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Abstract—This paper studies an extended formulation of the
Security Constrained Optimal Power Flow (SCOPF) problem,
which explicitly takes into account the probabilities of con-
tingency events and of potential failures in the operation of
post-contingency corrective controls. To manage such threats,
we express the requirement that the probability of maintaining
all system operational limits, under any circumstance, should
remain acceptably high by means of a chance-constraint. Further,
representing power flow as per the full AC model, we propose
a heuristic solution approach leveraging state-of-the-art method-
ologies and tools originally developed to tackle the standard,
deterministic-constrained SCOPF statement. We exemplify the
properties of our proposal by presenting its application on the
three area version of the IEEE-RTS96 benchmark, stressing
the interpretability of both the chance-constrained reliability
management strategy and of the heuristic algorithm proposed to
determine it. This work serves to showcase that the first step on
the transition towards probabilistic reliability management can
be achieved by suitably adapting presently available operational
practices and tools.

Index Terms—Reliability management, AC-SCOPF, chance-
constraint, contingency probability, corrective control failure,
iterative decomposition.

I. INTRODUCTION

W ITH a view in enabling the evolution from the N-1
deterministic practice to a risk-based probabilistic ap-

proach, the (un)availability of data, the (challenging) interpret-
ability of methods and of the results thereof and the (increased)
computational complexity constitute the modern priorities for
research and development in power system reliability man-
agement [1]. Anticipating the gradual progress on data avail-
ability, considerable effort is targeting the probabilistic variant
of the Security Constrained Optimal Power Flow (SCOPF)
problem [2]. In particular, the definition of appropriate metrics
to express the risk implied by credible contingencies, the
integration of such metrics within the ‘classical’ SCOPF de-
cision framework and the efficient algorithmic solution of the
mathematical problem resulting from choices made regarding
the aforementioned are open research topics.

Integrating the expected cost of corrective control in the AC-
SCOPF objective function, Xu et al. [3] developed a solution
strategy composed of a global search for the upper bounds on
“critical” decision variables and a local search for an optimal
solution given such boundaries. Capitanescu proposed an AC-
SCOPF constraining the expected post-contingency voluntary
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load-shedding and established the solvability of medium-scale
problem instances while relying on a standard Non-Linear
Programming (NLP) solver [4]. Shchetinin and Hug [5] stated
an alternative AC-SCOPF problem while constraining the total
risk implied by an ensemble of single-order and double-
order outages expressed in function of the post-contingency
component loading, and developed a sensitivity-based iterative
decomposition approach. Risk was also expressed in terms of
expected component loading in [6], wherein the effectiveness
of coupling Lagrangian relaxation and Benders decomposition
to solve the DC-approximation of the steady-state SCOPF
problem was established.

All the aforementioned works model post-contingency cor-
rective controls as perfectly fail-safe. Several European Trans-
mission System Operators (TSOs) consider the lack of model-
ing the possible failure of corrective controls as a noteworthy
deficit in existing tools [7]. In practice, the realization of
hidden failures in protection, controls and communications
only after a single initiating disturbance is a well documented
factor in many observed blackouts [8] which also suggests
that the effectiveness of post-contingency corrective controls
should be considered as uncertain. Reference [9] provides
a framework for modeling corrective control failure in the
context of reliability assessment studies as well as a com-
prehensive discussion of necessary improvements in terms of
data. Further, in [10] we presented a comparative analysis on
the relevance of corrective control failure probability and risk
under the N-1 operational regime. Finally, in our earlier works
we progressively developed a probabilistic reliability manage-
ment approach consisting of (i) an adaptive contingency set,
and (ii) a chance-constrained SCOPF explicitly acknowledging
the potential failure of post-contingency corrective controls
[11], [12]. We demonstrated the principles of this proposal
while relying on the DC-power flow approximation, which
makes medium-scale instances of the resulting problem di-
rectly solvable by classical solvers.

In the present paper we revisit the SCOPF component of
the framework proposed in [12] and refine its statement while
integrating the non-linear AC power flow model. Acknowl-
edging that such modeling enhancement comes at a notable
increase of computational complexity, we focus on establish-
ing the solvability of the resulting decision-making problem.
We leverage the state-of-the-art iterative decomposition ideas
developed for the deterministic-constrained SCOPF problem
in [13]–[15] and extend its applicability to the probabilistic,
chance-constrained problem. To do so, we propose (i) an
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expanded scope for the contingency assessment module of the
iterative decomposition SCOPF solution approach to take into
account both corrective control and its failure probability, and,
(ii) probability and risk aware contingency filtering variants,
targeting the feasibility of the probabilistic, chance-constrained
statement. We establish the functionality of such method-
ological adaptations by means of demonstrative case studies
and investigate the implications of the proposed alternative
contingency filtering variants, showcasing the interpretability
of our overarching proposal. This work serves as a first step
to expose the broad potential for further developing existing
algorithmic solutions approaches & operational practice to
enable the transition to probabilistic reliability management.

The rest of this paper is structured as follows: Section II
provides the mathematical formulation of the problem tackled,
while Section III describes our algorithmic solution approach,
Section IV our case studies on the IEEE RTS-96 3-area
system, and Section V draws our conclusions.

