About the k-binomial equiva-
lence and the associated complexity

vues fpls

LA LIBERTE DE CHERCHER

March 07, 2019
Marie Lejeune (FNRS grantee)

o Introduction

@ Morphisms and infinite words
@ Factors and subwords

@ Factor complexity function

@ Other complexity functions

9 Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

9 Better understanding of ~

o

3

«F

Qv

o Introduction

@ Morphisms and infinite words
@ Factors and subwords

@ Factor complexity function

@ Other complexity functions

9 Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

o>

Morphisms

Definition

A morphism on the alphabet A is an application
o: A" — A"

such that, for every word u = uy - - - u, € A,

o(u)=0(u1)---o(un).

Marie Lejeune (Liége University) March 07, 2019 2/25

Morphisms

Definition

A morphism on the alphabet A is an application
o: A = A"
such that, for every word u = uy - - - u, € A,
o(u)=o(u)---o(up).

If there exists a letter a € A such that o(a) begins by a, and if
limp— 400 |07(a)| = 400, then one can define

o¥(a) = nli)rroo o"(a).

This infinite word is called a fixed point of the morphism o.

Marie Lejeune (Liége University) March 07, 2019

2/25

Example (Thue—Morse)

Let us define the Thue—Morse morphism

- " 0+— 01;
ooy sy {00

Marie Lejeune (Liége University) March 07, 2019 3/25

Example (Thue—Morse)

Let us define the Thue—Morse morphism

o « | 0~ 01;
ooy sy {00
We have
¢(0) = 01,
©%(0) = 0110,
©3(0) = 01101001,

Marie Lejeune (Liége University) March 07, 2019

3/25

Example (Thue—Morse)

Let us define the Thue—Morse morphism

" « | 0—01;
ooy sy {00
We have
¢(0) = 01,
©?(0) = 0110,
©3(0) = 01101001,

We can thus define the Thue—Morse word as one of the fixed points of the
morphism ¢ :

t := ¢¥(0) = 0110100110010110 - - -

Marie Lejeune (Liége University) March 07, 2019 3/25

o Introduction

@ Morphisms and infinite words
@ Factors and subwords

@ Factor complexity function

@ Other complexity functions

9 Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

Qv

Factors and subwords

Definition

Let u=uy - Uy € A™ be a word (m € NT U{oo}).

A (scattered) subword of u is a finite subsequence of the sequence (u;)" ;.
A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form
Ujlig1 * - Uitp, with1<i<m 0</<m—|.

Marie Lejeune (Liége University) March 07, 2019 4/25

Factors and subwords

Definition

Let u=uy - Uy € A™ be a word (m € NT U{oo}).

A (scattered) subword of u is a finite subsequence of the sequence (u;)™;.
A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

Uiljyy -+ - Uityg, withl1<i<m0</{<m-—1I.

Example

Let us consider the alphabet {0,1,2}. Let u = 0102010.
The word 021 is a subword of u, but it is not a factor of w.

Marie Lejeune (Liége University) March 07, 2019 4/25

Factors and subwords

Definition

Let u=uy - Uy € A™ be a word (m € NT U{oo}).

A (scattered) subword of u is a finite subsequence of the sequence (u;)[" ;.
A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

Ujlijg1 * - - Ujtp, with1<i<m 0</<m—|.

Example

Let us consider the alphabet {0, 1,2}. Let u = 0102010.
The word 021 is a subword of u, but it is not a factor of w.
The word 0201 is a factor of u, thus also a subword of u.

Marie Lejeune (Liége University) March 07, 2019 4/25

Factors and subwords

Definition

Let u=uy - Uy € A™ be a word (m € NT U{oo}).

A (scattered) subword of u is a finite subsequence of the sequence (u;)[;.
A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form
Uiljp1 -+ Ujipg, with 1 <i<m, 0 </ < m—|.

Example

Let us consider the alphabet {0,1,2}. Let u = 0102010.
The word 021 is a subword of u, but it is not a factor of w.
The word 0201 is a factor of u, thus also a subword of wu.

