

The formal inverse of the period-doubling word

Joint work with Narad Rampersad (University of Winnipeg)

Manon Stipulanti (ULiège) FRIA grantee

Séminaire de Mathématiques Discrètes Liège (Belgium) March 12, 2019

Initial problem

Take

- a prime number p
- a *p*-automatic sequence $(s_n)_{n\geq 0}$
- its generating function $S(X) = \sum_{n=0}^{+\infty} s_n X^n \in \mathbb{F}_p[[X]]$
- the compositional inverse $T(X) = \sum_{n=0}^{+\infty} t_n X^n \in \mathbb{F}_p[[X]]$ of S (provided it exists), i.e.

$$S(T(X)) = X = T(S(X)).$$

Questions:

- 1. What can be said about $(t_n)_{n\geq 0}$?
- 2. What can be said about the sequences

$$\{m \in \mathbb{N} \mid t_m = r\}$$

for $r = 0, 1, \dots, p - 1$?

iPD sequence

History

- Prouhet–Thue–Morse sequence (M. Gawron and M. Ulas, 2016)
- Variations of the Baum–Sweet sequence (Ł. Merta, 2018)
- Generalized Thue–Morse sequences (Ł. Merta, 2018)
- Variations of the Rudin–Shapiro sequence (Ł. Merta, 2018)
- Period-doubling sequence (N. Rampersad and M. S., 2018) ★

Abstract numeration system

An abstract numeration system (ANS) is a triple S = (L, A, <)where L is an infinite regular language over a totally ordered alphabet (A, <).

S-representation: $\operatorname{rep}_S(n)$ is the (n+1)st word in the genealogically ordered language L.

S-numerical value: inverse map $\operatorname{val}_S \colon L \to \mathbb{N}$

- base-k numeration system $L = \{1, \dots, k-1\}\{0, 1, \dots, k-1\}^* \cup \{\varepsilon\}$ $A = \{0, 1, \dots, k-1\}, 0 < 1 < \dots < k-1$
- Zeckendorff numeration system based on Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, 34, ... $L_F = 1\{0, 01\}^* \cup \{\varepsilon\}$ $A_F = \{0, 1\}, 0 < 1$

iPD sequence

S-automatic sequence

S = (L, A, <) an ANS An infinite word $\boldsymbol{w} = w_0 w_1 w_2 \cdots \in B^{\mathbb{N}}$ is *S*-automatic if there exists a DFAO $\mathcal{A} = (Q, q_0, A, \delta, B, \mu)$ such that

$$w_n = \mu(\delta(q_0, \operatorname{rep}_S(n))) \quad \forall n \ge 0.$$

The automaton \mathcal{A} is called a *S*-*DFAO*.

Example: Thue–Morse word $\mathbf{t} = (t_n)_{n \ge 0}$

 t_n counts the number of 1's (mod 2) in rep₂(n)

n	0	1	2	3	4	5	6	7	8	9	10
$\operatorname{rep}_2(n)$	ε	1	10	11	100	101	110	111	1000	1001	1010
t_n	0	1	1	0	1	0	0	1	1	0	0

t is 2-automatic:

 $\mu(\delta(q_0, \operatorname{rep}_2(5))) = \mu(\delta(q_0, 101)) = \mu(q_0) = 0 = t_5$

iPD sequence

Period-doubling word $\boldsymbol{d} = (d_n)_{n \ge 0}$

 $d_n = \nu_2(n+1) \bmod 2$

where ν_2 is the exponent of the highest power of 2 dividing its argument

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
n+1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\nu_2(n+1)$	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0
d_n	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0

 \boldsymbol{d} is 2-automatic:

iPD sequence

$$Q = \{q_0, q_1\} \\ A = \{0, 1\} \\ B = \{0, 1\} \\ \mu \colon q_0 \mapsto 0, q_1 \mapsto 1$$