II. PROBLEM FORMULATION

To establish a frame of reference and introduce nota-
tional conventions, let us begin by reproducing from [16]
the compact statement of the deterministic-constrained SCOPF
problem as per the state-of-the art:

min
u∈U

CP (x0, u0) (1)

h0(x0, u0) ≤ 0; (2)
hsc(xc, u0) ≤ 0 ∀c ∈ C; (3)
hc(x

w
c , uc) ≤ 0 ∀c ∈ C; (4)

u ∈ U ≡{u0 ∈ U0(x0);uc ∈ Uc(x0, u0, c)∀c ∈ C}. (5)

Throughout (2–4) we denote by h· (x·, u·) the group of
equality and inequality constraints expressing a viable steady-
state of the system in function of state variables x. (i.e., voltage
magnitude and phase angle) and decision variables u. (e.g.,
generator active power dispatch and voltage set-points, etc.).
More specifically h· (x·, u·) ≤ 0 refers to the AC power flow
equations, as well as upper and lower bounds on voltage
magnitude per node, and on voltage angle difference and
apparent power flow per branch. Constraint group (2) and
subscript 0 concern the operation of the intact system, prior to
the occurrence of any credible contingency c ∈ C. To protect
against any such eventuality, group (3) expresses the temporary
viability of the system immediately following the contingency
(i.e., at the so-called ‘intermediate’ post-contingency stage)
but still prior to the application of corrective controls. Notice
that in (3) decision variables maintain the values set for pre-
contingency operation while superscript (s) expresses the tol-
erable temporary relaxation of operational constraints. Finally,
group (4) reinstates the permanent system operational limits
by means of post-contingency corrective controls (denoted
by decision variables uc). We use superscript (w) in (4) to
represent that (1–5) assumes that corrective controls are fully
fail-safe and always work as expected. In other words, it
disregards uncertainty in the corrective control effectiveness.
Bounds on controllable resources, including the range of ad-
missible deviations between corrective and preventive controls
are represented by (5).

A. Probabilistic, chance-constrained SCOPF statement

As already mentioned, in this work we revisit the SCOPF
component of the probabilistic framework developed in our
earlier work [12]. Referring the reader also to [17] for a
detailed exposition of the features of such framework, let us
introduce the compact statement of the probabilistic, chance-
constrained SCOPF as in (6–9).

min
u∈U

CP (x0, u0) +
∑
c∈C

πc · CC(x0, u0, c, uc); (6)

h0(x0, u0) ≤ 0; (7)

P
{

hsc(xc, u0) ≤ 0
hc(x

b
c, uc) ≤ 0

∣∣∣∣ (c, b) ∈ C × B} ≥ 1− ε; (8)

u ∈ U ≡{u0 ∈ U0(x0);uc ∈ Uc(x0, u0, c)∀c ∈ C}. (9)

Problem (6–9) is a generalization of (1–5)1 by tak-
ing into account (i) the contingency probabilities (πc),
and, (ii), the costs of post-contingency corrective controls
(CC(x0, u0, c, uc)), and notably, (iii) the elements b of set
B representing the possible outcomes of post-contingency
corrective controls (e.g., fully working, partially working, fully
failing, etc.). Chance constraint (8) is the security constraint
replacing groups (3–4) to enforce that, subject to the combined
uncertainty on the contingency occurrence and on the post-
contingency corrective control outcome (denoted as (c, b) ∈
C ×B)), the system should remain functional with probability
at least equal or greater than an acceptable lower bound (1−ε).
In other words, the lower bound set by chance constraint (8)
should be interpreted as an explicit degree of confidence on
keeping the system within all relevant operational limits.

B. Mathematical models & assumptions

In our implementation we used the following models and
assumptions, while representing steady state power flow by
the AC model in rectangular coordinates.

a) Control variables: We model the generator active
power dispatch and voltage set-points as control variables,
defined in the preventive stage and re-defined per contingency
for the corrective post-contingency stage. At all problem stages
we model lower & upper bounds on active and reactive power
generation and voltage magnitude. For the intermediate post-
contingency stage, we model a distributed slack bus and adjust
active power generation through fixed participation factors. At
this stage of the problem, we constrain the voltage magnitude
at generator buses to the preventive set-points and neglect the
additional degree of freedom offered by PV/PQ switching.
Finally, we consider upward and downward active power
ramping restrictions between the preventive and any post-
contingency corrective generation dispatch.

b) Network operational limits: We impose for all prob-
lem stages lower and upper bounds on voltage magnitude per
node, on voltage angle difference per branch as well as on
apparent power flow limits per branch. The latter are less
restrictive in the intermediate post-contingency problem stage.

1With the appropriate choice of numerical parameters, problem (6–9) is
indeed reducible to (1–5).
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c) Contingency probabilities: We rely on the funda-
mental model of [18] and express the outage probability of
occurrence in function of the respective outage rate. The
pseudo-contingency of no-outage (c0) is accounted for with
occurrence probability equal to πc0 = 1−

∑
c∈C\c0 πc.

d) Objective function: Without loss in generality, we
adopt as a minimization objective the aggregation of pre-
and post-contingency corrective upward generation re-dispatch
marginal costs. The latter is integrated as a probability-
weighted summation over the contingency set, while assuming
that it is payable irrespective of the corrective control effec-
tiveness.

e) Corrective control possible outcomes: We assume that
upon occurrence of any contingency c ∈ C, the corresponding
pre-selected set of elementary control operations (uc) may
either work effectively or not. To elaborate on the latter
eventuality, we first note that in the context of a SCOPF prob-
lem post-contingency corrective controls are chosen without
any redundancy. In other words, the complete set of many
elementary control operations (e.g., re-setting of the voltage
set-points and re-dispatching of the active power output of
several units, changing of several breakers, transformer taps,
etc.) needs to be successfully implemented in a timely manner
to safely alleviate constraint violations [19]. It follows that
the failure of any single elementary control operation would
result in failing to address constraint violations on time, thus
making corrective control ineffective. On this basis, we model
the possible outcome of corrective control as a discrete, two-
member set b ∈ B = {w; f} corresponding to the working
(w) and failing (f) realizations [11] and denote the respective
probability as πbc .

f) Chance constraint reformulation: Working with dis-
crete sets of contingencies and corrective control outcomes,
we equivalently express chance constraint (8) as,

1−
∑
c∈C

πc
∑
b∈B

πbc · I(x0, u0, c, uc, b) ≥ 1− ε; (10)

where indicator function I(x0, u0, c, uc, b) takes the value of
one only in the event that the combination of pre-contingency
stage, controls, contingency, and corrective control outcome
is not viable and leads to operational constraint violations, as
denoted ∀c, b ∈ C · B, by the 1st row in (11). Alternatively, as
per the 2nd row of (11), it takes the zero value.

