
About the k-binomial equiva-

lence and the associated complexity

March 07, 2019

Marie Lejeune (FNRS grantee)

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

Morphisms

De�nition

A morphism on the alphabet A is an application

σ : A∗ → A∗

such that, for every word u = u1 · · · un ∈ A∗,

σ(u) = σ(u1) · · ·σ(un).

If there exists a letter a ∈ A such that σ(a) begins by a, and if

limn→+∞ |σn(a)| = +∞, then one can de�ne

σω(a) = lim
n→+∞

σn(a).

This in�nite word is called a �xed point of the morphism σ.

Marie Lejeune (Liège University) March 07, 2019 2 / 25

Morphisms

De�nition

A morphism on the alphabet A is an application

σ : A∗ → A∗

such that, for every word u = u1 · · · un ∈ A∗,

σ(u) = σ(u1) · · ·σ(un).

If there exists a letter a ∈ A such that σ(a) begins by a, and if

limn→+∞ |σn(a)| = +∞, then one can de�ne

σω(a) = lim
n→+∞

σn(a).

This in�nite word is called a �xed point of the morphism σ.

Marie Lejeune (Liège University) March 07, 2019 2 / 25

Example (Thue�Morse)

Let us de�ne the Thue�Morse morphism

ϕ : {0, 1}∗ → {0, 1}∗ :
{

0 7→ 01;
1 7→ 10.

We have

ϕ(0) = 01,

ϕ2(0) = 0110,

ϕ3(0) = 01101001,

. . .

We can thus de�ne the Thue�Morse word as one of the �xed points of the

morphism ϕ :

t := ϕω(0) = 0110100110010110 · · ·

Marie Lejeune (Liège University) March 07, 2019 3 / 25

Example (Thue�Morse)

Let us de�ne the Thue�Morse morphism

ϕ : {0, 1}∗ → {0, 1}∗ :
{

0 7→ 01;
1 7→ 10.

We have

ϕ(0) = 01,

ϕ2(0) = 0110,

ϕ3(0) = 01101001,

. . .

We can thus de�ne the Thue�Morse word as one of the �xed points of the

morphism ϕ :

t := ϕω(0) = 0110100110010110 · · ·

Marie Lejeune (Liège University) March 07, 2019 3 / 25

Example (Thue�Morse)

Let us de�ne the Thue�Morse morphism

ϕ : {0, 1}∗ → {0, 1}∗ :
{

0 7→ 01;
1 7→ 10.

We have

ϕ(0) = 01,

ϕ2(0) = 0110,

ϕ3(0) = 01101001,

. . .

We can thus de�ne the Thue�Morse word as one of the �xed points of the

morphism ϕ :

t := ϕω(0) = 0110100110010110 · · ·

Marie Lejeune (Liège University) March 07, 2019 3 / 25

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

Factors and subwords

De�nition

Let u = u1 · · · um ∈ Am be a word (m ∈ N+ ∪{∞}).
A (scattered) subword of u is a �nite subsequence of the sequence (uj)

m
j=1

.

A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

uiui+1 · · · ui+`, with 1 ≤ i ≤ m, 0 ≤ ` ≤ m − i .

Marie Lejeune (Liège University) March 07, 2019 4 / 25

Factors and subwords

De�nition

Let u = u1 · · · um ∈ Am be a word (m ∈ N+ ∪{∞}).
A (scattered) subword of u is a �nite subsequence of the sequence (uj)

m
j=1

.

A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

uiui+1 · · · ui+`, with 1 ≤ i ≤ m, 0 ≤ ` ≤ m − i .

Example

Let us consider the alphabet {0, 1, 2}. Let u = 0102010.

The word 021 is a subword of u, but it is not a factor of u.

Marie Lejeune (Liège University) March 07, 2019 4 / 25

Factors and subwords

De�nition

Let u = u1 · · · um ∈ Am be a word (m ∈ N+ ∪{∞}).
A (scattered) subword of u is a �nite subsequence of the sequence (uj)

m
j=1

.

A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

uiui+1 · · · ui+`, with 1 ≤ i ≤ m, 0 ≤ ` ≤ m − i .

