
Cobham’s Theorem and Automaticity

Lucas Mol and Narad Rampersad∗

Department of Mathematics and Statistics
University of Winnipeg

{l.mol,n.rampersad}@uwinnipeg.ca

Jeffrey Shallit†

School of Computer Science
University of Waterloo
shallit@uwaterloo.ca

Manon Stipulanti‡

Department of Mathematics
University of Liège

m.stipulanti@uliege.be

December 20, 2018

Abstract

We make certain bounds in Krebs’ proof of Cobham’s theorem explicit and ob-
tain corresponding upper bounds on the length of a common prefix of an aperiodic
a-automatic sequence and an aperiodic b-automatic sequence, where a and b are mul-
tiplicatively independent. We also show that an automatic sequence cannot have arbi-
trarily large factors in common with a Sturmian sequence.

1 Introduction
This paper is concerned with the following question: Given a b-automatic sequence f and a
sequence g from some other family of sequences G , how similar can f and g be? By “similar”
we could mean several things:

1. f and g are identical;

2. f and g have a long common prefix;

3. f and g have a factor of length n in common for infinitely many n;

4. f and g have the same set of factors of length n for all sufficiently large n;

5. f and g agree on a set of positions of density 1.
∗The author is supported by an NSERC Discovery Grant 418646-2012.
†The author is supported by an NSERC Discovery Grant 2018-04118.
‡The author is supported by FRIA Grant 1.E030.16.

1

When G is the family of a-automatic sequences, where a and b are multiplicatively indepen-
dent (a and b are not powers of the same integer), then we have some answers. Notably,
Cobham’s theorem [6] states that f and g can be identical only if f and g are ultimately
periodic. Recently, Krebs [8] has given a very short and elegant proof of Cobham’s theo-
rem. Much of what we do in the first part of this paper is based on this proof of Cobham’s
theorem. We also note that Byszewski and Konieczny [4] generalized Cobham’s theorem by
showing that if f and g coincide on a set of positions of density 1, then they are periodic on
a set of positions of density 1.

One of the main results of this paper concerns the “long common prefix” measure of
similarity. In particular we give explicit bounds (in terms of the number of states of the
automata generating the sequences) on how long f and g can agree before they are forced to
agree forever. As an example of a result of this type, consider the following generalization
of the Fine–Wilf theorem [10, Theorem 2.3.5]: If f ∈ w{w, x}ω and g ∈ x{w, x}ω (w and
x are finite words) agree on a prefix of length |w| + |x| − gcd(|w|, |x|), then f = g. (Here
the notation {w, x}ω denotes the set of infinite words of the form U1U2U2 · · · , where each
Ui ∈ {w, x}.) In our setting, where f is an a-automatic sequence and g is a b-automatic
sequence, we obtain our bounds on the length of the common prefix by following the proof
of Krebs and making explicit several of the bounds that appear in this proof. Our result
answers a question posed by Zamboni (personal communication), who asked how long a
sequence generated by a b-uniform morphism and one generated by an a-uniform morphism
can agree before the two sequences are forced to be equal.

This problem of bounding the length of the common prefix of f and g is related to the
concept of b-automaticity of infinite sequences [9], which measures the minimum number of
states of a base-b automaton that computes the length-n prefix of the sequence. In particular,
we are able to get a lower bound on the b-automaticity of an a-automatic sequence.

Regarding the property of having “arbitrarily large factors in common”, it is not difficult to
see that even distinct aperiodic a-automatic and b-automatic sequences can have arbitrarily
large factors in common. For example, the characteristic sequences of powers of 2 and 3
respectively are 2-automatic and 3-automatic respectively, and clearly have arbitrarily large
runs of 0’s in common. The problem in this case is to show that in general such large factors
necessarily have some simple structure; however, we do not address this question in this
paper.

If we now change the family G of sequences from a-automatic to Sturmian, then it is
somewhat easier to answer these kinds of questions. Sturmian sequences are those given by
the first differences of sequences of the form

(bnα + βc)n≥1,

where 0 ≤ α, β < 1 and α is irrational [3]. The number α is called the slope of the Sturmian
sequence and the number β is the called the intercept. It is well-known that a Sturmian
sequence cannot be b-automatic. This follows from the fact that the limiting frequency of
1’s in a Sturmian sequence is α, whereas if a letter in a b-automatic sequence has a limiting
frequency, that frequency must be rational [6, Thm. 6, p. 180].

The problem of determining the maximum length of a common prefix of a b-automatic
sequence and a Sturmian sequence was examined by Shallit [9]. Upper bounds on the length

2

of the common prefix can be deduced from the automaticity results given by Shallit. In the
present paper we answer, in the negative, the question, “Can a Sturmian sequence and a
b-automatic sequence have arbitrarily large finite factors in common?”

Byszewski and Konieczny [4] examine these questions for the family of generalized poly-
nomial functions (these are sequences defined by expressions involving algebraic operations
along with the floor function). This family contains the family of Sturmian sequences as a
subset. In recent work [5], they have extended some of the results of this paper to this more
general class.

