Weighted U-frequent hypercyclicity

Céline Esser
Celine.Esser@uliege.be

University of Liège – Institute of Mathematics

Lens – October 24, 2018

Joint work with
R. Ernst and Q. Menet
Introduction and statement of the problem

Let $T : X \to X$ be a linear operator (X separable Banach space, $\dim X = \infty$).

- T is U-frequently hypercyclic (ufhc) if $\exists x \in X$ such that $\forall U \neq \emptyset$ open
 \[\overline{d}(\{n \geq 0 : T^n x \in U\}) > 0.\]
 The set of such points is denoted $UFHC(T)$ (Shkarin 2009).

- T is reiteratively hypercyclic (rhc) if $\exists x \in X$ such that $\forall U \neq \emptyset$ open
 \[\overline{Bd}(\{n \geq 0 : T^n x \in U\}) > 0.\]
 The set of such points is denoted $RHC(T)$ (Bès, Menet, Peris, Puig 2016).
For $E \subseteq \mathbb{N}$, the densities used are

- the upper density $\overline{d}(E) = \limsup_{n \to +\infty} \frac{\#(E \cap [0, n])}{n + 1}$

- the upper Banach density $\overline{Bd}(E) = \lim_{k \to +\infty} \limsup_{n \to +\infty} \frac{\#(E \cap [n, n + k])}{k + 1}$

One has $\overline{d}(E) \leq \overline{Bd}(E)$ hence

$$T \text{ ufhc} \iff T \text{ rhc}$$

but one can prove that $T \text{ rhc} \not\Rightarrow T \text{ ufhc}$ (Bès, Menet, Peris, Puig 2016)

Question: Is it possible to find intermediate densities that fill the gap?
Weighted upper densities

Let \(a = (a_n)_{n \in \mathbb{N}} \) be a sequence of positive real numbers such that \(\sum_{n \in \mathbb{N}} a_n = +\infty \). The \(a \)-upper density of a set \(E \subseteq \mathbb{N} \) is defined by

\[
\overline{d}_a(E) = \limsup_{n \to +\infty} \frac{\sum_{k=0}^{n-1} a_k 1_E(k)}{\sum_{k=0}^{n-1} a_k}
\]

An operator \(T \) is \(a \)-upper frequently hypercyclic (ufhc_{\text{a}}) if \(\exists x \in X \) such that \(\forall U \neq \emptyset \) open,

\[
\overline{d}_a(\{n \geq 0 : T^n x \in U\}) > 0.
\]

The set of such points is denoted \(\text{UFHC}_{\text{a}}(T) \) and is a residual set (Bonilla, Grosse-Erdmann 2018)
Remarks

• If $\frac{a_n}{b_n} \searrow 0$, then $\overline{d}_a \leq \overline{d}_b$. Hence ufhc$_a \Rightarrow$ ufhc$_b$ (Ernst, Mouze 2017)

• If $a_n = 1$ for all $n \in \mathbb{N}$, then $\overline{d}_a = \overline{d}$. Hence ufhc$_a \Leftrightarrow$ ufhc

• Let $\nu_n = \frac{a_n}{\sum_{k=0}^{n-1} a_k}$. If there is $C > 0$ such that $\nu_n \geq C$ for all $n \in \mathbb{N}$, then $\overline{d}_a(E) > 0$ as soon as $\#E = +\infty$

Consequences

• ($\mathcal{H}1$) We consider sequences $a = (a_n)_{n \in \mathbb{N}}$ such that $a_n \nearrow +\infty$

• ($\mathcal{H}2$) We impose that $\nu_n \searrow 0$

We denote by \mathcal{A} the set of such sequences a.
Example 1

For any $\alpha > 0$, the sequence $(n^\alpha)_{n \in \mathbb{N}}$ belongs to \mathcal{A}:

- $n^\alpha \nearrow +\infty$
- $\nu_n = \frac{n^\alpha}{\sum_{k=1}^{n-1} k^\alpha} \sim \frac{n^\alpha}{n^{\alpha+1}} \searrow 0$

Example 2

For any $\alpha > 1$, the sequence $(\alpha^n)_{n \in \mathbb{N}}$ does not belong to \mathcal{A}:

$$\nu_n = \frac{\alpha^n}{\sum_{k=1}^{n-1} \alpha^k} = \frac{\alpha^n}{\alpha - \alpha^{n-1}} = (1 - \alpha) \frac{1}{\alpha^{1-n} - 1} \to \alpha - 1$$
Comparison of the densities

Result

• For every \(a \in A \), one has \(\overline{d} \leq \overline{d}_a \).

• For every \(\alpha > 0 \), the sequence \(a = (n^\alpha)_{n \in \mathbb{N}} \in A \) satisfies

\[
\frac{1}{1 + \alpha} \overline{d}_a \leq \overline{d} \leq \overline{d}_a.
\]

Consequence

For every operator \(T \), there is \(a \in A \) such that \(UFHC(T) = UFHC_a(T) \).

In particular,

\[
UFHC(T) = \bigcap_{a \in A} UFHC_a(T)
\]

and

\[T \ ufhc <\!\!<\!\! T \ ufhc_a \text{ for every } a \in A \]
Result

- For every $a \in A$, one has $\overline{d_a} \leq B \overline{d}$.
- Let $(E_k)_{k \in \mathbb{N}}$ be a sequence of subsets of \mathbb{N}. There exists $a \in A$ such that
 $$B \overline{d}(E_k) \leq e \overline{d_a}(E_k) \quad \forall k \in \mathbb{N}.$$

Consequence

For every operator T,

$$RHC(T) = \bigcup_{a \in A} UFHC_a(T)$$

and

$$T \text{ rhc } \iff T \text{ ufhc}_a \text{ for some } a \in A$$
If T is rhc, then $RHC(T) = HC(T)$ (Bès, Menet, Peris, Puig 2016)

Result

For every $a \in A$, one has $UFHC_a(2B) \neq HC(2B)$.

However, if T is rhc, then

$$HC(T) = \bigcup_{a \in A} UFHC_a(T)$$

Chaos and ufhc$_a$

One has (Menet 2017)

- chaos \implies rhc
- chaos \nRightarrow ufhc

Result

For every $a \in A$, there is a chaotic operator on ℓ^1 which is not ufhc$_a$.
Product of operators

Question: Given an operator T which is ufhc / ufhc$_a$ / rhc, what can we say about the operator $T \times \cdots \times T$?

Result

If T is ufhc$_a$, then $T \times \cdots \times T$ is ufhc$_a$.

Keys: (using ideas from Bayart, Rusza 2015 & Bès, Menet, Peris, Puig 2016)

- ufhc$_a$ \Rightarrow weakly-mixing
- If $\overline{d}_a(E) > 0$, then there is $\delta > 0$ such that the set

$$\{k \geq 0 : \overline{d}_a(E \cap (E - k)) > \delta\}$$

is syndetic

Consequence

If T is ufhc (resp. rhc), then $T \times \cdots \times T$ is ufhc (resp. rhc).
Main references

F. Bayart and I. Z. Ruzsa
Difference sets and frequently hypercyclic weighted shifts

J. Bès, Q. Menet, A. Peris and Y. Puig
Recurrence properties of hypercyclic operators

A. Bonilla and K-G. Grosse-Erdmann
Upper frequent hypercyclicity and related notions

R. Ernst and A. Mouze
A quantitative interpretation of the frequent hypercyclicity criterion

Q. Menet
Linear chaos and frequent hypercyclicity

S. Shkarin
On the spectrum of frequently hypercyclic operators