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Abstract

In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk
rocks presented very contrasting results in terms of transit times, according to artificially
controlled water recharge conditions prevailing during the experiments. Under intense
recharge conditions, tracers migrated across the partially or fully saturated fissure network, at
high velocity in accordance with the high hydraulic conductivity and low effective porosity
(fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the
almost immobile water located in the matrix. Under natural infiltration conditions, the fissure
network remained inactive. Tracers migrated downward through the matrix, at low velocity in
relation with the low hydraulic conductivity and the large porosity of the matrix. Based on
these observations, Brouyére et al. (2004a) proposed a conceptual model in order to explain
the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here,
mathematical and numerical modelling of tracer and contaminant migration in variably
saturated fissured chalk is presented, considering the aforementioned conceptual model. A
new mathematical formulation is proposed to represent the unsaturated properties of the
fissured chalk in a more dynamic and appropriate way. At the same time, the rock water
content is partitioned between mobile and immobile water phases, as a function of the water
saturation of the chalk rock. The groundwater flow and contaminant transport in the variably
saturated chalk is solved using the control volume finite element method. Modelling the field
tracer experiments performed in the variably saturated chalk shows the adequacy and
usefulness of the new conceptual, mathematical and numerical model.

Keywords: dual-porosity, dual-permeability, fissured chalk, transport model, unsaturated

zone, retention curve, relative hydraulic conductivity
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Introduction

Recently, Brouyere et al. (2004a) have presented the results of an experimental study
performed in the Hesbaye region in Belgium in order to characterize and to quantify
hydrodynamic and hydrodispersive processes governing the downward migration of solute
contaminants (e.g., nitrates) across the unsaturated zone overlying a fissured chalk aquifer.
One of the most significant observations drawn from these experiments is the high contrast in
terms of tracer transit times across the unsaturated chalk depending on the application of an
artificial water recharge (forced gradient conditions) in the injection well or not (natural
infiltration conditions). Tracer transit times across the unsaturated zone varied from a few
hours when forced gradient conditions prevailed to almost one year under natural infiltration
conditions.

The tracer test results can be explained by the dual-porosity, dual-permeability of the chalk. In
the fissured chalk, groundwater flow and transport conditions can be highly variable
according to the degree of water saturation of the rock. Under normal recharge conditions,
fissures remain empty in the unsaturated zone of the chalk and a slow regime of flow and
contaminant transport is active in the matrix characterised by a low hydraulic conductivity
and a high porosity. In the saturated zone, or under intensive recharge conditions in the
unsaturated zone, water and contaminants migrate at high velocity along the partially or fully
saturated fissures controlling the hydraulic conductivity of the rock mass. The effective
porosity is low, representing the contribution of fissures to the total porosity of the chalk. At
the same time, transported contaminants are subject to retardation in the matrix (matrix
diffusion) where the water can be considered as immobile compared to the water moving in
the fissure network. The transport mechanism across the fissured chalk is schematised in

Figure 1.
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This conceptualisation of the dynamic behaviour of chalk hydraulic and hydrodispersive
properties explained, from a conceptual point of view, the tracer test results (Brouyére et al.
2004a). However, a transcription into a mathematical model was required. Below, the
mathematical model developed in order to represent more accurately the variations in
hydraulic conductivity and effective porosity of the chalk with respect to infiltration
conditions and degree of saturation of the chalk is presented. The numerical solution of
groundwater flow and contaminant transport in the variably saturated chalk, using the three-
dimensional finite element simulator SUFT3D is described. Modelling results of the field
tracer experiments performed in the chalk, used to illustrate the developments, support the
conceptual model and demonstrate that the mathematical model is adequate to explain the

tracer experiments.