0, 1

 $d = 010001010100010001000 \cdots$

Sequence of 1's: $\boldsymbol{o} = (o_n)_{n \ge 0}$

$$\{o_n \mid n \in N\} = \{m \in N \mid d_m = 1\}$$

 $o = 1, 5, 7, 9, 13, 17, 21, 23, 25, 29, 31, 33, 37, 39, 41, 45, 49, 53, 55, 57, \dots$

Sequence of 0's: $\boldsymbol{z} = (z_n)_{n \ge 0}$

$$\{z_n \mid n \in N\} = \{m \in N \mid d_m = 0\}$$

 $z = 0, 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 24, 26, 27, 28, 30, \dots$

iPD sequence

In Sloane's On-Line Encyclopedia of Integer Sequences (OEIS):

• A079523

•

The binary expansion of o_n ends with an odd number of 1's. A121539

n	0	1	2	3	4	5	6	7
z_n	0	2	3	4	6	8	10	11
$\operatorname{rep}_2(z_n)$	ε	10	11	100	110	1000	1010	1011

The binary expansion of z_n ends with an even number of 1's.

iPD sequence

Regular sequences

 \rightsquigarrow How to handle the case of infinite alphabets?

Let $\boldsymbol{u} = (u_n)_{n \ge 0}$ be an infinite sequence and $k \ge 2$ be an integer. The *k*-kernel of \boldsymbol{u} is the set of subsequences

 $\mathcal{K}_k(\boldsymbol{u}) = \{(u_{k^i \cdot n + r})_{n \ge 0} \mid i \ge 0 \text{ and } 0 \le r < k^i\}.$

k-regular sequence

A sequence u is k-regular if there exists a finite set S of sequences such that every sequence in $\mathcal{K}_k(u)$ is a Z-linear combination of sequences of S.

Example:
$$S^2 = (S_n^2)_{n\geq 0}$$

 $S_n^2 = \# \left\{ m \in \mathbb{N} \mid \operatorname{rep}_2(m) \text{ is a } \begin{cases} \text{scattered subword} \\ \text{subsequence} \end{cases} \text{ of } \operatorname{rep}_2(n) \right\}$
 $S^2 = 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, \dots$
Theorem [J. Leroy, M. Rigo and M. S. (2017)]
 S^2 is 2-regular.

<u>Remark</u>: [J.-P. Allouche and J. Shallit, The Bible (2003)] A sequence is k-regular and takes on only finitely many values \Leftrightarrow it is k-automatic.

iPD sequence

Proposition

z is not k-regular for any $k \in \mathbb{N}_{k \geq 2}$.

Idea of the proof:

- Exchange morphism $E: 0 \mapsto 1, 1 \mapsto 0$ $\bar{d} = E(d)$
- $ar{d}$ is the first difference modulo 2 of t

$$\bar{d} = (t_{n+1} - t_n \bmod 2)_{n \ge 0}$$

• \boldsymbol{z} describes the positions in \boldsymbol{t} where 0 and 1 alternate

 $t = 011010011001011010010 \cdots$

 $\boldsymbol{z} = 0, 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, \dots$

- The first difference of \boldsymbol{z} (= first difference between the positions of 1's in $\boldsymbol{\bar{d}}$) gives the length of the blocks of consecutive identical letters in \boldsymbol{t} (= sequence of run lengths of \boldsymbol{t}).
- p = the sequence of run lengths of tp not k-regular for any $k \in \mathbb{N}_{k \ge 2}$
- \boldsymbol{z} not k-regular for any $k \in \mathbb{N}_{k \geq 2}$

iPD sequence

Proposition

o is not k-regular for any $k \in \mathbb{N}_{k \geq 2}$.

iPD sequence

The formal inverse of the period-doubling word d

Generating function of $d: D(X) = \sum_{n \ge 0} d_n X^n$

$$\frac{d_0 = 0}{d_1 = 1 \text{ invertible in } \mathbb{F}_2 } \} \Rightarrow D(X) \text{ invertible in } \mathbb{F}_2[[X]],$$

i.e., there exists a series

$$U(X) = \sum_{n \ge 0} u_n X^n \in \mathbb{F}_2[[X]]$$

such that D(U(X)) = X = U(D(X)).

