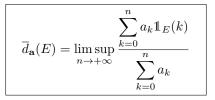
but one can prove that T rhc \Rightarrow T ufhc (Bès, Menet, Peris, Puig 2016)

Question: Is it possible to find intermediate densities that fill the gap?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Weighted upper densities

Let $\mathbf{a} = (a_n)_{n \in \mathbb{N}}$ be a sequence of positive real numbers such that $\sum_{n \in \mathbb{N}} a_n = +\infty$. The a-upper density of a set $E \subseteq \mathbb{N}$ is defined by



An operator T is a-upper frequently hypercyclic (ufhc_a) if $\exists x \in X$ such that $\forall U \neq \emptyset$ open,

$$\overline{d}_{\mathbf{a}}\big(\{n \ge 0: T^n x \in U\}\big) > 0.$$

The set of such points is denoted $UFHC_{\mathbf{a}}(T)$ and is a residual set (Bonilla, Grosse-Erdmann 2018)

ヘロン 人間 とくほ とくほ とう

Remarks

- If $\frac{a_n}{b_n} \searrow 0$, then $\overline{d}_a \leq \overline{d}_b$. Hence $ufhc_a \Rightarrow ufhc_b$ (Ernst, Mouze 2017)
- If $a_n = 1$ for all $n \in \mathbb{N}$, then $\overline{d}_{\mathbf{a}} = \overline{d}$. Hence $\mathsf{ufhc}_{\mathbf{a}} \Leftrightarrow \mathsf{ufhc}$
- Let $\nu_n = \frac{a_n}{\sum_{k=0}^{n-1} a_k}$. If there is C > 0 such that $\nu_n \ge C$ for all $n \in \mathbb{N}$, then $\overline{d}_{\mathbf{a}}(E) > 0$ as soon as $\#E = +\infty$

Consequences

- (\mathcal{H} 1) We consider sequences $\mathbf{a} = (a_n)_{n \in \mathbb{N}}$ such that $a_n \nearrow +\infty$
- (\mathcal{H} 2) We impose that $\nu_n \searrow 0$

We denote by \mathcal{A} the set of such sequences \mathbf{a} .

イロト 人間 とくほ とくほ とう

Example 1

For any $\alpha > 0$, the sequence $(n^{\alpha})_{n \in \mathbb{N}}$ belongs to \mathcal{A} :

•
$$n^{\alpha} \nearrow +\infty$$

• $\nu_n = \frac{n^{\alpha}}{\sum_{k=1}^{n-1} k^{\alpha}} \sim \frac{n^{\alpha}}{n^{\alpha+1}} \searrow 0$

Example 2

For any $\alpha > 1$, the sequence $(\alpha^n)_{n \in \mathbb{N}}$ does not belong to \mathcal{A} :

$$\nu_n = \frac{\alpha^n}{\sum_{k=1}^{n-1} \alpha^k} = \frac{\alpha^n}{\frac{\alpha - \alpha^n}{1 - \alpha}} = (1 - \alpha)\frac{1}{\alpha^{1 - n} - 1} \to \alpha - 1$$

イロト イポト イヨト イヨト

Comparison of the densities

Result

- For every $\mathbf{a} \in \mathcal{A}$, one has $\overline{d} \leq \overline{d}_{\mathbf{a}}$.
- For every $\alpha > 0$, the sequence $\mathbf{a} = (n^{\alpha})_{n \in \mathbb{N}} \in \mathcal{A}$ satisfies

$$\frac{1}{1+\alpha}\overline{d}_{\mathbf{a}} \le \overline{d} \le \overline{d}_{\mathbf{a}}.$$

Consequence

For every operator T, there is $\mathbf{a} \in \mathcal{A}$ such that $UFHC(T) = UFHC_{\mathbf{a}}(T)$. In particular,

$$\textit{UFHC}(T) = \bigcap_{a \in \mathcal{A}} \textit{UFHC}_{\mathbf{a}}(T)$$

and

T ufhc $\Leftrightarrow T$ ufhc_{\mathbf{a}} for every $\mathbf{a} \in \mathcal{A}$

Result

- For every $\mathbf{a} \in \mathcal{A}$, one has $\overline{d}_{\mathbf{a}} \leq \overline{Bd}$.
- Let $(E_k)_{k\in\mathbb{N}}$ be a sequence of subsets of \mathbb{N} . There exists $\mathbf{a} \in \mathcal{A}$ such that

$$\overline{Bd}(E_k) \le e \,\overline{d}_{\mathbf{a}}(E_k) \quad \forall k \in \mathbb{N} \,.$$

Consequence

For every operator T,

$$R\!H\!C(T) = \bigcup_{a \in \mathcal{A}} U\!F\!H\!C_{\mathbf{a}}(T)$$

and

T rhc $\Leftrightarrow T$ ufhc_{\mathbf{a}} for some $\mathbf{a} \in \mathcal{A}$

If T is rhc, then $R\!H\!C(T) = H\!C(T)$ (Bès, Menet, Peris, Puig 2016)

Result

For every $a \in A$, one has $UFHC_a(2B) \neq HC(2B)$. However, if T is rhc, then

$$HC(T) = \bigcup_{\mathbf{a} \in \mathcal{A}} UFHC_{\mathbf{a}}(T)$$

Chaos and $\mathsf{ufhc}_{\mathbf{a}}$

One has (Menet 2017)

- chaos \Rightarrow rhc
- chaos ⇒ ufhc

Result

For every $\mathbf{a} \in \mathcal{A}$, there is a chaotic operator on ℓ^1 which is not ufhc_a.

ヘロト ヘ週 ト ヘヨト ヘヨト

Product of operators

Question: Given an operator T which is ufhc / ufhc_a / rhc, what can we say about the operator $T \times \cdots \times T$?

Result

If T is ufhc_a, then $T \times \cdots \times T$ is ufhc_a.

Keys: (using ideas from Bayart, Rusza 2015 & Bès, Menet, Peris, Puig 2016)

- ufhc_a \Rightarrow weakly-mixing
- If $\overline{d}_{\mathbf{a}}(E) > 0$, then there is $\delta > 0$ such that the set

$$\left\{k \ge 0: \overline{d}_{\mathbf{a}} \big(E \cap (E-k) \big) > \delta \right\}$$

is syndetic

Consequence

If T is ufhc (resp. rhc), then $T \times \cdots \times T$ is ufhc (resp. rhc).

イロト イポト イヨト イヨト

Main references

F. Bayart and I. Z. Ruzsa

Difference sets and frequently hypercyclic weighted shifts Ergod. Theory Dyn. Syst., **35**, 691–709, 2015.

J. Bès, Q. Menet, A. Peris and Y. Puig *Recurrence properties of hypercyclic operators* Math. Ann. **366**, 545–572, 2016.

A. Bonilla and K-G. Grosse-Erdmann Upper frequent hypercyclicity and related notions Rev. Mat. Complut., **31**, 673–711, 2018.

R. Ernst and A. Mouze

A quantitative interpretation of the frequent hypercyclicity criterion Ergod. Theory Dyn. Syst., https://doi.org/10.1017/etds.2017.55, 2017.

Q. Menet

Linear chaos and frequent hypercyclicity Trans. Amer. Math. Soc. **369**, 4977–4994, 2017.

S. Shkarin

On the spectrum of frequently hypercyclic operators Proc. Amer. Math. Soc. **137**, 123–134, 2009.