Let (Y) denote the number of times x appears as a subword in u, and |ul,
the number of times it appears as a factor in u.

Marie Lejeune (Liége University) March 07, 2019 4/25

o Introduction

@ Morphisms and infinite words
@ Factors and subwords

@ Factor complexity function

@ Other complexity functions

9 Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

o>

Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

The simplest complexity function is the following. Here, N = {0,1,2,...}.
Definition

The factor complexity of the word w is the function

pw : N — N : n— #Facy(n).

Marie Lejeune (Liége University) March 07, 2019 5/25

Factor complexity of the Thue—Morse word

Example

Let us compute the first values of the Thue—-Morse's factor complexity.
We have

t =0110100110010110- - -

Marie Lejeune (Liége University) March 07, 2019 6/25

Factor complexity of the Thue—Morse word

Example
Let us compute the first values of the Thue—Morse's factor complexity.

We have
t =0110100110010110---

and

n |01 23
pt(n)‘l

Marie Lejeune (Liége University) March 07, 2019 6/25

Factor complexity of the Thue—Morse word

Example
Let us compute the first values of the Thue—Morse's factor complexity.

We have
t =0110100110010110---

and

n |01 23
pt(n)‘l

Marie Lejeune (Liége University) March 07, 2019 6/25

Factor complexity of the Thue—Morse word

Example
Let us compute the first values of the Thue—Morse's factor complexity.
We have
t =0110100110010110- - -
and

Marie Lejeune (Liége University) March 07, 2019

6/25

Factor complexity of the Thue—Morse word

Example
Let us compute the first values of the Thue—Morse's factor complexity.
We have
t =01101001100101101001011001101001 - - -
and

TN
| W

N~

pt(n) ‘

Marie Lejeune (Liége University) March 07, 2019

6/25

Factor complexity of the Thue—Morse word

Example

Let us compute the first values of the Thue-Morse's factor complexity.
We have

t =0110100110010110- - -

and

n |01 23
pt(n)‘l 2 4 6
Then, for every n > 3, it is known that
(n) = 4n—2-2m—4 if2.2M<pn<3.2m,
PR = onta.2m 2 if3.2m < p<a4.om

Marie Lejeune (Liége University) March 07, 2019

6/25

o Introduction
@ Morphisms and infinite words
@ Factors and subwords
@ Factor complexity function
@ Other complexity functions

9 Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

o>

From factor to k-binomial complexity

Let us rewrite the definition.
Definition

The factor complexity of the word w is the function

pw : N — N : n— #Facy(n).

Marie Lejeune (Liége University) March 07, 2019 7/25

From factor to k-binomial complexity

Let us rewrite the definition.
Definition

The factor complexity of the word w is the function
pw : N — N: nw— #(Facy(n)/ ~=),

where u~— v & u=v.

Marie Lejeune (Liége University) March 07, 2019 7/25

From factor to k-binomial complexity

Let us rewrite the definition.
Definition

The factor complexity of the word w is the function
pw: N —= N:n— #(Facy(n)/ ~2),

where u ~— v & u=v.

The relation ~_ can be replaced by other equivalence relations.

Marie Lejeune (Liége University) March 07, 2019

7/25

From factor to k-binomial complexity

For example, let us define,

e Abelian equivalence: u~,p1 v & |ul, =|v|, Vae A

Marie Lejeune (Liége University) March 07, 2019 8/25

From factor to k-binomial complexity

For example, let us define,
if ke NT,

e Abelian equivalence: u~,p1 v & |ul, =|v|, Vae A

e k-abelian equivalence: u ~,p v & |ulx = |v|x Vx € ASK

Marie Lejeune (Liége University) March 07, 2019 8/25

From factor to k-binomial complexity

For example, let us define,
if ke NT,
e Abelian equivalence: u~,p1 v & |ul, =|v|, Vae A
e k-abelian equivalence: u ~,p v & |ulx = |v|x Vx € ASK

e k-binomial equivalence: u ~y v & (Y) = (V) Vx € ASK

Marie Lejeune (Liége University) March 07, 2019

8/25

From factor to k-binomial complexity

For example, let us define,
if ke NT,

e Abelian equivalence: u~,p1 v & |ul, =|v|, Vae A

e k-abelian equivalence: u ~,p v & |ulx = |v|x Vx € ASK

e k-binomial equivalence: u ~y v & (Y) = (V) Vx € ASK
Let us illustrate the last one.

