About the k-binomial equivalence and the associated complexity

March 07, 2019
Marie Lejeune (FNRS grantee)

Plan
(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity
- Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

Plan

(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity
- Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

Morphisms

Definition

A morphism on the alphabet A is an application

$$
\sigma: A^{*} \rightarrow A^{*}
$$

such that, for every word $u=u_{1} \cdots u_{n} \in A^{*}$,

$$
\sigma(u)=\sigma\left(u_{1}\right) \cdots \sigma\left(u_{n}\right)
$$

Morphisms

Definition

A morphism on the alphabet A is an application

$$
\sigma: A^{*} \rightarrow A^{*}
$$

such that, for every word $u=u_{1} \cdots u_{n} \in A^{*}$,

$$
\sigma(u)=\sigma\left(u_{1}\right) \cdots \sigma\left(u_{n}\right)
$$

If there exists a letter $a \in A$ such that $\sigma(a)$ begins by a, and if $\lim _{n \rightarrow+\infty}\left|\sigma^{n}(a)\right|=+\infty$, then one can define

$$
\sigma^{\omega}(a)=\lim _{n \rightarrow+\infty} \sigma^{n}(a)
$$

This infinite word is called a fixed point of the morphism σ.

Example (Thue-Morse)

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 10
\end{array}\right.
$$

Example (Thue-Morse)

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 10
\end{array}\right.
$$

We have

$$
\begin{aligned}
\varphi(0) & =01 \\
\varphi^{2}(0) & =0110 \\
\varphi^{3}(0) & =01101001
\end{aligned}
$$

Example (Thue-Morse)

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01 ; \\
1 \mapsto 10 .
\end{array}\right.
$$

We have

$$
\begin{aligned}
\varphi(0) & =01, \\
\varphi^{2}(0) & =0110, \\
\varphi^{3}(0) & =01101001,
\end{aligned}
$$

We can thus define the Thue-Morse word as one of the fixed points of the morphism φ :

$$
\mathbf{t}:=\varphi^{\omega}(0)=0110100110010110 \cdots
$$

Plan

(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity
- Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

Factors and subwords

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form $u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Factors and subwords

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form $u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Example

Let us consider the alphabet $\{0,1,2\}$. Let $u=0102010$. The word 021 is a subword of u, but it is not a factor of u.

Factors and subwords

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form
$u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Example

Let us consider the alphabet $\{0,1,2\}$. Let $u=0102010$.
The word 021 is a subword of u, but it is not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.

Factors and subwords

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form
$u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Example

Let us consider the alphabet $\{0,1,2\}$. Let $u=0102010$.
The word 021 is a subword of u, but it is not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.
Let $\binom{u}{x}$ denote the number of times x appears as a subword in u, and $|u|_{x}$ the number of times it appears as a factor in u.

Plan

（1）Introduction
－Morphisms and infinite words
－Factors and subwords
－Factor complexity function
－Other complexity functions
（2）Some results about the k－binomial complexity
－Sturmian words
－The Thue－Morse word
－The Tribonacci word
（3）Better understanding of \sim_{k}

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}.

The simplest complexity function is the following. Here, $\mathbb{N}=\{0,1,2, \ldots\}$.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathbf{w}}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \# \operatorname{Fac}_{\mathbf{w}}(n)
$$

Factor complexity of the Thue-Morse word

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have $\mathbf{t}=0110100110010110 \cdots$

Factor complexity of the Thue-Morse word

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1				

Factor complexity of the Thue-Morse word

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1	2			

Factor complexity of the Thue-Morse word

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

$$
\begin{array}{c|lllll}
n & 0 & 1 & 2 & 3 & \cdots \\
\hline p_{\mathbf{t}}(n) & 1 & 2 & 4 & &
\end{array}
$$

Factor complexity of the Thue-Morse word

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1	2	4	6	

Factor complexity of the Thue-Morse word

Example

Let us compute the first values of the Thue-Morse's factor complexity.
We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

$$
\begin{array}{c|ccccc}
n & 0 & 1 & 2 & 3 & \cdots \\
\hline p_{\mathbf{t}}(n) & 1 & 2 & 4 & 6 & \cdots
\end{array}
$$

Then, for every $n \geq 3$, it is known that

$$
p_{\mathbf{t}}(n)= \begin{cases}4 n-2 \cdot 2^{m}-4, & \text { if } 2 \cdot 2^{m}<n \leq 3 \cdot 2^{m} \\ 2 n+4 \cdot 2^{m}-2, & \text { if } 3 \cdot 2^{m}<n \leq 4 \cdot 2^{m} .\end{cases}
$$

Plan

(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity
- Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

From factor to k-binomial complexity

Let us rewrite the definition.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathbf{w}}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \# \operatorname{Fac}_{\mathbf{w}}(n)
$$

From factor to k-binomial complexity

Let us rewrite the definition.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathbf{w}}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{=}\right)
$$

where $u \sim=v \Leftrightarrow u=v$.

