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Motivation

SpaceX’s self-landing boosters require position and orientation estimation.
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Motivation
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B An inertial measurement unit (IMU) is a sensor that features a three-axis accelerometer, a
three-axis gyroscope, and possibly other sensors. While inertial sensors can also be used to
obtain a position estimation, we direct our interest to its use to obtain an orientation estimation.

B A gyroscope measures angular velocity, that is, the rate of change of orientation. Gyroscope
measurement data can be integrated with respect to time to obtain an orientation estimate.
While estimates thus obtained are accurate on short time scales, they loose accuracy over time due
to observational noise and possibly drift.

B To overcome this issue and improve accuracy, orientation information from gyroscopes is combined
with information from other sensors — sensor fusion.
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Motivation
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Sensor fusion is relevant to many other present-day engineering problems, e.g., autonomous driving.
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Organisation

B We will be meeting in room B6d S38 from 10h00 to 12h00 at the following dates:

1 2 3 4 5 6 7
12/03 19/03 | 26/03 | 02/04 | 23/04 | 30/04 | 07/05
lecture | Q&A Q&A Q&A Q&A Q&A Q&A

B Your presence is strongly recommended for the lecture:

€ Tuesday March 12, 10h00—-12h00.

B If you should need some help, please attend the Q&A sessions or contact C. Laruelle, D.Trillet, or
M. Arnst by email to ask a question by email or schedule an appointment.

B Please work in groups of 3 people (groups of less than 2 or more than 3 people not permitted).

B The report must be sent in PDF format by email to M. Arnst before/on Tuesday May 7 at 22h00.
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Organisation

B One report per group is required. The group is responsible for ensuring that work is fairly distributed
among group members and that a high-quality report is written.

B The report must be neat, well organized, and professionally presented. All graphs must be
computer plots. Label all graph axes and include proper units.

B Please include a list of all the references that you will have consulted.

B Length of 15 to 30 pages (including figs. and list of refs., single spacing, font size of 12 pt).

B The report must be sent in PDF format by email to M. Arnst before/on Tuesday May 7 at 22h00.

€ Please attach to your email (a) file(s) with any code that you will have written.

€ Please attach to your email a document that states how the work was distributed among group
members. For each exercise, state which group member(s) worked on the equations (if any),
the coding (if any), the analysis of the results (if any), and the writing. Each group member must
sign this document, and it is a scan or a photo of this signed document that must be sent.

ULiege, Belgium MATH00488 — Project 6/56



Organisation
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Organisation
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Kalman filter
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Kalman filter

B Filtering involves combining two sources of information:

€ a model of the time-dependent physical or engineered system under study,
€ a sequence of observations of that system.

The goal is to deduce from these two sources of information estimates of the state of the system
that are more accurate than those based on a single source of information alone.

B There can be sources of inaccuracy in the model and the observations, for example, due to
observational noise. As a result, the estimates of the state can be uncertain.

B Stochastic methods for filtering seek to take into account such sources of inaccuracy in the
model and the observations and to quantify the uncertainty in the estimates of the state. Stochastic
methods for filtering use the probability theory, namely, stochastic processes.

B The Kalman filter is a stochastic method for filtering in which a linear model and Gaussian
probability distributions are used.
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Kalman filter

B In the Kalman filter, the system is assumed to evolve in discrete time steps

o <t1 <...<tp <...

B The state x;_; attime {;_; is assumed to evolve into the state x; at time ¢, according to

xr = Fr(xr_1) + &,
a linear model in which

& F';. is the state transition model,
¢ &, is the process noise, a random variable with mean 0 and covariance matrix Q..

B Attime ?x, an observable y,. is assumed to be related to the state x;, according to

Yy, = Hp(xr) + 1y,
a linear model in which

& H, is the observation model,
¢ 1), is the observation noise, a random variable with mean 0 and covariance matrix f2;.

B All noise random variables are assumed to be mutually independent.
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Kalman filter

Probability density

State

B The state at time 7, is represented by a Gaussian probability density function (PDF) with mean
vector &, (best estimate) and covariance matrix C',|;; (quantification of uncertainty):

N (2, Chr)-

B Inthe Kalman filter, &y, and C},,, at time ¢y are deduced from &y, _ |1 and C'y 1,1 at
time tx_1 and the observation 1 in two steps.
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Kalman filter

Probability density

Cr1k—1

/ | State

Lp—1]k—1

B Step 1 (prediction step): The Gaussian PDF representing the state at time ¢ _1 is mapped
through the state transition model and the observation model to obtain a Gaussian PDF
representing a joint prediction of the state and the observable at time 7:

N({ T|k—1 }’[ Chlr—1 Cklk—lI_{FE D ity d eIk = Fi(®r-1k-1);
Hy(Zpp—1)] | HrCrik—1 HrCrp—1Hj + Ry Ck;|k—1:Fk:Ck;—1|k:—1Fr]£‘|‘Qk°
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Kalman filter