1 Modelling the hydraulic and hydrodispersive behaviour of the variably
saturated chalk

Many conceptual and mathematical models were proposed to simulate the hydrodynamic
behaviour of structured media characterised by preferential flow paths such as fissured rocks
or aggregate soils (e.g., Bai et al. 1993, Pruess et al. 1999, Berkowitz 2002). Most advanced
concepts rely on a distinct modelling of the preferential flows paths and the matrix (e.g., Gwo
1992, Dykhuizen 1987, 1990, VanderKwaak 1999). Such approaches are relatively
complicated and they require a large number of parameters that are often not available for
characterizing both hydraulic networks and their interactions. Consequently, they are
frequently not suitable for practical (field scale) applications. Another solution is to consider
the medium as a single continuum (e.g., Peters and Klavetter 1988, Berkowitz et al. 1988,
Finsterle 2000) by assuming a pressure equilibrium between the matrix and the fissures. In

that case, the mathematical relationships used to model the hydraulic behaviour of the rock
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mass under variably saturated conditions have to be adapted to account for the dynamic
evolution of flow conditions according to the degree of saturation of the rock. Two

characteristic curves need to be defined: the retention curve #(h) linking the water content @
(dimensionless) to the applied suction head h (L), and the hydraulic conductivity curve k, (6?)
relating the evolution of the relative hydraulic conductivity k, (dimensionless) with the water

content 4. Classical mathematical relationships used to model unsaturated properties (e.g.
van Genuchten 1980, Mualem 1976) are not directly suited as they do not allow an accurate
representation of the unsaturated behaviour of the underground medium close to saturation.
These relationships implicitly rely on a uni-modal distribution of pore dimensions (Fredlung
and Xing 1994). In structured media, such as in fissured chalk, this distribution is at least bi-
modal, often multi-modal (Price et al. 1993, Younger and Elliot 1995). Several relationships,
based on bi- or multi-modal distributions of pore space, were proposed in the literature for
modelling the unsaturated properties of structured media (e.g., Smettem and Kirby 1990,
Othmer et al. 1991, Ross and Smettem 1993, Durner 1994, Fredlung and Xing 1994, Fredlung
et al. 1994, Mallants et al. 1997). However, these models, usually developed for representing
the retention curve, do not allow an analytical derivation of the relationship between the
hydraulic conductivity and the water content from the retention curve. Furthermore, they are
usually not continuously derivable, a condition that is not essential but interesting if
groundwater flow simulations require the computation of derivatives of the unsaturated
characteristic curves, such as Newton linearization (e.g., Paniconi et al. 1991, Paniconi and
Putti 1994). The new mathematical relationships proposed here after to model the unsaturated
characteristic curves of the chalk overcome these problems and they still offer a relatively

large flexibility for modelling the unsaturated properties of structured media.
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1.1 Retention curve

For modelling the unsaturated properties of fissures, a model such as that of Wang and
Narasimhan (1985) could probably be very suited. However, it requires a detailed knowledge
of the morphology and distribution of fissures, which is not available here. The retention
curve of the chalk is modelled here using the combination of two van Genuchten
relationships, one defined for the matrix, one for the fissures.

Up to this point, the model used for the retention curve is similar to that of Ross and Smettem
(1993) or Durner (1994). In contrast to these models that just sum the two retention curves to
build the global functionality describing the retention curve of the structured medium, the
approach proposed here forces a continuously derivable transition between the relations that
describe the matrix and the fissure component respectively (Figure 2). Accordingly, it is
possible to derive analytically the hydraulic conductivity curve from the retention curve
across the whole range of water contents.

The relationship used to model the retention curve associated with the matrix is (Figure 2,

light grey curve):
9_9 Ny —Mm
O3y =95M—_:9r:[1+(0mh) ] 1)

where 6, is the residual water content of the matrix; 6, ,, (dimensionless), to be considered
just as a fitting parameter, is the ‘equivalent’ saturated water content of the matrix, close but
different from the matrix total porosity n, (dimensionless); «,, (L™, n,, (dimensionless) and
m,, (dimensionless) are the van Genuchten parameters used to fit the portion of the retention
curve associated with the matrix; ©®,, (dimensionless) is the relative saturation of the matrix.

The relationship used to model the retention curve associated with the fissure component of

the chalk is (Figure 2, dark grey curve):
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where @, . (dimensionless), to be considered just as a fitting parameter, is the ‘equivalent’
residual water content of the fissure; 6, (dimensionless) is the saturated water content of the
chalk rock; a. (L"), n. (dimensionless) and m_ (dimensionless) are the van Genuchten
parameters used to fit the portion of the retention curve associated with the fissures; ©.