Marie Lejeune (Liége University) March 07, 2019

8/25

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient (%) is the number of
times that x appears as a subword in vu.

Marie Lejeune (Liége University) March 07, 2019 9/25

Binomial coefficients

Definition (Reminder)

Let v and x be two words. The binomial coefficient (i) is the number of
times that x appears as a subword in wu.

Example

If u = aababa,

Marie Lejeune (Liége University) March 07, 2019 9/25

Binomial coefficients

Definition (Reminder)

Let v and x be two words. The binomial coefficient (i) is the number of
times that x appears as a subword in wu.

Example

If u= aababa,

Marie Lejeune (Liége University) March 07, 2019 9/25

Binomial coefficients

Definition (Reminder)

Let v and x be two words. The binomial coefficient (i) is the number of
times that x appears as a subword in wu.

Example

If u= aababa,

Marie Lejeune (Liége University) March 07, 2019 9/25

Binomial coefficients

Definition (Reminder)

Let v and x be two words. The binomial coefficient (i) is the number of
times that x appears as a subword in wu.

Example

If u= aababa,

Marie Lejeune (Liége University) March 07, 2019 9/25

Binomial coefficients

Definition (Reminder)

Let v and x be two words. The binomial coefficient (i) is the number of
times that x appears as a subword in wu.

Example

If u= aababa,

Marie Lejeune (Liége University) March 07, 2019 9/25

Binomial coefficients

Definition (Reminder)

Let v and x be two words. The binomial coefficient (i) is the number of
times that x appears as a subword in wu.

Example

If u= aababa,

Marie Lejeune (Liége University) March 07, 2019 9/25

Binomial coefficients

Definition (Reminder)

Let v and x be two words. The binomial coefficient (i) is the number of
times that x appears as a subword in wu.

Example

If u = aababa,

Marie Lejeune (Liége University) March 07, 2019 9/25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
w==
a a
Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
-
a a
Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u v u v
()-2-() () --6)
Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u v u v
()-2-() () ->-()
Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u v u v
()-2-()()-2-()
Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u v u v
()-2-() (&) -*-()
Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u v u v u v
= 2 pr— = 4- = = 1 pr— .
(o)== ()= () (o)== ()
Marie Lejeune (Liége University) March 07, 2019 10/25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u\ _ , (v U\ _ (Y A
a) ~ \a)’\bp) \b)'\aa) ~ \aa)’
u v
(s8) == (an)
Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,

u\ _ , (v U\ _ (Y A

a) ~ \a)’\bp) \b)'\aa) ~ \aa)’

u v u %

(o) == (o) () == (&)

Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,

u\ _ , (v U\ _ (Y A

a) ~ \a)’\bp) \b)'\aa) ~ \aa)’

u v u %

(o) == (o) () == (&)

Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,

u\ _ , (v U\ _ (Y A

a) ~ \a)’\bp) \b)'\aa) ~ \aa)’

u v u %

(o) == (o) () == (&)

Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,

u\ _ , (v U\ _ (Y A

a) ~ \a)’\bp) \b)'\aa) ~ \aa)’

u v u %

(o) == (o) () == (&)

Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if
(“) = <V> Vx € ASK,
X X

The words u = bbaabb and v = babbab are 2-binomially equivalent.

000000
(o) 0=) () == () () == (0).

Example

Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if
(“) = <V> Vx € ASK,
X X

The words u = bbaabb and v = babbab are 2-binomially equivalent.

000000
() =0~) () == ()) == (&)

Example

Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if
(“) = <V> Vx € ASK,
X X

The words u = bbaabb and v = babbab are 2-binomially equivalent.

900000
() 0=) () == () () == (0.