I(x0, u0, c, uc, b)=

1 ≡ {hsc(xc, u0) 6≤ 0 ∨ hc(xbc, uc) 6≤ 0}

0 ≡ {hsc(xc, u0) ≤ 0 ∧ hc(xbc, uc) ≤ 0}
.

(11)

Constraint (10) enforces that the aggregate probability of
all events (i.e., contingencies and corrective control outcomes)
under which operational constraints remain valid is ensured to
be acceptably high. It sets the minimum size of the probability
space of those contingencies that should be covered by the fail-
safe preventive controls. For a practical example, considering
that the conventional operational constraints of the SCOPF
problem express a steady-state equilibrium with no loss of
load, constraint (10) would mean that the probability of a

situation wherein load is shed involuntarily is at most as small
as (ε).

In principle, indicator function I(x0, u0, c, uc, b) can be
included in the problem statement in complementarity with
the respective post-contingency constraints. In [12] we made
use of binary indicator variables and the big-M reformula-
tion technique to model the disjunctive inequalities in (11)
while exploiting the linearity of the DC approximation to
state and solve a Mixed-Integer Linear Programming (MILP)
problem via branch-and-bound. Pursuing such strategy while
integrating the full AC power flow model would yield a large
non-convex Mixed-Integer Nonlinear Programming (MINLP)
problem. In principle, the generalized Benders decomposi-
tion approach is an applicable solution technique for such
a problem. However, further for the question of efficiently
handling the big-M parameter, we underline that the problem
features a coupling constraint between all 2nd-stage discrete
and continuous variables (10). As discussed in [5], for a risk-
based SCOPF problem of this form including the non-convex
AC power flow model, relying on Benders decomposition
may be a rather inefficient approach. Further motivated by
results in [20], [21] on the merits of the column & constraint
generation decomposition with respect to the solvability of
the ‘master’ problem and number of iterations, we develop in
this paper an alternative heuristic approach adapting the main
philosophy of column & constraint generation to solve the
chance-constrained problem (6–9).

III. ALGORITHMIC SOLUTION APPROACH

We propose an iterative decomposition approach along the
ideas developed in [13]–[15]. The approach seeks to achieve a
feasible solution to the chance-constrained statement (6–9) by
progressively growing the subset of contingencies to be explic-
itly covered by a (simpler) deterministic-constrained SCOPF
problem, enforcing (2–5). Doing so is enabled by the premise
that defining a subset of contingencies to be explicitly covered
by a deterministic-constrained SCOPF problem effectively sets
a lower bound on the probability of keeping the system within
its operational limits appearing on the left-hand-side of (8).

A. Overview

Let us consider partitioning the contingency set C to define,
CC ⊆ C: a subset of correctively secured contin-

gencies, to be explicitly covered by a
determinstic-constrained SCOPF by means of
corrective and preventive controls;

CP ⊆ (C \ CC): a subset of preventively secured contin-
gencies, to be explicitly covered by a
deterministic-constrained SCOPF only via
preventive controls;

CX ⊆ C: the complement of the former two
(CX := C \ (CC ∪ CP)), composed of all
contingencies not explicitly covered by the
deterministic-constrained SCOPF.

Any such partition effectively sets a lower bound on the
probability of maintaining the system functionality (i.e., the
left-hand-side of (8)) computable by adding up the probability
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SCOPF (deterministic-constrained)

u0 vs CC ∪ CP ;uc∀c ∈ CC

Contingency Analysis

I(x0, u0, c, uc, b) ∀(c, b) ∈ (C \ CP)× B

Chance Constraint Evaluation

Contingency Filtering

CC, CP

NOYES

End

∑
c∈C πc

∑
b∈B π

b
c · I(x0, u0, c, uc, b) ≤ ε ?

: update operator

initialize CP = CC = ∅

Fig. 1. Iterative solution approach overview

of realizing any contingency c ∈ CX , or the failure of
corrective controls following any contingency c ∈ CC as,

1−

(∑
c∈CX

πc +
∑
c∈CC

πc · πfc

)
, (12)

where symbol πfc denotes the probability of corrective control
failure. Indeed, any contingency c ∈ CX may conceivably
lead to operational constraint violations and corrective controls
could possibly fail for any contingency c ∈ CC2. In contrast,
preventively secured contingencies c ∈ CP should not in any
case result in operational constraint violations, as preventive
controls are considered perfectly fail-safe. It follows that
growing subsets CC , CP pushes the lower bound for the left-
hand-side of (8) upwards and can be used to progressively
guide the deterministic-constrained problem towards a feasible
solution of the chance-constrained one (6–9), by enforcing that
the preventive controls are chosen so as to at least safeguard
an adequate part of the uncertainty space.

The overview of the resulting solution approach is presented
in Fig 1. Initializing subsets CC , CP as empty, we employ:

• a deterministic-constrained SCOPF solution module to
update preventive and corrective controls vs predefined
subsets of contingencies to be explicitly covered;

• a contingency analysis module to update the value of
indicator function (11) for all contingencies that are not
preventively secured;

• a chance constraint evaluation module to update the
probability of maintaining the system within all opera-
tional limits;

2In practice of course, several contingencies c ∈ CX may be implicitly
covered and also some contingencies c ∈ CC may actually require preventive
controls only, making the potential failure of corrective controls ineffectual.

• a contingency filtering module to update the sub-
sets of contingencies to be explicitly covered by the
deterministic-constrained SCOPF.

