The formal inverse of the period-doubling word
 Joint work with Narad Rampersad (University of Winnipeg)

Manon Stipulanti (ULiège)

FRIA grantee

Séminaire de Mathématiques Discrètes
Liège (Belgium)
March 12, 2019

Take

- a prime number p
- a p-automatic sequence $\left(s_{n}\right)_{n \geq 0}$
- its generating function $S(X)=\sum_{n=0}^{+\infty} s_{n} X^{n} \in \mathbb{F}_{p}[[X]]$
- the compositional inverse $T(X)=\sum_{n=0}^{+\infty} t_{n} X^{n} \in \mathbb{F}_{p}[[X]]$ of S (provided it exists), i.e.

$$
S(T(X))=X=T(S(X))
$$

Questions:

1. What can be said about $\left(t_{n}\right)_{n \geq 0}$?
2. What can be said about the sequences

$$
\left\{m \in \mathbb{N} \mid t_{m}=r\right\}
$$

for $r=0,1, \ldots, p-1$?

- Prouhet-Thue-Morse sequence (M. Gawron and M. Ulas, 2016)
- Variations of the Baum-Sweet sequence (L. Merta, 2018)
- Generalized Thue-Morse sequences (Ł. Merta, 2018)
- Variations of the Rudin-Shapiro sequence (Ł. Merta, 2018)
- Period-doubling sequence (N. Rampersad and M. S., 2018) *

Abstract numeration systems

Abstract numeration system

An abstract numeration system (ANS) is a triple $S=(L, A,<)$ where L is an infinite regular language over a totally ordered alphabet $(A,<)$.
S-representation: $\operatorname{rep}_{S}(n)$ is the $(n+1)$ st word in the genealogically ordered language L.
S-numerical value: inverse map $\operatorname{val}_{S}: L \rightarrow \mathbb{N}$

- base- k numeration system

$$
\begin{aligned}
L & =\{1, \ldots, k-1\}\{0,1, \ldots, k-1\}^{*} \cup\{\varepsilon\} \\
A & =\{0,1, \ldots, k-1\}, 0<1<\cdots<k-1
\end{aligned}
$$

- Zeckendorff numeration system
based on Fibonacci numbers: $1,2,3,5,8,13,21,34, \ldots$
$L_{F}=1\{0,01\}^{*} \cup\{\varepsilon\}$
$A_{F}=\{0,1\}, 0<1$

S-automatic sequence

$S=(L, A,<)$ an ANS
An infinite word $\boldsymbol{w}=w_{0} w_{1} w_{2} \cdots \in B^{\mathbb{N}}$ is S-automatic if there exists a DFAO $\mathcal{A}=\left(Q, q_{0}, A, \delta, B, \mu\right)$ such that

$$
w_{n}=\mu\left(\delta\left(q_{0}, \operatorname{rep}_{S}(n)\right)\right) \quad \forall n \geq 0
$$

The automaton \mathcal{A} is called a S - $D F A O$.

Example: Thue-Morse word $\boldsymbol{t}=\left(t_{n}\right)_{n \geq 0}$
t_{n} counts the number of 1 's $(\bmod 2)$ in $\operatorname{rep}_{2}(n)$

n	0	1	2	3	4	5	6	7	8	9	10
$\operatorname{rep}_{2}(n)$	ε	1	10	11	100	101	110	111	1000	1001	1010
t_{n}	0	1	1	0	1	0	0	1	1	0	0

\boldsymbol{t} is 2-automatic:

$$
d_{n}=\nu_{2}(n+1) \bmod 2
$$

where ν_{2} is the exponent of the highest power of 2 dividing its argument

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$n+1$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\nu_{2}(n+1)$	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0
d_{n}	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0

\boldsymbol{d} is 2-automatic:

$$
\begin{gathered}
Q=\left\{q_{0}, q_{1}\right\} \\
A=\{0,1\} \\
B=\{0,1\} \\
\mu: q_{0} \mapsto 0, q_{1} \mapsto 1
\end{gathered}
$$

$$
\boldsymbol{d}=010001010100010001000 \cdots
$$

Sequence of 1's: $\boldsymbol{o}=\left(o_{n}\right)_{n \geq 0}$

$$
\left\{o_{n} \mid n \in N\right\}=\left\{m \in N \mid d_{m}=1\right\}
$$

$\boldsymbol{o}=1,5,7,9,13,17,21,23,25,29,31,33,37,39,41,45,49,53,55,57, \ldots$

Sequence of 0's: $\boldsymbol{z}=\left(z_{n}\right)_{n \geq 0}$

$$
\left\{z_{n} \mid n \in N\right\}=\left\{m \in N \mid d_{m}=0\right\}
$$

$\boldsymbol{z}=0,2,3,4,6,8,10,11,12,14,15,16,18,19,20,22,24,26,27,28,30, \ldots$

