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Initial problem

Take
e a prime number p
e a p-automatic sequence (sp)n>0
o its generating function S(X) = > s, X" € F,[[X]]
e the compositional inverse T'(X) = :f(’) tn X™ € Fpl[X]]
of S (provided it exists), i.e.
S(T(X)) = X = T(S(X)).

Questions:
1. What can be said about (t,)n>0?
2. What can be said about the sequences

{meN|t, =1}

forr=0,1,...,p—17
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History

Prouhet—Thue-Morse sequence
(M. Gawron and M. Ulas, 2016)

Variations of the Baum—Sweet sequence
(L. Merta, 2018)

Generalized Thue-Morse sequences
(L. Merta, 2018)

Variations of the Rudin—Shapiro sequence
(L. Merta, 2018)

Period-doubling sequence
(N. Rampersad and M. S., 2018)
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Abstract numeration systems

Abstract numeration system

An abstract numeration system (ANS) is a triple S = (L, A, <)

where L is an infinite regular language over a totally ordered
alphabet (A, <).

S-representation: repg(n) is the (n + 1)st word in the genealogi-
cally ordered language L.

S-numerical value: inverse map valg: L — N

e base-k numeration system
L=A{1,....,k—=1}{0,1,...,k —1}*U{e}
A={0,1,...,k—-1},0<1<---<k—1

e Zeckendorff numeration system
based on Fibonacci numbers: 1,2,3,5,8,13,21,34,...
Lr =1{0,01}* U{e}

Ap={0,1},0<1

iPD sequence Manon Stipulanti (ULiége) 4



S-automatic sequence

S =(L,A,<) an ANS
An infinite word w = wowiws --- € BY is S-automatic if there
exists a DFAO A = (Q, qo, A, 0, B, 1) such that

wn = p(0(go, repg(n)))  Vn = 0.

The automaton A is called a S-DFAO.
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Example: Thue-Morse word t = (t5,)n>0
t,, counts the number of 1’s (mod2) in repy(n)

n 2 3 4 ) 6 7 8 9 10

0 1
repe(n) | e 1 10 11 100 101 110 111 1000 1001 1010
iy 01 1 0 1 0 0 1 1 0 0

t is 2-automatic:

0 0 Q:{QOaQI}
A=1{0.1}

1
B=1{0,1}
p:qo—0,q1 — 1
1

1((qo, reps(5))) = 1(d(qo, 101)) = p(qo) =0 = t5

iPD sequence Manon Stipulanti (ULiége) 6



Period-doubling word d = (d,,),>0

d, = 1v2(n+1) mod 2

where 15 is the exponent of the highest power of 2 dividing its

argument
n 01 23 45 6 78 9 10 11 12 13 14
n+1 1 23 45 6 7 8 9 10 11 12 13 14 15
von+1)]0 1. 0 2 01 030 1 0 2 0 1 0
dy, 01 00O0O1O01O0T1T O O O0O 1 o0
d is 2-automatic:
0
1 Q:{QO,QI}
A={0,1}
p:go—0,q1—~1
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Characteristic sequences in d

d = 010001010100010001000 - - -

Sequence of 1’s: 0 = (05)n>0

{on|nENY={meN|dn=1)}

0=1,5,7,9,13,17,21,23,25,29, 31, 33,37, 39, 41, 45, 49, 53, 55, 57, . ..

Sequence of 0's: 2z = (2, )n>0

{zn |[In€ N} ={m € N | d,, =0}

2=0,2,3,4,6,8,10,11,12, 14, 15, 16, 18, 19, 20, 22, 24, 26, 27, 28, 30, . ..
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In Sloane’s On-Line Encyclopedia of Integer Sequences (OEIS):

e A079523
n 0 1 2 3 4 ) 6 7
On 1 5 7 9 13 17 21 23
repy(o,) |1 101 111 1001 1101 10001 10101 10111

The binary expansion of o, ends with an odd number of 1’s.

e A121539
n 01 2 3 4 5 6 7

Wm |0 2 3 4 6 & 10 11
repy(zn) | € 10 11 100 110 1000 1010 1011

The binary expansion of z, ends with an even number of 1’s.

iPD sequence
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https://oeis.org/A079523
https://oeis.org/A121539

~» How to handle the case of infinite alphabets?

Let w = (un)n>0 be an infinite sequence
and k > 2 be an integer.
The k-kernel of u is the set of subsequences

Ki(w) = {(Wgimgr)nz0 | i > 0and 0 < r < k'}.

k-regular sequence

A sequence wu is k-regqular if there exists a finite set .S of sequences
such that every sequence in Ki(u) is a Z-linear combination of
sequences of S.
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Example: 2 = (52),>0

scattered subword

S2 =4 {m € N | repy(m) is a { of repg(n)}

subsequence

S%=1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11, 13, . ..

