

DEVELOPMENT OF ADVANCED IMAGING TECHNIQUES FOR REAL TIME PARTICLE SENSING IN MINERAL PROCESSING & RECYCLING

Pirard, E.

Leroy, S., Barnabé P., Dislaire G., Decamp X., Singh Parmar A.

About GeMMe@ULiege Connecting particles and processes

Resourceful Engineers

30⁺ Research Staff
3 M€ annual turnover
2/3 Pubic – 1/3 Private

Resource

- o Particular attention given to MINERAL and METALLIC RESOURCES
- o Interest for both MINING and URBAN MINING

• Efficiency

- Contribute to developing a more CIRCULAR ECONOMY
- o Privilege a HOLISTIC approach of the material cycle
- o Put engineering to the service of a more SUSTAINABLE societal project

Engineering

- o Contribute to the **EDUCATION** of creative and open-minded engineers
- Be a source of **TECHNOLOGICAL INNOVATION** for increased recovery of valuable metals

Research Themes

SMART SORTING

Advanced 3D imaging and hyperspectral sorting

PHYSICAL PRE-PROCESSING

Energy-Efficient fragmentation and conditioning

GEOMETALLURGICAL CHARACTERIZATION

Process oriented "mineralogical" mapping

BIO -HYDROMETALLURGY

Resource efficient processes for end-of-life goods

Smart Sorting Bench

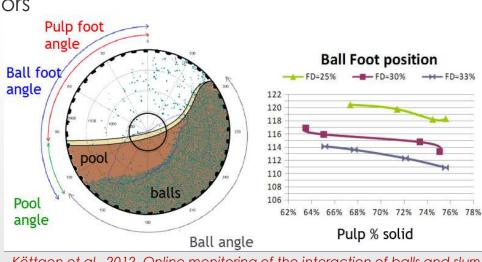
Multisensor 3D – VNIR- XRT – LIBS

MultiBin Delta Robots

Hydrometallurgical Platform

Monitoring of unit processes Process vs. Product

Process monitoring

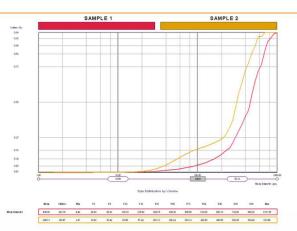

- Controlling Operational Parameters of a Ball Mill
 - Power Draw
 - o Mill Speed
 - o Ball Filling Degree
 - o Pulp (solid %)
 - o ...
- Getting more insight with Real Time Sensors
 - SensoMag®
 - Ball foot
 - Pulp foot

. . .

• etc

Fast decision-making Cost optimization Wear reduction

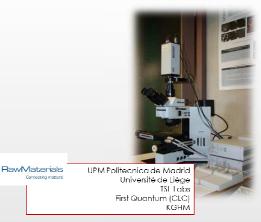
Köttgen et al., 2012, Online monitoring of the interaction of balls and slurry with the Sensomag ®, Int. Conf. Sust. Min. Proc., Oulu



© Magotteaux

Product monitoring

- Controlling Particle Populations
 - o D₈₀
 - Full Particle Size Distribution (PSD)
 - o Particle Shape



Getting more insight with Quantitative Microscopy

eit

- o Mineralogy
- o Liberation
- o Textural indices

Accurate quality control Process performance Understanding / Simulating

Open Web App for Liberation and Texture Analysis

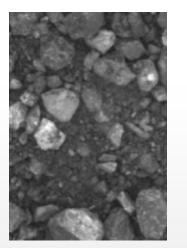
. . .

Monitoring Particle Populations The online challenge


The Online Challenge

- Need for speed ("close to real time")
 - NO MECHANICAL SAMPLING
 - Eventually automatic sampling without stopping the process
 - NO SAMPLE PREPARATION
 - Eventually a limited dilution / dispersion step
- Existing Bulk Particle Sensing (BPS) systems
 - o XRF
 - ThermoFisher MSA-330 Multi-Stream Slurry XRF Analyzer
 - Outotec Courier® 5X/6X SL Analyzer
 - o LIBS
 - Outotec Courier® 8 SL Analyzer
 - o Laser Diffraction
 - Outotec PSI 500i Particle Size Analyzer (LD)
 - o VNIR Spectroscopy
 - Bluecube slurry analyser
 - o Time Resolved Raman