In Sloane's On-Line Encyclopedia of Integer Sequences (OEIS):

- A079523

n	0	1	2	3	4	5	6	7
o_{n}	1	5	7	9	13	17	21	23
$\operatorname{rep}_{2}\left(o_{n}\right)$	1	101	111	1001	1101	10001	10101	10111

The binary expansion of o_{n} ends with an odd number of 1's.

- A121539

n	0	1	2	3	4	5	6	7
z_{n}	0	2	3	4	6	8	10	11
$\operatorname{rep}_{2}\left(z_{n}\right)$	ε	10	11	100	110	1000	1010	1011

The binary expansion of z_{n} ends with an even number of 1's.
\rightsquigarrow How to handle the case of infinite alphabets?
Let $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ be an infinite sequence
and $k \geq 2$ be an integer.
The k-kernel of \boldsymbol{u} is the set of subsequences

$$
\mathcal{K}_{k}(\boldsymbol{u})=\left\{\left(u_{k^{i} \cdot n+r}\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq r<k^{i}\right\} .
$$

k-regular sequence

A sequence \boldsymbol{u} is k-regular if there exists a finite set S of sequences such that every sequence in $\mathcal{K}_{k}(\boldsymbol{u})$ is a \mathbb{Z}-linear combination of sequences of S.
$\underline{\text { Example: }} \boldsymbol{S}^{\mathbf{2}}=\left(S_{n}^{2}\right)_{n \geq 0}$

$$
\begin{gathered}
S_{n}^{2}=\#\left\{m \in \mathbb{N} \mid \operatorname{rep}_{2}(m) \text { is a }\left\{\begin{array}{l}
\text { scattered subword } \\
\text { subsequence }
\end{array} \text { of } \operatorname{rep}_{2}(n)\right\}\right. \\
\boldsymbol{S}^{\mathbf{2}}=1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13, \ldots
\end{gathered}
$$

Theorem [J. Leroy, M. Rigo and M. S. (2017)]

S^{2} is 2-regular.

Remark: [J.-P. Allouche and J. Shallit, The Bible (2003)] A sequence is k-regular and takes on only finitely many values \Leftrightarrow it is k-automatic.

Proposition

\boldsymbol{z} is not k-regular for any $k \in \mathbb{N}_{k \geq 2}$.
Idea of the proof:

- Exchange morphism $E: 0 \mapsto 1,1 \mapsto 0 \quad \bar{d}=E(\boldsymbol{d})$
- $\overline{\boldsymbol{d}}$ is the first difference modulo 2 of \boldsymbol{t}

$$
\overline{\boldsymbol{d}}=\left(t_{n+1}-t_{n} \bmod 2\right)_{n \geq 0}
$$

- \boldsymbol{z} describes the positions in \boldsymbol{t} where 0 and 1 alternate

$$
\begin{aligned}
\boldsymbol{t} & =011010011001011010010 \cdots \\
\boldsymbol{z} & =0,2,3,4,6,8,10,11,12,14,15,16,18,19, \ldots
\end{aligned}
$$

- The first difference of \boldsymbol{z} (= first difference between the positions of 1's in $\overline{\boldsymbol{d}}$) gives the length of the blocks of consecutive identical letters in \boldsymbol{t} ($=$ sequence of run lengths of \boldsymbol{t}).
- $\boldsymbol{p}=$ the sequence of run lengths of \boldsymbol{t}
\boldsymbol{p} not k-regular for any $k \in \mathbb{N}_{k \geq 2}$
- \boldsymbol{z} not k-regular for any $k \in \mathbb{N}_{k \geq 2}$

Proposition

\boldsymbol{o} is not k-regular for any $k \in \mathbb{N}_{k \geq 2}$.