Observable

H . (Z5-1) -

> State

\_/A I
L|lk—1

B Step 1 (prediction step): The Gaussian PDF representing the state at time tx_1 is mapped
through the state transition model and the observation model to obtain a Gaussian PDF
representing a joint prediction of the state and the observable at time 7:

N({ T k—1 } [Cklk—l Cri—1Hy ]) with Trjk—1 = Fr(@r-1p-1);
Hy(Zgk-1)] " |HrCrik—1 HirCri—1Hj + Ry Crik—1=FrCr_1 -1 F} + Qy.
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Kalman filter

Observable

Hp(Z)5—1)

\_/A 1 > State
Llk—1

B Step 2 (correction step): The estimate ﬁ:k|k_1 is updated to obtain the estimate ﬁ:k|k with
covariance matrix Ck|k by conditioning on the observation vy, :

N( 2k, Crir) = N(@k|k—1+ck|k—1HES]:1 (Y —Hi (k1)) Ck|k—1_Ck|k—1HES]:1Hk:Ck|k—1)a

inwhich Sy, = H,Cjx_1 Hj. + Ry
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Kalman filter

Probability density

State

B Step 2 (correction step): The estimate &y, ;1 is updated to obtain the estimate &, ;, with
covariance matrix Ck|k by conditioning on the observation y, :

N(@k|k, Crik) = N(&k|k—1+ck|k—1Hri£S];1 (Yp—Hp(Zrr—-1)) Ck|k—1_Ck|k:—1H;£S];1Hka|k—1)7

inwhich S, = Hy,Cyp_1H} + Ry
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Kalman filter

B Thus, by putting things together, the Kalman filter can be expressed as follows:

€ Inititialization:
(530|07 CO\O) = (Mo, Q).

® Fork=1,2,...
m Step 1 (prediction step):

Tr—1 = Fr(Zr_15-1),
Crpo1=FrCr_1p1F; + Q.

m Step 2 (correction step):

Tiip = pjp—1 + Crp—1Hy Sy (Y — Hi(&gpp-1)),
Ciik = Crp—1 — Crpe1H};, Sy, " HiChpi_1,

in which
Sy = H;Cy_1Hy + Ry,
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Kalman filter

B The previous equations follow from fundamental results from linear algebra and probability theory,
notably, fundamental results about affine transformations and conditioning of random variables.

B An affine transformation v = A(u) + b of a random variable U with mean vector w and covar-
iance matrix C'¢s is a random variable V' with mean vector v and covariance matrix C'y, with

v =E{V}={A(U)+b} = A(BE{U}) + b= A(u) +b,
Cyv=F{(V-v)(V-u)T}=AF{(U -u)(U -u)T}A' = ACpA".
An affine transformation of a Gaussian random variable is a Gaussian transformation.

Let U be a Gaussian random variable with mean vector u and covariance matrix C so that U, u,
and C' can be decomposed in block form as follows

Ui uq C., C, ]
U = _ C — 21| .
[UJ 2 [22] ’ [021 Co|’

thus, U is distributed according to A (u, C'), which can be written in block form as follows:

o~ (] len ez])
U, usz |’ |Ca1 Cag

Then, the conditional probability distribution of U | given U 5 = w4 is given by

<U1|U2 = ’UQ) ~ N<ﬁ1 + C’glCQ_zl(ug — QQ),CH — 0310521021).
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Kalman filter

B Inverse of a blocked square matrix with symmetric diagonal blocks:

B (A-B'Cc'B)™! (-(C—-BA'B")"'BA™ )T

B [—(C -~ BA'BYHY"'BA! (C— BA~'B")-! ] .

A B"]'
5 ]

B Factorization of a blocked square matrix:
A B'Y|l [1 B'c'|[A-B'Cc™'B o0 I 0
B C| |0 I 0 c||c™'B I|’

in which I is the (appropriately sized) identity matrix.
B Determinant of a blocked square matrix:

A B'l T (~—1
det [B C] = det(C) det(A — B-C™ "B).

B Matrix identity:
A'BY(c-BA'BY)Y '=A-B'Cc'B)"'BTCc!;
indeed,
(A-B'Cc'B)A"'B'=B'c'(Cc -BA'B"Y)
BT -BTC'BA'BT =BT - BTc'BA'B".
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Kalman filter

B The aforementioned fundamental result about conditioning of random variables follows from the
aforementioned fundamental results from linear algebra:

P(U1,U>) (u1,u2)

PU{ U5 (u1|uz) =

pUg(uQ)
: exp [—1(|0H =™ Cin Oy ur| _ (w1
(2m)n1tmnay [Cll 031] 2\lu2 U2 Co1 Co2 w2 uo
T n n et
_ 21 Coa2
\/(27r)n21det(022) ep (_%(u2 - QQ)TC;; (u2 — 22))