Theorem [J. Leroy, M. Rigo and M. S. (2017)]

82 is 2-regular.

Remark: [J.-P. Allouche and J. Shallit, The Bible (2003)]
A sequence is k-regular and takes on only finitely many values
& it is k-automatic.
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Proposition

z is not k-regular for any k£ € Nj>o.

Idea of the proof:
e Exchange morphism F: 0— 1,1~ 0 d=E(d)
e d is the first difference modulo 2 of ¢

CI: (tn—i-l — tn mod 2),120
e =z describes the positions in ¢ where 0 and 1 alternate

¢t = 011010011001011010010 - - -
2=0,2,3,4,6,8,10,11,12, 14, 15, 16, 18, 19, . ..

e The first difference of z (= first difference between the posi-
tions of 1’s in d) gives the length of the blocks of consecutive
identical letters in t (= sequence of run lengths of t).

e p = the sequence of run lengths of ¢
p not k-regular for any k € Ny>o

e z not k-regular for any £ € Ni>o
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Proposition

o is not k-regular for any £ € Nj>o.
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Generating function of d: D(X) =3_ -,d, X"

do=0

dy = 1 invertible in Fy } = D(X) invertible in Fa[[X]],

i.e., there exists a series

UX) =Y unX" € Fo[[X]]

n>0
such that D(U(X)) = X = U(D(X)).

Question: What does u = (uy,)n>0 look like?
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Over Fo[[X]], D(X) = 3_,,50 dn X" satisfies

X1+ X)D(X)*+(1+X)D(X)+X =0.

Proof: d = h*(0) where h: 0+ 01,1 — 00

[ d2a=0 (h: 0 01,1 00),
dons1 =1—dp Y0 >0 (h: 0 01,1 00).

Thus
D(X) = Z d, X" = Z don X" + Z dop+1 X2
n>0 n>0 n>0
=X XX dp X7

n>0 n>0
We have 1/(1 - X) =3 5o X"
Consequently,

D(X) = X __ XD(X?)

11— X2 ‘
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From
X

T1-x2
working over Fa[[X]] gives

D(X) — XD(X?),

X1+ XHD(X?)+ 1+ X*)D(X)+ X =0.
For any prime p and for any series F'(X) in F,[[X]], we have
F(X)P = F(XP).
Thus

XA+ XHD(X) 4+ (1+X)D(X)+ X =0,

as desired.
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Proposition
Over Fo[[X]], U(X) = >, 5o un X" satisfies

X2U(X)P + XUX)*+ (X24+ 1DUX) + X =0,
X3U(X)* 4+ X3UX)?+U(X)+ X =0.

In particular, w = (uy,),>0 verifies up = 0, u; = 1, and over F,

oy =0 Vn >0,

Ugp 1 = U2p—1 YN 2>1,

Udpn4+3 = Up Y1 > 0.
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First equation: Rewrite the equation
XA+ X)DX)P *+ 1+ XHD(X)+X =0
in terms of X:
D(X)2X3+ D(X)X%2 4+ (D(X)? +1)X 4+ D(X) =0.
Replace X by U(X):

D(U(X))?U(X)? + D(U(X))U(X)* + (D(U(X))* + YU (X)
+ D(U(X)) = 0.

Since U(X) is the formal inverse of D(X),
XUXP+XUX)P?+ (X2 +1D)UX)+ X =0.

Second equation: Work a bit.
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Recurrence relations for w:
Write U(X) = »_,50 unX" in the second equation

X3 ZunX4” + X3 ZunXQ” + ZunX” +X=0

n>0 n>0 n>0
S up XN T, X LY ", X X =0,
n>0 n>0 n>0

Inspection of the coefficients (over Fa):
e uyg=0and u; =1
e 4n+ 3 and 2n + 3 odd = us, =0
e coefficient of X473 for n >0

Up + U2p + Udnt3 = 0= Ugn+3 = Unp
: 4dn+1
e coefficient of X forn>1
U2p—1 + Usnt1 = 0 = Ugpi1 = U2p—1
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The sequence u = (up)n>o is referred to as the inverse period-
doubling sequence, iPD sequence for short.
OEIS tag: A317542

u = 01000101000001000100000100000101000001000 - - -

u = (up)n>0 is 2-automatic.