Generating function of $\boldsymbol{d}: D(X)=\sum_{n \geq 0} d_{n} X^{n}$

$$
\left.\begin{array}{r}
d_{0}=0 \\
d_{1}=1 \text { invertible in } \mathbb{F}_{2}
\end{array}\right\} \Rightarrow D(X) \text { invertible in } \mathbb{F}_{2}[[X]],
$$

i.e., there exists a series

$$
U(X)=\sum_{n \geq 0} u_{n} X^{n} \in \mathbb{F}_{2}[[X]]
$$

such that $D(U(X))=X=U(D(X))$.

Lemma

Over $\mathbb{F}_{2}[[X]], D(X)=\sum_{n \geq 0} d_{n} X^{n}$ satisfies

$$
X\left(1+X^{2}\right) D(X)^{2}+\left(1+X^{2}\right) D(X)+X=0
$$

Proof: $\boldsymbol{d}=h^{\omega}(0)$ where $h: 0 \mapsto 01,1 \mapsto 00$

$$
\Rightarrow\left\{\begin{array}{l}
d_{2 n}=0(h: 0 \mapsto 01,1 \mapsto 00), \\
d_{2 n+1}=1-d_{n} \forall n \geq 0(h: 0 \mapsto 01,1 \mapsto 00) .
\end{array}\right.
$$

Thus

$$
\begin{aligned}
D(X) & =\sum_{n \geq 0} d_{n} X^{n}=\sum_{n \geq 0} d_{2 n} X^{2 n}+\sum_{n \geq 0} d_{2 n+1} X^{2 n+1} \\
& =X \sum_{n \geq 0} X^{2 n}-X \sum_{n \geq 0} d_{n} X^{2 n} .
\end{aligned}
$$

We have $1 /(1-X)=\sum_{n \geq 0} X^{n}$.
Consequently,

$$
D(X)=\frac{X}{1-X^{2}}-X D\left(X^{2}\right)
$$

From

$$
D(X)=\frac{X}{1-X^{2}}-X D\left(X^{2}\right)
$$

working over $\mathbb{F}_{2}[[X]]$ gives

$$
X\left(1+X^{2}\right) D\left(X^{2}\right)+\left(1+X^{2}\right) D(X)+X=0
$$

For any prime p and for any series $F(X)$ in $\mathbb{F}_{p}[[X]]$, we have $F(X)^{p}=F\left(X^{p}\right)$.
Thus

$$
X\left(1+X^{2}\right) D(X)^{2}+\left(1+X^{2}\right) D(X)+X=0
$$

as desired.

Proposition

Over $\mathbb{F}_{2}[[X]], U(X)=\sum_{n \geq 0} u_{n} X^{n}$ satisfies

$$
\begin{aligned}
& X^{2} U(X)^{3}+X U(X)^{2}+\left(X^{2}+1\right) U(X)+X=0 \\
& X^{3} U(X)^{4}+X^{3} U(X)^{2}+U(X)+X=0
\end{aligned}
$$

In particular, $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ verifies $u_{0}=0, u_{1}=1$, and over \mathbb{F}_{2},

$$
\left\{\begin{array}{l}
u_{2 n}=0 \quad \forall n \geq 0 \\
u_{4 n+1}=u_{2 n-1} \quad \forall n \geq 1 \\
u_{4 n+3}=u_{n} \quad \forall n \geq 0
\end{array}\right.
$$

First equation: Rewrite the equation

$$
X\left(1+X^{2}\right) D(X)^{2}+\left(1+X^{2}\right) D(X)+X=0
$$

in terms of X :

$$
D(X)^{2} X^{3}+D(X) X^{2}+\left(D(X)^{2}+1\right) X+D(X)=0
$$

Replace X by $U(X)$:

$$
\begin{aligned}
& D(U(X))^{2} U(X)^{3}+D(U(X)) U(X)^{2}+\left(D(U(X))^{2}+1\right) U(X) \\
& +D(U(X))=0
\end{aligned}
$$

Since $U(X)$ is the formal inverse of $D(X)$,

$$
X^{2} U(X)^{3}+X U(X)^{2}+\left(X^{2}+1\right) U(X)+X=0
$$

Second equation: Work a bit.