Example

w

Marie Lejeune (Liége University) March 07, 2019

10 /25

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if
(“) = <V> Vx € ASK,
X X

The words u = bbaabb and v = babbab are 2-binomially equivalent.

000000
() 0= o) () == ()) == (&)

Example

Marie Lejeune (Liége University) March 07, 2019

10 /25

Remark
For all words u, v and for every nonnegative integer k,

Unrgi1 V= Un"~gV.

Marie Lejeune (Liége University) March 07, 2019 11/25

Remark
For all words u, v and for

every nonnegative integer k,

Unrgi1 V= Un"~gV.

Remark

For all words u, v,

Ul Ve Uy V.

Marie Lejeune (Liége University)

March 07, 2019

11/25

Remark
For all words u, v and for every nonnegative integer k,

Unrgi1 V= Un"~gV.

Remark

For all words u, v,
Uni Ve Unrgpg V.

Definition (Reminder)

The words u and v are 1-abelian equivalent if

(“) —|uls = |v]s= <V> Va€e A
a a

Marie Lejeune (Liége University) March 07, 2019

11/25

k-binomial complexity

Definition

If w is an infinite word, we can define the function

b‘(nf‘) :N = N: n— #(Facw(n)/~x),

which is called the k-binomial complexity of w.

Marie Lejeune (Liége University) March 07, 2019 12/25

k-binomial complexity

Definition

If w is an infinite word, we can define the function
b{k) : N — N: n— #(Facw(n)/~x),

which is called the k-binomial complexity of w.

Example

For the Thue—Morse word t, we have bEl)(O) =1 and, for every n > 1,

@, _J 3 ifn=0 (mod?2)
by "(n) _{ 2, otherwise.

Marie Lejeune (Liége University) March 07, 2019 12 /25

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t). J

Marie Lejeune (Liége University) March 07, 2019 13 /25

Computing b (n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢/ — 1 blocks with one letter before and one letter after.

Marie Lejeune (Liége University) March 07, 2019 13 /25

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

<g> e {¢}.

Marie Lejeune (Liége University) March 07, 2019 13 /25

We obtain that

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

<g> e {¢}.

Marie Lejeune (Liége University) March 07, 2019 13 /25

We obtain that

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

<g> e {¢}.

Marie Lejeune (Liége University) March 07, 2019 13 /25

We obtain that

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

<g> e {¢}.

Marie Lejeune (Liége University) March 07, 2019 13 /25

We obtain that

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

<g> e {¢}.

Marie Lejeune (Liége University) March 07, 2019 13 /25

We obtain that

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{l—1,/}.

Marie Lejeune (Liége University) March 07, 2019 13 /25

We obtain that

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

We obtain that

<g> e{f—1,00+1).

Marie Lejeune (Liége University) March 07, 2019 13 /25

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

We obtain that

<g> e{f—1,00+1).

Marie Lejeune (Liége University) March 07, 2019 13 /25

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = ¢(t).

e If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

We obtain that

<g> e{f—1,00+1).

Marie Lejeune (Liége University) March 07, 2019 13 /25

Computing bgl)(n)

Example (proof)
Since t is the fixed point of ¢, we have t = p(t).

o If n =2/, every factor u is either composed of ¢ blocks or is composed
of ¢/ — 1 blocks with one letter before and one letter after.

We thus have

t=01-10-10-01-10-01-01-10---

We obtain that

<g’> e{f—1,¢0+1).
Thus, bgl)(n) =0

Marie Lejeune (Liége University) March 07, 2019 13 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

<g> € {¢}.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing bgl)(n)

Example (proof)

e If n=2¢—1, every factor u is composed of ¢ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,0.

We obtain that

Marie Lejeune (Liége University) March 07, 2019 14 /25

Computing b (n)

Example (proof)

e If n=2¢—1, every factor u is composed of £ — 1 blocks with one
letter before or after.

We thus have

t=01-10-10-01-10-01-01-10---

(g) e{t—1,10}.

We obtain that

Thus, b{")(n) = 2.