Proof: The formal power series U(X) is algebraic over Fa(X).
By Christol’s theorem, w is thus 2-automatic.

iPD sequence Manon Stipulanti (ULiége) 20


https://oeis.org/A317542

/\ This automaton reads its input from least significant digit to
most significant digit.
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Characteristic sequence in w

Sequence of 1’s: a = (an)n>0

{an|neN}={meN |up=1}
a=1,5,713,17,23,29,31,37,49, 55,61, 65,71, 77,95, 101, 113, . ..

OEIS tag: A317543

Remarks:
e From the previous proposition, a only contains odd integers.

e In the 2-DFAO generating wu, if the states outputting 1 are
considered to be final, then

Lo = {repy(ayn) | n >0} = {11}*1 U 1{1,00}*0{11}*1.

Examples: repy(ag) = 1, repy(a1) = 101, repy(az) = 111,
repy(az) = 1101

iPD sequence Manon Stipulanti (ULiége) 22


https://oeis.org/A317543

L, = {1,101,111,1101,10001, 10111, 11101, 11111, 100101, . ..}

Fibonacci numbers: (F(n))s,
F(0)=0,F(1) =1, F(n) =

The complexity function pr,,: N = N of the language L, satisfies

>0
Fn—-1)4+F(n—-2) Vn>2

pLa(O) = 07
pr,(2n) =F(2n—-1)—1 ¥Yn >1,
pr,(2n+1)=F(2n)+1 Vn > 0.

Idea of the proof: It follows from the automaton generating u.
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L, = {repy(ayn) | n >0} = {11}*1U 1{1,00}*0{11}"1
. AN y

VvV
La,l La,2

ap | repy(ay) | Lq | ap mod 3
1 1 | Las
5| 101 | Las
7 111 | Ley
13| 1101 | Lo
10001 | Lgo
23 | 10111 | Lqs
29 | 11101 | Lgp
31 11111 | Lan
37 | 100101 | Los

00~ O U W~ O3
[S—
\]

— RN NN - =N

Let n > 0 and let wy, = repy(ay).
If wy, € Ly 1, or if wy, € Lg2 and |wy,| is even, then a, mod 3 = 1.
If wy, € Lq 2 and |wy,| is odd, then a, mod 3 = 2.
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a mod 3

a=1,5"7,13,17,23,29,31,37,49,55,61,65,71,77,95,101,113, . ..
(an mod 3)ps0 =1,2,1,1,2,2,2,1,1,1,1,1,2,2,2,2,2,2, ...

Proposition

The sequence (a, mod 3),>0 is given by the infinite word

1F(1)9F(2)1F(3)9F(4)1F(5)9F(6) .,

In particular, the sequence of run lengths of (a, mod 3),>0 is the
sequence of Fibonacci numbers (F(n)),>1.

4

Idea of the proof: It follows from the complexity result and the
previous lemma.
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First difference in (a, mod 3),>0: 6 = (dp)n>0

5 — 1 if (apt1 — an) mod 3 # 0
"1 0 otherwise

(an mod 3)p50 = 1,2,1,1,2,2,2,1,1,1,1,1,2,2,2,2,2,2, ...
§=1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,....

Characteristic sequence of Fibonacci numbers (F'(n))p>2: @

S 1 if n is a Fibonacci number
"1 0 otherwise

x = 0111010010000100000001 - - -

Then 8 = (xy,)n>2.
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Study of @

Particular ANS: (Lg,{0,1}, <) with 0 < 1 and
Lp ={c}U1{0,01}* (Fibonacci representations)

A DFA A accepting the regular language Lp:
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x is Fibonacci-automatic. l

Proof: The following Fibonacci-DFAO B generates the sequence
x in the Zeckendorff numeration system.

0 0 0,1
by 1
M (D—(0)

In particular, @ is Fibonacci-automatic.
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Morphic words

A morphism o: A* — A* is prolongable on a letter a € A if
e o(a) = au with u € AT

e lim |0"(a)| = +oc.
n—-+00

If o is prolongable on a, then 0™ (a) is a proper prefix of 0" *1(a)
= (0™(a))n>0 converges to an infinite word w (fixed point of o).

In this case, the word w is called pure morphic.
A morphic word is the morphic image of a pure morphic word.

Examples:
e Thue Morse t = 7%(0) where 7: 0 — 01,1+ 10
e Period-doubling d = h¥(0) where h: 0 — 01,1 +— 00
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Theorem |M. Rigo (2000), M. Rigo and A. Maes (2002)]

An infinite word w is morphic if and only if w is S-automatic for
some ANS S.