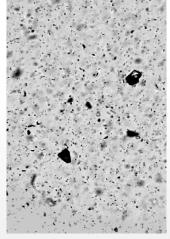
• Timegate



The Online Challenge

- Need for higher "accuracy"
 - Provide statistics on particle distributions

BULK PARTICLE SENSING

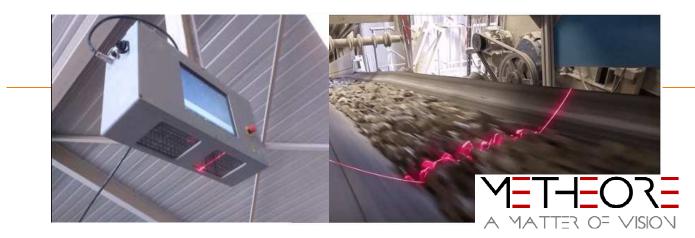


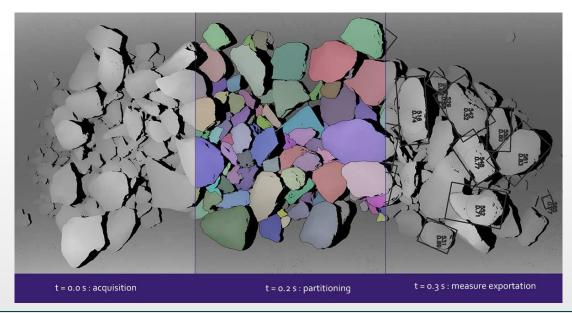
SEGMENTED

SINGLE PARTICLE SENSING

« **DYNAMIC** » RANDOM (?) ORIENTATION

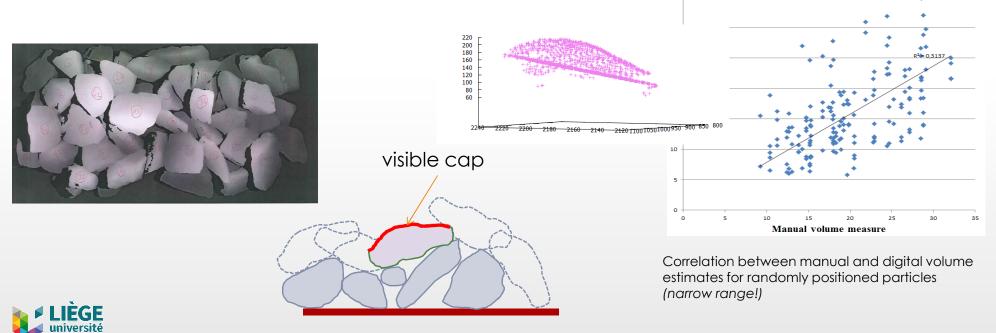
HIGHER THROUGHPUT


Single Particle Sensing Technologies For Online Applications



LASERSIEVE

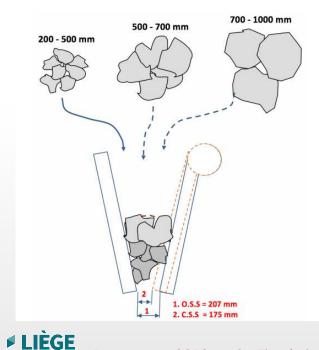
- Imaging Principle
 - Surfometric Imaging
 - Laser Triangulation
 - o Particle segmentation
- Particle Size Range
 - o 5 mm 10 cm
- Measurable Properties
 - o Apparent Volume
 - continuous throughput
 - o 3D Size
 - o 3D Shape
 - Elongation
 - Flatness



LASERSIEVE

- Single Particle Measurement Validation
 - o Manual measurement of selected particles
 - Random positioning on heap
 - Volume estimation from visible cap

45


35

CV volume measure

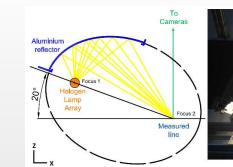
LASERSIEVE


- Output of Primary Crusher
 - Surface Distribution Analysis
 - Full PSD using Rosin-Rammler model

Parmar, A. 2018, M Sc Thesis (unpublished)

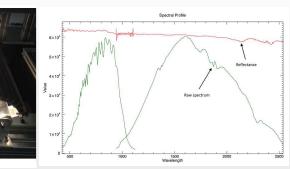
université

Real-time monitoring of the impact of operational conditions (changing the closed side setting from 175 mm down to 143 mm) on the output of a primary crusher with the LaserSieve system.


ILIADE

- Imaging Principle
 - o Hyperspectral Diffuse Reflectance Imaging
 - o Mechanical Dispersion (dry)
 - Static Image Analaysis
- Particle Size Range
 - \circ 100 μ m 5 mm
- Measurable Properties
 - o 2D Size

IÉGE


iniversité

- True sieving diameter
- o 2D Shape
 - True elongation
- o Mineralogy
 - Spectral class

Coaxial imaging system combining a SWIR (Specim Oy) and a VNIR (PhotonfocusMV1+ImSpector V10E) linescan camera.

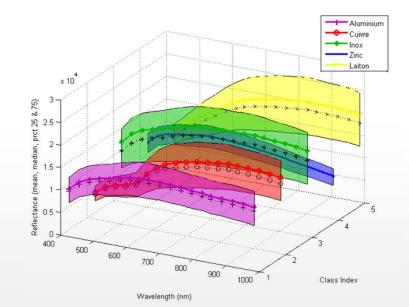
Propietary illumination and image calibration

Barnabé et al., 2015, J. Electronic Imaging Vol. 24.