(dimensionless) is the relative saturation of the fissures.

At the point (49J ,h; ) common to the matrix and fissure retention curves (Figure 2), continuity

conditions can be expressed as follows:

-continuity of the retention curve:  (6,,h,),, =(8,,h,), (3a)

-continuity of the first derivative of the retention curve: 4 = o (3b)
oh),, \oh) .

This comes to solving the following equation system in terms of ¢, . and n. (Brouyere

2001):

6. +(0.0 =0, )(1+ (o, )™ )_mM +0, (1+ (aehy )™ )_mF

A6, ¢.0:)=6, —— — -0 4
Fie =0, vl )] (42)
y(er,F’nF):

m 05 _er m m mM m es_er, m m " (4b)
_ G r_(m“; )@)ZMM(l—@fMMj + L ;EmF F)G)Jy,;[l—@)f;j =0

In practice, the adjustment of the retention curve representative of the chalk rock is performed
as follows. First, the porosities associated with the matrix and the fissures respectively are

defined, the total of these two values being set equal to the saturated water content &, of the
rock. The van Genuchten parameters relative to the matrix (e, , n,, and 4, ,,) are obtained

by fitting Equation (1) on retention curves measured on chalk matrix samples (see Brouyere et
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al. 2004a). An estimation has to be provided for the capillary rise (- =1/a; ) in the fissure
network. Estimates of the capillary rise in the fractures can be found in the literature (e.g.,

Price et al. 1993). The parameters n. and ¢, . are determined by solving the equation system

(4a) and (4b) in order to meet the conditions (3a) and (3b).

1.2 Relative hydraulic conductivity curve

In order to derive the relationship between the hydraulic conductivity and the water content
analytically from the retention curve, the model of Mualem (1976) is considered. This model
was used already for the estimation of the evolution of hydraulic conductivity in fissured

rocks (Peters and Klavetter 1988). The fundamental relationship of Mualem’s model is:

- -2

A
d%_

In Equation (5), P is a parameter for which an optimal value of 0.5 was proposed and

O

()

oc—

When the matrix is partially saturated and the fissures are completely desaturated,
mathematical integration is performed along the retention curve describing the matrix

(Equation 1):
_ (4o _ o |
fy (9)__‘.7_0% (es,M —9,{1—(1—@,\,' j J (6a)

For a fully saturated matrix and partially saturated fissures, integration starts from 6 =6, and

it is performed along the retention curve describing the fissures (Equation 2):

f(@): fu (93)"‘ fF(e) (6b)
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The evaluation of Equation (6¢) in & =6, gives:

f(@s): fu (‘9J)+ fF(es) (6d)
Introducing Equations (6b) and (6d) into Equation (5) provides the functionality to describe

the evolution of the relative hydraulic conductivity with the water content k(). For
completeness, Annex 1 provides the mathematical expressions for the derivatives d¢/dh and
dk, /dh, needed for numerical solution of the Richards equation using Newton-Raphson

linearization.

Figure 3 shows the characteristic curves obtained using mean van Genuchten parameters
estimated by fitting the retention curves measured on the chalk matrix samples and using
literature values for the fissure characteristics (Brouyere 2001, Brouyere et al. 2004a). The
relative hydraulic conductivity curve shows the expected evolution with water content or
suction head. For a small suction applied, fissures desaturate and the hydraulic conductivity of
the chalk rock drops by several orders of magnitude. Afterwards, the water content and the
relative hydraulic conductivity show a slower variation when the suction is increased. The
relationship reproduces the strong reduction in hydraulic conductivity observed when the
fissure network is inactive (here, a reduction by a factor 100). This validates a posteriori the
use of Mualem’s model together with the proposed bi-modal retention curve.