Consequence: x is morphic

How to build morphisms that generate x?
~» Constructive proof of the theorem
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Lemma

Let f: {z,a0,a1,...,a7}* = {z,a0,a1,...,a7}* be the morphism
defined by f(z) = zag and

i o 1 2 3 4 5 6 7
f(ai)|ala2 aia4 azay aszae aqa7 asae asar araz )

Let g: {z,a0,a1,...,a7}* = {0,1}* be the morphism defined by

9(2) = g(a1) = g(as) = g(a7) =,
g9(ao) = g(as) = g(as) = 0,
g(az) = g(az) = 1.
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Proof:
e the DFA A accepts the language Lp = {¢} U 1{0,01}*
e the Fibonacci-DFAO B generates @
e product automaton P = A x B:
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Set

apg = (A,OO),al = (E, 00),(12 = (B, 1),(13 = (C, 1),

a4 — (E, 1),&5 = (C,Ol),aﬁ = (D,01),a7 = (E,Ol).
Associated morphism ¢¥p: {z, ag,a1,...,a7}* = {z,a0,a1,...,a7}*
with P defined by

Yp(2) = zag
and
VYp(a;) = dp(ai, 0)op(a;,1)
i [ 0o 1 2 3 4 5 6 7
Vp(ai) | araz aras asar asag asar asas asar azas

where dp is the transition function of P. Then ¢p = f.
The morphism g: {z,ag,a1,...,a7}* — {0,1}* is defined by

z,a1, a4, a7 = €; ag, as, ag — 0;az,az — 1.

Then x = ¢g(f“(z)) (x is morphic).
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Problem: g is erasing (Ja € {z,a9,a1,...,a7} s.t. g(a) =¢)

Lemma "Getting rid of erasing morphisms" [E Charlier, J. Leroy

and M. Rigo (2016)]

Let w = ¢g(f“(a)) be a morphic word where g: B* — A* is a
(possibly erasing) morphism and f: B* — B* is a non-erasing
morphism.

Let C be a subalphabet of {b € B | g(b) = ¢} such that fc is a
submorphism of f.

Let A¢: B* — B* be the morphism defined by

)\C(b):{g iftbe C

b otherwise.

The morphisms f. = (Ac o f)|(g\c)+ and g = g|(p\¢)~ are such
that w = g-(f£(a)).
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Proposition
Let ¢: {a,b,c,d,e}* — {a,b,c,d,e}* be the morphism defined by

ar—ab,b— c,c— ce,d— de,e— d
and let u: {a,b,c,d,e}* — {0,1}* be the coding defined by

a,d,e— 0;b,c— 1.

Then & = u(¢¥(a)).

Idea of the proof: Making use of the two previous lemmas.
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Let M be a matrix with coefficients in N.
d permutation matrix P such that

P~'MP upper block-triangular matrix

with diagonal square blocks My, ..., M irreducible or zeroes.
The Perron—Frobenius eigenvalue Ap; of M

AM = max Ay,
1<i<s

where Ay, is the Perron—Frobenius eigenvalue of the matrix M;.
Let f: A* — A* be a prolongable morphism with fixed point w.
Let a be the Perron-Frobenius eigenvalue of M.

If all letters of A occur in w, then w is (pure) a-substitutive.
If g: A* — B* is a coding, then g(w) is a-substitutive.
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The word @ is y-substitutive.

Let ¢ = £(v/5 + 1) be the golden ratio.

Proof: Let

My =

o O o

0

be the matrix associated with the morphism ¢.
The Perron-Frobenius eigenvalue of My is ¢ = $(v5+1).

o O o

0

S = = O

0

All letters a, b, ¢,d, e occur in ¢“(a)

=0 O O

_ o o

0

¢“(a) = abececed - - -

Thus @ is p-substitutive.
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Proposition

x is not k-automatic for any k € N>o.

Proof: Proceed by contradiction and suppose that there exists an
integer k > 2 such that x is k-automatic.

By Cobham’s theorem, « is also k-substitutive.

(Not difficult to see that the Perron—Frobenius eigenvalue of the
matrix associated with a k-uniform morphism is the integer k.)
Clearly, k and ¢ are multiplicatively independent.

Thus, by Cobham-Durand’s theorem, x is ultimately periodic.
This is a contradiction.
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Theorem [Cobham (1972)]

An infinite word w € BY is k-automatic if and only if there exist
a k-uniform morphism f: A* — A* prolongable on a letter a € A
and a coding g: A* — B* such that w = g(f“(a)).

Two real numbers «, 8 > 1 are multiplicatively independent if
my,n €N with ™ =8"=m=n=0.