Marie Lejeune (Liége University) March 07, 2019 14 /25

o Introduction
@ Morphisms and infinite words
@ Factors and subwords
@ Factor complexity function
@ Other complexity functions

e Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

Qv

o Introduction
@ Morphisms and infinite words
@ Factors and subwords
@ Factor complexity function
@ Other complexity functions

e Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

o>

Sturmian words

Definition (Reminder)

A Sturmian word is an infinite word having, as factor complexity,
p(n) =n+1forall neN.

Marie Lejeune (Liége University) March 07, 2019 15 /25

Sturmian words

Definition (Reminder)

A Sturmian word is an infinite word having, as factor complexity,
p(n) =n+1forall neN.

Theorem (M. Rigo, P. Salimov, 2015)

Let w be a Sturmian word. We have b{®(n) = py(n) = n+ 1.

Marie Lejeune (Liége University) March 07, 2019 15 /25

Sturmian words

Definition (Reminder)

A Sturmian word is an infinite word having, as factor complexity,
p(n) =n+1forall neN.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have b{®(n) = py(n) = n+ 1.

Since for every infinite word x,

p2(n) < bW (n) < b,V (n) < py(n) VneN, Vk e NT,

we have b{(n) = py(n) = n+1 for all k > 2.

Marie Lejeune (Liége University) March 07, 2019

15 /25

o Introduction
@ Morphisms and infinite words
@ Factors and subwords
@ Factor complexity function
@ Other complexity functions

e Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

o>

Why is the Thue—Morse word so interesting?

Let w be a Sturmian word. We have

pw(n) < pe(n) Vn>2.

This is not the case for the k-binomial complexity.

Theorem (M. Rigo, P. Salimov, 2015)
For every k > 1, there exists a constant C, > 0 such that, for every n € N,

b (n) < Cy.

Marie Lejeune (Liége University) March 07, 2019 16 /25

Why is the Thue—Morse word so interesting?

Let w be a Sturmian word. We have

pw(n) < pe(n) Vn>2.

This is not the case for the k-binomial complexity.

Theorem (M. Rigo, P. Salimov, 2015)
For every k > 1, there exists a constant C, > 0 such that, for every n € N,

b (n) < Cy.

In fact, this result holds for every infinite word which is a fixed point of a
Parikh-constant morphism.

Marie Lejeune (Liége University) March 07, 2019 16 /25

Parikh-constant morphisms

Definition
A morphism o : A* — A* is Parikh-constant if, for all a, b,c € A,

lo(a)|c = |o(b)|c. Otherwise stated, images of the different letters have to
be equal up to a permutation.

Marie Lejeune (Liége University) March 07, 2019 17 /25

Parikh-constant morphisms

Definition

A morphism o : A* — A* is Parikh-constant if, for all a, b,c € A,

lo(a)|c = |o(b)|c. Otherwise stated, images of the different letters have to
be equal up to a permutation.

Example

The morphism

0 — 0112;
o:{0,1,2}* > {0,1,2}*: { 1 — 1201;
2 1120

is Parikh-constant.

Marie Lejeune (Liége University) March 07, 2019 17 /25

Back to Thue—Morse

We actually computed the exact value of bgk) for all n € N.

Theorem (M. L., J. Leroy, M. Rigo, 2018)

Let k be a positive integer. For every n < 2K — 1, we have

b (n) = pr(n),

while for every n > P

kK, [3:2=3 ifn=0 (mod 2%);
by ’(n) = { 3.2k — 4. otherwise.

Marie Lejeune (Liége University) March 07, 2019 18/25

Back to Thue—Morse

We actually computed the exact value of b(tk) for all n € N.

Theorem (M. L., J. Leroy, M. Rigo, 2018)

Let k be a positive integer. For every n < 2K — 1, we have

b (n) = pr(n),

while for every n > P

kK, [3:2=3 ifn=0 (mod 2%);
by ’(n) = { 3.2k — 4. otherwise.

Open question : given k € N, can we find a word w which is a fixed point
of a Parikh-constant morphism and such that there exists N € N for which

b (n) < b (n) ¥n>N ?