B. Deterministic-constrained SCOPF

For given subsets of contingencies to be explicitly covered,
we solve problem (13–18) to update control actions while
neglecting at this preliminary stage the potential failures
of corrective controls. Notice that, for preventively secured
contingencies we enforce the more strict requirements (15)
while for correctively secured contingencies the groups (16–
17) apply.

min
u∈U

CP (x0, u0) +
∑
c∈CC

πc · CC(x0, u0, c, uc); (13)

h0(x0, u0) ≤ 0; (14)
hc(xc, u0) ≤ 0 ∀c ∈ CP ; (15)
hsc(xc, u0) ≤ 0 ∀c ∈ CC ; (16)
hc(x

w
c , uc) ≤ 0 ∀c ∈ CC ; (17)

u ∈ U ≡{u0 ∈ U0(x0);uc ∈ Uc(x0, u0, c)∀c ∈ CC}. (18)

C. Contingency analysis

Keeping the preventive and corrective control decisions
fixed (ū0, ūc ∀c ∈ CC) as per the latest solution of the
deterministic-constrained SCOPF problem we seek to assess
the status of post-contingency constraint groups under the
working and failing outcomes of corrective control. To perform
the respective feasibility checks we use non-negative continu-
ous variables corresponding to fictitious slack generation and
demand of active and reactive power at each network node, as
per [22]. Let us compactly denote vectors of fictitious nodal
slack variables relaxing the nodal active & reactive power
equality constraints as δsc for the intermediate post-contingency
stage, δwc for the corrective-working post-contingency outcome
and δfc for the corrective-failing instance.

For any contingency not explicitly covered by the
deterministic-constrained SCOPF (c ∈ CX ), we solve OPF
sub-problem (19–23) to evaluate whether it is manageable
by corrective controls. Notice that the objective in (19) seeks
to minimize the introduced relaxation variables. Accordingly,
non-zero optimal values for slack variables (δs,?c , δw,?c ) denot-
ing that slack generation and/or demand is necessary to keep
the system within operational limits imply that the respective
post-contingency state is indeed infeasible3.

min
δsc ,δ

w
c

1T (δsc + δwc ) (19)

hsc(xc, ū0) ≤ δsc ; (20)
hc(x

w
c , uc) ≤, δwc ; (21)

uc ∈ Uc(x0, ū0, c); (22)
δsc , δ

w
c ≥ 0. (23)

Further, for any contingency not preventively secured by the
deterministic-constrained SCOPF (c ∈ C \ CP), we follow a

3The assessment is trivial for any other contingency already explicitly
covered by the SCOPF, with δs,?c = δw,?

c = 0, ∀c ∈ CC ∪ CP .
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similar practice and also solve OPF sub-problem (24–26) to
evaluate the impact of a potential corrective control failure4.

min
δfc

1T δfc (24)

hc(xc, ū0, δ
f
c ) ≤ 0 (25)

δfc ≥ 0. (26)

Finally, we evaluate I(x0, u0, c, uc, b) = 1 only if any relax-
ation slack variable has a non-zero optimal value, as per the
solution of problems (19–23) and (24–26) under the working
and failing behaviors of corrective controls respectively.

D. Chance constraint evaluation
This module serves to evaluate the status of the chance con-

straint (10) by aggregating the contingency analyses outcome
over all contingencies c ∈ C and corrective control outcomes
b ∈ B. In the event that the said constraint holds true (i.e.,
the deterministic-constrained SCOPF solution is, as per the
current partitioning of the contingency set, a feasible solution
of the chance-constrained problem) the algorithm terminates.
In an opposite case, the workflow advances to the contingency
filtering module.

E. Contingency filtering
In order to progressively partition set C in a way that

implies the attainability of (8), at each iteration we seek to
increase the probability of maintaining the system operational
limits. To do so, we search between those contingencies
leading to operational constraint violations (either while not
being covered by preventive and corrective controls or due
to the potential failure of corrective controls) and select a
contingency to be secured with greater confidence (i.e., a
contingency whose contribution to the left-hand-side of (8)
should be increased). To select such contingency, we explore
in this work the following three contingency filtering variants.

1) Probability-based (Pb): this filtering variant prioritizes
to address, per iteration, the most probable constraint-
violating contingency. In other words, the filtered contin-
gency is the one contributing the most to the probability
summation in the left-hand-side of (8), as measured by,

Pbc =πc ·
∑
b∈B

πbc · I(x0, u0, c, uc, b). (27)

2) Feasibility-based (Fb) this filtering variant prioritizes to
address, per iteration, the most problematic constraint-
violating contingency as measured by the aforemen-
tioned feasibility assessment sub-problems. That is, the
filtered contingency is the one with the largest condi-
tional infeasibility indicator, expressed as,

Fbc =1T

(
δsc +

∑
b∈B

πbcδ
b
c

)
. (28)

4Likewise, by default δf,?c = 0, ∀c ∈ CP . We also exclude from this
secondary check any contingency already identified as problematic from
the solution of sub-problem (19–23), adopting by convention δf,?c = 0. It
should also be noted that if minimization objective (13) associates a strictly
positive cost to any post-contingency corrective action and problem (13–18)
is solved to global optimality, the inspection of its solution suffices to identify
contingencies in CC requiring corrective controls without checking (24–26).

3) Risk-based (Rb): this filtering variant blends the former
two indicators to rely on the risk implied by any contin-
gency, quantified in terms of expected post-contingency
infeasibility as,

Rbc =πc ·

(
1T

(
δsc +

∑
b∈B

πbcδ
b
c

))
. (29)

In the event that the selected contingency is found to
be unmanageable by corrective controls, we add it to the
subset CC of those contingencies to be explicitly covered by
the corrective and preventive controls of the deterministic-
constrained SCOPF. Alternatively, if the selected contingency
is already covered (explicitly or implicitly) by corrective and
preventive controls, we enhance conservativeness by imposing
that it should only be covered by preventive controls and add
it to the respective subset CP .

IV. CASE STUDIES

This section presents a set of case studies on the 3-area
version of the well-studied RTS-96 [23].

A. Base case

All base case data conform to the original system doc-
umentation with the exception of (i) the corrective control
failure probability which is assumed equal to 0.01, and, (ii) the
generation cost function coefficients which are adopted from
[24]. In similarity to the European context and without loss
in generality, the cost function measures upward deviations in
the generators active power output with respect to an assumed
market-based dispatch5. To establish the latter, we solve a DC-
OPF problem subject to transmission capacity constraints on
the cross-area interconnections only (i.e., treating each area of
the system as a separate zone) and while assuming that all
generating units are online.