From factor to k-binomial complexity

Let us rewrite the definition.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathbf{w}}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{=}\right)
$$

where $u \sim=v \Leftrightarrow u=v$.
The relation $\sim=$ can be replaced by other equivalence relations.

From factor to k-binomial complexity

For example, let us define,

- Abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$

From factor to k-binomial complexity

For example, let us define, if $k \in \mathbb{N}^{+}$,

- Abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$

From factor to k-binomial complexity

For example, let us define, if $k \in \mathbb{N}^{+}$,

- Abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$
- k-binomial equivalence: $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

From factor to k-binomial complexity

For example, let us define, if $k \in \mathbb{N}^{+}$,

- Abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$
- k-binomial equivalence: $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

Let us illustrate the last one.

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=?
$$

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=$ aababa,

$$
\binom{u}{a b}=1 .
$$

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=2 .
$$

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=$ aababa,

$$
\binom{u}{a b}=3 .
$$

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=4 .
$$

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=5 .
$$

Binomial coefficients

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=$ aababa,

$$
\binom{u}{a b}=5 .
$$

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=1=\binom{v}{a} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=1=\binom{v}{b} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=2=\binom{v}{b} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=3=\binom{v}{b} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=1=\binom{v}{a b} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=2=\binom{v}{a b} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=3=\binom{v}{a b} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
&\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
&\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=1=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=2=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=3=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=4=\binom{v}{b a} .
\end{aligned}
$$

Remark

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Remark

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Remark

For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v
$$

Remark

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Remark

For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v .
$$

Definition (Reminder)
The words u and v are 1-abelian equivalent if

$$
\binom{u}{a}=|u|_{a}=|v|_{a}=\binom{v}{a} \forall a \in A .
$$

k-binomial complexity

Definition

If \mathbf{w} is an infinite word, we can define the function

$$
\mathbf{b}_{\mathbf{w}}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{k}\right),
$$

which is called the k-binomial complexity of \mathbf{w}.

k-binomial complexity

Definition

If \mathbf{w} is an infinite word, we can define the function

$$
\mathbf{b}_{\mathbf{w}}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{k}\right)
$$

which is called the k-binomial complexity of \mathbf{w}.

Example

For the Thue-Morse word \mathbf{t}, we have $\mathbf{b}_{\mathbf{t}}^{(1)}(0)=1$ and, for every $n \geq 1$,

$$
\mathbf{b}_{\mathbf{t}}^{(1)}(n)= \begin{cases}3, & \text { if } n \equiv 0 \quad(\bmod 2) \\ 2, & \text { otherwise }\end{cases}
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell, \ell+1\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell, \ell+1\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell, \ell+1\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

Since \mathbf{t} is the fixed point of φ, we have $\mathbf{t}=\varphi(\mathbf{t})$.

- If $n=2 \ell$, every factor u is either composed of ℓ blocks or is composed of $\ell-1$ blocks with one letter before and one letter after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell, \ell+1\} .
$$

Thus, $\mathbf{b}_{t}^{(1)}(n)=3$.

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Computing $\mathbf{b}_{t}^{(1)}(n)$

Example (proof)

- If $n=2 \ell-1$, every factor u is composed of $\ell-1$ blocks with one letter before or after.

We thus have

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

We obtain that

$$
\binom{u}{0} \in\{\ell-1, \ell\} .
$$

Thus, $\mathbf{b}_{t}^{(1)}(n)=2$.

Plan

(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity
- Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

Plan

(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity - Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

Sturmian words

Definition (Reminder)

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Sturmian words

Definition (Reminder)

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Theorem (M. Rigo, P. Salimov, 2015)
Let \mathbf{w} be a Sturmian word. We have $\mathbf{b}_{\mathbf{w}}^{(2)}(n)=p_{\mathbf{w}}(n)=n+1$.