Example

Let us consider the alphabet {0, 1, 2}. Let u = 0102010.

The word 021 is a subword of u, but it is not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.

Marie Lejeune (Liège University) March 07, 2019 4 / 25

Factors and subwords

De�nition

Let u = u1 · · · um ∈ Am be a word (m ∈ N+ ∪{∞}).
A (scattered) subword of u is a �nite subsequence of the sequence (uj)

m
j=1

.

A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

uiui+1 · · · ui+`, with 1 ≤ i ≤ m, 0 ≤ ` ≤ m − i .

Example

Let us consider the alphabet {0, 1, 2}. Let u = 0102010.

The word 021 is a subword of u, but it is not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.

Let
(u
x

)
denote the number of times x appears as a subword in u, and |u|x

the number of times it appears as a factor in u.

Marie Lejeune (Liège University) March 07, 2019 4 / 25

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

Factor complexity

Let w be an in�nite word. A complexity function of w is an application

linking every nonnegative integer n with length-n factors of w.

The simplest complexity function is the following. Here, N = {0, 1, 2, . . .}.

De�nition

The factor complexity of the word w is the function

pw : N→ N : n 7→ #Facw(n).

Marie Lejeune (Liège University) March 07, 2019 5 / 25

Factor complexity of the Thue�Morse word

Example

Let us compute the �rst values of the Thue�Morse's factor complexity.

We have

t = 0110100110010110 · · ·

Marie Lejeune (Liège University) March 07, 2019 6 / 25

Factor complexity of the Thue�Morse word

Example

Let us compute the �rst values of the Thue�Morse's factor complexity.

We have

t = 0110100110010110 · · ·

and

n 0 1 2 3 · · ·
pt(n) 1

Marie Lejeune (Liège University) March 07, 2019 6 / 25

Factor complexity of the Thue�Morse word

Example

Let us compute the �rst values of the Thue�Morse's factor complexity.

We have

t = 0110100110010110 · · ·

and

n 0 1 2 3 · · ·
pt(n) 1 2

Marie Lejeune (Liège University) March 07, 2019 6 / 25

Factor complexity of the Thue�Morse word

Example

Let us compute the �rst values of the Thue�Morse's factor complexity.

We have

t = 0110100110010110 · · ·

and

n 0 1 2 3 · · ·
pt(n) 1 2 4

Marie Lejeune (Liège University) March 07, 2019 6 / 25

Factor complexity of the Thue�Morse word

Example

Let us compute the �rst values of the Thue�Morse's factor complexity.

We have

t = 01101001100101101001011001101001 · · ·

and

n 0 1 2 3 · · ·
pt(n) 1 2 4 6

Marie Lejeune (Liège University) March 07, 2019 6 / 25

Factor complexity of the Thue�Morse word

Example

Let us compute the �rst values of the Thue�Morse's factor complexity.

We have

t = 0110100110010110 · · ·

and

n 0 1 2 3 · · ·
pt(n) 1 2 4 6 · · ·

Then, for every n ≥ 3, it is known that

pt(n) =

{
4n − 2 · 2m − 4, if 2 · 2m < n ≤ 3 · 2m;
2n + 4 · 2m − 2, if 3 · 2m < n ≤ 4 · 2m.

Marie Lejeune (Liège University) March 07, 2019 6 / 25

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

From factor to k-binomial complexity

Let us rewrite the de�nition.

De�nition

The factor complexity of the word w is the function

pw : N→ N : n 7→ #Facw(n).

Marie Lejeune (Liège University) March 07, 2019 7 / 25

From factor to k-binomial complexity

Let us rewrite the de�nition.

De�nition

The factor complexity of the word w is the function

pw : N→ N : n 7→ #(Facw(n)/ ∼=),

where u ∼= v ⇔ u = v .

Marie Lejeune (Liège University) March 07, 2019 7 / 25

From factor to k-binomial complexity

Let us rewrite the de�nition.

De�nition

The factor complexity of the word w is the function

pw : N→ N : n 7→ #(Facw(n)/ ∼=),

where u ∼= v ⇔ u = v .

The relation ∼= can be replaced by other equivalence relations.