Concerning the system operational constraints, we enforce
nodal voltage limits of [0.95,1.05] and the continuous ratings
of all branches (column 11, in table 12 of [23]) at the
preventive and corrective stages of the SCOPF problem. For
the intermediate post-contingency stage, the former is relaxed
to [0.9,1.1] and the latter as per the short-term ratings (column
13, in table 12 of [23]). Moreover, we maintain the voltage
angle difference limit across any branch at 30◦ for all problem
stages. Active and reactive power generation remains limited
by the respective lower & upper bounds. The active power
ramping constraints between the preventive and corrective
problem stages are computed for a 15 minute ramping interval,
while we adopt the coefficients found in [25] to distribute
the active power slack generation across all units at the
intermediate post-contingency stage.

Finally, the contingency set C under consideration is com-
posed of 111 single branch outages, discarding 9 single branch

5Notice that the choice of this objective is merely for demonstration and that
the use of any other cost function, measuring for instance costs and payments
to upward and downward re-dispatch actions respectively is admissible in the
solution framework.
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TABLE I
DETERMINISTIC-CONSTRAINED SCOPF SOLUTION

Total Cost ($) 881.62
Explicit Contingency Set A27;B27;C23;C27

Correctively Secured Contingencies (%) 45

outages whose practical resolution goes beyond the demonstra-
tive scope of the present case study discussion6. By default,
and unless otherwise specified, we compute the respective
contingency occurrence probabilities as per the permanent
forced outage rates (column 5, in table 12 of [23]) for a period
of 1-hour.

To facilitate the comprehension of forthcoming results, Ta-
ble I summarizes the solution of the deterministic-constrained
SCOPF statement (13–18) for the problem instance at hand,
and while explicitly securing any contingency in corrective
mode. The 1st row lists the total (i.e. preventive and expected
corrective) costs while the 2nd presents the branches whose
outage would be explicitly secured in order to identify an
operational state wherein all considered contingencies are
manageable, at least via corrective controls. Explicitly cov-
ering these 4 contingencies, 45 % of all contingencies would
be manageable by preventive and corrective controls (as shown
in the 3rd row of Table I) while preventive controls alone
suffice to secure 55% of all contingencies. Further, we have
evaluated this solution a posteriori and found the probability
of maintaining the system within all operational limits (i.e.,
the value constrained by (8)) to be equal to 1.91 · 10−5. We
accordingly set the chance-constraint limit to the marginally
more restrictive value of ε = 10−5, implying that the direct so-
lution of the deterministic-constrained problem is not feasible
for the chance-constrained one.

a) Chance- vs deterministic-constrained reliability man-
agement: Tables II.a–c present the overview of the solutions
to the chance-constrained approach, as obtained by applying
all three alternative contingency filtering variants. Prior to
discussing differences between these three feasible solutions
(and the implications of the different filtering variants), we
begin by interpreting the common difference with respect to
the deterministic-constrained approach in Table I.

It is apparent that (i) explicitly accounting for the potential
failure of corrective controls, and (ii) imposing a restrictive
chance constraint means seeking an enhanced guarantee on
maintaining the system operability. To achieve this guarantee,
all chance-constrained solutions cover a smaller part of the
contingency space with corrective controls in comparison to
the deterministic-constrained solution. Indeed, the 3rd rows of
Tables II.a–c exhibit that arriving at a feasible solution with
respect to the chance constraint necessitates explicitly covering
a certain sub-set of contingencies in preventive mode only.
Further, this shift of the operating state has an effect over

6Such as outages leading to islanding, insufficient nodal reactive power
compensation capacity etc.. Notice also that while our case study focuses on
the reliability of the transmission sub-system, the proposed solution approach
and our developed implementation involves no inherent restriction to the
consideration of contingencies on the generation sub-system.

TABLE II
CHANCE-CONSTRAINED SCOPF SOLUTION

a. Probability-based

Total Cost ($) 882.37
Chance-constraint level 9.85e-6

Explicit Corrective Contingency Set A25-2;A27;B26;B27
C23;C25-2;C27

Explicit Preventive Contingency Set A30;B21;B22;B30;C21;C30
Correctively Secured Contingencies (%) 26.12

b. Feasibility-based

Total Cost ($) 896.78
Chance-constraint level 5.28e-6

Explicit Corrective Contingency Set A27;B27;C23;C27
Explicit Preventive Contingency Set B13-2

Correctively Secured Contingencies (%) 11.71

c. Risk-based

Total Cost ($) 882.37
Chance-constraint level 9.85e-6

Explicit Corrective Contingency Set A27;B27;C23;C27
Explicit Preventive Contingency Set B21;B22

Correctively Secured Contingencies (%) 26.12

the whole contingency space. This effect is showcased in the
4th rows of Tables II.a–c wherein for all feasible solutions
the balance of interest is adjusted in favor of preventively
secured contingencies with respect to the last row in Table
I. Using corrective controls against fewer contingencies, it is
more probable that the post-contingency constraints will be
valid since preventive controls are fully fail-safe.