Question: What does $\boldsymbol{u} = (u_n)_{n \ge 0}$ look like?

iPD sequence

Lemma

4

Over $\mathbb{F}_2[[X]], D(X) = \sum_{n \ge 0} d_n X^n$ satisfies

$$X(1 + X^2)D(X)^2 + (1 + X^2)D(X) + X = 0.$$

<u>Proof</u>: $\boldsymbol{d} = h^{\omega}(0)$ where $h: 0 \mapsto 01, 1 \mapsto 00$

$$\Rightarrow \begin{cases} d_{2n} = 0 \ (h: 0 \mapsto 01, 1 \mapsto 00), \\ d_{2n+1} = 1 - d_n \ \forall n \ge 0 \ (h: 0 \mapsto 01, 1 \mapsto 00). \end{cases}$$

Thus

$$D(X) = \sum_{n \ge 0} d_n X^n = \sum_{n \ge 0} d_{2n} X^{2n} + \sum_{n \ge 0} d_{2n+1} X^{2n+1}$$
$$= X \sum_{n \ge 0} X^{2n} - X \sum_{n \ge 0} d_n X^{2n}.$$

We have $1/(1 - X) = \sum_{n \ge 0} X^n$. Consequently,

$$D(X) = \frac{X}{1 - X^2} - XD(X^2).$$

iPD sequence

From

$$D(X) = \frac{X}{1 - X^2} - XD(X^2),$$

working over $\mathbb{F}_2[[X]]$ gives

$$X(1+X^2)D(X^2) + (1+X^2)D(X) + X = 0.$$

For any prime p and for any series F(X) in $\mathbb{F}_p[[X]]$, we have $F(X)^p = F(X^p)$. Thus

$$X(1+X^2)D(X)^2 + (1+X^2)D(X) + X = 0,$$

as desired.

iPD sequence

Proposition

Over $\mathbb{F}_2[[X]], U(X) = \sum_{n \ge 0} u_n X^n$ satisfies

$$X^{2}U(X)^{3} + XU(X)^{2} + (X^{2} + 1)U(X) + X = 0,$$

$$X^{3}U(X)^{4} + X^{3}U(X)^{2} + U(X) + X = 0.$$

In particular, $\boldsymbol{u} = (u_n)_{n \geq 0}$ verifies $u_0 = 0$, $u_1 = 1$, and over \mathbb{F}_2 ,

$$\begin{cases} u_{2n} = 0 & \forall n \ge 0, \\ u_{4n+1} = u_{2n-1} & \forall n \ge 1, \\ u_{4n+3} = u_n & \forall n \ge 0. \end{cases}$$

iPD sequence

First equation: Rewrite the equation

$$X(1+X^2)D(X)^2 + (1+X^2)D(X) + X = 0$$

in terms of X:

 $D(X)^{2}X^{3} + D(X)X^{2} + (D(X)^{2} + 1)X + D(X) = 0.$

Replace X by U(X):

$$\begin{split} D(U(X))^2 U(X)^3 + D(U(X))U(X)^2 + (D(U(X))^2 + 1)U(X) \\ + D(U(X)) &= 0. \end{split}$$

Since U(X) is the formal inverse of D(X),

$$X^{2}U(X)^{3} + XU(X)^{2} + (X^{2} + 1)U(X) + X = 0.$$

Second equation: Work a bit.