Marie Lejeune (Liége University) March 07, 2019 18/25

o Introduction
@ Morphisms and infinite words
@ Factors and subwords
@ Factor complexity function
@ Other complexity functions

e Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

o>

A ternary example: the Tribonacci word

Definition
The Tribonacci word is the fixed point s = 0“(0) where ¢ is the morphism

o
—_

o:4{0,1,2}* — {0,1,2}":

Lol

s = 010201001020101 - - -.

Marie Lejeune (Liége University) March 07, 2019 19/25

A ternary example: the Tribonacci word

Definition
The Tribonacci word is the fixed point s = 0“(0) where ¢ is the morphism

o
—_

o:4{0,1,2}* — {0,1,2}":

Lol

s = 010201001020101 - - -.

Once again, we computed the exact value of b{¥).

Theorem (M. L., M. Rigo, M. Rosenfeld, 2019)

For all n € N, for all k € N=2, we have

b{K)(n) = ps(n) = 2n + 1.

Marie Lejeune (Liége University) March 07, 2019 19/25

What about Arnoux-Rauzy words?

The Tribonacci word is a particular Arnoux-Rauzy word.
Definition

An Arnoux-Rauzy word is an infinite word w having factorial complexity
pw(n) = dn+ 1 for some d € N, with some additional properties.

If such a d exists, then w is built on a (d — 1)-letter alphabet.

Marie Lejeune (Liége University) March 07, 2019 20 /25

What about Arnoux-Rauzy words?

The Tribonacci word is a particular Arnoux-Rauzy word.
Definition

An Arnoux-Rauzy word is an infinite word w having factorial complexity
pw(n) = dn+ 1 for some d € N, with some additional properties.

If such a d exists, then w is built on a (d — 1)-letter alphabet.

Conjecture

Let w be an Arnoux-Rauzy word. Then,

b{)(n) = pu(n)

for all n € N and for all kK > 2.

Marie Lejeune (Liége University) March 07, 2019 20 /25

What about Arnoux-Rauzy words?

Remark

The proof of the theorem seems complicated to adapt to the general case.
Indeed, we used the fact that s is 2-balanced. Otherwise stated, for all
factors u and v of s of the same length, we knew that

[lula = [v]al <2,
for all a € {0,1,2}.

This is not always the case with Arnoux-Rauzy words. We know that some
of them are not N-balanced for any N € N.

Marie Lejeune (Liége University) March 07, 2019 21/25

o Introduction
@ Morphisms and infinite words
@ Factors and subwords
@ Factor complexity function
@ Other complexity functions

9 Some results about the k-binomial complexity
@ Sturmian words

@ The Thue—Morse word
@ The Tribonacci word

e Better understanding of ~

o

3

«F

Qv

When are two words equivalent?

To help us to solve these problems, we would like to better understand
when two words are k-binomially equivalent.

Marie Lejeune (Liége University) March 07, 2019 22 /25

When are two words equivalent?

To help us to solve these problems, we would like to better understand
when two words are k-binomially equivalent.

As far as we know, there exist polynomial-time algorithms deciding whether
two words are k-binomially equivalent or not.

Marie Lejeune (Liége University) March 07, 2019 22 /25

When are two words equivalent?

To help us to solve these problems, we would like to better understand
when two words are k-binomially equivalent.

As far as we know, there exist polynomial-time algorithms deciding whether
two words are k-binomially equivalent or not.

We would like to obtain some characterizations of words belonging to the
same equivalence class for ~.

Marie Lejeune (Liége University) March 07, 2019 22 /25

When are two words equivalent?

To help us to solve these problems, we would like to better understand
when two words are k-binomially equivalent.

As far as we know, there exist polynomial-time algorithms deciding whether
two words are k-binomially equivalent or not.

We would like to obtain some characterizations of words belonging to the
same equivalence class for ~.

Some characterizations exist for the Parikh-matrix equivalence.

Marie Lejeune (Liége University) March 07, 2019 22 /25

Parikh-matrix equivalence

Definition
Let A= {a1,...,ar} be an ordered alphabet (i.e. a1 < a2 < ... < ay).
Two words u and v are Parikh-matrix equivalent (u ~pp v) if and only if

() = (¥) for all x's that are factors of the word a1 - a> - - - ay.