The trade-off between preventive and corrective controls is
not only a matter of security but also a matter of efficiency. The
more secure chance-constrained solutions are as anticipated
slightly more expensive than the deterministic-constrained one
(as seen in the 1st rows of Tables II.a–c), recalling that we
have intentionally selected a more restrictive limit for the
sake of the intended demonstration7. To give the complete
perspective, it is worthwhile to mention here that we have
also solved the preventive only variant of the deterministic-
constrained problem (i.e., fully excluding corrective controls
and only using subset CP to define contingencies to be explic-
itly secured) at cost of 962.03$. In other words, the chance-
constrained SCOPF enables accessing intermediate solutions
between the cheaper, less fail-safe preventive & corrective
deterministic-constrained approach and its more expensive,
more conservative counterpart.

b) The alternative contingency filtering variants: Mov-
ing further, let us focus on the three algorithmic variants
distinguished by the metric used for contingency filtering.
Firstly, we notice from Table II that the probability- and risk-
based filtering variants essentially return a common solution
in terms of total cost, chance constraint level and percentage
of correctively secured contingencies. In addition, the sets of
explicitly covered contingencies identified by the risk-based

7Setting such limit in practice is of course a topic which merits a detailed
socio-economic assessment beyond the scope of the present case studies [26].
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TABLE III
COMPUTATIONAL TIME BREAKDOWN (SEC)

Step \ Filter Probability Feasibility Risk

SCOPF 121.48 16.48 23.07
Contingency Analysis 2123.18 694.51 818.77
Contingency Filtering 0.002 0.0001 0.0008

Chance Constraint 0.06 0.003 0.003

Total 2244.67 711.02 841.84

variant (3rd and 4th row in Table II.c) are respective subsets
of those identified by the probability-based variant (3rd and
4th row in Table II.a). Putting all these evidence together,
we argue that the risk-based variant is algorithmically more
efficient with respect to the probability-based one. The issue
with the latter appears to be that, while the magnitude of
the contingency probabilities is indeed critical to achieving
constraint (8), neglecting the severity dimension may lead to
initially filtering contingencies that are not in the active set
of the final feasible solution. This is of course attributable
to the fact that the contingency and corrective control fail-
ure occurrence probabilities are predefined parameters of the
optimization problem at hand.

The prominence of the severity dimension for algorithmic
efficiency is further supported by the results pertaining to
the feasibility-based filtering variant, Table II.b. Indeed, this
filtering variant results in identifying explicit preventive and
corrective contingency sets of the smallest cardinality. The
distinctive characteristic here is, as anticipated, conservative-
ness reflected both in the chance constraint level as well as in
the smaller percentage of correctively secured contingencies.
Inevitably, the price to pay for the conservativeness is also
reflected in the total cost value which is slightly increased
with respect to the feasible solution provided by the risk-
and probability-based variants. Noting the strong similarity in
the contingencies filtered by the feasibility- and risk- based
variants, we have also studied the detailed filtering sequences
(that is, order of contingencies added to subsets CC , CP from
the start to the end of the algorithm). Our records show
that both approaches identify the same four contingencies as
the deterministic-constrained approach (i.e., those shown in
the 2nd row of Table I) at their four first iterations. At the
subsequent fifth iteration, the choice of the feasibility-based
scheme is more effective in terms of enhancing the guarantee
of operability, but also more costly to secure.

c) Computational performance properties: Our imple-
mentation of the proposed heuristic algorithm was developed
in Julia [27] while using the modelling language JuMP [28]
as well as the PowerModels.jl framework [29]. Further, we
employed IPOPT [30] as the solver for all OPF/SCOPF
problem instances. The hardware used features a 4-core, 4.2
GHz processor and 24 GB of RAM.

Table III reports the breakdown of the computational time
to solve the ‘base-case’ instance using all three contingency
filtering variants under study. As anticipated, the major work-
load is the ‘contingency analysis’ step of the algorithm,

which consists of solving, per contingency, the feasibility
checking AC-OPF problems (19–23) and, if needed, (24–26).
More specifically, 64.45 % of the total time for contingency
analysis reported in the 2nd row of Table III was spent solving
instances of problem (19–23) to evaluate the feasibility of
post-contingency stages under the assumption that corrective
controls would work. Respectively, 35.55% of the time was
spent solving instances of problem (24–26) to quantify the
impact of potential failures of corrective controls. Moreover,
51.6 % of the total number of AC-OPF problems solved for
contingency analysis were instances of (19–23) while 48.4%
were instances of (24–26). Finally, over the different filtering
approaches and algorithmic iterations, the average time needed
to solve (19–23) and (24–26) for a single contingency was 0.86
seconds and 0.39 seconds respectively.

We must underline here that, for the demonstrative purpose
of our implementation, we performed the operations solv-
ing feasibility assessment problems (19–23) and (24–26) in
sequence over the set of contingencies under consideration.
However, there are no input/output dependencies between
the problem instances referring to different contingencies.
Exploiting parallelization to achieve enhanced computational
performance while solving the, separable over different contin-
gencies, problems (19–23) and (24–26) is an obvious strategy
for a practical implementation of the heuristic algorithm, in
a similar manner to [15]. We refer the reader to [5] for an
indication of the potential gains in computational performance
of a parallel implementation of this step.

d) Sensitivity analysis: To detail the difference between
the alternative contingency filtering options, Tables IV and V
present sensitivity analyses with respect to the threshold of
the chance constraint as well as the corrective control failure
probability. Firstly, it is apparent from both sets of results that
the feasibility- and risk-based filtering methods consistently
outperform the probability-based one. As the chance threshold
becomes more restrictive, Table IV shows that the cost advan-
tage of the risk- over the feasibility-based solution diminishes.
Moreover, the feasibility-based filtering method identifies a
feasible solution in fewer iterations, which in turn results
in reduced computational time. To interpret such results, we
underline that a more stringent chance constraint threshold
means seeking for a more conservative SCOPF solution of
greater reliance on the fail-safe preventive controls. In such
conditions, the more conservative feasibility-based filtering
appears more efficient. Similar effects can also be identified
through the results of Table V. For a fixed chance constraint
threshold, an increase in the probability of failure of corrective
controls implies again a need for a more conservative SCOPF
solution, since the margin for using the riskier corrective
controls is smaller. As previously, the feasibility-based filtering
performs marginally more efficiently than the risk-based one,
while the probability-based filtering takes considerably more
iterations to identify costlier feasible solutions.