Recurrence relations for \boldsymbol{u} :
Write $U(X)=\sum_{n \geq 0} u_{n} X^{n}$ in the second equation

$$
\begin{aligned}
& X^{3} \sum_{n \geq 0} u_{n} X^{4 n}+X^{3} \sum_{n \geq 0} u_{n} X^{2 n}+\sum_{n \geq 0} u_{n} X^{n}+X=0 \\
\Leftrightarrow & \sum_{n \geq 0} u_{n} X^{4 n+3}+\sum_{n \geq 0} u_{n} X^{2 n+3}+\sum_{n \geq 0} u_{n} X^{n}+X=0 .
\end{aligned}
$$

Inspection of the coefficients (over \mathbb{F}_{2}):

- $u_{0}=0$ and $u_{1}=1$
- $4 n+3$ and $2 n+3$ odd $\Rightarrow u_{2 n}=0$
- coefficient of $X^{4 n+3}$ for $n \geq 0$

$$
u_{n}+u_{2 n}+u_{4 n+3}=0 \Rightarrow u_{4 n+3}=u_{n}
$$

- coefficient of $X^{4 n+1}$ for $n \geq 1$

$$
u_{2 n-1}+u_{4 n+1}=0 \Rightarrow u_{4 n+1}=u_{2 n-1}
$$

The sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ is referred to as the inverse perioddoubling sequence, iPD sequence for short.
OEIS tag: A317542

$$
\boldsymbol{u}=01000101000001000100000100000101000001000 \cdots
$$

Corollary

$\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ is 2-automatic.
Proof: The formal power series $U(X)$ is algebraic over $\mathbb{F}_{2}(X)$. By Christol's theorem, \boldsymbol{u} is thus 2-automatic.

\triangle This automaton reads its input from least significant digit to most significant digit.

Sequence of 1's: $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$

$$
\left\{a_{n} \mid n \in N\right\}=\left\{m \in N \mid u_{m}=1\right\}
$$

$\boldsymbol{a}=1,5,7,13,17,23,29,31,37,49,55,61,65,71,77,95,101,113, \ldots$
OEIS tag: A317543

Remarks:

- From the previous proposition, \boldsymbol{a} only contains odd integers.
- In the 2 -DFAO generating \boldsymbol{u}, if the states outputting 1 are considered to be final, then

$$
L_{a}=\left\{\operatorname{rep}_{2}\left(a_{n}\right) \mid n \geq 0\right\}=\{11\}^{*} 1 \cup 1\{1,00\}^{*} 0\{11\}^{*} 1
$$

Examples: $\operatorname{rep}_{2}\left(a_{0}\right)=1, \operatorname{rep}_{2}\left(a_{1}\right)=101, \operatorname{rep}_{2}\left(a_{2}\right)=111$, $\operatorname{rep}_{2}\left(a_{3}\right)=1101$

$$
L_{a}=\{1,101,111,1101,10001,10111,11101,11111,100101, \ldots\}
$$

Fibonacci numbers: $(F(n))_{n \geq 0}$
$F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2) \quad \forall n \geq 2$

Proposition

The complexity function $\rho_{L_{a}}: \mathbb{N} \rightarrow \mathbb{N}$ of the language L_{a} satisfies

$$
\begin{aligned}
& \rho_{L_{a}}(0)=0, \\
& \rho_{L_{a}}(2 n)=F(2 n-1)-1 \quad \forall n \geq 1, \\
& \rho_{L_{a}}(2 n+1)=F(2 n)+1 \quad \forall n \geq 0 .
\end{aligned}
$$

Idea of the proof: It follows from the automaton generating \boldsymbol{u}.

$$
\begin{aligned}
& L_{a}=\left\{\operatorname{rep}_{2}\left(a_{n}\right) \mid n \geq 0\right\}=\underbrace{\{11\}^{*} 1}_{L_{a, 1}} \cup \underbrace{1\{1,00\}^{*} 0\{11\}^{*} 1}_{L_{a, 2}} \\
& \qquad \begin{array}{c|c|c|c|c}
n & a_{n} & \operatorname{rep}_{2}\left(a_{n}\right) & L_{a} & a_{n} \bmod 3 \\
\hline 0 & 1 & 1 & L_{a, 1} & 1 \\
1 & 5 & 101 & L_{a, 2} & 2 \\
2 & 7 & 111 & L_{a, 1} & 1 \\
3 & 13 & 1101 & L_{a, 2} & 1 \\
4 & 17 & 10001 & L_{a, 2} & 2 \\
5 & 23 & 10111 & L_{a, 2} & 2 \\
6 & 29 & 11101 & L_{a, 2} & 2 \\
7 & 31 & 11111 & L_{a, 1} & 1 \\
8 & 37 & 100101 & L_{a, 2} & 1
\end{array}
\end{aligned}
$$