Marie Lejeune (Liége University) March 07, 2019 23 /25

Parikh-matrix equivalence

Definition

Let A= {a1,...,ar} be an ordered alphabet (i.e. a1 < a2 < ... < ay).
Two words u and v are Parikh-matrix equivalent (u ~pp v) if and only if
() = (¥) for all x's that are factors of the word a1 - a> - - - ay.

X

Example

The words u = 01120 and v = 01102 are Parikh-matrix equivalent. Indeed,
for any z € {u, v}, we have (é) =2 (i) =2 (;) =" (021) =2, (122) =2

and (,3,) =2
However, they are not 2-binomially equivalent since (55) = 1 and (y,) = 2.

Marie Lejeune (Liége University) March 07, 2019 23 /25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that
are Parikh-matrix equivalent.

Theorem
Two words u and v over {0, 1}* are Parikh-matrix equivalent if and only if
we can go from u to v by applying a finite number of times the following

transformation:
x01y10z < x10y01z.

Marie Lejeune (Liége University) March 07, 2019 24 /25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that
are Parikh-matrix equivalent.

Theorem

Two words u and v over {0,1}* are Parikh-matrix equivalent if and only if
we can go from u to v by applying a finite number of times the following
transformation:

x01y10z < x10y01z.

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix
equivalent. Indeed,
u= 010110101

Marie Lejeune (Liége University) March 07, 2019 24 /25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that
are Parikh-matrix equivalent.
Theorem

Two words v and v over {0,1}* are Parikh-matrix equivalent if and only if
we can go from u to v by applying a finite number of times the following
transformation:

x01y10z < x10y01z.

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix
equivalent. Indeed,

u= 010110101 <« 100101101

Marie Lejeune (Liége University) March 07, 2019 24 /25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that
are Parikh-matrix equivalent.
Theorem

Two words v and v over {0,1}* are Parikh-matrix equivalent if and only if
we can go from u to v by applying a finite number of times the following
transformation:

x01y10z < x10y01z.

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix
equivalent. Indeed,

u= 010110101 <« 100101101

Marie Lejeune (Liége University) March 07, 2019 24 /25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that
are Parikh-matrix equivalent.
Theorem

Two words v and v over {0,1}* are Parikh-matrix equivalent if and only if
we can go from u to v by applying a finite number of times the following
transformation:

x01y10z < x10y01z.

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix
equivalent. Indeed,

u=010110101 <« 100101101

Marie Lejeune (Liége University) March 07, 2019 24 /25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that
are Parikh-matrix equivalent.
Theorem

Two words v and v over {0,1}* are Parikh-matrix equivalent if and only if
we can go from u to v by applying a finite number of times the following
transformation:

x01y10z < x10y01z.

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix
equivalent. Indeed,

u = 010110101 <« 100101101 < 100011110 =v

Marie Lejeune (Liége University) March 07, 2019 24 /25

Link with ~

On binary alphabets, u ~pyy v & u~p v.

Marie Lejeune (Liége University) March 07, 2019 25 /25

Link with ~

On binary alphabets, u ~pyy v & u~p v.

We thus have a characterization of binary words belonging to a particular
equivalence class for ~,. Can we, in some way, generalize this
characterization to deal with ~, where k is arbitrary?

Marie Lejeune (Liége University) March 07, 2019 25 /25

Link with ~

On binary alphabets, u ~pyy v & u~p v.

We thus have a characterization of binary words belonging to a particular
equivalence class for ~,. Can we, in some way, generalize this
characterization to deal with ~, where k is arbitrary?

What about non-binary words? Even for ~py, there is no complete
characterization.

Marie Lejeune (Liége University) March 07, 2019 25 /25

	Introduction
	Morphisms and infinite words
	Factors and subwords
	Factor complexity function
	Other complexity functions

	Some results about the k-binomial complexity
	Sturmian words
	The Thue–Morse word
	The Tribonacci word

	Better understanding of k