B. Impact of weather-dependent contingency probabilities

Noting from the base case that the differences between
the feasibility- and risk-based approaches appear marginal,
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TABLE IV
SENSITIVITY ANALYSIS – CHANCE THRESHOLD (ε)

(ε) \ Filter Probability Feasibility Risk

(a) Total cost ($)

5E-5 881.62 881.62 881.62
E-5 882.37 896.78 882.37

7.5E-5 896.78 896.78 896.78
2.5E-6 957.33 902.68 905.00

E-6 957.97 944.93 944.93

(b) Iterations

5E-5 10 5 5
E-5 16 6 7

7.5E-5 17 6 8
2.5E-6 23 11 14

E-6 24 16 17

(c) Computational time (sec)

5E-5 1372.25 738.84 610.94
E-5 2244.67 711.02 841.84

7.5E-5 2317.58 710.28 962.84
2.5E-6 2999.03 1272.78 1639.21

E-6 3073.27 1816.46 1960.53

TABLE V
SENSITIVITY ANALYSIS – CORRECTIVE FAILURE PROBABILITY (πf

c )

(πf
c ) \ Filter Probability Feasibility Risk

(a) Total cost ($)

E-3 881.62 881.62 881.62
5E-3 881.62 881.62 881.62
E-2 882.37 896.78 882.37

2.5E-2 901.97 899.62 899.62
5E-2 957.33 902.68 905.00

(b) Iterations

E-3 10 5 5
5E-3 11 5 5
E-2 16 6 7

2.5 E-2 20 7 9
5 E-2 23 10 13

(c) Computational time (sec)

E-3 1212.13 602.21 602.60
5E-3 1341.31 610.31 611.08
E-2 2244.67 711.02 841.84

2.5E-2 2403.31 833.80 1070.46
5E-2 2750.48 1278.43 1502.15

while the probability-based filtering method is markedly less
efficient, we study in greater detail the difference between the
former two on an extended set of cases reflecting the vari-
ability of contingency probabilities in function of the weather
conditions. To facilitate this analysis, we model the effect of
the weather state on outage rates (hence, outage probabilities)
on the basis of [31]. More specifically, we adopt a two state
(i.e., normal vs adverse) weather model while assuming that:
i) 60 % of recorded failures occur under adverse weather and,
ii) the weather state is normal for 90 % of a typical year. We
define the three additional case studies by assuming that only

TABLE VI
FEASIBILITY-BASED FILTERING VS ADVERSE WEATHER CASES

Adverse Weather Case Area A Area B Area C

Total Cost ($) 899.62
Chance-constraint level 9.56e-6 9.84e-6 9.71e-6

Explicit Corrective Contingency Set A27;B27;C27
Explicit Preventive Contingency Set B13-2;C23

Correctively Secured Contingencies (%) 9

Number of Iterations 6

TABLE VII
RISK-BASED FILTERING CONTINGENCY MANAGEMENT

Adverse Weather Case Area A Area B Area C

In Area A Correctively Secured (%) 0 9 9
Preventively Secured (%) 100 91 91

In Area B Correctively Secured (%) 0 0 9
Preventively Secured (%) 100 100 91

In Area C Correctively Secured (%) 9 14 12
Preventively Secured (%) 91 86 88

one of the three system areas faces adverse weather (implying
increased probability of realizing a contingency) while the
weather state is normal for the remaining two areas.

The feasibility-based filtering approach is in essence un-
affected by the studied variations in contingency probabil-
ities in terms of the filtering sequence it yields (i.e., the
order of choosing contingencies to be explicitly covered by
corrective and/or preventive controls). In these simulations,
it also converges on the same feasible solution irrespective
of which area is exposed to the adverse weather conditions.
The common solution overview is provided in Table VI,
wherein the slight variation in the probability of maintaining
the system functionality shown in the 2nd row is attributable
to the variations in the contingency probabilities8. The choices
between preventive and corrective controls are also quite
balanced across all three areas of the system. More specifically,
9% of contingencies in each area being secured by corrective
controls (either implicitly or explicitly), while all cross-area
interconnections are secured preventively. Recalling the strong
similarities in topology, generation and load across the 3 areas
of the test system, such balance is in fact anticipated. Finally,
we note that with respect to the base-case set-up of subsection
IV-A and the solution presented in Table II.b, the relative
increase in the probability of realizing a contingency results
in greater cautiousness manifested in explicitly securing the
outage C23 in preventive rather than corrective mode, and in
securing a smaller percentage of contingencies by corrective
controls.

Table VII presents the partitioning of preventively and
correctively secured contingencies per area as per the solutions

8A similar slight variation in the total cost, due to the impact of contingency
probability on the corrective control cost expectation is below the adopted
rounding accuracy hence not observable in the cost values listed here.
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TABLE VIII
RISK-BASED FILTERING CONTINGENCY SEQUENCE

Adverse Weather Case Area A Area B Area C

Step 1 A27 (Cor.) B23 (Cor.) C27 (Cor.)
Step 2 A23 (Cor.) B27 (Cor.) C23 (Cor.)
Step 3 A30 (Cor.) B21 (Cor.) C30 (Cor.)
Step 4 A21 (Prev.) B22 (Cor.) C21 (Prev.)
Step 5 A26 (Prev.) B13-2 (Prev.) C26 (Prev.)
Step 6 A23 (Prev.) A27 (Cor.) C23 (Prev.)
Step 7 C27 (Cor.) C27 (Cor.) A27(Cor.)
Step 8 A13-2 (Prev.) C23(Cor.) B27 (Cor.)
Step 9 A24 (Cor.) B27 (Prev.) B13-2 (Prev.)
Step 10 B13-2 (Cor.)
Step 11 C23 (Cor.)