Lemma

Let $n \geq 0$ and let $w_{n}=\operatorname{rep}_{2}\left(a_{n}\right)$.
If $w_{n} \in L_{a, 1}$, or if $w_{n} \in L_{a, 2}$ and $\left|w_{n}\right|$ is even, then $a_{n} \bmod 3 \equiv 1$. If $w_{n} \in L_{a, 2}$ and $\left|w_{n}\right|$ is odd, then $a_{n} \bmod 3 \equiv 2$.

$$
\begin{gathered}
\boldsymbol{a}=1,5,7,13,17,23,29,31,37,49,55,61,65,71,77,95,101,113, \ldots \\
\\
\quad\left(a_{n} \bmod 3\right)_{n \geq 0}=1,2,1,1,2,2,2,1,1,1,1,1,2,2,2,2,2,2, \ldots
\end{gathered}
$$

Proposition

The sequence $\left(a_{n} \bmod 3\right)_{n \geq 0}$ is given by the infinite word

$$
1^{F(1)} 2^{F(2)} 1^{F(3)} 2^{F(4)} 1^{F(5)} 2^{F(6)} \ldots .
$$

In particular, the sequence of run lengths of $\left(a_{n} \bmod 3\right)_{n \geq 0}$ is the sequence of Fibonacci numbers $(F(n))_{n \geq 1}$.

Idea of the proof: It follows from the complexity result and the previous lemma.
$\underline{\text { First difference in }\left(a_{n} \bmod 3\right)_{n \geq 0}: \delta=\left(\delta_{n}\right)_{n \geq 0}, ~}$

$$
\begin{gathered}
\delta_{n}= \begin{cases}1 & \text { if }\left(a_{n+1}-a_{n}\right) \bmod 3 \neq 0 \\
0 & \text { otherwise }\end{cases} \\
\left(a_{n} \bmod 3\right)_{n \geq 0}=1,2,1,1,2,2,2,1,1,1,1,1,2,2,2,2,2,2, \ldots \\
\delta=1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0, \ldots
\end{gathered}
$$

Characteristic sequence of Fibonacci numbers $(F(n))_{n \geq 2}: \boldsymbol{x}$

$$
\begin{gathered}
x_{n}= \begin{cases}1 & \text { if } n \text { is a Fibonacci number } \\
0 & \text { otherwise }\end{cases} \\
\boldsymbol{x}=0111010010000100000001 \cdots
\end{gathered}
$$

Then $\boldsymbol{\delta}=\left(x_{n}\right)_{n \geq 2}$.

Particular ANS: $\left(L_{F},\{0,1\},<\right)$ with $0<1$ and

$$
L_{F}=\{\varepsilon\} \cup 1\{0,01\}^{*} \quad \text { (Fibonacci representations) }
$$

A DFA \mathcal{A} accepting the regular language L_{F} :

Lemma

\boldsymbol{x} is Fibonacci-automatic.
Proof: The following Fibonacci-DFAO \mathcal{B} generates the sequence \boldsymbol{x} in the Zeckendorff numeration system.

In particular, \boldsymbol{x} is Fibonacci-automatic.

A morphism $\sigma: A^{*} \rightarrow A^{*}$ is prolongable on a letter $a \in A$ if

- $\sigma(a)=a u$ with $u \in A^{+}$
- $\lim _{n \rightarrow+\infty}\left|\sigma^{n}(a)\right|=+\infty$.

If σ is prolongable on a, then $\sigma^{n}(a)$ is a proper prefix of $\sigma^{n+1}(a)$ $\Rightarrow\left(\sigma^{n}(a)\right)_{n \geq 0}$ converges to an infinite word \boldsymbol{w} (fixed point of σ). In this case, the word \boldsymbol{w} is called pure morphic.
A morphic word is the morphic image of a pure morphic word.
Examples:

- Thue-Morse $\boldsymbol{t}=\tau^{\omega}(0)$ where $\tau: 0 \mapsto 01,1 \mapsto 10$
- Period-doubling $\boldsymbol{d}=h^{\omega}(0)$ where $h: 0 \mapsto 01,1 \mapsto 00$

Theorem [M. Rigo (2000), M. Rigo and A. Maes (2002)]

An infinite word \boldsymbol{w} is morphic if and only if \boldsymbol{w} is S-automatic for some ANS S.