We also mention the work of Tapsoba [11]. Recall that the complexity of a word s
is the function counting the number of distinct factors of length n in s. It is also well-
known that Sturmian words have the minimum possible complexity n + 1 achievable by an
aperiodic infinite word. Tapsoba shows another distinction between automatic sequences and
Sturmian words by giving a formula for the minimal complexity function of the fixed point
of an injective k-uniform binary morphism and comparing this to the complexity function
of Sturmian words.

2 Common prefix of a-automatic and b-automatic
sequences

This section is largely based on the work of Krebs [8] and so we will mostly stick to the
notation used in his paper. The reader should read this section in conjunction with Krebs’
paper; we occasionally omit details that can be found there.

2.1 Definitions and notation

Let b ≥ 2 and let w ∈ {0, 1, 2, . . .}∗. Write w = wn−1wn−2 · · ·w0, where each wi ∈
{0, 1, 2, . . .}. We define the number [w]b by

[w]b = wn−1b
n−1 + wn−2b

n−2 + · · ·+ w1b+ w0.

Typically, one restricts w to be over the canonical digit set {0, 1, . . . , b − 1}, in which case
every natural number x has a unique representation w such that x = [w]b and w does not
begin with a 0 (the number 0 is represented by the empty string). In this case, we use 〈x〉b
to denote this representation w.

However, Krebs’ proof requires the use of a larger digit set. Let Db denote the digit set
{0, . . . , 2b}. Over this digit set, numbers may no longer have unique representations, even
with the restriction that the representation must begin with a non-zero digit. We use the
notation (x)Db

to refer to some particular representation of x over the digit set Db that does
not begin with the digit zero, without necessarily specifying which representation it is. Note
also that if some representation (x)Db

has length n, then

x ≤ 2b
n−1∑
i=0

bi =
2b(bn − 1)

b− 1
≤ 2bn+1.

3

A deterministic finite automaton with output (DFAO) is a 6-tuple (S,D, δ, s0,∆, F),
where S is a finite set of states, D is a finite input alphabet, δ : S ×D → S is the transition
function, s0 ∈ S is the initial state, ∆ is a finite output alphabet, and F : S → ∆ is the
output function. See [2] for more details.

Let D be a set of non-negative digits containing {0, 1, . . . , b− 1}. A sequence (fx)x∈N is
(b,D)-automatic if there is a DFAO M = (S,D, δ, s0,∆, F) such that f[w]b = F (δ(s0, w)) for
all w ∈ D∗. Note that for each x, the DFAOM must produce the same output for all w ∈ D∗
satisfying x = [w]b. The DFAO M is called a (b,D)-DFAO. A sequence is b-automatic if it
is (b, {0, 1, . . . , b− 1})-automatic, and the automaton M in this case is called a b-DFAO.

2.2 Normalization

Krebs begins his proof by showing that a sequence f is automatic with respect to repre-
sentations over the canonical base-b digit set if and only if it is automatic with respect to
representations over the digit set Db. The reverse direction can be seen by noting that given
a (b,Db)-DFAO generating f , one obtains a b-DFAO generating f simply by deleting the
transitions on all digits other than {0, 1, . . . , b − 1}. The forward direction is proved using
two results: the first is a modification of [2, Theorem 6.8.6] and the second can be found
in [7, Proposition 7.1.4]. The first result [2, Theorem 6.8.6] states that if a sequence f is
generated by a b-DFAOM , then so is the sequence obtained by first applying a transducer T
to the input and then feeding the output of T to M . As presented in [2], this result requires
T to map words over the digits set {0, 1, . . . , b − 1} to words over the same digit set; how-
ever, the proof is easily modified to allow T to map words over any digit set to words over
{0, 1, . . . , b − 1}. Krebs therefore applies this modified version of [2, Theorem 6.8.6] where
T is the transducer of [7, Proposition 7.1.4], which converts input over a non-canonical digit
set (in our case Db) to the canonical digit set for a given base b (this is called normaliza-
tion). The result of this operation is therefore a (b,Db)-DFAO computing f . We now discuss
the details of this construction with the aim of obtaining a reasonably small (b,Db)-DFAO
computing f .

Let N be the transducer of [7, Lemma 7.1.1], which converts from the digit set Db to the
digit set {0, 1, . . . , b − 1} and reads its input from least significant digit to most significant
digit. The number of states of N is determined by the quantity

m = max{|e− d| : e ∈ Db, d ∈ {0, 1, . . . , b− 1}};

in particular, the state set of N is defined to be Q = {s ∈ N : s < m/(b − 1)}. In our
case, we have m = 2b, and furthermore, for b = 2 we have 2b/(b − 1) = 4 and for b > 2
we have 2 < 2b/(b − 1) ≤ 3. We therefore set γ = 4 if b = 2 and γ = 3 if b > 2, so that
Q = {s ∈ N : s < γ}.

The set of transitions of N is

E = {s e|d−→ s′ : s+ e = bs′ + d}.

The initial state is 0 and the output function ω maps each state s ∈ Q to 〈s〉b. Note that N
is subsequential, or “input-deterministic”. To see this, suppose we have two transitions

s
e|d′−→ s′ and s

e|d′′−→ s′′.