Marie Lejeune (Liège University) March 07, 2019 7 / 25

From factor to k-binomial complexity

For example, let us de�ne,

if k ∈ N+,

• Abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

Let us illustrate the last one.

Marie Lejeune (Liège University) March 07, 2019 8 / 25

From factor to k-binomial complexity

For example, let us de�ne,

if k ∈ N+,

• Abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

Let us illustrate the last one.

Marie Lejeune (Liège University) March 07, 2019 8 / 25

From factor to k-binomial complexity

For example, let us de�ne,

if k ∈ N+,

• Abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

Let us illustrate the last one.

Marie Lejeune (Liège University) March 07, 2019 8 / 25

From factor to k-binomial complexity

For example, let us de�ne,

if k ∈ N+,

• Abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

Let us illustrate the last one.

Marie Lejeune (Liège University) March 07, 2019 8 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Marie Lejeune (Liège University) March 07, 2019 9 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Example

If u = aababa, (
u

ab

)
= ?

Marie Lejeune (Liège University) March 07, 2019 9 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Example

If u = aababa, (
u

ab

)
= 1.

Marie Lejeune (Liège University) March 07, 2019 9 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Example

If u = aababa, (
u

ab

)
= 2.

Marie Lejeune (Liège University) March 07, 2019 9 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Example

If u = aababa, (
u

ab

)
= 3.

Marie Lejeune (Liège University) March 07, 2019 9 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Example

If u = aababa, (
u

ab

)
= 4.

Marie Lejeune (Liège University) March 07, 2019 9 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Example

If u = aababa, (
u

ab

)
= 5.

Marie Lejeune (Liège University) March 07, 2019 9 / 25

Binomial coe�cients

De�nition (Reminder)

Let u and x be two words. The binomial coe�cient
(u
x

)
is the number of

times that x appears as a subword in u.

Example

If u = aababa, (
u

ab

)
= 5.

Marie Lejeune (Liège University) March 07, 2019 9 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 1 =

(
v

a

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 1 =

(
v

b

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 2 =

(
v

b

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 3 =

(
v

b

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 1 =

(
v

ab

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 2 =

(
v

ab

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 3 =

(
v

ab

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 1 =

(
v

ba

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 2 =

(
v

ba

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 3 =

(
v

ba

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

k-binomial equivalence

De�nition (Reminder)

Let u and v be two �nite words. They are k-binomially equivalent if(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed, (
u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) March 07, 2019 10 / 25

Remark

For all words u, v and for every nonnegative integer k ,

u ∼k+1 v ⇒ u ∼k v .

Remark

For all words u, v ,
u ∼1 v ⇔ u ∼ab,1 v .

De�nition (Reminder)

The words u and v are 1-abelian equivalent if(
u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.

Marie Lejeune (Liège University) March 07, 2019 11 / 25

Remark

For all words u, v and for every nonnegative integer k ,

u ∼k+1 v ⇒ u ∼k v .

Remark

For all words u, v ,
u ∼1 v ⇔ u ∼ab,1 v .

De�nition (Reminder)

The words u and v are 1-abelian equivalent if(
u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.

Marie Lejeune (Liège University) March 07, 2019 11 / 25

Remark

For all words u, v and for every nonnegative integer k ,

u ∼k+1 v ⇒ u ∼k v .

Remark

For all words u, v ,
u ∼1 v ⇔ u ∼ab,1 v .

De�nition (Reminder)

The words u and v are 1-abelian equivalent if(
u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.

Marie Lejeune (Liège University) March 07, 2019 11 / 25

k-binomial complexity

De�nition

If w is an in�nite word, we can de�ne the function

b
(k)
w

: N→ N : n 7→ #(Facw(n)/∼k),

which is called the k-binomial complexity of w.

Example

For the Thue�Morse word t, we have b
(1)
t

(0) = 1 and, for every n ≥ 1,

b
(1)
t

(n) =

{
3, if n ≡ 0 (mod 2);
2, otherwise.

Marie Lejeune (Liège University) March 07, 2019 12 / 25

k-binomial complexity

De�nition

If w is an in�nite word, we can de�ne the function

b
(k)
w

: N→ N : n 7→ #(Facw(n)/∼k),

which is called the k-binomial complexity of w.