(u1 —ui — C2T102_21 (u2 — 22))T

N | =

1
= exp (
\/(27r)”1 det(C'11 — CQTlC’2_21C721)
(C11 — C3Coy C21) H(ur —u1 — C3,CL (us — ’U,Q)))

Indeed, with the aforementioned matrix identity:
(w1 —u1)"(C11 —C3,C5 C21) ™ (u1 —w1)
—2(uy; —uy)’t ((C22—C21CT; lci)~ 1C21C'1_11)T(u2 —u2)
+ (u2 —u2) T (C22 — C21C1 C3) ™ H(uz — uo)
— (u2 —u2)T O35y (uz —u2)

:(ul—ul C21C22 (ug—ug)) (C11 — C’21C’ C’21) (ul—ul C 022( gg))
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Quaternions

Not all the material to follow is required to work on the assignment for this project. However, if you are interested in knowing
where the equations to be used come from, you will find that insight in the following. Also, bringing the material together in a
coherent manner was needed because different references from the literature use different conventions, such as directions in
which orientations are considered positive. Be mindful of such different conventions if you consult references yourself.
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Vector calculus

B Let us consider the m-dimensional Euclidean vector space R,
B Fortwo vectors a and b in R™, the (Euclidean) inner product is the scalar denoted by a - b.

B We denote by {21, ..., %, } an orthonormal basis for R", that is, a basis such that 2, - t; = gy,
1 < k, ¢ < m,where 0, is the Kronecker delta equal to 1 if K = ¢ and 0 otherwise.

B Given an orthonormal basis {21, ..., %,, } for R™, we have that any vector a in R can be
represented by a column matrix
ai

of its components ay, suchthata = >, | axip withay = a - i, 1 <k < m.
B For two vectors a and b, the inner product a - b is the scalara - b = ZZL:1 arbg.

B If m = 3, for two vectors a and b in R3, the vector product a x b is the vector @ x b in R? such
thata X b = (a2b3 — agbg)’il -+ (a3b1 — a1b3>’l:2 + (albg — agbl)’ig.

B |f m = 3, for three vectors a, b, and c in R3, we have the vector triple product identity:

ax(bxc)=(a-c)b—(a-b)c.
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Vector calculus

B A linear mapping A from R™ into R™ is a function that maps any vector a in R™ onto a
vector b = A(a) in R™ in a manner that satisfies additivity (A(a; + a2) = A(a1) + A(as),
Va1, as € R™)and homogeneity (A(aa) = aA(a),Va € R, Va € R™) properties.

B Given an orthonormal basis {1, . . ., %, } for R, we have that any linear mapping A from R™
into R can be represented by a matrix

ai c. A1m

aml o« o amm

of its components ay, such that axy = 2 - A(2y), 1 < k, 0 < m.

B We have for two vectors a and b and a linear mapping A with b = A(a) that
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Vector calculus

The identity linear mapping from R into R™ is the linear mapping I from R™ into R™ such that
I(a)=a, VYaeR™,
which corresponds to the matrix-vector representation

1 ai an

The transpose of a linear mapping A from R™ into R™ is the linear mapping A' from R™
into R™ such that

A'(a)-b=a- A(b), Va,becR™.

A linear mapping A from R™ into R™ is symmetric if AT = A, and it is skew-symmetric
it Al = —A.

The trace of a linear mapping tr(A) is defined by tr(A) = >, | akk.
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Vector calculus

B Fortwo vectors a and b in R™, the tensor product is the linear mapping denoted by a & b that
maps any vector ¢ in R onto a vector d = (a ® b)(c) in R™ such that

d=(a®b)(c)=a(b-c),

which corresponds to the matrix-vector representation
_dl_ _a,lbl &1bm_ _(31_

dpm, ambi ... anbn!| |cm

B Wehavethat] =), _; % ® 7x. And we have the identities
(a®b)(c®d)=((b-c)a®d), (a®b)'=b®a, t(a®b)=a-b.
B |f m = 3, the vector product of two vectors a and b in R3 is the vector ¢ = a x b in R defined

previously. The mapping that, for a given a, maps ll onto c is linear, so that it can be represented
by a linear mapping from R? into R? denoted by A such that

A(b)=axb, VbeR®

We say that a is the axial vector of A, which corresponds to the matrix-vector representation

0 —as as bl agbg — a,3b2
as 0 —aq bg - a3b1 — a1b3
—a9 al 0 b3 a1b2 — CLle
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Change of reference frame

11

We assume that there are two reference frames.

The inertial frame is fixed and equipped with basis vectors 21, 25, and 3.

The body frame is moving and equipped with basis vectors e (), e2(t), and e3(t).

We denote by R(t) the linear mapping, namely, the rotation, that maps the basis vectors 21, 29,
and 23 onto the basis vectors e1(t), e2(t), and es(?):

en(t) = R(t)(3y), 1<k<3.
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Linear mapping representation of rotation

B Let us construct the rotation R that rotates a vector a in R? about an axis specified by a unit vector
e in R3 (not to be confused with moving basis vectors) with an angle of (o onto a vector R(a) in R3.