4

0

1

2

3

0|0, 1|1

2|0, 3|1

4|0

1|0, 2|1

0|1

3|0, 4|1

2|0, 3|1

4|0

0|0, 1|1

3|0, 4|1

0|1

1|0, 2|1

Figure 1: The transducer N in base 2 converting D2 into {0, 1}.

Then bs′ + d′ = bs′′ + d′′, which we can rewrite as (s′ − s′′)b = d′′ − d′. However, we have
|d′′ − d′| < b, so |s′ − s′′| < 1, which implies s′ = s′′ and d′ = d′′.

On input u = enen−1 · · · e0 overDb, the transducerN produces output v = ω(s)dndn−1 · · · d0
over {0, 1, . . . , b− 1}, where s is the state reached by N after reading u, and [uR]b = [vR]b.

Example 1. Throughout this section, we illustrate the proof with the case b = 2. In this
case, the transducer N is the one given in Figure 1. For instance, on input u = 4032 over
D2, the transitions of N are

0
2|0−→ 1

3|0−→ 2
0|0−→ 1

4|1−→ 2,

so N outputs v = 〈2〉21000 = 101000, which is the canonical base-2 expansion of u.

Let M = (S, {0, 1, . . . , b− 1}, δ, I,∆, F) be a b-DFAO generating a b-automatic sequence
f . Recall that our convention is that a b-DFAO reads its input from most significant digit
to least significant digit.

Example 1 (Continued). We now consider the Thue–Morse sequence t = 01101001 · · ·
which is the fixed point of the morphism τ : 0 7→ 01, 1 7→ 10. It is well known that
the Thue–Morse sequence t is 2-automatic and can be generated by the 2-DFAO M =
(S, {0, 1}, δ, I,∆, F) with S = {0, 1} = F and I = 0 drawn in Figure 2.

Let M ′ = (S ′, Db, δ
′, I ′,∆, F ′), be the (b,Db)-DFAO defined as follows (again, it reads its

input from most significant digit to least significant digit). We define

S ′ = {{(s0, 0), (s1, 1), . . . , (sγ−1, γ − 1)} : s0, s1, . . . , sγ−1 ∈ S} , and
I ′ = { (δ(I, 〈q〉b), q) : 0 ≤ q < γ } .

5

0 1

0
1

0

1

Figure 2: The 2-DFAO M generating the Thue–Morse sequence.

Clearly we have I ′ ∈ S ′. For any t ∈ S ′ and e ∈ Db, we define

δ′(t, e) =
⋃

(s,q)∈t

{
(δ(s, d), q′) : q′

e|d−→ q in N
}
.

Finally, for t ∈ S ′, define F ′(t) = F (s), where (s, 0) ∈ t (by the definition of S ′, there is a
unique such s ∈ S).

We first show that δ′ is well-defined. Let t ∈ S ′ and e ∈ Db, and we will show that
δ′(t, e) ∈ S ′. We need to show that for every state p of N (i.e., every p ∈ Q) the set δ′(t, e)
contains a unique element of the form (s, p), where s ∈ S. Let p ∈ Q be a state of N . Since
N is input-deterministic, there is exactly one outgoing transition from p in N with input
symbol e, say p

e|d−→ q in N . Since (s, q) ∈ t for exactly one s ∈ S (by definition of S ′),
we conclude that (δ(s, d), p) ∈ δ′(t, e), and it is the unique element in δ′(t, e) with second
coordinate p.

Now we show that M ′ computes the same automatic sequence as M . For any u =
um · · ·u0 ∈ D∗b that doesn’t begin with 0, there exists exactly one v = vn · · · v0 ∈ {0, 1, . . . , b−
1}∗ that doesn’t begin with 0 such that [u]b = [v]b. Namely, v = 〈[u]b〉b. Note that m ≤
n ≤ m + 2. We need to show that if (s, 0) ∈ δ′(I ′, u), then δ(I, v) = s. Suppose that
(s, 0) ∈ δ′(I ′, u). Then in N , we have

0
u0|v0−→ q0

u1|v1−→ q1
u2|v2−→ · · · um|vm−→ qm,

and 〈qm〉b = vn · · · vm+1. Therefore, we have (δ(I, vn · · · vm+1), qm) ∈ I ′, and retracing the
steps of M ′, we conclude that

δ(I, v) = s.

Informally, M ′ works through the transducer N in the reverse direction, while computing
the transitions ofM on the output. Since we are working through the transducer backwards,
there are γ possible places to start, each corresponding to a different backwards path through
the transducer. Further, if we start working backwards from state q in the transducer, then
the output function of the transducer will be 〈q〉b. The output function of the transducer
is read first by M ′, which explains the definition of I ′. Only when we reach the end of the
input string do we know which backwards path through the transducer was correct (the one
that started at state 0), so M ′ computes the transitions of M for all γ paths along the way.