Consequence: \boldsymbol{x} is morphic
How to build morphisms that generate \boldsymbol{x} ?
\rightsquigarrow Constructive proof of the theorem

Lemma

Let $f:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*}$ be the morphism defined by $f(z)=z a_{0}$ and

i	0	1	2	3	4	5	6	7
$f\left(a_{i}\right)$	$a_{1} a_{2}$	$a_{1} a_{4}$	$a_{3} a_{7}$	$a_{3} a_{6}$	$a_{4} a_{7}$	$a_{5} a_{6}$	$a_{5} a_{7}$	$a_{7} a_{7}$

Let $g:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\{0,1\}^{*}$ be the morphism defined by

$$
\begin{aligned}
& g(z)=g\left(a_{1}\right)=g\left(a_{4}\right)=g\left(a_{7}\right)=\varepsilon, \\
& g\left(a_{0}\right)=g\left(a_{5}\right)=g\left(a_{6}\right)=0, \\
& g\left(a_{2}\right)=g\left(a_{3}\right)=1
\end{aligned}
$$

Then $\boldsymbol{x}=g\left(f^{\omega}(z)\right)$.

Proof:

- the DFA \mathcal{A} accepts the language $L_{F}=\{\varepsilon\} \cup 1\{0,01\}^{*}$
- the Fibonacci-DFAO \mathcal{B} generates \boldsymbol{x}
- product automaton $\mathcal{P}=\mathcal{A} \times \mathcal{B}$:

Set

$$
\begin{aligned}
& a_{0}=\left(A, 0_{0}\right), a_{1}=\left(E, 0_{0}\right), a_{2}=(B, 1), a_{3}=(C, 1) \\
& a_{4}=(E, 1), a_{5}=\left(C, 0_{1}\right), a_{6}=\left(D, 0_{1}\right), a_{7}=\left(E, 0_{1}\right)
\end{aligned}
$$

Associated morphism $\psi_{\mathcal{P}}:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*}$ with \mathcal{P} defined by

$$
\psi_{\mathcal{P}}(z)=z a_{0}
$$

and

$$
\psi_{\mathcal{P}}\left(a_{i}\right)=\delta_{\mathcal{P}}\left(a_{i}, 0\right) \delta_{\mathcal{P}}\left(a_{i}, 1\right)
$$

i	0	1	2	3	4	5	6	7
$\psi_{\mathcal{P}}\left(a_{i}\right)$	$a_{1} a_{2}$	$a_{1} a_{4}$	$a_{3} a_{7}$	$a_{3} a_{6}$	$a_{4} a_{7}$	$a_{5} a_{6}$	$a_{5} a_{7}$	$a_{7} a_{7}$

where $\delta_{\mathcal{P}}$ is the transition function of \mathcal{P}. Then $\psi_{\mathcal{P}}=f$.
The morphism $g:\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}^{*} \rightarrow\{0,1\}^{*}$ is defined by

$$
z, a_{1}, a_{4}, a_{7} \mapsto \varepsilon ; a_{0}, a_{5}, a_{6} \mapsto 0 ; a_{2}, a_{3} \mapsto 1
$$

Then $\boldsymbol{x}=g\left(f^{\omega}(z)\right)(\boldsymbol{x}$ is morphic).