B Decomposing a into a component @ along the axis and a component a | perpendicular to it,

aj=(a-ele=(exe)(a), ai=a—aj
we can write

R(a) = a)+cos(¢)a +sin(p)(exa) = cos(p)a+ (1—cos(p))(e®e)(a)+sin(p)e x a.

B Thus, a rotation about an axis e with an angle of ¢ admits the axis-angle representation

R = cos(¢)I + (1 —cos(p))(e® e) + sin(gp)E’, el =1 (Euler).
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Linear mapping representation of rotation

B With
A(a =e X a,
(E)Q(a):ex(exa)z(e-a)e—(e-e)a:(e-a,)e—a,,
(E)S(a):ex (e-a)e —a) — —exa=—E(a),

the axis-angle representation can be written equivalently as
R = cos(p)I + (1 — cos(yp)) ((E)2 +I) +sin(p)E

— T+ (1 — cos(¢)) (E)” + sin()E  (Rodrigues),
as well as equivalently as

+oo
R = exp (ng) = Z %(cpf?)k (note: this is not a component-wise exponential):
k=0
indeed, with sin(yp) = ¢ — %gpS + égp5 —...andcos(p) =1 — 5,02 + 51¢* — ..., we have
-~ 1 5,242 1 3,23 1 ,~.4
R=I+¢E+ 50 (E) o (E) +I(E) +

- 1 2 N 2 1 3 =~ 1 =\ 2

. 1 2 1 4 = 2 1 3 E

= I+ 590 —EQO + ... (E) + SO—§SO 4+ ...

=TI+ (1 — cos(y)) (E)Q + sin(p)E.
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Linear mapping representation of rotation

B A rotation is orthogonal:
RR' =R'R=T1:

Indeed, completing the axis e with vectors p and g in R? such that e, p, and q form on
orthonormal basis and e = p X q, we have

AN

E(a) = exa = (pxq)xa = —ax(pxq) = —(a-q)p+(a-p)qg = —(pRq)(a)+(q®p)(a),

and hence
E-qop-p®g,
so that
R = cos(o)I + (1 —cos(p))(e®e) +sin(p)(g@p —p®q),
and thus

RR" = R"R = cos®(¢)I +sin?(p)(e® e) +sin’(¢)(p@p+q®q) = 1.

B The axis is an eigenvector corresponding to a unit eigenvalue of a rotation:
R(e) = e,

and the trace of a rotation satisfies
tr(R) =1+ 2cos(y).
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Linear mapping representation of rotation

B We now let the rotation be a function of time: R = R(t). The time derivative R of the rotation R is
then the product of a skew-symmetric linear mapping with this rotation:

R = QR, (Poisson);

indeed, by differentiating the expression RR' = I of orthogonality, we have
RR'"+RR'"=0 — R=-RR'R=RR'R.
N——

Q

B The axial vector of 0 is the angular velocity vector w:
wXa= ﬁ(a), Va € R°.

B The angular velocity vector w has the following axis-angle representation:
w= (1—cos(p))ex é+sin(p)e+ e ;
~ ~~

N\

VO
change in axis change in angle

indeed, this representation follows from differentiating tr(R) = 1 4+ 2 cos(y) and R(e) = e:

JR— T AN AN
r(QR) = —2sin(p)p = tr (ﬂ%) = —2sin(p)p = r(QE) = -2¢ — w-e =9,

(I-R)(é)—Qe)=0 — ex (wxe)=ex (I-R)&)) = w=ex ((I-R)&)+ e
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Linear mapping representation of rotation

B The Poisson equation can be written equivalently as follows:
R = RQ with Qsuchthat @ = ROR":

indeed, by differentiating the expression R' R = I of orthogonality, we have
R'"R+R'"R=0 — R=-RR'R=RR'R,

M

=Q

Q=RR"=RR'RR"
N——

~
AN

B The axial vector of Q is the vector w such that:

F

~

& x a=Qa), YacR’

B The vectors w and w are related as follows:
w = R(w);
indeed,

(Piola)

ROQR"(a) — R(a; x (RT(a>)) 9 R(@) x (RR"(a)) = R(®) x a.
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Quaternions

B Let us begin with considering the space of complex numbers

C={a+bi : a,beR, z’2:—1}.

B We can add and multiply in C, for example,

(a4 bi) + (a4 bi) = (a+a) + (b+ b)i,

~

(a4 bi)(a@ + bi) = (ad — bb) + (ab + ab)i.