We have therefore shown how, given a b-DFAO M for f , to produce a (b,Db)-DFAO M ′

that also generates f . Furthermore, the (b,Db)-DFAO M ′ has at most

|S|γ ≤ |S|4 (1)

6

{(1, 0), (1, 1),
(0, 2), (1, 3)}

{(1, 0), (0, 1),
(1, 2), (0, 3)}

{(0, 0), (1, 1),
(0, 2), (0, 3)}

{(1, 0), (0, 1),
(0, 2), (1, 3)}

{(0, 0), (1, 1),
(1, 2), (0, 3)}

{(0, 0), (0, 1),
(1, 2), (1, 3)}

{(1, 0), (1, 1),
(0, 2), (0, 3)}

{(0, 0), (1, 1),
(0, 2), (1, 3)}

{(1, 0), (0, 1),
(1, 2), (1, 3)}

{(0, 0), (0, 1),
(1, 2), (0, 3)}

0

1

2

3

4

0, 4

1

2

3

0

1

2

3

4

0

1

2 3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0, 4

1

2

30

1

2

3

4

0 1

2

3

4

Figure 3: The (2, D2)-DFAOM ′ computing the Thue–Morse sequence (“white” states output
0; “grey” states output 1).

states.

Example 1 (Continued). In Figure 3, we give the (2, D2)-DFAO M ′ (omitting all unreach-
able states) that computes the Thue–Morse sequence. We also give its transition table in
Table 1. To that aim, recall that γ = 4. From Figure 2, we also get

I ′ = { (δ(I, 〈q〉b), q) : 0 ≤ q < γ }
= {(δ(I, ε), 0), (δ(I, 1), 1), (δ(I, 10), 2), (δ(I, 11), 3)}
= {(0, 0), (1, 1), (1, 2), (0, 3)}.

We also computeM ′ on two different words u ∈ D∗2. Take u = 4032 ∈ D∗2 whose canonical

7

δ′
(t
,e

)
e
∈
{0
,1
,2
}

t
∈
S
′

0
1

2
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}
{(

1,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}

{(
1,

0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}

{(
1,

0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}
{(

0,
0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}

{(
0,

0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}
{(

1,
0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}

{(
1,

0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}
{(

0,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}

{(
0,

0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}

{(
1,

0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}
{(

0,
0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}

{(
1,

0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}

{(
0,

0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}

{(
0,

0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}
{(

1,
0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}

δ′
(t
,e

)
e
∈
{3
,4
}

t
∈
S
′

3
4

{(
0,

0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}

{(
1,

0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

0,
0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}

{(
1,

0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

1,
0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}

{(
0,

0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

0,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}

{(
1,

0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}

{(
0,

0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

1,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}

{(
1,

0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

1,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

1,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}

{(
1,

0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

0,
0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

0,
0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}

{(
0,

0)
,(

0,
1)
,(

1,
2)
,(

0,
3)
}
{(

1,
0)
,(

1,
1)
,(

0,
2)
,(

0,
3)
}
{(

1,
0)
,(

0,
1)
,(

0,
2)
,(

1,
3)
}

{(
0,

0)
,(

1,
1)
,(

0,
2)
,(

1,
3)
}
{(

0,
0)
,(

0,
1)
,(

1,
2)
,(

1,
3)
}
{(

0,
0)
,(

1,
1)
,(

1,
2)
,(

0,
3)
}

Ta
bl
e
1:

T
he

tr
an

si
ti
on

fu
nc
ti
on

δ′
of
M
′
as

a
fu
nc
ti
on

of
t
∈
S
′
an

d
e
∈
{0
,1
,2
,3
,4
}.

8

base-2 expansion is v = 101000. The transitions are

I ′ = {(0, 0), (1, 1), (1, 2), (0, 3)} 4−→ {(1, 0), (0, 1), (0, 2), (1, 3)}
0−→ {(1, 0), (0, 1), (0, 2), (1, 3)}
3−→ {(1, 0), (0, 1), (1, 2), (1, 3)}
2−→ {(0, 0), (1, 1), (1, 2), (0, 3)}.

By definition of F ′, we have F ′({(0, 0), (1, 1), (1, 2), (0, 3)}) = F (0) = 0. Thus the automaton
M ′ outputs 0 after reading u, just as the automaton M does when reading v. The second
coordinates of the ordered pairs in bold are the states of the “correct path” through the
transducer N , in reverse:

0
2|0−→ 1

3|0−→ 2
0|0−→ 1

4|1−→ 2.

The first coordinate of the bolded pair in I ′ is δ(I, 〈2〉2) = δ(I, 10) = 1, and the first
coordinates of the remaining bolded pairs are determined by starting from state δ(I, 10) = 1
inM and following the transitions ofM given by the output labels of the above path through
N (again, working backwards through N):

δ(I, 10) = 1
1−→ 0

0−→ 0
0−→ 0

0−→ 0 = δ(I, v).

This illustrates how, on input u, M ′ computes F (δ(I, v)), which is exactly the output of M
on input v.

As a second illustration, take u′ = 2014 ∈ D∗2 whose canonical base-2 expansion is
v′ = 10110. On the input u′, the transitions of M ′ are

I ′ = {(0, 0), (1, 1), (1, 2), (0, 3)} 2−→ {(1, 0), (0, 1), (1, 2), (0, 3)}
0−→ {(1, 0), (0, 1), (0, 2), (1, 3)}
1−→ {(0, 0), (0, 1), (1, 2), (0, 3)}
4−→ {(1, 0), (0, 1), (0, 2), (1, 3)}.