iPD sequence

Recurrence relations for \underline{u} : Write $U(X) = \sum_{n \ge 0} u_n X^n$ in the second equation

$$X^{3} \sum_{n \ge 0} u_{n} X^{4n} + X^{3} \sum_{n \ge 0} u_{n} X^{2n} + \sum_{n \ge 0} u_{n} X^{n} + X = 0$$

$$\Leftrightarrow \sum_{n \ge 0} u_{n} X^{4n+3} + \sum_{n \ge 0} u_{n} X^{2n+3} + \sum_{n \ge 0} u_{n} X^{n} + X = 0.$$

Inspection of the coefficients (over \mathbb{F}_2):

•
$$u_0 = 0$$
 and $u_1 = 1$

- 4n+3 and 2n+3 odd $\Rightarrow u_{2n}=0$
- coefficient of X^{4n+3} for $n \ge 0$

$$u_n + u_{2n} + u_{4n+3} = 0 \Rightarrow u_{4n+3} = u_n$$

• coefficient of X^{4n+1} for $n \ge 1$

$$u_{2n-1} + u_{4n+1} = 0 \Rightarrow u_{4n+1} = u_{2n-1}$$

iPD sequence

The sequence $u = (u_n)_{n\geq 0}$ is referred to as the *inverse period-doubling sequence*, iPD sequence for short. OEIS tag: A317542

 $u = 0100010100000100010000010100000101000001000\cdots$

Corollary

 $\boldsymbol{u} = (u_n)_{n \ge 0}$ is 2-automatic.

<u>Proof</u>: The formal power series U(X) is algebraic over $\mathbb{F}_2(X)$. By Christol's theorem, \boldsymbol{u} is thus 2-automatic.

2-DFAO generating \boldsymbol{u}

 \wedge This automaton reads its input from least significant digit to most significant digit.

iPD sequence

Characteristic sequence in \boldsymbol{u}

<u>Sequence of 1's</u>: $\boldsymbol{a} = (a_n)_{n \ge 0}$ $\{a_n \mid n \in N\} = \{m \in N \mid u_m = 1\}$ $\boldsymbol{a} = 1, 5, 7, 13, 17, 23, 29, 31, 37, 49, 55, 61, 65, 71, 77, 95, 101, 113, \dots$ OEIS tag: A317543

<u>Remarks</u>:

- From the previous proposition, \boldsymbol{a} only contains odd integers.
- In the 2-DFAO generating $\boldsymbol{u},$ if the states outputting 1 are considered to be final, then

$$L_a = \{ \operatorname{rep}_2(a_n) \mid n \ge 0 \} = \{ 11 \}^* 1 \cup 1 \{ 1, 00 \}^* 0 \{ 11 \}^* 1.$$

<u>Examples</u>: rep₂(a_0) = 1, rep₂(a_1) = 101, rep₂(a_2) = 111, rep₂(a_3) = 1101

iPD sequence

$$L_a = \{1, 101, 111, 1101, 10001, 10111, 11101, 11111, 100101, \ldots\}$$

 $\begin{array}{l} \underline{\text{Fibonacci numbers:}} & (F(n))_{n\geq 0} \\ F(0)=0, \ F(1)=1, \ F(n)=F(n-1)+F(n-2) \ \ \forall \, n\geq 2 \end{array} \end{array}$

Proposition

The complexity function $\rho_{L_a} \colon \mathbb{N} \to \mathbb{N}$ of the language L_a satisfies

$$\begin{split} \rho_{L_a}(0) &= 0, \\ \rho_{L_a}(2n) &= F(2n-1) - 1 \ \forall n \geq 1, \\ \rho_{L_a}(2n+1) &= F(2n) + 1 \ \forall n \geq 0. \end{split}$$

Idea of the proof: It follows from the automaton generating \boldsymbol{u} .