Problem: g is erasing $\left(\exists a \in\left\{z, a_{0}, a_{1}, \ldots, a_{7}\right\}\right.$ s.t. $\left.g(a)=\varepsilon\right)$

Lemma "Getting rid of erasing morphisms" [É Charlier, J. Leroy and M. Rigo (2016)]

Let $\boldsymbol{w}=g\left(f^{\omega}(a)\right)$ be a morphic word where $g: B^{*} \rightarrow A^{*}$ is a (possibly erasing) morphism and $f: B^{*} \rightarrow B^{*}$ is a non-erasing morphism.
Let C be a subalphabet of $\{b \in B \mid g(b)=\varepsilon\}$ such that f_{C} is a submorphism of f.
Let $\lambda_{C}: B^{*} \rightarrow B^{*}$ be the morphism defined by

$$
\lambda_{C}(b)= \begin{cases}\varepsilon & \text { if } b \in C \\ b & \text { otherwise }\end{cases}
$$

The morphisms $f_{\varepsilon}=\left.\left(\lambda_{C} \circ f\right)\right|_{(B \backslash C)^{*}}$ and $g_{\varepsilon}=\left.g\right|_{(B \backslash C)^{*}}$ are such that $\boldsymbol{w}=g_{\varepsilon}\left(f_{\varepsilon}^{\omega}(a)\right)$.

Proposition

Let $\phi:\{a, b, c, d, e\}^{*} \rightarrow\{a, b, c, d, e\}^{*}$ be the morphism defined by

$$
a \mapsto a b, b \mapsto c, c \mapsto c e, d \mapsto d e, e \mapsto d
$$

and let $\mu:\{a, b, c, d, e\}^{*} \rightarrow\{0,1\}^{*}$ be the coding defined by

$$
a, d, e \mapsto 0 ; b, c \mapsto 1
$$

Then $\boldsymbol{x}=\mu\left(\phi^{\omega}(a)\right)$.
Idea of the proof: Making use of the two previous lemmas.

Let M be a matrix with coefficients in \mathbb{N}.
\exists permutation matrix P such that

$$
P^{-1} M P \text { upper block-triangular matrix }
$$

with diagonal square blocks M_{1}, \ldots, M_{s} irreducible or zeroes. The Perron-Frobenius eigenvalue λ_{M} of M

$$
\lambda_{M}=\max _{1 \leq i \leq s} \lambda_{M_{i}}
$$

where $\lambda_{M_{i}}$ is the Perron-Frobenius eigenvalue of the matrix M_{i}.
Let $f: A^{*} \rightarrow A^{*}$ be a prolongable morphism with fixed point \boldsymbol{w}. Let α be the Perron-Frobenius eigenvalue of M_{f}. If all letters of A occur in \boldsymbol{w}, then \boldsymbol{w} is (pure) α-substitutive. If $g: A^{*} \rightarrow B^{*}$ is a coding, then $g(\boldsymbol{w})$ is α-substitutive.

Corollary

Let $\varphi=\frac{1}{2}(\sqrt{5}+1)$ be the golden ratio.
The word \boldsymbol{x} is φ-substitutive.
Proof: Let

$$
M_{\phi}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

be the matrix associated with the morphism ϕ. The Perron-Frobenius eigenvalue of M_{ϕ} is $\varphi=\frac{1}{2}(\sqrt{5}+1)$. All letters a, b, c, d, e occur in $\phi^{\omega}(a)$

$$
\phi^{\omega}(a)=a b c c e c e d \cdots
$$

Thus \boldsymbol{x} is φ-substitutive.

Proposition

\boldsymbol{x} is not k-automatic for any $k \in \mathbb{N}_{\geq 2}$.
Proof: Proceed by contradiction and suppose that there exists an integer $k \geq 2$ such that \boldsymbol{x} is k-automatic.
By Cobham's theorem, \boldsymbol{x} is also k-substitutive.
(Not difficult to see that the Perron-Frobenius eigenvalue of the matrix associated with a k-uniform morphism is the integer k.)
Clearly, k and φ are multiplicatively independent.
Thus, by Cobham-Durand's theorem, \boldsymbol{x} is ultimately periodic. This is a contradiction.

Theorem [Cobham (1972)]

An infinite word $\boldsymbol{w} \in B^{\mathbb{N}}$ is k-automatic if and only if there exist a k-uniform morphism $f: A^{*} \rightarrow A^{*}$ prolongable on a letter $a \in A$ and a coding $g: A^{*} \rightarrow B^{*}$ such that $\boldsymbol{w}=g\left(f^{\omega}(a)\right)$.

Two real numbers $\alpha, \beta>1$ are multiplicatively independent if

$$
m, n \in \mathbb{N} \text { with } \alpha^{m}=\beta^{n} \Rightarrow m=n=0
$$

Otherwise, α and β are multiplicatively dependent.