Similarly, F ′({(1, 0), (0, 1), (0, 2), (1, 3)}) = F (1) = 1, so the automaton M ′ outputs 1 after
reading u′, agreeing with the output of M on input v′. Again, we have bolded the ordered
pairs corresponding to the “correct path” through the transducer N .

We end this section with some remarks on the construction. We hope that the reader
is convinced that the construction we have described works for any digit set containing
{0, 1, . . . , b− 1} and not just the digit set Db. Furthermore, Krebs has pointed out (private
communication) that the number of states needed for the construction can be improved by
changing the digit set from Db to {0, 1, . . . , 2b − 2}. Recall that our construction results
in a DFAO with |S|γ states. If b = 2, then we have γ = 4, while if b > 2, then we have
γ = 3. However, if we change the digit set as suggested by Krebs, we improve this to |S|2
states. Krebs’ proof of Cobham’s Theorem works just as well with this new choice of digit
set; however, a number of bounds and constants in his proof would have to be modified. We
do not present these modifications here; we just note that it is possible to do it.

9

2.3 Upper bound on longest commmon prefix

Having dealt with the conversion to the larger digit set required by Krebs, we now proceed
with the Diophantine approximation result used by Krebs.

Lemma 2. Let a, b ≥ 2 be integers and let ε be a positive real number. Define

η := max{dloga be, dlogb ae}.

There are non-negative integers m,n < η((b− 1)/ε+ 1) such that |am − bn| ≤ εbn.

Proof. First suppose that a ≥ b. Let (fx)x∈N be the sequence such that axb−fx ∈ [1, b) for
all x ∈ N. Then 0 ≤ (logb a)x− fx, so fx ≤ (logb a)x. Now by the pigeonhole principle there
exist x < y ≤ (b− 1)/ε+ 1 such that

∣∣ayb−fy − axb−fx∣∣ ≤ ε; i.e.,∣∣ay−x − bfy−fx∣∣ ≤ εbfya−x ≤ εbfy−fx .

Thus, we have m = y − x ≤ y ≤ (b− 1)/ε+ 1 and

n = fy − fx ≤ fy ≤ (logb a)y ≤ (logb a)((b− 1)/ε+ 1) ≤ η((b− 1)/ε+ 1),

as required.
Now suppose that a < b. Applying the previous argument with adloga be in place of a

(where dρe denotes the least integer greater than or equal to ρ) , we find that

m = dloga be(y − x) ≤ dloga bey ≤ dloga be((b− 1)/ε+ 1) ≤ η((b− 1)/ε+ 1),

and

n = fy − fx ≤ fy ≤ dloga be(logb a)y ≤ dloga be(logb a)((b− 1)/ε+ 1) ≤ η((b− 1)/ε+ 1),

as required (the final inequality above follows from the fact that logb a < 1 in this case).

As in Lemma 2, define η := max{dloga be, dlogb ae} and also define θ := max{a, b}. We
now define

E(a, b, R, S) := η
[
6
(
2θ(S+1)(R+1) + 1

)
(θ − 1) + 1

]
,

A(a, b, R, S) :=
(
2θ(S+1)(R+1) + 2

)
θE(a,b,R,S),

and note that both these functions are symmetric under exchange of their first two arguments
and also under exchange of their last two arguments.

Theorem 3. Let a, b ≥ 2 be multiplicatively independent integers. Let g = (gx)x∈N be
computed by a DFAOMa = (Sa, Da, δa, s0,a,∆a, Fa) in base a and let f = (fx)x∈N be computed
by a DFAO Mb = (Sb, Db, δb, s0,b,∆b, Fb) in base b. Suppose that f and g agree on a prefix
of length A(a, b, |Sa|, |Sb|). Then f and g are equal and ultimately periodic.

10

Proof. Let S∞ be the subset of states of Mb consisting of all states s with the property that
there are infinitely many numbers x such that some representation (x)Db

reaches state s in
Mb. For each s ∈ S∞, we claim that there must exist a state t ∈ Sa and positive integers xst
and yst such that some base-b representations (xst)Db

and (yst)Db
both lead to state s in Mb

and some base-a representations (xst)Da and (yst)Da both lead to state t in Ma. We show
this by giving an explicit upper bound on xst and yst.

If a string W has length at least |Sb|, then any computation of Mb on W repeats a state.
Since for each s ∈ S∞ there are infinitely many (x)Db

that reach state s, there must exist
some number x0, some representation (x0)Db

, and some factorization (x0)Db
= uw with the

following properties:

• |(x0)Db
| ≤ |Sb|.

• There exists a non-empty v such that |v| ≤ |Sb| and uviw reaches s for all i ≥ 0.