Sturmian words

Definition (Reminder)

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Theorem (M. Rigo, P. Salimov, 2015)
Let \mathbf{w} be a Sturmian word. We have $\mathbf{b}_{\mathbf{w}}^{(2)}(n)=p_{\mathbf{w}}(n)=n+1$.
Since for every infinite word x,

$$
\rho_{\mathbf{x}}^{a b}(n) \leq \mathbf{b}_{\mathbf{x}}^{(k)}(n) \leq \mathbf{b}_{\mathbf{x}}^{(k+1)}(n) \leq p_{\mathbf{x}}(n) \quad \forall n \in \mathbb{N}, \forall k \in \mathbb{N}^{+},
$$

we have $\mathbf{b}_{\mathbf{w}}^{(k)}(n)=p_{\mathbf{w}}(n)=n+1$ for all $k \geq 2$.

Plan

（1）Introduction
－Morphisms and infinite words
－Factors and subwords
－Factor complexity function
－Other complexity functions
（2）Some results about the k－binomial complexity
－Sturmian words
－The Thue－Morse word
－The Tribonacci word
（3）Better understanding of \sim_{k}

Why is the Thue-Morse word so interesting?

Let w be a Sturmian word. We have

$$
p_{\mathbf{w}}(n)<p_{\mathbf{t}}(n) \quad \forall n \geq 2
$$

This is not the case for the k-binomial complexity.
Theorem (M. Rigo, P. Salimov, 2015)
For every $k \geq 1$, there exists a constant $C_{k}>0$ such that, for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n) \leq C_{k} .
$$

Why is the Thue-Morse word so interesting?

Let w be a Sturmian word. We have

$$
p_{\mathbf{w}}(n)<p_{\mathbf{t}}(n) \quad \forall n \geq 2
$$

This is not the case for the k-binomial complexity.
Theorem (M. Rigo, P. Salimov, 2015)
For every $k \geq 1$, there exists a constant $C_{k}>0$ such that, for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n) \leq C_{k} .
$$

In fact, this result holds for every infinite word which is a fixed point of a Parikh-constant morphism.

Parikh-constant morphisms

Definition

A morphism $\sigma: A^{*} \rightarrow A^{*}$ is Parikh-constant if, for all $a, b, c \in A$, $|\sigma(a)|_{c}=|\sigma(b)|_{c}$. Otherwise stated, images of the different letters have to be equal up to a permutation.

Parikh-constant morphisms

Definition

A morphism $\sigma: A^{*} \rightarrow A^{*}$ is Parikh-constant if, for all $a, b, c \in A$, $|\sigma(a)|_{c}=|\sigma(b)|_{c}$. Otherwise stated, images of the different letters have to be equal up to a permutation.

Example

The morphism

$$
\sigma:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 0112 \\
1 & \mapsto & 1201 \\
2 & \mapsto & 1120
\end{array}\right.
$$

is Parikh-constant.

Back to Thue-Morse

We actually computed the exact value of $\mathbf{b}_{t}^{(k)}$ for all $n \in \mathbb{N}$.
Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every $n \leq 2^{k}-1$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)
$$

while for every $n \geq 2^{k}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

Back to Thue-Morse

We actually computed the exact value of $\mathbf{b}_{t}^{(k)}$ for all $n \in \mathbb{N}$.
Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every $n \leq 2^{k}-1$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)
$$

while for every $n \geq 2^{k}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

Open question : given $k \in \mathbb{N}$, can we find a word \mathbf{w} which is a fixed point of a Parikh-constant morphism and such that there exists $N \in \mathbb{N}$ for which

$$
\mathbf{b}_{\mathbf{w}}^{(k)}(n)<\mathbf{b}_{\mathbf{t}}^{(k)}(n) \quad \forall n \geq N ?
$$

Plan

(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity
- Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

A ternary example: the Tribonacci word

Definition

The Tribonacci word is the fixed point $\mathbf{s}=\sigma^{\omega}(0)$ where σ is the morphism

$$
\sigma:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 01 \\
1 & \mapsto & 02 \\
2 & \mapsto & 0
\end{array}\right.
$$

$$
\mathbf{s}=010201001020101 \cdots
$$

A ternary example: the Tribonacci word

Definition

The Tribonacci word is the fixed point $\mathbf{s}=\sigma^{\omega}(0)$ where σ is the morphism

$$
\sigma:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 01 ; \\
1 & \mapsto & 02 ; \\
2 & \mapsto & 0 .
\end{array}\right.
$$