Theorem [Durand (2011)]

Let $\alpha, \beta>1$ be two multiplicatively independent real numbers. Let \boldsymbol{u} be a pure α-substitutive word
\boldsymbol{v} be a pure β-substitutive word.
Let g and g^{\prime} be two non-erasing morphisms.
If $\boldsymbol{w}=g(\boldsymbol{u})=g^{\prime}(\boldsymbol{v})$, then \boldsymbol{w} is ultimately periodic.
In particular, if an infinite word is both α-and β-substitutive, i.e., in the special case where g and g^{\prime} are codings, then it is ultimately periodic.

Characteristic sequence of 1's in $\boldsymbol{u}: ~ \boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$

$$
\left\{a_{n} \mid n \in N\right\}=\left\{m \in N \mid u_{m}=1\right\}
$$

Corollary

\boldsymbol{a} is not k-regular for any $k \in \mathbb{N}_{\geq 2}$.
Proof: Suppose that \boldsymbol{a} is k-regular for some $k \geq 2$. Then the sequence $\left(a_{n} \bmod 3\right)_{n \geq 0}$ is k-automatic (by stability properties), so is $\boldsymbol{\delta}$ and consequently also \boldsymbol{x}. This contradicts the previous proposition.

Sequence of 0's: $\boldsymbol{b}=\left(b_{n}\right)_{n \geq 0}$

$$
\left\{b_{n} \mid n \in N\right\}=\left\{m \in N \mid u_{m}=0\right\}
$$

$\boldsymbol{b}=0,2,3,4,6,8,9,10,11,12,14,15,16,18,19,20,21,22,24,25,26, \ldots$
OEIS tag: A317544
$\underline{\text { Open problem: Is the sequence } \boldsymbol{b} k \text {-regular for some } k \geq 2 \text { ? }}$

- G. Allouche, J.-P. Allouche and J. Shallit, Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpiński et morphismes de monoïde, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 7, 2115-2130.
- J.-P. Allouche, A. André, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe and B. E. Sagan, A relative of the Thue-Morse sequence, Discrete Math. 139 (1995), no. 1-3, 455-461.
- J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Sequences and their applications, 1-16, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999.
- J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge, 2003.
- É Charlier, J. Leroy and M. Rigo, Asymptotic properties of free monoid morphisms, Linear Algebra Appl. 500 (2016), 119-148.
- G . Christol, T. Kamae, M. Mendès France and G. Rauzy, Suite algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), no. 4, 401-419.
- A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192.
- F. Durand, Cobham's theorem for substitutions, J. Eur. Math. Soc. 13 (2011), no. 6, 1799-1814.
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400.
- M. Gawron and M. Ulas, On formal inverse of the Prouhet-Thue-Morse sequence, Discrete Math. 339 (2016), no. 5, 1459-1470.
- J. Leroy, M. Rigo, and M. Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Math., $\mathbf{3 4 0}$ (2017), 862-881.
- Ł. Merta, Composition inverses of the variations of the Baum-Sweet sequence. Preprint available at https://arxiv.org/abs/1803.00292, 2018.
- Ł. Merta, Formal inverses of the generalized Thue-Morse sequences and variations of the Rudin-Shapiro sequence. Preprint available at https://arxiv.org/abs/1810.03533, 2018.
- M. Rigo, Generalization of automatic sequences for numeration systems on a regular language, Theoret. Comput. Sci. , 244 (2000), 271-281.
- M. Rigo, Formal languages, automata and numeration systems. 1. Introduction to combinatorics on words, Networks and Telecommunications Series, ISTE, London; John Wiley \& Sons, Inc., Hoboken, NJ, 2014.
- M. Rigo, Formal languages, automata and numeration systems. 2. Applications to recognizability and decidability, Networks and Telecommunications Series, ISTE, London, John Wiley \& Sons, Inc., Hoboken, NJ, 2014.
- M. Rigo and A. Maes, More on generalized automatic sequences, J. Autom. Lang. Comb., 7 (2002) 351-376.
* N. Rampersad and M. Stipulanti, The formal inverse of the perioddoubling sequence, J. Integer Seq., 21:Paper No. 18.9.1, 22 pages, 2018.

Paper No. 18.9.1 in J. Integer Seq.

- L. Schaeffer, Deciding Properties of Automatic Sequences, Ph.D. Thesis (2013).
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