Example

For the Thue�Morse word t, we have b
(1)
t

(0) = 1 and, for every n ≥ 1,

b
(1)
t

(n) =

{
3, if n ≡ 0 (mod 2);
2, otherwise.

Marie Lejeune (Liège University) March 07, 2019 12 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `, `+ 1}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `, `+ 1}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `, `+ 1}.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

Since t is the �xed point of ϕ, we have t = ϕ(t).

• If n = 2`, every factor u is either composed of ` blocks or is composed

of `− 1 blocks with one letter before and one letter after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `, `+ 1}.

Thus, b
(1)
t (n) = 3.

Marie Lejeune (Liège University) March 07, 2019 13 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Computing b
(1)
t (n)

Example (proof)

• If n = 2`− 1, every factor u is composed of `− 1 blocks with one

letter before or after.

We thus have

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

We obtain that (
u

0

)
∈ {`− 1, `}.

Thus, b
(1)
t (n) = 2.

Marie Lejeune (Liège University) March 07, 2019 14 / 25

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

Sturmian words

De�nition (Reminder)

A Sturmian word is an in�nite word having, as factor complexity,

p(n) = n + 1 for all n ∈ N.

Theorem (M. Rigo, P. Salimov, 2015)

Let w be a Sturmian word. We have b(2)
w

(n) = pw(n) = n + 1.

Since for every in�nite word x,

ρab
x
(n) ≤ b

(k)
x

(n) ≤ b
(k+1)
x

(n) ≤ px(n) ∀n ∈ N, ∀k ∈ N+,

we have b(k)
w

(n) = pw(n) = n + 1 for all k ≥ 2.

Marie Lejeune (Liège University) March 07, 2019 15 / 25

Sturmian words

De�nition (Reminder)

A Sturmian word is an in�nite word having, as factor complexity,

p(n) = n + 1 for all n ∈ N.

Theorem (M. Rigo, P. Salimov, 2015)

Let w be a Sturmian word. We have b(2)
w

(n) = pw(n) = n + 1.

Since for every in�nite word x,

ρab
x
(n) ≤ b

(k)
x

(n) ≤ b
(k+1)
x

(n) ≤ px(n) ∀n ∈ N, ∀k ∈ N+,

we have b(k)
w

(n) = pw(n) = n + 1 for all k ≥ 2.

Marie Lejeune (Liège University) March 07, 2019 15 / 25

Sturmian words

De�nition (Reminder)

A Sturmian word is an in�nite word having, as factor complexity,

p(n) = n + 1 for all n ∈ N.

Theorem (M. Rigo, P. Salimov, 2015)

Let w be a Sturmian word. We have b(2)
w

(n) = pw(n) = n + 1.

Since for every in�nite word x,

ρab
x
(n) ≤ b

(k)
x

(n) ≤ b
(k+1)
x

(n) ≤ px(n) ∀n ∈ N, ∀k ∈ N+,

we have b(k)
w

(n) = pw(n) = n + 1 for all k ≥ 2.

Marie Lejeune (Liège University) March 07, 2019 15 / 25

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

Why is the Thue�Morse word so interesting?

Let w be a Sturmian word. We have

pw(n) < pt(n) ∀n ≥ 2.

This is not the case for the k-binomial complexity.

Theorem (M. Rigo, P. Salimov, 2015)

For every k ≥ 1, there exists a constant Ck > 0 such that, for every n ∈ N,

b
(k)
t

(n) ≤ Ck .

In fact, this result holds for every in�nite word which is a �xed point of a

Parikh-constant morphism.

Marie Lejeune (Liège University) March 07, 2019 16 / 25

Why is the Thue�Morse word so interesting?

Let w be a Sturmian word. We have

pw(n) < pt(n) ∀n ≥ 2.

This is not the case for the k-binomial complexity.

Theorem (M. Rigo, P. Salimov, 2015)

For every k ≥ 1, there exists a constant Ck > 0 such that, for every n ∈ N,

b
(k)
t

(n) ≤ Ck .

In fact, this result holds for every in�nite word which is a �xed point of a

Parikh-constant morphism.