Otherwise, o and S are multiplicatively dependent.
Theorem |[Durand (2011)]

Let «, 8 > 1 be two multiplicatively independent real numbers.
Let u be a pure a-substitutive word

v be a pure S-substitutive word.
Let g and ¢’ be two non-erasing morphisms.
If w= g(u) = ¢'(v), then w is ultimately periodic.
In particular, if an infinite word is both a-and S-substitutive, i.e.,
in the special case where g and ¢’ are codings, then it is ultimately
periodic.
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Characteristic sequence of 1's in u: @ = (an)n>0

{an|neN}={meN |uy=1}

a is not k-regular for any k € N>o. l

Proof: Suppose that a is k-regular for some k > 2.

Then the sequence (a, mod 3),>0 is k-automatic (by stability
properties), so is  and consequently also x.

This contradicts the previous proposition.
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Sequence of 0’s: b = (by)n>0

{bpy |n € N} ={m € N | u,, =0}

b=0,2,3,4,6,8,9,10,11,12,14,15, 16, 18, 19, 20, 21, 22, 24, 25, 26, . . .
OEIS tag: A317544

Open problem: Is the sequence b k-regular for some k& > 27

~ iPD sequence Manon Stipulanti (ULiége) 41


https://oeis.org/A317544

References

e G. Allouche, J.-P. Allouche and J. Shallit, Kolam indiens, dessins sur le
sable aux iles Vanuatu, courbe de Sierpiniski et morphismes de monoide,
Ann. Inst. Fourier (Grenoble) 56 (2006), no. 7, 2115-2130.

e J.-P. Allouche, A. André, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe
and B. E. Sagan, A relative of the Thue-Morse sequence, Discrete Math.
139 (1995), no. 1-3, 455-461.

e J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse se-
quence, Sequences and their applications, 1-16, Springer Ser. Discrete
Math. Theor. Comput. Sci., Springer, London, 1999.

e J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applica-
tions, Generalizations, Cambridge, 2003.

e E Charlier, J. Leroy and M. Rigo, Asymptotic properties of free monoid
morphisms, Linear Algebra Appl. 500 (2016), 119-148.

e G . Christol, T. Kamae, M. Mendés France and G. Rauzy, Suite al-
gébriques, automates et substitutions, Bull. Soc. Math. France 108
(1980), no. 4, 401-419.

e A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972),
164-192.

e F. Durand, Cobham’s theorem for substitutions, J. Eur. Math. Soc.
13 (2011), no. 6, 1799-1814.

iPD sequence Manon Stipulanti (ULiége) 42



References

e P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30
(1906), 335-400.

e M. Gawron and M. Ulas, On formal inverse of the Prouhet—Thue—Morse
sequence, Discrete Math. 339 (2016), no. 5, 1459-1470.

e J. Leroy, M. Rigo, and M. Stipulanti, Counting the number of non-zero
coefficients in rows of generalized Pascal triangles, Discrete Math., 340
(2017), 862-881.

e I.. Merta, Composition inverses of the variations of the Baum—Sweet se-
quence. Preprint available at https://arxiv.org/abs/1803.00292, 2018.

e I.. Merta, Formal inverses of the generalized Thue-Morse sequences
and variations of the Rudin—Shapiro sequence. Preprint available at
https://arxiv.org/abs/1810.03533, 2018.

e M. Rigo, Generalization of automatic sequences for numeration systems
on a regular language, Theoret. Comput. Sci. , 244 (2000), 271-281.

e M. Rigo, Formal languages, automata and numeration systems. 1. In-
troduction to combinatorics on words, Networks and Telecommunica-
tions Series, ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ,
2014.

iPD sequence Manon Stipulanti (ULiége) 43


https://arxiv.org/abs/1803.00292
https://arxiv.org/abs/1810.03533

References

M. Rigo, Formal languages, automata and numeration systems. 2. Ap-
plications to recognizability and decidability, Networks and Telecommu-
nications Series, ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ,
2014.

M. Rigo and A. Maes, More on generalized automatic sequences, J.
Autom. Lang. Comb. , 7 (2002) 351-376.

N. Rampersad and M. Stipulanti, The formal inverse of the period-
doubling sequence, J. Integer Seq., 21:Paper No. 18.9.1, 22 pages,
2018.

Paper No. 18.9.1 in J. Integer Seq.

L. Schaeffer, Deciding Properties of Automatic Sequences, Ph.D. Thesis
(2013).

N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://oeis.org.

iPD sequence Manon Stipulanti (ULiége) 44


https://cs.uwaterloo.ca/journals/JIS/VOL21/Stipulanti/stip8.html
http://oeis.org

	Problem
	Some background
	Period-doubling word
	The formal inverse of the period-doubling word
	Characteristic sequence of 1's in iPD
	Characteristic sequence of 0's in iPD
	References