For 1 ≤ i ≤ |Sa|, let xi be the integer such that (xi)Db
= uviw. Then the numbers xi are all

distinct. Now consider the states reached in Ma by some choice of representations (xi)Da ,
for 0 ≤ i ≤ |Sa|. There must be two such numbers xi and xj such that (xi)Da and (xj)Da

reach the same state t in Ma. We choose these as our xst and yst. Finally, we note that for
0 ≤ i ≤ |Sa|, we have |(xi)Db

| ≤ |Sb|(|Sa|+1), which gives the bound xst, yst ≤ 2b|Sb|(|Sa|+1)+1.
Let ξ := max{xst, yst | s ∈ S∞}+ 1 ≤ 2b|Sb|(|Sa|+1)+1 + 1. By Lemma 2, there exist

m,n ≤ η[6ξ(b− 1) + 1] ≤ E(a, b, |Sa|, |Sb|)

such that ξ|am − bn| ≤ 1
6
bn. As defined in [8], let pst := (xst − yst)(am − bn) (swapping xst

and yst if necessary, so that pst > 0), and note that from [8] we have pst ≤ 1
6
bn. Let z be

any integer such that z, z + pst ∈
[
1
3
bn, 5

3
bn
]
. In particular, there exist representations (z)Db

and (z + pst)Db
such that |(z)Db

|, |(z + pst)Db
| ≤ n. In what follows, we specifically use the

representations of z and z+pst that satisfy this condition on their lengths. We also note that
by the calculation in [8], we have z − yst(am − bn) ≤ 2am, so there is also a representation
(z − yst(am − bn))Da of length at most m.

Let x be any integer such that some representation (x)Db
goes to state s in Mb. Recall

that (xst)Db
and (yst)Db

go to state s in Mb and (xst)Da and (yst)Da go to state t in Ma. If f
and g agree on a sufficiently long prefix (to be specified later), then we have

fxbn+z = fystbn+z (since (x)Db
and (yst)Db

go to state s in Mb)
= fystam+z−yst(am−bn) (rewriting the index)
= gystam+z−yst(am−bn) (since f and g agree)
= gxstam+z−yst(am−bn) (since (yst)Da and (xst)Da go to state t in Ma)
= gxstbn+z+pst (rewriting the index)
= fxstbn+z+pst (since f and g agree)
= fxbn+z+pst (since (xst)Db

and (x)Db
go to state s in Mb).

For this calculation to be correct, the two sequences f and g should agree on a prefix of

11

length

max{yst, xst | s ∈ S∞}am + z − yst(am − bn) ≤ (ξ − 1)am + z − yst(am − bn)

≤ (ξ − 1)am + 2am

≤ (ξ + 1)am.

Now ξ ≤ 2b|Sb|(|Sa|+1)+1 + 1, so we have

(ξ + 1)am ≤
(
2b|Sb|(|Sa|+1)+1 + 2

)
am

≤
(
2b|Sb|(|Sa|+1)+1 + 2

)
aE(a,b,|Sa|,|Sb|)

≤ A(a, b, |Sa|, |Sb|).

Thus, if f and g agree on a prefix of length A(a, b, |Sa|, |Sb|), then f has a local period

pst ≤
1

6
bn ≤ 1

6
bE(a,b,|Sa|,|Sb|)

on the interval [(x+ 1/3)bn, (x+ 5/3)bn]. By the same argument as in [8], the sequence f is
ultimately periodic. We will show further that the periodicity begins after a prefix of length
at most (

2b|Sb|+1 +
1

3

)
bn ≤

(
2b|Sb|+1 +

1

3

)
bE(a,b,|Sa|,|Sb|).

Any representation (x)Db
of length |Sb| must reach a state in S∞. Therefore if x = 2b|Sb|+1,

then for every y ≥ x, every representation (y)Db
reaches a state in S∞. Now by the argument

of [8], the sequence f has period pf := pst starting from index

if :=

(
2b|Sb|+1 +

1

3

)
bn.

By a similar argument (with the roles of f and g reversed) we find that if f and g agree
on a prefix of length A(a, b, |Sa|, |Sb|), then g has period pg starting from some index ig,
where pg and ig are defined analogously to pf and if . Now, we have

max{pf , pg} ≤
1

6
θE(a,b,|Sa|,|Sb|),

and

max{if , ig} ≤ max

{(
2b|Sb|+1 +

1

3

)
bE(a,b,|Sa|,|Sb|),

(
2a|Sa|+1 +

1

3

)
aE(b,a,|Sb|,|Sa|)

}
≤ max

{(
2b|Sb|+1 +

1

3

)
,

(
2a|Sa|+1 +

1

3

)}
θE(a,b,|Sa|,|Sb|),

so

max{if , ig}+ pf + pg ≤ max

{(
2b|Sb|+1 +

2

3

)
,

(
2a|Sa|+1 +

2

3

)}
θE(a,b,|Sa|,|Sb|)

≤ A(a, b, |Sa|, |Sb|).

Therefore, by the Fine–Wilf theorem [10, Theorem 2.3.5], the sequences f and g are equal.

12

In the next corollary, let expr(x) denote the function rx.

Corollary 4. Let a, b ≥ 2 be multiplicatively independent integers. Let g = (gx)x∈N and
f = (fx)x∈N be sequences over a set ∆ of size d. Suppose that g is computed by an a-DFAO
M ′

a with R states and f is computed by a b-DFAO M ′
b with S states. There is a positive

constant C (depending only on a and b) such that if f and g agree on a prefix of length

expθ(expθ(CR
4S4)) (2)

then f and g are equal and ultimately periodic.