B These operations on complex humbers can be related to operations on matrices. Indeed, by

. L : . |la —
associating any complex number a + bz with a corresponding matrix [b a ] , We have
a —b N a b [(a+ a) —(b+ b)
b a b a] [(b+b) (a+a)]’
a —b][a —b] _ [(ada—bb) —(ab+ ab)
b a||b a]| |(ab+ab) (aa—bb) |’
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Quaternions

m
exp(ip) = cos(p) + sin(p)i  (Euler)
in(¢p)
1 > Re
cos(p)

B Operations on complex numbers are related to 2D geometry.
B We can factor any complex number in polar coordinates:

o+ bi =rexp(ip), @+ bi=rexp(ip).
B Multiplying two complex numbers corresponds to multiplying their lengths and their angles:
(a4 bi)(@ + bi) = riexp (i(p+ @)).
B Thus, in 2D, a rotation by an angle of ¢ can be represented by a multiplication by a complex
number exp (i) of unit magnitude. Quaternions extend this concept to 3D.
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Quaternions

B Quaternions are an extension to complex numbers.

B While operations on complex numbers are related to 2D geometry, operations on quaternions are
related to 3D geometry.

B While a complex number a + bi can be associated with an ordered pair (a, b) of real numbers, a
quaternion ¢ can be associated with an ordered quadruple (qo, ¢1, 2, g3) of real numbers. An

alternative notation is ¢ = (qo, q,) with q, = (q1, g2, q3)-

B Special sets of quaternions are

Q ={neR:n=(0,n), ncR’} (vectors),
Q1 =1{qcR*: |qdI*=¢ +q, q, =1} (unit quaternions).
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Quaternions

While operations on complex numbers can be related to operations on matrices, we can define
operations on quaternions by relating them to operations on matrices, namely, by associating
: : : : T —(q1 — g2t
any quaternion ¢ = (qo, g1, g2, g3) With a corresponding matrix do + 43’ Q@Y
d1 — g2t  qJo — g3t

For example, addition:

[CIO + g3t

—q1 — Q21 n go + Gs3t
g1 — Q21

—q1 — Q21
do — g3t g1 — g2t

do — qat
—(1+q1) — (g2 + 62)7?] |
(g0 + qo) — (g3 + q3)1

_ [(Clo +Go) + (g3 + q3)1
(g1 +q1) — (g2 + G2)i

For example, multiplication:

go +q3t —q1 — g2t| |Qo +q3t —q1 — Q21
g1 — g2t qo —q3t | g1 — @21 Qo — Q3%

q0qo — 9343 + (qoG3 + Gogq3)?
—q1q1 — @242 + (q1G2 — 1q2)1
doq1 + 9293 + (@143 — Qoq2)?
q0q1 — G293 — (—qoq2 — G1G3)?

ULiege, Belgium

—qoG1 + G293 + (—qoG2 — G1q3)1
—doq1 — 4243 + (q1G3 — Goq2)?
—q1q1 — q2G2 + (—q1G2 + 192)1
qoGo — q3q3 + (—qoG3 — Goq3 )1
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Quaternions

B For quaternions, addition, multiplication, and other operations are defined as follows:

(addition) q+ 4= (q+ do,q, +q,),

(multiplication) q©q=(qdo—q, "4y, 93a, + Goq, +4q, X q,)
(conjugation) ¢° = (q0,—q,),

(norm) lqll* = a¢ + q, - q.,

(inverse) ¢ = llall~*¢".

B The following identities hold:

@0d)*'=¢C0q¢, (g '=¢roq", lqodql=Iqlldl

B The multiplication can also be written in terms of linear mappings as

_ ~ T
- Jeo =4 1fd] [0 —4 | [q
q @ q _ I paN ~ _ - - ~ .
d, do -+ Qv q, q, QOI — Qv q,

\ . 7

\ 7

~
=Q, —
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Quaternions

For quaternions, the exponential is defined as follows:

+00
1
exp(q) = Eqk (note: this is not a component-wise exponential),

7
I
o

in which the quaternion power is defined recursively as follows:

" =q0¢ ' =¢""oq ¢ =(1,0).

The following properties hold:

d
pr exp(tq) = q © exp(tq) = exp(tq) © ¢;
indeed:
d +o0 tk—lqk 100 1
g P =D Gy =002 ()" = g0 el
k=1 ‘ k=0
q +o00 tk—lqk I 1 y
- exp(te) =) CEsie > ()" ©a=exp(ta) Oq
k=1 k=0
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Quaternions

B The exponential of a vector 7 = (0, 1) in Q, returns a unit quaternion exp(mn) in Qx:

exp(7) = (cos<unu>,sin<unu>m) c Qi

indeed, with

7770) (_ HnH27O)7
= (0, ~[mlI*n).

we have

7]

+o00
D Sty U L Y (I R B
k_

B The logarithm of a unit quaternion ¢ = (qg, q,) in Q1 can be defined as

. q,
log(q) = arcsin(]|g,||) Ta

for sufficiently small ||g, ||,
a unit quaternion returns a vector.