$\mathbf{s}=010201001020101 \cdots$.
Once again, we computed the exact value of $\mathbf{b}_{s}^{(k)}$.
Theorem (M. L., M. Rigo, M. Rosenfeld, 2019)
For all $n \in \mathbb{N}$, for all $k \in \mathbb{N}^{\geq 2}$, we have

$$
\mathbf{b}_{\mathbf{s}}^{(k)}(n)=p_{\mathbf{s}}(n)=2 n+1 .
$$

What about Arnoux-Rauzy words?

The Tribonacci word is a particular Arnoux-Rauzy word.

Definition

An Arnoux-Rauzy word is an infinite word whaving factorial complexity $p_{\mathrm{w}}(n)=d n+1$ for some $d \in \mathbb{N}$, with some additional properties.

If such a d exists, then \mathbf{w} is built on a $(d-1)$-letter alphabet.

What about Arnoux-Rauzy words?

The Tribonacci word is a particular Arnoux-Rauzy word.

Definition

An Arnoux-Rauzy word is an infinite word \mathbf{w} having factorial complexity $p_{\mathrm{w}}(n)=d n+1$ for some $d \in \mathbb{N}$, with some additional properties.

If such a d exists, then \mathbf{w} is built on a $(d-1)$-letter alphabet.
Conjecture
Let w be an Arnoux-Rauzy word. Then,

$$
\mathbf{b}_{\mathbf{w}}^{(k)}(n)=p_{\mathbf{w}}(n)
$$

for all $n \in \mathbb{N}$ and for all $k \geq 2$.

What about Arnoux-Rauzy words?

Remark

The proof of the theorem seems complicated to adapt to the general case. Indeed, we used the fact that \mathbf{s} is 2-balanced. Otherwise stated, for all factors u and v of s of the same length, we knew that

$$
\left||u|_{a}-|v|_{a}\right| \leq 2
$$

for all $a \in\{0,1,2\}$.
This is not always the case with Arnoux-Rauzy words. We know that some of them are not N-balanced for any $N \in \mathbb{N}$.

Plan
(1) Introduction

- Morphisms and infinite words
- Factors and subwords
- Factor complexity function
- Other complexity functions
(2) Some results about the k-binomial complexity
- Sturmian words
- The Thue-Morse word
- The Tribonacci word
(3) Better understanding of \sim_{k}

When are two words equivalent?

To help us to solve these problems, we would like to better understand when two words are k-binomially equivalent.

When are two words equivalent?

To help us to solve these problems, we would like to better understand when two words are k-binomially equivalent.
As far as we know, there exist polynomial-time algorithms deciding whether two words are k-binomially equivalent or not.

When are two words equivalent?

To help us to solve these problems, we would like to better understand when two words are k-binomially equivalent.
As far as we know, there exist polynomial-time algorithms deciding whether two words are k-binomially equivalent or not.
We would like to obtain some characterizations of words belonging to the same equivalence class for \sim_{k}.

When are two words equivalent?

To help us to solve these problems, we would like to better understand when two words are k-binomially equivalent.
As far as we know, there exist polynomial-time algorithms deciding whether two words are k-binomially equivalent or not.
We would like to obtain some characterizations of words belonging to the same equivalence class for \sim_{k}.
Some characterizations exist for the Parikh-matrix equivalence.

Parikh-matrix equivalence

Definition

Let $A=\left\{a_{1}, \ldots, a_{\ell}\right\}$ be an ordered alphabet (i.e. $a_{1}<a_{2}<\ldots<a_{\ell}$). Two words u and v are Parikh-matrix equivalent $\left(u \sim_{P M} v\right)$ if and only if $\binom{u}{x}=\binom{v}{x}$ for all x 's that are factors of the word $a_{1} \cdot a_{2} \cdots a_{\ell}$.

Parikh-matrix equivalence

Definition

Let $A=\left\{a_{1}, \ldots, a_{\ell}\right\}$ be an ordered alphabet (i.e. $a_{1}<a_{2}<\ldots<a_{\ell}$). Two words u and v are Parikh-matrix equivalent $\left(u \sim_{P M} v\right)$ if and only if $\binom{u}{x}=\binom{v}{x}$ for all x 's that are factors of the word $a_{1} \cdot a_{2} \cdots a_{\ell}$.