ILIADE

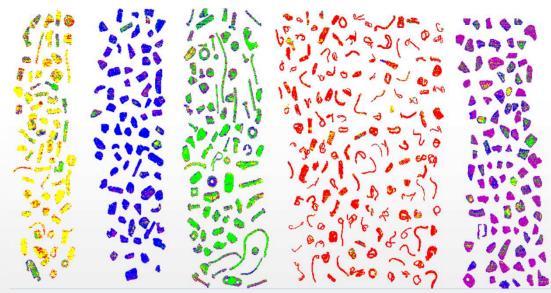
- Automatic identification of metallic scraps
 - Training phase

Aluminium (6-15mm)



Stainless Steel (6-15mm)

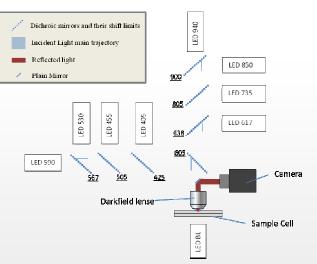
Zinc (6-15mm)



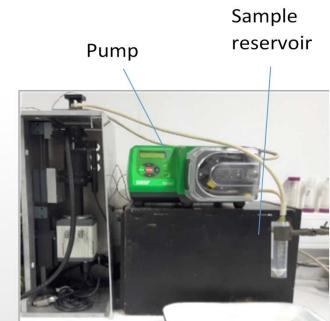
Spectral distribution (Q1-Q3 interquartile) of the different scrap types in the VNIR range

ILIADE

- Automatic identification of metallic scraps
 - Classification (SVM)
 - Decision making based on dominant class

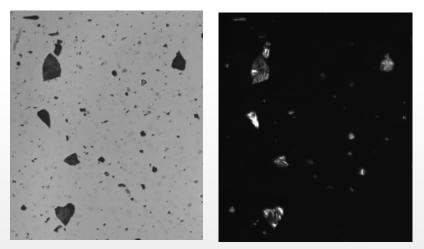


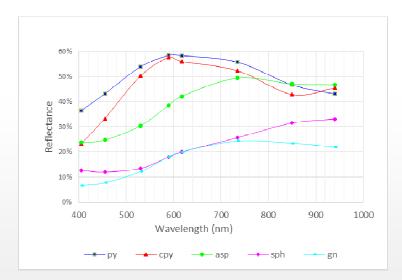
	Zinc	Stain. Steel	Copper	Aluminium	Brass	
Zinc	100.0%	0%	0%	0%	0%	100%
St. Steel	0%	100.0%	0%	0%	0%	100%
Copper	5.3%	0%	94.7%	0%	0%	100%
Alu.	Alu. 0%		0%	95.0%	0%	100%
Brass	0%	9.52%	0%	0%	90.5%	100%



PULPMIN

- Imaging Principle
 - Multispectral Diffuse Reflectance Imaging + Backlight Imaging
 - Mechanical Dispersion (wet) / Pulp Dilution
 - o "Dynamic" Image Analysis
- Particle Size Range
 - o 1 μm 100 μm
- Measurable Properties
 - o 2D Size
 - o 2D Shape
 - o Indicative Mineralogy
 - Spectral class


Propietary multispectral illumination


PULPMIN

- Multispectral Imaging
 - o 1,6 µm / pixel
- of ground base metal sulphide particles
 - o $D_{95} = 150 \mu m$

Diascopic (transmission) and Episcopic (reflected@405nm) image of the same scene

Spectra of median reflectance values for five major sulphide species in real time pulp imaging conditions : Pyrite (Py); Chalcopyrite (Cpy); Arsenopyrite (Asp); Sphalerite (Sph) and Galena (Gn).

PULPMIN

Neural Network Classification of BSM populations

	Py- C	Cpy – D	Asp - E	Sph – F	Results visualisation
Py- C	0.61	0.13	0.22	0.03	Atore alla - Ash art a parts
Cpy – D	0.03	0.89	0.07	0.01	HON LOACIDIA DIADA ANTONAN
Asp • E	0.06	0.01	0.87	0.06	100.20. 20.20 406 200 40 40 40 40 40 40 40 40 40 40 40 40 4
Sph - F	0.17	0.02	0.08	0.88	ard ab ad . F. To're Meas der wir ver & s

Matrix of confusion resulting from neural network classification of a mix of pyrite (Py - blue); Chalcopyrite (Cpy - red); Arsenopyrite (Asp - green) and Sphalerite (Sph - purple) particles (~=100 µm)

Leroy, S. and Pirard, E., 2019, Minerals Engng, V.132, 228-237 (in press)

Conclusions

- Potential of low cost imaging technologies
 - o ex. VNIR imaging
- Importance of particle tracking
 - o Improve simulation tools
 - Provide feed-forward process control
- Do more less well
 - o Compromise between representative sample and accuracy of individual measurements
- Future developments in "smart tagging"
 - Go beyond intrinsic properties of particles