(exp(7)) = n behaves as expected. Thus, the logarithm of

B For small vectors and unit quaternions, we have the following approximations:
exp(n) ~ (1,m), log(q) = q,.
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Quaternion representation of rotation

B A rotation of ¢ about a unit axis e is represented by a unit quaternion as

o= (e (5) o (£) )

The rotation of a vector a in R? with an angle of ¢ about a unit axis e into a vector @ in R? is then
represented as a quaternion triple product as

a=q0adq;
indeed:
(07 d) - (QO, qv) O) (O? a’) O) (QO, _qv)
G AIREA:
_qv qOI + Qv —q, qu + Qv a
1 0 ] [0]
10 g, + @I +200Q, +(Q,)*] |a
1 o]7Jo
- 0 R| |a]’
since

sin?(p/2)ee” + cos®(¢/2)I + 2 cos(¢/2) sin(¢/2)E + sin’(p/2)(E)?
= I +sin’(p/2)(ee” — I + (E)?) 4 sin(p)E
=TI+ (1 — cos(yp)) (E)2 + sin(gp)@.
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Quaternion representation of rotation

B The quaternion representation can be written equivalently as follows:

_ P_\ .
o= e (26):
indeed, with
e’ = (1,0),
Elz((),e),
e’ = (—1,0),
ES—(O,—e),
we have
+00
1 rp_\* 1 ¢? p 1
Tel= —(Ze) =(1—- =X 4+ .. . [T
eXp( e) k_okv(ze) ( g \g T aig )
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Quaternion representation of rotation

B Let us now let the rotation be a function of time again: ¢ = ¢(t). The time derivative of the
quaternion representation then satisfies:

q= iw ® q (Poisson);

indeed,
a=¢oadm¢+qorand
1[0 —wt 0 1] 0 0

“3 0 8 | |riw] * 2 law) @ 1)
_ 1 [-w'R(a) + R(a) -w
2 | QR(a) — R(a) X w
1 0
- |QR(a)|

B For constant w, the solution to the Poisson equation is given by
w
q(t) = exp (gt) ® ¢q(0);
indeed,

® exp (—t) ® q(0) = %w ® q(2).
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Orientation estimation
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Orientation estimation

B The evolution of the quaternion representation of the rotation of the IMU is described by

1
q = 55 ® q (Poisson).

For w constant on [t, ¢ + At], the solution at time ¢ + At is related to the solution at time ¢ as

q(t + At) = exp <§At) © q(t):

B The gyroscope measures the angular velocity of the IMU expressed in its moving frame,
namely, the vector w defined previously, at successive time instants tg, t1, ts, ..., with time step
At, thatis, t = kAt withk = 0,1, 2,.... The measurements are corrupted by noise.

B Denoting by g and R, the quaternion and linear mapping representations of the rotation of the
IMU at ¢, by y, 5, the gyroscope measurement at ¢, and by 5a,k the noise at £ and assuming
the angular velocity is approximately constant in each time step, the state evolves as

Ry(yg p — fa;
qik+1 = €Xp < ( k ’k)At> ® qk,

2

in which Ry, serves to convert between the inertial and the moving frame and £, ;; is a Gaussian
random variable with a mean vector of 0 and a covariance matrix that we denote by 3.
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Orientation estimation

B Assuming that the acceleration of the IMU is negligible, the accelerometer measures the local
gravity vector in the IMU’s moving frame, at the time instants g, 1, ¢2, .... The measurements
are corrupted by noise. The evolution of the observable of the accelerometer is written as

ya,k — RE(Q) + £a,k7

in which g is the local gravity vector in the inertial frame, R, serves to convert between the inertial
and the moving frame, and £,  is a Gaussian random variable with a mean vector of 0 and a
covariance matrix that we denote by 3., .

B The magnetometer measures the local magnetic field, induced by earth and the presence of
magnetic material, in the IMU’s moving frame, at the time instants i, ¢1, t2, .... The measure-
ments are corrupted by noise. The evolution of the observable of the magnetometer is written as

Ym.k = R, (m) + Em ks

in which m is the local magnetic field in the inertial frame, R;. serves to convert between the
inertial and the moving frame, and §,,, ;. is a Gaussian random variable with a mean vector of 0
and a covariance matrix that we denote by 3J,,.
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Orientation estimation

4 {

B Uncertainty in a unit quaternion representing a rotation cannot be directly represented as a
4-dimensional Gaussian random variable because the realizations of a 4-dimensional Gaussian
random variable do not in general satisfy the unit norm constraint and thus are not valid rotations.

B Instead, we represent an uncertain unit quaternion representing an uncertain rotation as a
composition of a deterministic unit quaternion representing a reference rotation and a random
unit quaternion representing an uncertain rotation deviation:

q = exp <g) ©q,

in which 7p is a 3-dimensional centered Gaussian random variable; please note that this is not a
component-wise exponential; it is the quaternion exponential.
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Orientation estimation

B The Kalman filter assumes the state observation model and the observation model to be linear.
However, in the previous equations, the state observation model and the observation model are
nonlinear. In order to overcome this issue, we linearize the state observation model and the
observation model at each time instant. This yields the so-called extended Kalman filter.