Marie Lejeune (Liège University) March 07, 2019 16 / 25

Parikh-constant morphisms

De�nition

A morphism σ : A∗ → A∗ is Parikh-constant if, for all a, b, c ∈ A,
|σ(a)|c = |σ(b)|c . Otherwise stated, images of the di�erent letters have to

be equal up to a permutation.

Example

The morphism

σ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 0112;
1 7→ 1201;
2 7→ 1120;

is Parikh-constant.

Marie Lejeune (Liège University) March 07, 2019 17 / 25

Parikh-constant morphisms

De�nition

A morphism σ : A∗ → A∗ is Parikh-constant if, for all a, b, c ∈ A,
|σ(a)|c = |σ(b)|c . Otherwise stated, images of the di�erent letters have to

be equal up to a permutation.

Example

The morphism

σ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 0112;
1 7→ 1201;
2 7→ 1120;

is Parikh-constant.

Marie Lejeune (Liège University) March 07, 2019 17 / 25

Back to Thue�Morse

We actually computed the exact value of b
(k)
t for all n ∈ N.

Theorem (M. L., J. Leroy, M. Rigo, 2018)

Let k be a positive integer. For every n ≤ 2k − 1, we have

b
(k)
t

(n) = pt(n),

while for every n ≥ 2k ,

b
(k)
t

(n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Open question : given k ∈ N, can we �nd a word w which is a �xed point

of a Parikh-constant morphism and such that there exists N ∈ N for which

b
(k)
w

(n) < b
(k)
t

(n) ∀n ≥ N ?

Marie Lejeune (Liège University) March 07, 2019 18 / 25

Back to Thue�Morse

We actually computed the exact value of b
(k)
t for all n ∈ N.

Theorem (M. L., J. Leroy, M. Rigo, 2018)

Let k be a positive integer. For every n ≤ 2k − 1, we have

b
(k)
t

(n) = pt(n),

while for every n ≥ 2k ,

b
(k)
t

(n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Open question : given k ∈ N, can we �nd a word w which is a �xed point

of a Parikh-constant morphism and such that there exists N ∈ N for which

b
(k)
w

(n) < b
(k)
t

(n) ∀n ≥ N ?

Marie Lejeune (Liège University) March 07, 2019 18 / 25

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

A ternary example: the Tribonacci word

De�nition

The Tribonacci word is the �xed point s = σω(0) where σ is the morphism

σ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

s = 010201001020101 · · · .

Once again, we computed the exact value of b(k)
s

.

Theorem (M. L., M. Rigo, M. Rosenfeld, 2019)

For all n ∈ N, for all k ∈ N≥2, we have

b
(k)
s

(n) = ps(n) = 2n + 1.

Marie Lejeune (Liège University) March 07, 2019 19 / 25

A ternary example: the Tribonacci word

De�nition

The Tribonacci word is the �xed point s = σω(0) where σ is the morphism

σ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 01;
1 7→ 02;
2 7→ 0.

s = 010201001020101 · · · .
Once again, we computed the exact value of b(k)

s
.

Theorem (M. L., M. Rigo, M. Rosenfeld, 2019)

For all n ∈ N, for all k ∈ N≥2, we have

b
(k)
s

(n) = ps(n) = 2n + 1.

Marie Lejeune (Liège University) March 07, 2019 19 / 25

What about Arnoux-Rauzy words?

The Tribonacci word is a particular Arnoux-Rauzy word.

De�nition

An Arnoux-Rauzy word is an in�nite word w having factorial complexity

pw(n) = dn + 1 for some d ∈ N, with some additional properties.

If such a d exists, then w is built on a (d − 1)-letter alphabet.

Conjecture

Let w be an Arnoux-Rauzy word. Then,

b
(k)
w

(n) = pw(n)

for all n ∈ N and for all k ≥ 2.

Marie Lejeune (Liège University) March 07, 2019 20 / 25

What about Arnoux-Rauzy words?

The Tribonacci word is a particular Arnoux-Rauzy word.

De�nition

An Arnoux-Rauzy word is an in�nite word w having factorial complexity

pw(n) = dn + 1 for some d ∈ N, with some additional properties.