iPD sequence

$L_a = \{ \operatorname{rep}_2(a_n) \mid n \ge 0 \} = \{ \underbrace{11}^* 1 \cup \underbrace{1\{1,00\}}^* 0\{11\}^* 1$										
			$L_{a,1}$	$L_{a,2}$						
n	a_n	$\operatorname{rep}_2(a_n)$	L_a	$a_n \mod 3$						
0	1	1	$L_{a,1}$	1						
1	5	101	$L_{a,2}$	2						
2	7	111	$L_{a,1}$	1						
3	13	1101	$L_{a,2}$	1						
4	17	10001	$L_{a,2}$	2						
5	23	10111	$L_{a,2}$	2						
6	29	11101	$L_{a,2}$	2						
7	31	11111	$L_{a,1}$	1						
8	37	100101	$L_{a,2}$	1						

Lemma

Let $n \ge 0$ and let $w_n = \operatorname{rep}_2(a_n)$. If $w_n \in L_{a,1}$, or if $w_n \in L_{a,2}$ and $|w_n|$ is even, then $a_n \mod 3 \equiv 1$. If $w_n \in L_{a,2}$ and $|w_n|$ is odd, then $a_n \mod 3 \equiv 2$.

$a = 1, 5, 7, 13, 17, 23, 29, 31, 37, 49, 55, 61, 65, 71, 77, 95, 101, 113, \dots$ $(a_n \mod 3)_{n \ge 0} = 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, \dots$

Proposition

The sequence $(a_n \mod 3)_{n \ge 0}$ is given by the infinite word $1^{F(1)}2^{F(2)}1^{F(3)}2^{F(4)}1^{F(5)}2^{F(6)}\cdots$

In particular, the sequence of run lengths of $(a_n \mod 3)_{n\geq 0}$ is the sequence of Fibonacci numbers $(F(n))_{n\geq 1}$.

Idea of the proof: It follows from the complexity result and the previous lemma.

iPD sequence

First difference in $(a_n \mod 3)_{n \ge 0}$: $\boldsymbol{\delta} = (\delta_n)_{n \ge 0}$

$$\delta_n = \begin{cases} 1 & \text{if } (a_{n+1} - a_n) \mod 3 \neq 0\\ 0 & \text{otherwise} \end{cases}$$

$$(a_n \mod 3)_{n \ge 0} = 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, \dots$$

 $\boldsymbol{\delta} = 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \dots$

Characteristic sequence of Fibonacci numbers $(F(n))_{n\geq 2}$: \boldsymbol{x}

 $x_n = \begin{cases} 1 & \text{if } n \text{ is a Fibonacci number} \\ 0 & \text{otherwise} \end{cases}$ $\boldsymbol{x} = 011101001000010000001\cdots$

Then $\boldsymbol{\delta} = (x_n)_{n \geq 2}$.

iPD sequence

Particular ANS: $(L_F, \{0, 1\}, <)$ with 0 < 1 and

 $L_F = \{\varepsilon\} \cup 1\{0, 01\}^*$ (Fibonacci representations)

A DFA \mathcal{A} accepting the regular language L_F :

Lemma

\boldsymbol{x} is Fibonacci-automatic.

<u>Proof</u>: The following Fibonacci-DFAO \mathcal{B} generates the sequence \boldsymbol{x} in the Zeckendorff numeration system.

In particular, \boldsymbol{x} is Fibonacci-automatic.

iPD sequence

Morphic words

A morphism $\sigma \colon A^* \to A^*$ is *prolongable* on a letter $a \in A$ if

- $\sigma(a) = au$ with $u \in A^+$
- $\lim_{n \to +\infty} |\sigma^n(a)| = +\infty.$

If σ is prolongable on a, then $\sigma^n(a)$ is a proper prefix of $\sigma^{n+1}(a)$ $\Rightarrow (\sigma^n(a))_{n\geq 0}$ converges to an infinite word \boldsymbol{w} (fixed point of σ). In this case, the word \boldsymbol{w} is called *pure morphic*. A *morphic* word is the morphic image of a pure morphic word.