B The linearization of the state observation model is obtained as follows:

Rk:(y(:) T SJJ ) . ~ ~C
MNgi1 = 2log (exp ( ]; L At | ®exp (ﬁ> ® qr © Qg1

2

Ri(y- ., —&- n. R (y-
= 2log (exp < k(yw]; £“”I{:)At> ® exp (%) ® exp <— k(gw’k)At>> X

by differentiating with respect to 1, and £, . at m;,, = 0 and £, ;. = 0, we obtain

Dy, My41 = 2 Dglog(q) [exp <—Mﬂt>] L leXp (——MAO] i Dy, exp (?) ~ I,
~I N ~ 3 %%[OV I]T
D¢, Mx+1 = 2 Dglog(q) [exp (_MAQ] R D, , exp <Rk(y¢b,k¢2_ €a”k)At> ~ _AtRy:
~T N ~ - — _V%RE]T .

hence,
Miy1 = M — AtR (€5
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Orientation estimation

B The linearization of the observation model is obtained as follows:

ya,k — R}f(g) T Ea,k

~RI(I+H) (g) +€q
= Rl (I -H})(9) + £,
=R} (9) + REG(ny) + €q s
Yk = R, (m) + Em.k
= ﬁ;f exp ( k) (m) + &
(

B Inthese equations, H  is the linear mapping such that 7). is the axial vector of H, and fik is the
linear mapping representation corresponding to the quaternion representation ¢, so that

qr = exp ( ) ® @ corresponds to Ry = exp (Hk)Rk
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Orientation estimation

B The extended Kalman filter for orientation estimation can be expressed as follows:

€ |Inititialization:
(Gojo, Cojo)-
® Fork=1,2,...;

m Step 1 (prediction step):

Ry 1i-1(yor)
2

Qk|k—1 = €XP At | © @r—1|k—1,

Crik—1 =Cr_1jp—1 + (At)Qﬁk|k—12&ﬁg|k—1-
m Step 2 (correction step):

. T o—1
U e Crir—1Hr Sy (Yr — yk|k—1)7
Cik = Crjp—1 — Crjp_1 Hp Sy ' HiChpp_1,

in which
R, .G . 0 y R, . (g)
H k|k—17 . Sy=HC,p1_ HTA—[ a ]’ :[ a,k] _ 1<;|1<; 1 .
. [Rkk 1M g B klk—1 50k 0 dim Ik ym,k: yk|k = Rk\k 1(m)

~

up
= gk = €Xp (

) ® qr|k—1-
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Assignment
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Assignment

1.  We wrote the equations involved in the correction step of the Kalman filter as follows:
~ ~ T ~—1 ~
Tk = Tklk—1 T+ Ck:|k—1Hk S (yk — Hk(wk|k—1)>a

T o—1
Crir =Crii—1 — Crpp—1 H; S, " HpCpp—1,
in which

Sy = HyCy_1H,, + Ry.

(a) Show that the update of the covariance matrix may be written equivalently as follows:
—1 Tp—1 —1

Hint: Similarly to the matrix identity on Slide 18, show that A~'B*(C + BA™'B")~!
= (A+B'C 'B)"'B'C'. After inserting the expression of S}, into the expression
of C’Mk, use this matrix identity and conclude.

(b) Show that the update of the best estimate of the state may be written equivalently as follows:
~ ~ T +~»—1 ~
L = Zpp—1 + CrpHy Ry (yy, — Hi(&5-1)).

Hint: Use the aforementioned matrix identity and the aforementioned equivalent expression of
the update of the covariance matrix.
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Assignment

2. Write a small library of functions to carry out computations with quaternions. Please represent
quaternions as 4-by-1 vectors and linear mappings representing rotations as 3-by-3 matrices.

(a) Write for each one of the addition, multiplication, conjugation, norm, and inverse operations
defined on Slide 35 a function that implements this operation. For example, write a function
named quaternConj that takes as input a quaternion ¢ and returns as output its
conjugate ¢°, write a function named quaternProd that takes as input two quaternions q
and g and returns as output their quaternion product ¢ ® g, and so forth.

(b) Write for the exponential defined on Slide 37 a function named vector2unitQuatern that
takes as input a 3-by-1 vector 17 and returns as output the unit quaternion exp(7).

(c) Write a function named quatern2rotMat that takes as input a unit quaternion Qand returns
as output the corresponding rotation R. You may use R = q,q. + qSI +290Q, + (Q,)>.
As part of your work, include in your report a proof of this formula based on the axis-angle
representation of the rotation on Slide 27 and that of the quaternion on Slide 38. Provide a
detailed justification of each step.