Example

The words $u=01120$ and $v=01102$ are Parikh-matrix equivalent. Indeed, for any $z \in\{u, v\}$, we have $\binom{z}{0}=2,\binom{z}{1}=2,\binom{z}{2}=1,\binom{z}{01}=2,\binom{z}{12}=2$ and $\binom{z}{012}=2$. However, they are not 2-binomially equivalent since $\binom{u}{02}=1$ and $\binom{v}{02}=2$.

On binary alphabets

On binary alphabets, there exists a simple characterization of words that are Parikh-matrix equivalent.

Theorem

Two words u and v over $\{0,1\}^{*}$ are Parikh-matrix equivalent if and only if we can go from u to v by applying a finite number of times the following transformation:

$$
x 01 y 10 z \leftrightarrow x 10 y 01 z
$$

On binary alphabets

On binary alphabets, there exists a simple characterization of words that are Parikh-matrix equivalent.

Theorem

Two words u and v over $\{0,1\}^{*}$ are Parikh-matrix equivalent if and only if we can go from u to v by applying a finite number of times the following transformation:

$$
x 01 y 10 z \leftrightarrow x 10 y 01 z
$$

Example

The words $u=010110101$ and $v=100011110$ are Parikh-matrix equivalent. Indeed,

$$
u=010110101
$$

On binary alphabets

On binary alphabets, there exists a simple characterization of words that are Parikh-matrix equivalent.

Theorem

Two words u and v over $\{0,1\}^{*}$ are Parikh-matrix equivalent if and only if we can go from u to v by applying a finite number of times the following transformation:

$$
x 01 y 10 z \leftrightarrow x 10 y 01 z
$$

Example

The words $u=010110101$ and $v=100011110$ are Parikh-matrix equivalent. Indeed,

$$
u=010110101 \leftrightarrow 100101101
$$

On binary alphabets

On binary alphabets, there exists a simple characterization of words that are Parikh-matrix equivalent.

Theorem

Two words u and v over $\{0,1\}^{*}$ are Parikh-matrix equivalent if and only if we can go from u to v by applying a finite number of times the following transformation:

$$
x 01 y 10 z \leftrightarrow x 10 y 01 z
$$

Example

The words $u=010110101$ and $v=100011110$ are Parikh-matrix equivalent. Indeed,

$$
u=010110101 \leftrightarrow 100101101
$$

On binary alphabets

On binary alphabets, there exists a simple characterization of words that are Parikh-matrix equivalent.

Theorem

Two words u and v over $\{0,1\}^{*}$ are Parikh-matrix equivalent if and only if we can go from u to v by applying a finite number of times the following transformation:

$$
x 01 y 10 z \leftrightarrow x 10 y 01 z
$$

Example

The words $u=010110101$ and $v=100011110$ are Parikh-matrix equivalent. Indeed,

$$
u=010110101 \leftrightarrow 100101101
$$

On binary alphabets

On binary alphabets, there exists a simple characterization of words that are Parikh-matrix equivalent.

Theorem

Two words u and v over $\{0,1\}^{*}$ are Parikh-matrix equivalent if and only if we can go from u to v by applying a finite number of times the following transformation:

$$
x 01 y 10 z \leftrightarrow x 10 y 01 z
$$

Example

The words $u=010110101$ and $v=100011110$ are Parikh-matrix equivalent. Indeed,

$$
u=010110101 \leftrightarrow 100101101 \leftrightarrow 100011110=v
$$

Link with \sim_{k}

On binary alphabets, $u \sim_{P M} v \Leftrightarrow u \sim_{2} v$.

Link with \sim_{k}

On binary alphabets, $u \sim_{P M} v \Leftrightarrow u \sim_{2} v$.
We thus have a characterization of binary words belonging to a particular equivalence class for \sim_{2}. Can we, in some way, generalize this characterization to deal with \sim_{k}, where k is arbitrary?

Link with \sim_{k}

On binary alphabets, $u \sim_{P M} v \Leftrightarrow u \sim_{2} v$.
We thus have a characterization of binary words belonging to a particular equivalence class for \sim_{2}. Can we, in some way, generalize this characterization to deal with \sim_{k}, where k is arbitrary?

What about non-binary words? Even for $\sim_{P M}$, there is no complete characterization.