Examples:

- Thue–Morse $\boldsymbol{t} = \tau^{\omega}(0)$ where $\tau: 0 \mapsto 01, 1 \mapsto 10$
- Period-doubling $d = h^{\omega}(0)$ where $h: 0 \mapsto 01, 1 \mapsto 00$

Theorem [M. Rigo (2000), M. Rigo and A. Maes (2002)]

An infinite word \boldsymbol{w} is morphic if and only if \boldsymbol{w} is S-automatic for some ANS S.

Consequence: \boldsymbol{x} is morphic

How to build morphisms that generate x? \rightsquigarrow Constructive proof of the theorem

iPD sequence

Lemma

Let $f: \{z, a_0, a_1, \dots, a_7\}^* \to \{z, a_0, a_1, \dots, a_7\}^*$ be the morphism defined by $f(z) = za_0$ and

$$\frac{i}{f(a_i)} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a_1a_2 & a_1a_4 & a_3a_7 & a_3a_6 & a_4a_7 & a_5a_6 & a_5a_7 & a_7a_7 \end{vmatrix}$$

Let $g: \{z, a_0, a_1, \dots, a_7\}^* \to \{0, 1\}^*$ be the morphism defined by

$$g(z) = g(a_1) = g(a_4) = g(a_7) = \varepsilon,$$

$$g(a_0) = g(a_5) = g(a_6) = 0,$$

$$g(a_2) = g(a_3) = 1.$$

Then $\boldsymbol{x} = g(f^{\omega}(z)).$

iPD sequence

Proof:

- the DFA \mathcal{A} accepts the language $L_F = \{\varepsilon\} \cup 1\{0,01\}^*$
- the Fibonacci-DFAO ${\mathcal B}$ generates ${\boldsymbol x}$
- product automaton $\mathcal{P} = \mathcal{A} \times \mathcal{B}$:

 Set

$$a_0 = (A, 0_0), a_1 = (E, 0_0), a_2 = (B, 1), a_3 = (C, 1),$$

 $a_4 = (E, 1), a_5 = (C, 0_1), a_6 = (D, 0_1), a_7 = (E, 0_1).$

Associated morphism $\psi_{\mathcal{P}} \colon \{z, a_0, a_1, \dots, a_7\}^* \to \{z, a_0, a_1, \dots, a_7\}^*$ with \mathcal{P} defined by

$$\psi_{\mathcal{P}}(z) = za_0$$

and

where $\delta_{\mathcal{P}}$ is the transition function of \mathcal{P} . Then $\psi_{\mathcal{P}} = f$. The morphism $g: \{z, a_0, a_1, \ldots, a_7\}^* \to \{0, 1\}^*$ is defined by

$$z, a_1, a_4, a_7 \mapsto \varepsilon; a_0, a_5, a_6 \mapsto 0; a_2, a_3 \mapsto 1.$$

Then $\boldsymbol{x} = g(f^{\omega}(z))$ (\boldsymbol{x} is morphic).

iPD sequence

<u>Problem</u>: g is erasing $(\exists a \in \{z, a_0, a_1, \dots, a_7\}$ s.t. $g(a) = \varepsilon)$

Lemma "Getting rid of erasing morphisms" [É Charlier, J. Leroy and M. Rigo (2016)]

Let $\boldsymbol{w} = g(f^{\omega}(a))$ be a morphic word where $g \colon B^* \to A^*$ is a (possibly erasing) morphism and $f \colon B^* \to B^*$ is a non-erasing morphism.

Let C be a subalphabet of $\{b \in B \mid g(b) = \varepsilon\}$ such that f_C is a submorphism of f.