The way the two retention curves are combined to create the global retention curve means that
until the matrix is fully saturated, fissures are empty and remain inactive. This implies that the
retention model cannot accommodate by-pass flows observed when there is pressure

disequilibrium between the fissures and the matrix. Therefore, the use of the model is

-9-
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restricted to relatively slowly changing infiltration conditions. In the Hesbaye aquifer, the
existence of a thick layer of loess smoothes the temporal variations of groundwater recharge
rate at the top of the unsaturated chalk layer and the assumption of pressure equilibrium
between the matrix and the fissures is likely to occur in the unsaturated zone (Brouyére et al.
2004a). These relationships could also be used to model situations for which fast flow along
fissures is observed in the unsaturated zone without pressure disequilibrium, such as water
film flows (Tokunaga and Wan 1997, 1998, Tokunaga et al. 2000, Or and Tuller 2000) or
fracture surface-zone flows (Tokunaga and Wan 2001). Finally, if pressure disequilibrium and

by-pass flow occur, the model proposed here provides a good first approximation.

1.3 Partitioning the chalk porosity according to the water saturation degree

Structured geological formations are often characterized by the presence of an important
quantity of immobile or less mobile water located in small pores or in less pervious layers
(Gerke and van Genuchten 1993). To compute contaminant transport and retardation in such
formations, the dual-porosity, first-order transfer model (Coats and Smith 1964, van
Genuchten and Wierenga 1976, Brouyére et al. 2000) introduces two parameters in the

calibration process: the immobile water porosity &, (dimensionlesss) and the first order

transfer coefficient & (T™). The original form of the dual porosity model assumes that the
porosity associated with the immobile water is constant. This model will be further called the
“classical dual porosity model” (CDPM approach). However, when modelling transient
unsaturated groundwater flows, any reduction of water content should affect the distribution
of water between mobile and immobile water phases. If one of these terms is assumed
constant, for example the immobile water content, when the total water content is reduced by
amplitude close to that of the effective porosity, i.e. the mobile water porosity

6., (dimensionless), the latter tends towards zero, which is physically and mathematically

unacceptable (Zurmiihl and Durner 1996). In reality, as discussed by Brouyeére et al. (2004a),
-10 -
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under variably saturated flow conditions, when the rock mass desaturates, fissures desaturate
first and the hydraulic conductivity of the rock mass is globally reduced. In such conditions,
water located in the matrix cannot be considered as immobile anymore and it becomes the
only vector of mobility of contaminants. In other words, matrix porosity becomes associated
with the effective porosity.

It appears that, in order to be applicable in transient variably saturated groundwater flow
conditions, the dual porosity first order transfer model has to be adjusted. Water needs to be
distributed between mobile and immobile phases, depending of the degree of saturation.
Zurmilh and Durner (1996) suggested several criteria, the simplest being the consideration of
a constant ratio between the immobile water porosity and the total water content:

Him
c part — 7 (7a)

They also suggested distributing the water according to the ratio of relative hydraulic

conductivity values associated with the immobile water and the total water content:

C — kr (Qim ) (7b)

With this approach, the hydraulic conductivity curve reflects the distribution of velocities in
the medium, analogous to a capillary bundle model (Rao et al. 1976, Toride et al. 1995). This
adjusted model will be further called the “dynamic dual porosity model” (DDPM approach).
Figure 4 illustrates this concept, using the hydraulic conductivity curve defined for the chalk
in the previous section, with a partitioning coefficient cpae = 0.01. At saturation, the effective
porosity of the chalk rock is small, associated with the fissures, and the quantity of immobile
water in the dual porosity is high, associated with the chalk matrix (Figure 4a). When fissures
desaturate, the effective porosity of the chalk is higher, associated with a part of the water
moving in the matrix. At the same time, the quantity of water that is considered as immobile

is reduced (Figure 4b).

-11 -
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1.4 First conclusions

In the variably saturated dual-porosity, dual-permeability chalk, the hydraulic conductivity is
likely to change rapidly by several orders of magnitudes and the distribution of water content
between mobile and immobile water needs to be continuously updated. The mathematical
model presented here above meets these two essential criteria. When the fissures are partially
or fully saturated, the model predicts a high hydraulic conductivity and a low effective
porosity of the chalk rock. At the same time, dual-porosity effects are likely to be important
because of the large porosity of the matrix. When the saturation degree is reduced, fissures
become inactive and the hydraulic conductivity curve is reduced by several orders of
magnitude. The effective porosity of the chalk rock becomes larger, associated with water
present in the rock matrix. The next section describes the adaptations to groundwater flow and
contaminant transport equations solved in the SUFT3D code (Brouyere 2001, 2003) for the

integration of these concepts.