TABLE IX
RISK-BASED FILTERING VS ADVERSE WEATHER CASES

Adverse Weather Case Area A Area B Area C

Total Cost ($) 941.04 897.09 899.62
Chance constraint level 5.67e-7 1.32e-6 9.71e-6

Number of Iterations 11 9 9

obtained while applying the risk-based filter. Let us first notice
how in both cases wherein the adverse weather affects areas
A or B (shown in the 1st and 2nd columns of Table VII) all
contingencies inside the area facing adverse weather would
be secured by preventive controls. The interpretation is that
the increased likelihood of realizing a contingency stimu-
lates conservativeness. Further, Table VIII lists the filtering
sequences of explicitly covered contingencies. Each column
of this table presents the filtering sequence corresponding to
the case wherein the respective area is facing adverse weather
conditions, while the abbreviations within the parenthesis next
to each contingency ID denote whether it is to be explicitly
covered by corrective (Cor.) or only preventive (Prev.) controls.
We recall here that the latter choice depends on the status of
the filtered contingency and that a filtered contingency may
only be designated to be explicitly covered by preventive
controls if it is already covered (explicitly or implicitly) by
corrective controls. We observe that in all cases studied,
contingencies within the respective adverse weather area are
(i) the ones to be filtered first, and (ii) the ones composing the
largest part of the respective subsets.

Finally, Table IX lists the cost values as well as the num-
ber of iterations taken by the risk-based heuristic algorithm
to solve the cases studied. Concerning economic cost, the
risk-based approach was found to marginally outperform the
feasibility-based filtering in one test case, while being more
notably inferior in another test-case. The difference is more
striking in terms of the algorithmic efficiency of the heuristic
approach, wherein feasibility-based filtering shows a more
concrete advantage in terms of fewer iterations.

V. CONCLUSIONS & FUTURE WORK

This paper revisited the fundamental SCOPF problem of
safeguarding the operability of the power system in light of the

potential development of contingency events. The modeling
scope goes beyond the current standard by taking into account
uncertainty on the effectiveness of post-contingency corrective
controls, whose potential malfunctioning may escalate a single
outage into a catastrophic cascading sequence of failures. The
extended SCOPF statement achieves an explicit guarantee on
the probability of maintaining the system within all operational
limits. Combining such extension with the AC power flow
model in its full form yields a non-convex Mixed Integer Non-
linear Programming (MINLP) problem, featuring a coupling
constraint on all recourse decision stages as well as disjunctive
inequalities. To tackle it, we adopted the realistic prioritization
of feasibility before optimality [32] and developed a workable
heuristic approach progressively shrinking the feasible region
of a (conventional) deterministic-constrained SCOPF problem.

Keeping in mind the hurdles in the ongoing transition
towards an explicitly probabilistic approach to reliability man-
agement, we placed emphasis on establishing interpretability
as the main feature of our proposal. We have showcased here
the essential functionality of the chance constraint in enforcing
a certain level of confidence on the trade-off between preven-
tive and corrective controls. It may imply reducing the number
of contingencies secured by means of corrective controls to
guarantee that the probability of yielding operational limit
violations (potentially in turn triggering cascading events) is
indeed low enough. Alternatively, it may be understood as
relaxing the conservativeness of the preventive only approach,
which, given the corrective control effectiveness uncertainty, is
truly the only strategy offering full certainty but at the expense
of significantly increased economic costs.

A. Towards enhanced scalability & algorithmic efficiency

We intentionally opted for a practical solution approach, tar-
geting feasibility and achievable with marginal modifications
on existing tools and overarching solution strategies. Our goal
was to show that existing practices can be leveraged to find
feasible solutions for the chance-constrained statement, thus
unlocking a first step for the adoption of probabilistic methods.
We must however recognize the ample scope for improvements
to address the size and computational performance require-
ments of large-scale power systems. Regarding contingency
analysis, i.e. the major workload in our implementation, solv-
ing the feasibility assessment problems (19–23) and, if needed,
(24–26) in series over the set of postulated contingencies is
only sufficient for a demonstrative scope. Notice however that
there are no input/output dependencies between the feasibil-
ity assessment problems referring to different contingencies.
Thus, for a practical implementation, it is straightforward to
solve the feasibility assessment problems (19–23) and (24–
26) in parallel for different contingencies. In our future work,
we shall also explore the use of machine learning techniques
to build predictors for the optimal objective value of these
problems, thus significantly reducing the computational time
requirement of this step. We point to [33], [34] for early
findings on the potential to build and exploit such predictors
and also to [35], [36] further establishing the viability of
relying on machine learning to enable faster contingency
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screening. Let us not undermine the challenge of solving
the deterministic-constrained problem (13–18) vs a large-scale
power system though. While the problem size we tackled
here remains directly manageable by a standard solver, we
already foresee integrating state-of-the-art enhancements from
the literature for improved scalability. In particular, we regard
the approach of combining contingency filtering with network
reduction introduced in [15] as the established feasible strategy
for solving the contingency constrained problem at the scale
of the European network.

B. Towards the practical adoption of probabilistic methods for
reliability management

Further from the implementation of the basic framework
in an more advanced computational setup, the systematic
collection of additional data as well as the integration of
SCOPF tools (such as our proposal) in operational & planning
practices are foreseeable future steps towards realizing a
transition to probabilistic reliability management. Concerning
the former issue the notable gap relates to the data needed
to accurately quantify the probability of failure for post-
contingency corrective controls. We refer the reader to [9],
[37] for the alternatives that could be used to fill the data
gap, including periodic inspections of the functionality of the
involved controllable devices as well as capitalizing on the
intuition and experience of control room operators. Regarding
the integration of SCOPF into operational & planning prac-
tices, we observe with great interest recent initiatives such as
the so-called “grid optimization competition” [25]. Reference
[38] presents a comprehensive discussion on the relevance of
advanced optimization concepts for the operation & planning
of the modern grid, while the transition roadmap presented
in [1] also foresees the potential role of SCOPF tools in the
future of practical reliability management.

C. Towards a unified framework in planning & operation

Last but not least, we underline the need to progressively
develop a unified framework for power system reliability
management through planning and operation [17]. In this
direction, the next step of our work is the revision of the so-
called “look-ahead” reliability management problem, featuring
a more extended decision horizon including a sequence of
instances of the fundamental problem addressed here, as
well as uncertainty on nodal power injections and loads (for
instance due to renewable power generation) and potentially
on the weather state affecting contingency probabilities. At the
conceptual level, the extension of this framework to also ad-
dress such planning problems and the additional uncertainties
is developed in [39].
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