(d) Perform a few checks to verify whether you implemented everything correctly. As part of your
work, describe in your report the checks that you performed.
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Assignment

3. Let us build some further understanding of the equations involved in the extended Kalman filter.

Let us begin with taking a closer look at the first equation involved in the prediction step. As
explained on Slides 40 and 42, this equation follows from the fact that for w constant on [t, ¢ + At],
the solution to the Poisson equation at time ¢t + At is related to the solution at time ¢ as

q(t + At) = exp (gm) o q(t):

indeed, G;,—1|x—1 and gx|,—1 may be associated with ¢(t) and q(t + At), respectively; and the
observed value Yy, ;, is a noisy perturbation of the angular velocity vector expressed in the IMU’s

moving frame, which the multiplication with ﬁk—1|k—1 transports to the inertial frame. As stated on
Slide 37, for small values of % At, the equation above may be approximated as

w olt) — %At' w(l
q(t + At) ~ (1’ §At> 2alt) = [qv(t) +q%(A)th(t) + %CIA(i)X q,(t)]

The question is then as follows. Please insert the axis-angle representation of the angular velocity
vector of Slide 29 and that of the quaternion of Slide 38 into this approximation. Simplify the
resulting expression (Hint: use trigonometric angle sum identities) (Hint: it follows frome - e = 1
that e - € = 0). And interpret the end result.
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Assignment

4. Let us continue to build understanding of the equations involved in the extended Kalman filter.

The second equation in the prediction step and the second equation in the correction step serve to
obtain a quantification of the uncertainty in the estimates of the quaternions obtained to represent
the orientation of the IMU in these steps. However, the covariance matrices Ck|k_1 and Ck|k are
not 4-by-4 covariance matrices that provide a direct quantification of the uncertainty in the
quaternions. Instead, as explained on Slide 44, the uncertainty quantification follows from

q = exp (g) © q,

and Ck|k_1 and Ck‘k are 3-by-3 covariance matrices for uncertain vectors Mijk—1 = 0 and Mk|k
in representations of the uncertain quaternions as uncertain rotation deviations about the best
estimates of the quaternions obtained to represent the orientation of the IMU in the prediction and
correction steps. The questions are then as follow:

(a) Please interpret why the second equation in the prediction step involves the addition of one
term to another, and hence increased uncertainty, and the correction step involves the
subtraction of one term from another, and hence decreased uncertainty.

(b) As stated on Slide 37, for small values of 2, exp n may be approximated as
2 2

exp (g) ~ (1, g) Insert this approximation into the equation stated above, and deduce

from the approximate transformation thus obtained an approximate covariance matrix for the
uncertain quaternion as a function of the covariance matrix of the uncertain vector.
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Assignment

5. Let us apply the extended Kalman filter to the following data set:

Angular rate [rad/s]

Normalized acceleration [-

Normalized flux [-]

30

15
Time [s]

This data set is made available to you in the file data.mat. This data set was taken from the
literature, and it was not generated by means of the sparkfun 9DoF Razor IMU.
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Assignment

5. You may use the following values for the parameters: At = 1/256s, X5 = 0.007305 rad? /s*1,
3 = 0.00020011, ¥,,, = 0.00016801, g = (0,0,1), and m = (0.4230, 0.0630, —0.9040).
Please note that since we direct our interest to only the orientation, and not the position, we work
with normalized, hence unitless, data for the accelerometer and the magnetometer.

(a) Please implement the extended Kalman filter. Perform a few checks to verify whether you
implemented everything correctly. Describe in your report the checks that you performed.

(b) Apply the extended Kalman filter to the data set. Plot as a function of time the best estimate of
the quaternion representing the orientation of the IMU, that is, §k|k as a function of 7. As the
quaternion has 4 components, you should plot 4 curves. Interpret the resulis.

(c) Use the formula that you established under Question 4(b) to deduce at each time instant from
the covariance matrix C’Mk an approximate covariance matrix for the uncertain quaternion.
The diagonal elements of this approximate covariance matrix are squares of approximate
standard deviations. Use your solution to Question 5(b) and these approximate standard
deviations to plot as a function of time “plus and minus 3 sigma” uncertainty ranges for the
estimate of the quaternion representing the orientation of the IMU (Matlab: £i11).

(d) Use your implementation to provide some insight into the effect of the sensor fusion. As part
of your work, you could consider perturbing the data for the gyroscope by additional noise
(Matlab: randn) (adjust 3J;, accordingly). And you could consider carrying out a comparison
with a case in which the sensor fusion is disabled by replacing the correction step and the last
step in the extended Kalman filter with gy, = qxx—1 and Cpj, = Cjp—1.
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Assignment

6. Apply the extended Kalman filter to a real data set:

Use one of the sparkfun 9DoF Razor IMUs made available to you to collect a data set for a
sequence of rotational movements of the IMU of your choice. Apply the extended Kalman filter to
the data set thus obtained. As part of your work, think carefully about how to set up the experiment
and about how to choose good values for the parameters, such as the covariance matrices
describing the significance of the observational noise. Describe your approach in your report.

(Matlab: s=serial (’COM1’,’Baudrate’,115200) ; fopen(s);
fscanf (s, %t , %t , %, %, %5, 0L, %, %E,%E°,[9 1]1) ;)
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