2 Numerical modelling of groundwater flow and contaminant transport in

the variably saturated chalk

2.1 Variably saturated groundwater flow modelling

In the finite element simulator SUFT3D, a generalized form of Richard’s equation is used to

model groundwater flow in variably saturated conditions:

F—_V [(i k, ( ) h+z)]+q (8)
where h is the pressure head (L), positive in the saturated zone and negative in the
unsaturated zone; z is the elevation head (L) ; 58 is the saturated hydraulic conductivity

tensor (L T ; kr(9) is the relative hydraulic conductivity (-); q is a source/sink term (T) ;
and F is a generalized storage coefficient (L™) that can be expressed as:

-12 -
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(9)
In Equation (9), the first term is the specific storage coefficient S, (L™) that accounts for the
compressibility of water and porous medium. The second term represents the storage of water

in the unsaturated zone; it is the first derivative of the retention curve #(h) (see Annex 1 for

its complete mathematical expression).
In the saturated zone, one can generally consider that the water content is constant

(8 =6, =constant ), in which case:
—=0 (10a)

In the unsaturated zone, the specific storage coefficient can often be disregarded compared to

the water storage term (S, <<dé&/dh), in which case, one can write:

a_h = %@ = % (10b)
ot dhot ot

Based on these assumptions, Equation (8) can be expressed as follows:
Z—T ‘Z—f=z-[(l<skr(9))-z(h+z)]+q=z-yD+q (11)

The term v, in the right-hand side of Equation (11) is the Darcy flux (LT™). The retention

curve 6(h) and the hydraulic conductivity curve k, (@) are presented in the previous sections.

One of the two components of the storage term (left-hand side of Equation 11) is equal to zero
depending on whether the computation is performed in the saturated zone or in the
unsaturated zone. This formulation, which distinguishes the saturated and the unsaturated
parts of the aquifer, is necessary to avoid numerical problems when applying the numerical
solution proposed by Celia et al. (1990) which, in its original form, is not suitable to simulate

a fully saturated medium.

-13-
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For unsaturated groundwater flow, the SUFT3D code applies the formulation of Celia et al.
(1990) to Equation (11) linearised using Picard, Newton-Raphson or a mixed form of these
two schemes (Putti and Paniconi 1992). The numerical solution of Equation (11) is obtained
by applying the control volume finite element method (e.g., Letniowski and Forsyth 1991,
Therrien and Sudicky 1996). Convergence improvement is achieved using a dynamic
relaxation scheme (Cooley 1983) together with the target-based full Newton time stepping
scheme proposed by Diersch and Perrochet (1999). The solution to the discretized and
linearized equation system is obtained using the sparse-system equation solver WatSolv

(VanderKwaak et al. 1997). Details can be found in Brouyére (2001).

2.2  Solute transport modelling

In the SUFT3D code, the general mass conservation equation applied to the solute
contaminant in the variably saturated chalk is:

A00)  uCu) g ()5 o0, 5T H0,Cr0.C) e

In Equation (12), the left-hand side represents the storage of solute at a concentrations C

(ML) in the mobile water (associated porosity 6,)and C, (ML) in the immobile water
and (associated porosity &,,). In the right-hand side, the first term is the advective flux. The
second term is the hydrodispersive flux (D, is the hydrodynamic dispersion tensor, L*T™).
The third term represents solute degradation in the mobile and the immobile water (A is the
first-order degradation constant, T™) and the last term accounts for a source/sink, at a rate q

(T and concentration C' (ML™®), with C'=C, . if q>0 and C'=C if q<0 (C,, being

inj

the concentration in the injected fluid).