If such a d exists, then w is built on a (d − 1)-letter alphabet.

Conjecture

Let w be an Arnoux-Rauzy word. Then,

b
(k)
w

(n) = pw(n)

for all n ∈ N and for all k ≥ 2.

Marie Lejeune (Liège University) March 07, 2019 20 / 25

What about Arnoux-Rauzy words?

Remark

The proof of the theorem seems complicated to adapt to the general case.

Indeed, we used the fact that s is 2-balanced. Otherwise stated, for all

factors u and v of s of the same length, we knew that

||u|a − |v |a| ≤ 2,

for all a ∈ {0, 1, 2}.
This is not always the case with Arnoux-Rauzy words. We know that some

of them are not N-balanced for any N ∈ N.

Marie Lejeune (Liège University) March 07, 2019 21 / 25

Plan

1 Introduction

Morphisms and in�nite words

Factors and subwords

Factor complexity function

Other complexity functions

2 Some results about the k-binomial complexity

Sturmian words

The Thue�Morse word

The Tribonacci word

3 Better understanding of ∼k

When are two words equivalent?

To help us to solve these problems, we would like to better understand

when two words are k-binomially equivalent.

As far as we know, there exist polynomial-time algorithms deciding whether

two words are k-binomially equivalent or not.

We would like to obtain some characterizations of words belonging to the

same equivalence class for ∼k .

Some characterizations exist for the Parikh-matrix equivalence.

Marie Lejeune (Liège University) March 07, 2019 22 / 25

When are two words equivalent?

To help us to solve these problems, we would like to better understand

when two words are k-binomially equivalent.

As far as we know, there exist polynomial-time algorithms deciding whether

two words are k-binomially equivalent or not.

We would like to obtain some characterizations of words belonging to the

same equivalence class for ∼k .

Some characterizations exist for the Parikh-matrix equivalence.

Marie Lejeune (Liège University) March 07, 2019 22 / 25

When are two words equivalent?

To help us to solve these problems, we would like to better understand

when two words are k-binomially equivalent.

As far as we know, there exist polynomial-time algorithms deciding whether

two words are k-binomially equivalent or not.

We would like to obtain some characterizations of words belonging to the

same equivalence class for ∼k .

Some characterizations exist for the Parikh-matrix equivalence.

Marie Lejeune (Liège University) March 07, 2019 22 / 25

When are two words equivalent?

To help us to solve these problems, we would like to better understand

when two words are k-binomially equivalent.

As far as we know, there exist polynomial-time algorithms deciding whether

two words are k-binomially equivalent or not.

We would like to obtain some characterizations of words belonging to the

same equivalence class for ∼k .

Some characterizations exist for the Parikh-matrix equivalence.

Marie Lejeune (Liège University) March 07, 2019 22 / 25

Parikh-matrix equivalence

De�nition

Let A = {a1, . . . , a`} be an ordered alphabet (i.e. a1 < a2 < . . . < a`).
Two words u and v are Parikh-matrix equivalent (u ∼PM v) if and only if(u
x

)
=
(v
x

)
for all x 's that are factors of the word a1 · a2 · · · a`.

Example

The words u = 01120 and v = 01102 are Parikh-matrix equivalent. Indeed,

for any z ∈ {u, v}, we have
(z
0

)
= 2,

(z
1

)
= 2,

(z
2

)
= 1,

(z
01

)
= 2,

(z
12

)
= 2

and
(z
012

)
= 2.

However, they are not 2-binomially equivalent since
(u
02

)
= 1 and

(v
02

)
= 2.

Marie Lejeune (Liège University) March 07, 2019 23 / 25

Parikh-matrix equivalence

De�nition

Let A = {a1, . . . , a`} be an ordered alphabet (i.e. a1 < a2 < . . . < a`).
Two words u and v are Parikh-matrix equivalent (u ∼PM v) if and only if(u
x

)
=
(v
x

)
for all x 's that are factors of the word a1 · a2 · · · a`.

Example

The words u = 01120 and v = 01102 are Parikh-matrix equivalent. Indeed,

for any z ∈ {u, v}, we have
(z
0

)
= 2,

(z
1

)
= 2,

(z
2

)
= 1,

(z
01

)
= 2,

(z
12

)
= 2

and
(z
012

)
= 2.