Let $\lambda_C \colon B^* \to B^*$ be the morphism defined by

$$\lambda_C(b) = \begin{cases} \varepsilon & \text{if } b \in C \\ b & \text{otherwise.} \end{cases}$$

The morphisms $f_{\varepsilon} = (\lambda_C \circ f)|_{(B \setminus C)^*}$ and $g_{\varepsilon} = g|_{(B \setminus C)^*}$ are such that $\boldsymbol{w} = g_{\varepsilon}(f_{\varepsilon}^{\omega}(a))$.

iPD sequence

Proposition

Let $\phi \colon \{a, b, c, d, e\}^* \to \{a, b, c, d, e\}^*$ be the morphism defined by

$$a \mapsto ab, b \mapsto c, c \mapsto ce, d \mapsto de, e \mapsto d$$

and let $\mu \colon \{a, b, c, d, e\}^* \to \{0, 1\}^*$ be the coding defined by

$$a, d, e \mapsto 0; b, c \mapsto 1.$$

Then $\boldsymbol{x} = \mu(\phi^{\omega}(a)).$

Idea of the proof: Making use of the two previous lemmas.

iPD sequence

Let M be a matrix with coefficients in \mathbb{N} . \exists permutation matrix P such that

 $P^{-1}MP$ upper block-triangular matrix

with diagonal square blocks M_1, \ldots, M_s irreducible or zeroes. The *Perron–Frobenius* eigenvalue λ_M of M

$$\lambda_M = \max_{1 \le i \le s} \lambda_{M_i}$$

where λ_{M_i} is the Perron–Frobenius eigenvalue of the matrix M_i .

Let $f: A^* \to A^*$ be a prolongable morphism with fixed point \boldsymbol{w} . Let α be the Perron–Frobenius eigenvalue of M_f . If all letters of A occur in \boldsymbol{w} , then \boldsymbol{w} is *(pure)* α -substitutive. If $g: A^* \to B^*$ is a coding, then $g(\boldsymbol{w})$ is α -substitutive.

iPD sequence

Corollary

Let $\varphi = \frac{1}{2}(\sqrt{5}+1)$ be the golden ratio. The word \boldsymbol{x} is φ -substitutive.

<u>Proof</u>: Let

be the matrix associated with the morphism ϕ . The Perron–Frobenius eigenvalue of M_{ϕ} is $\varphi = \frac{1}{2}(\sqrt{5}+1)$. All letters a, b, c, d, e occur in $\phi^{\omega}(a)$

$$\phi^{\omega}(a) = abcceced \cdots$$

Thus \boldsymbol{x} is φ -substitutive.

iPD sequence

Proposition

 \boldsymbol{x} is not k-automatic for any $k \in \mathbb{N}_{\geq 2}$.

<u>Proof</u>: Proceed by contradiction and suppose that there exists an integer $k \ge 2$ such that \boldsymbol{x} is k-automatic.

By Cobham's theorem, \boldsymbol{x} is also k-substitutive.

(Not difficult to see that the Perron–Frobenius eigenvalue of the matrix associated with a k-uniform morphism is the integer k.) Clearly, k and φ are multiplicatively independent.

Thus, by Cobham-Durand's theorem, \boldsymbol{x} is ultimately periodic. This is a contradiction.

Theorem [Cobham (1972)]

An infinite word $\boldsymbol{w} \in B^{\mathbb{N}}$ is k-automatic if and only if there exist a k-uniform morphism $f \colon A^* \to A^*$ prolongable on a letter $a \in A$ and a coding $g \colon A^* \to B^*$ such that $\boldsymbol{w} = g(f^{\omega}(a))$.

Two real numbers $\alpha, \beta > 1$ are multiplicatively independent if

$$m, n \in \mathbb{N}$$
 with $\alpha^m = \beta^n \Rightarrow m = n = 0.$

Otherwise, α and β are multiplicatively dependent.