Proof. We have previously observed that conversion from a b-DFAO to a (b,Db)-DFAO
increases the number of states to at most the quantity (1). We apply the bound of Theorem 3
with

|Sa| = R4 and |Sb| = S4.

Simplifying the resulting expression, we find that there is a positive constant C such that
the bound of Theorem 3 is at most the quantity (2).

Note that the bound on the length of the common prefix that we obtain seems absurdly
large compared to what seems likely to be the optimal bound. It is not too difficult to give
an example where the common prefix has length that is (singly) exponential in the size of
the defining automata. For instance, let g be the constant (and hence a-automatic) sequence
(0, 0, 0, 0, . . .). Fix some positive integer N and let f be the characteristic sequence of the
set {bn − 1 : n ≥ N}. Then f is an aperiodic b-automatic sequence. Indeed, a b-DFAO
M generating f can be obtained from the N + 2 state DFA accepting the regular language
0∗(b − 1)N(b − 1)∗ by making the accepting state output 1 and all other states output 0.
Then M has N + 2 states and the sequences f and g agree on a prefix of length bN − 1.

Now we examine the connection to automaticity. The b-automaticity of a sequence g
is the function Abg(n) whose value is the least number of states required in a b-DFAO that
computes a prefix of g of length n. Shallit [9, Proposition 1(c)] showed that if g is not
b-automatic, then there is a constant c such that Abg(n) ≥ c logb n for infinitely many n.

Corollary 5. Let a, b be multiplicatively independent integers with a, b ≥ 2. There is a
positive constant D such that the b-automaticity Abg(n) of an aperiodic a-automatic sequence
g satisfies

Abg(n) > D(log log n)1/4,

for all n ≥ 0.

Proof. Let Ma be an a-DFAO computing g and let Mb,n be a b-DFAO computing a sequence
f that agrees with g on a prefix of length n. Suppose that Ma has E states and that Mb,n

has Sn states. Since g is aperiodic, by (2) we have

n < expθ(expθ(CE
4(Sn)4))

Treating E as a constant, we get

Sn >

(
1

C1/4E

)
(logθ logθ n)1/4 = D(log log n)1/4,

for some positive constant D.

13

Note that while this may seem weaker than the c logb n lower bound mentioned previously,
the former only holds for infinitely many n, whereas our lower bound holds for all n. Without
the assumption that g is a-automatic, the b-automaticity of g could potentially be constant
for long stretches, and only for very sparsely distributed values of n satisfy Abg(n) ≥ c logb n.
Our result shows that under the assumption that g is a-automatic, the function Abg(n) cannot
be constant for too long.

On the other hand, our lower bound on the b-automaticity does seem to be rather weak
compared to what can be proved for specific sequences. Shallit [9] showed that if p is the
fixed point of 0 → 01, 1 → 00, then for k odd, we have Akp(n) = Ω(n1/2/k), and if t
is the fixed point of 0 → 01, 1 → 10 (the Thue–Morse word), then for k odd, we have
Akt (n) = Ω(n1/4/k1/2).

3 Common factors of b-automatic and Sturmian
sequences

As mentioned in the introduction, the problem of bounding the length of the longest common
prefix of a b-automatic sequence and a Sturmian sequence was addressed by Shallit [9]. In this
section, we show that two such sequences cannot have arbitrarily large factors in common.
Our main result is the following:

Theorem 6. Let f be a b-automatic sequence and let g be a Sturmian sequence. There exists
a constant C (depending on f and g) such that if f and g have a factor in common of length
n, then n ≤ C.

Note that this result would follow fairly easily from the frequency results mentioned
previously, if f is uniformly recurrent (meaning that every factor z of f occurs infinitely
often, and with bounded gap size between two consecutive occurrences). However, unlike
Sturmian sequences, automatic sequences need not be uniformly recurrent: consider, for
example, the 2-automatic sequence that is the characteristic sequence of the powers of 2.
Our proof is therefore based on the finiteness of the b-kernel of f , along with the uniform
distribution property of Sturmian sequences (this is similar to the techniques used in [9]).

Proof. Let f = f0f1 · · · and g = g0g1 · · · , where g has slope α and intercept β. Since the
factors of a Sturmian word do not depend on β, without loss of generality, we may suppose
that β = 0 (or, in other words, that g is a characteristic word). Then g can be defined by
the following rule:

gn =

{
1, if {(n+ 1)α} < α;

0, otherwise.

Here {·} denotes the fractional part of a real number.
Suppose that for some integer L, the words f and g have a factor of length L in common:

i.e., for some i ≤ j, we have

fi · · · fi+L−1 = gj · · · gj+L−1.

14

(We may assume that i ≤ j since g is recurrent, but this is not important for what follows.)
Suppose that the b-kernel of f ,

{(fnbr+s)n≥0 : r ≥ 0 and 0 ≤ s < br},

has Q distinct elements. Let r satisfy br > Q. There there exist integers s1, s2 with 0 ≤ s1 <
s2 < br such that

(fnbr+s1)n≥0 = (fnbr+s2)n≥0.

Define

d1 := s1 + j − i+ 1,

d2 := s2 + j − i+ 1.