However, they are not 2-binomially equivalent since
(u
02

)
= 1 and

(v
02

)
= 2.

Marie Lejeune (Liège University) March 07, 2019 23 / 25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that

are Parikh-matrix equivalent.

Theorem

Two words u and v over {0, 1}∗ are Parikh-matrix equivalent if and only if

we can go from u to v by applying a �nite number of times the following

transformation:

x01y10z ↔ x10y01z .

Marie Lejeune (Liège University) March 07, 2019 24 / 25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that

are Parikh-matrix equivalent.

Theorem

Two words u and v over {0, 1}∗ are Parikh-matrix equivalent if and only if

we can go from u to v by applying a �nite number of times the following

transformation:

x01y10z ↔ x10y01z .

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix

equivalent. Indeed,

u = 010110101

Marie Lejeune (Liège University) March 07, 2019 24 / 25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that

are Parikh-matrix equivalent.

Theorem

Two words u and v over {0, 1}∗ are Parikh-matrix equivalent if and only if

we can go from u to v by applying a �nite number of times the following

transformation:

x01y10z ↔ x10y01z .

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix

equivalent. Indeed,

u = 010110101 ↔ 100101101

Marie Lejeune (Liège University) March 07, 2019 24 / 25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that

are Parikh-matrix equivalent.

Theorem

Two words u and v over {0, 1}∗ are Parikh-matrix equivalent if and only if

we can go from u to v by applying a �nite number of times the following

transformation:

x01y10z ↔ x10y01z .

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix

equivalent. Indeed,

u = 010110101 ↔ 100101101

Marie Lejeune (Liège University) March 07, 2019 24 / 25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that

are Parikh-matrix equivalent.

Theorem

Two words u and v over {0, 1}∗ are Parikh-matrix equivalent if and only if

we can go from u to v by applying a �nite number of times the following

transformation:

x01y10z ↔ x10y01z .

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix

equivalent. Indeed,

u = 010110101 ↔ 100101101

Marie Lejeune (Liège University) March 07, 2019 24 / 25

On binary alphabets

On binary alphabets, there exists a simple characterization of words that

are Parikh-matrix equivalent.

Theorem

Two words u and v over {0, 1}∗ are Parikh-matrix equivalent if and only if

we can go from u to v by applying a �nite number of times the following

transformation:

x01y10z ↔ x10y01z .

Example

The words u = 010110101 and v = 100011110 are Parikh-matrix

equivalent. Indeed,

u = 010110101 ↔ 100101101 ↔ 100011110 = v

Marie Lejeune (Liège University) March 07, 2019 24 / 25

Link with ∼k

On binary alphabets, u ∼PM v ⇔ u ∼2 v .

We thus have a characterization of binary words belonging to a particular

equivalence class for ∼2. Can we, in some way, generalize this

characterization to deal with ∼k , where k is arbitrary?

What about non-binary words? Even for ∼PM , there is no complete

characterization.

Marie Lejeune (Liège University) March 07, 2019 25 / 25

Link with ∼k

On binary alphabets, u ∼PM v ⇔ u ∼2 v .

We thus have a characterization of binary words belonging to a particular

equivalence class for ∼2. Can we, in some way, generalize this

characterization to deal with ∼k , where k is arbitrary?

What about non-binary words? Even for ∼PM , there is no complete

characterization.

Marie Lejeune (Liège University) March 07, 2019 25 / 25

Link with ∼k

On binary alphabets, u ∼PM v ⇔ u ∼2 v .

We thus have a characterization of binary words belonging to a particular

equivalence class for ∼2. Can we, in some way, generalize this

characterization to deal with ∼k , where k is arbitrary?

What about non-binary words? Even for ∼PM , there is no complete

characterization.

Marie Lejeune (Liège University) March 07, 2019 25 / 25

	Introduction
	Morphisms and infinite words
	Factors and subwords
	Factor complexity function
	Other complexity functions

	Some results about the k-binomial complexity
	Sturmian words
	The Thue–Morse word
	The Tribonacci word

	Better understanding of k