Theorem [Durand (2011)]

Let $\alpha, \beta > 1$ be two multiplicatively independent real numbers. Let u be a pure α -substitutive word

 \boldsymbol{v} be a pure β -substitutive word. Let g and g' be two non-erasing morphisms. If $\boldsymbol{w} = g(\boldsymbol{u}) = g'(\boldsymbol{v})$, then \boldsymbol{w} is ultimately periodic. In particular, if an infinite word is both α -and β -substitutive, i.e., in the special case where g and g' are codings, then it is ultimately periodic. Characteristic sequence of 1's in \boldsymbol{u} : $\boldsymbol{a} = (a_n)_{n \ge 0}$

$$\{a_n \mid n \in N\} = \{m \in N \mid u_m = 1\}$$

Corollary

a is not k-regular for any $k \in \mathbb{N}_{\geq 2}$.

<u>Proof</u>: Suppose that \boldsymbol{a} is k-regular for some $k \geq 2$. Then the sequence $(a_n \mod 3)_{n\geq 0}$ is k-automatic (by stability properties), so is $\boldsymbol{\delta}$ and consequently also \boldsymbol{x} . This contradicts the previous proposition. Sequence of 0's: $\boldsymbol{b} = (b_n)_{n \ge 0}$

$$\{b_n \mid n \in N\} = \{m \in N \mid u_m = 0\}$$

 $\boldsymbol{b} = 0, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, \dots$ OEIS tag: A317544

Open problem: Is the sequence **b** k-regular for some $k \ge 2$?

References

- G. Allouche, J.-P. Allouche and J. Shallit, Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpiński et morphismes de monoïde, *Ann. Inst. Fourier* (Grenoble) **56** (2006), no. 7, 2115–2130.
- J.-P. Allouche, A. André, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe and B. E. Sagan, A relative of the Thue-Morse sequence, *Discrete Math.* 139 (1995), no. 1-3, 455–461.
- J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, *Sequences and their applications*, 1–16, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999.
- J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge, 2003.
- É Charlier, J. Leroy and M. Rigo, Asymptotic properties of free monoid morphisms, *Linear Algebra Appl.* **500** (2016), 119–148.
- G. Christol, T. Kamae, M. Mendès France and G. Rauzy, Suite algébriques, automates et substitutions, *Bull. Soc. Math. France* 108 (1980), no. 4, 401–419.
- A. Cobham, Uniform tag sequences, *Math. Systems Theory* 6 (1972), 164–192.
- F. Durand, Cobham's theorem for substitutions, J. Eur. Math. Soc. 13 (2011), no. 6, 1799–1814.

iPD sequence

Manon Stipulanti (ULiège)

42

- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335–400.
- M. Gawron and M. Ulas, On formal inverse of the Prouhet–Thue–Morse sequence, *Discrete Math.* **339** (2016), no. 5, 1459–1470.
- J. Leroy, M. Rigo, and M. Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, *Discrete Math.*, **340** (2017), 862–881.
- Ł. Merta, Composition inverses of the variations of the Baum–Sweet sequence. Preprint available at https://arxiv.org/abs/1803.00292, 2018.
- Ł. Merta, Formal inverses of the generalized Thue–Morse sequences and variations of the Rudin–Shapiro sequence. Preprint available at https://arxiv.org/abs/1810.03533, 2018.
- M. Rigo, Generalization of automatic sequences for numeration systems on a regular language, *Theoret. Comput. Sci.*, **244** (2000), 271–281.
- M. Rigo, Formal languages, automata and numeration systems. 1. Introduction to combinatorics on words, Networks and Telecommunications Series, ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014.

iPD sequence

- M. Rigo, Formal languages, automata and numeration systems. 2. Applications to recognizability and decidability, Networks and Telecommunications Series, ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ, 2014.
- M. Rigo and A. Maes, More on generalized automatic sequences, J. Autom. Lang. Comb., 7 (2002) 351–376.
- ★ N. Rampersad and M. Stipulanti, The formal inverse of the perioddoubling sequence, J. Integer Seq., 21:Paper No. 18.9.1, 22 pages, 2018.

Paper No. 18.9.1 in J. Integer Seq.

- L. Schaeffer, Deciding Properties of Automatic Sequences, Ph.D. Thesis (2013).
- N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, http://oeis.org.

iPD sequence