-14 -
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Equation (12) is called the divergence form of the transport equation (Diersch 2001, Saaltink
et al. 2004). Expanding the mass storage and the advective flux terms in Equation (12) and
using Equation (11) gives the advective form of the transport equation:

9 @ a(ell"l'l Clm )
ot ot

(13)

4y VY0, -YC)ale €)= 40,0 +0,C, )+ [ F - T

The advective formulation offers several advantages, e.g., when solving chemical reaction
problems (Huyakorn et al. 1985) or when applying lagrangian methods to solve advection-
dominated problems (Yeh 1990). It has also the advantage of facilitating the implementation
of the porosity-partitioning concept.

Mass conservation equation applied to the immobile water alone can be written as:

a(%c"“) a(C-C, )-46,C, +fS (14)

In Equation (14), « is the first-order transfer coefficient (T™) that accounts for diffusive
solute exchange between mobile and immobile water, fC represents solute exchange due to

water transfer between mobile and immobile water when the degree of saturation varies with
time (‘advective’ exchange).

Practically speaking, the computation is performed as follows. The groundwater flow
simulation is performed on a time step At. Based on the results, the variation in water content
is evaluated at each calculation point between time t and t+ At . At a given calculation point,

if the water content @ increases, the immobile water porosity &, increases proportionally

(see Figure 4). In that case, a quantity of water containing solute at a concentration C is
“transferred” from the mobile water to the immobile water:

_ 00, 0. (t+At)-0. (t) . A6
|f—89'm>o,ffa= n C n(t + A1) ”“()C= m.C (158)
ot ot At At

-15-
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In contrast, if the water content & decreases, the immobile water porosity &, decreases
proportionally and a quantity of water containing solute at a concentration C, is transferred

from the immobile to the mobile water:

) . L \t+At)-4. (t AG,
If aelm < O, fACH — 60”’“ Cim ~ glm( + ) elm( )Cim — elm Cim (15b)
ot ot At At

Considering Equations (15a) and (15b), Equation (14) can be written in a general form:

aCim Aeim

) —olc-Cc. )-16.C +(c"-c. 16
it =a(C-Cy) nCon + .m)At (16)
with C" =C if A, >0

c'=c, if Mt"” <0

In Equation (16), the last term of the right-hand side is only present if the transfer of water
occurs from the mobile water to the immobile water.
Introducing Equation (16) into Equation (13) provides the mass conservation equation applied

to the solute in the mobile water alone:

m§+A0im .
ot At

(17)

v, -VC +y.(em2h -yC)+q(C’—C)—/10mC—a(C—Cim)+(F g—?—agtm]c:

It is still necessary to discuss the last term of the right-hand side of Equation (17). In the

saturated zone, the water content terms (&, 6., 6,,) are assumed constant and F =S.. In

that case:
Fa—h—agm Czssa—hCzSSA—hC (18)
ot ot ot At

Since S, is small, this term is often negligible. In that case, Equation (17) reduces to the
“classical” solute transport equation in the presence of a dual-porosity process:

-16 -
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& =y, vC+¥:(6,D, VC)ralc'=C)- 10, -alc-C,,) 19)

m

In the unsaturated zone, one can write:
0=0,+6, +0, (20)
where 6, represents a possible portion of isolated water, which does not contribute at all to

transport processes. This quantity of water can be assumed as either negligible or invariant
with time, for which case one can write,

oh _20_00, 0, A6, A,
ot ot ot ot At At

(21)

Introducing Equation (21) into Equation (17) provides the mathematical form of the transport
equation in the mobile water, in the unsaturated zone:

oC AG,

O o =Yo ¥+ (0,D, - VC)+4(C'-C)-20,C ~alC ~Cy )+ i (C-CT) 22)

m

The last term of the right-hand side exists when the transfer of water occurs from the
immobile water to the mobile water (i.e. Ag,,/At<0, C" =C,,), the solute present in the
mobile water being diluted or concentrated depending whether C >C.  or not. If water is
transferred from the mobile to the immobile water, the concentration in the mobile water is
not affected by loss of a portion of this phase.