For all n satisfying i ≤ nbr + s1 and nbr + s2 ≤ i + L − 1 we have fnbr+s1 = gnbr+d1−1 and
fnbr+s2 = gnbr+d2−1. Since fnbr+s1 = fnbr+s2 , we have gnbr+d1−1 = gnbr+d2−1. This means that
either the inequalities

{(nbr + d1)α} < α and {(nbr + d2)α} < α (3)

both hold, or the inequalities

{(nbr + d1)α} ≥ α and {(nbr + d2)α} ≥ α (4)

both hold.
If L is arbitrarily large, then there exist arbitrarily large sets I of consecutive positive

integers such that every n ∈ I satisfies either (3) or (4). Without loss of generality, suppose
that {d2α} > {d1α}. Choose ε > 0 such that ε < {d2α}−{d1α}. Note that d2−d1 = s2−s1,
so ε does not depend on L (or I). Since brα is irrational, if I is sufficiently large, then by
Kronecker’s theorem (which asserts that the set of points {nα} is dense in (0, 1)) there exists
N ∈ I such that

{N(brα) + d2α} ∈ [α, α + ε].

By the choice of ε, this implies that

{N(brα) + d2α} ≥ α and {N(brα) + d1α} < α,

contradicting the assumption that N satisfies one of (3) or (4). The contradiction means
that L must be bounded by some constant C, which proves the theorem.

Example 7. Consider the Thue-Morse word t = 01101001 · · · , and the Fibonacci word
f = 01001010 · · · given by the fixed point of 0 → 01 and 1 → 0. The latter is Sturmian.
The set of common factors is

{ε, 0, 1, 00, 01, 10, 001, 010, 100, 101, 0010, 0100, 0101, 1001, 1010,

00101, 01001, 10010, 10100, 010010, 100101, 101001, 0100101, 1010010, 10100101},

so C = 8.

15

4 Final thoughts
As noted at the end of Section 2, the Ω((log log n)1/4) lower bound we obtain on the b-
automaticity of an aperiodic a-automatic sequence is surely not optimal. Sequences with
O(log n) (i.e., “low”) b-automaticity are called b-quasiautomatic in [9]. It seems unlikely that
an aperiodic a-automatic sequence can even be b-quasiautomatic. Known examples of b-
quasiautomatic sequences strongly resemble b-automatic sequences. For example, the fixed
point of the morphism c → cba, a → aa, b → b, starting with c, is 2-quasiautomatic, but
not 2-automatic [9]. Similarly, the fixed point of 1 → 121, 2 → 12221 is not 2-automatic
[1] but is conjectured to be 2-quasiautomatic [9]. Curiously, this latter sequence is auto-
matic with respect to the positional numeration system (and a certain choice of canonical
representations) whose place values are given by the sequence ((2n − (−1)n)/3)n≥1 [1].

We conclude by again mentioning the problem stated in the introduction of characterizing
the common factors of a b-automatic sequence and an a-automatic sequence. Can the method
of Krebs be applied to this problem?

Acknowledgments
We thank Jean-Paul Allouche for helpful discussions. The normalization construction of
Section 2.2 was obtained in discussions with Émilie Charlier, Julien Leroy, and Michel Rigo
of the University of Liège. We thank them for their help with this problem.

After we posted an initial version of this paper on the arXiv, Thijmen Krebs contacted us
with a number of very helpful comments. He clarified some important points regarding his
paper, and gave several suggestions which greatly simplified and improved the presentation
of the normalization construction. We are very grateful for his feedback, which significantly
improved the exposition in Section 2.2.

References
[1] G. Allouche, J.-P. Allouche, and J. Shallit, “Kolam indiens, dessins sur le sable aux îles

Vanuatu, courbe de Sierpinski et morphismes de monoïde”, Ann. Inst. Fourier, Grenoble
56 (2006), 2115–2130.

[2] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generaliza-
tions, Cambridge, 2003.

[3] J. Berstel and P. Séébold, “Sturmian words”, in M. Lothaire, ed., Algebraic Combinatorics
on Words, Cambridge University Press, 2002, pp. 40–97.

[4] J. Byszewski and J. Konieczny, “Automatic sequences and generalized polynomials”.
Preprint available at https://arxiv.org/abs/1705.08979 .

[5] J. Byszewski and J. Konieczny, “Factors of generalised polynomials and automatic se-
quences”, Indag. Math. (N.S.) 29 (2018), no. 3, 981–985.

16

[6] A. Cobham, “Uniform tag sequences”, Math. Systems Theory 6 (1972), 164–192.

[7] M. Lothaire, Algebraic Combinatorics on Words, Cambridge, 2002.

[8] T. Krebs, “A more reasonable proof of Cobham’s Theorem”. Preprint available at https:
//arxiv.org/abs/1801.06704 .

[9] J. Shallit, “Automaticity IV: sequences, sets, and diversity”, J. Théorie des Nombres de
Bordeaux, 8 (1996), 347–367.

[10] J. Shallit, A Second Course in Formal Languages and Automata Theory, Cambridge,
2009.

[11] T. Tapsoba, “Minimum complexity of automatic non Sturmian sequences”, RAIRO
Theor. Inf. Appl. 29 (1995), 285–291.

17