Different numerical approaches can be found in the literature for the solution of the dual-
porosity, first-order transfer model, differing from a point of view of computational efficiency
and stability (Gallo et al. 1996). A first solution is to use a fully coupled approach (Gambolati

et al. 1994) for which the concentration in the immobile water C, is considered as a state

variable just like the concentration in the mobile water C. The number of unknowns changes
from N to 2N (N being the number of nodes in the discretization), which increases

considerably the size of the equation system to be solved and therefore the demand on

-17 -
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memory and computation time. Decoupled approaches give very accurate results at lower
computational costs. Gambolati et al. (1993) use an integro-differential approach that allows
an analytical computation of concentrations in the immobile water over a time step. The
resulting expression is then back-substituted into the equation relative to the concentration
evolution in the mobile water. Unfortunately, this numerical scheme shows instabilities if the
first order transfer coefficient between mobile and immobile water becomes large. Ibaraki and
Sudicky (1995) or Gambolati et al. (1996) propose a decoupled approach for which the
differential equation relative to mass-conservation in the immobile water (Equation 14) is
approximated by a finite difference scheme written over the computation time step. Once
more, the resulting expression is back-substituted into the equation describing the evolution of
concentration in the mobile water (Equation 17). This approach gives very accurate results
and shows a very good stability.

A fourth approach proposed by Biver (1993) is used in the SUFT3D code. A semi-analytical
expression is found for the concentration evolution in the immobile water (Equation 16) over
the computation time step. The resulting expression is substituted in Equation 17. The
resulting partial differential equation is then solved using the finite element method. Details
can be found in Brouyére (2001). The coding of the dual-porosity concept in the SUFT3D
code was verified by comparison with the analytical solutions proposed by van Genuchten
and Wierenga (1976), using the CXTFIT code (Toride et al. 1995) and by comparison with
FRAC3DVS (Therrien 1992, Therrien and Sudicky 1996) based on the computation of a

synthetic radially converging tracer experiment (Brouyere et al. 2000).

3 Modelling tracer experiments performed in the chalk

Details about the tracer experiments performed in the unsaturated zone overlying the Hesbaye

aquifer in Belgium can be found in Brouyere (2001) and Brouyere et al. (2004a). After a short
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description of the experimental setup, the simulations of the experiments performed with the

SUFT3D code are described and discussed.

3.1 Tracer experiments performed in the chalk

In the Hesbaye region, the geological succession consists, from top to bottom, of 13 m of
loess formations, 2 to 4 m of flint conglomerate and 32 m of fissured chalk. The aquifer,
located in the fissured chalk, is unconfined. The aquifer basis is formed by several meters of
smectite clay (Brouyére et al. 2004b). The experimental site, located at Bovenistier, is
equipped with 7 boreholes drilled and screened at different depths in the saturated zone (the
central well PC and two piezometers Pz CS and Pz 12) and in the unsaturated zone (Pz CNS
in the unsaturated chalk, Pz CGL in the flint conglomerate, Pz LB and Pz LS in the loess).
Undisturbed core samples were collected during the drilling of the boreholes for laboratory
measurements, such as hydraulic conductivity measurements, the determination of
unsaturated properties of the different geological formations and the analysis of nitrate and
pesticide contents. In the field, infiltration tests were performed in the unsaturated zone and
pumping tests were performed in the saturated zone. Tracer experiments were performed in
both the unsaturated and saturated zone. Table 1 summarizes the information relative to these
tracer injections.

Two tracer tests were performed between Pz CS and the central well in the saturated zone of
the chalk aquifer, in radially converging flow conditions. For the first injection (phase 1 in
Table 1), eosin Y was used and the pumping rate at the recovery well was 1.2 m*/h. For the
second injection (phase 2 in Table 1), naphtionate was used and the pumping rate at the
recovery well was 6 m*/h. Figure 5 presents the measured breakthrough curves at the central
well PC.

Two tracer injections were performed in the unsaturated chalk, from Pz CNS (Figure 6). For

the first injection with potassium chloride (KCI), artificial recharge conditions were created

-19-



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

by adding water at a constant rate (0.3 m*/h) in the well after tracer injection. This led to
enhanced hydraulic gradient between the injection point and the aquifer and locally to a
higher degree of saturation in the unsaturated chalk. As the chalk layer is overlain by a thick
loess formati