Delayed bone formation partly explains tibial anterolateral bowing associated with neurofibromatosis type 1

Majid Nazemi¹, Liesbet Geris^{1,2}

¹ Biomechanics Research Unit, Université de Liège, Belgium. ² Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.

Introduction

 Anterolateral bowing of tibia is observed at birth within 4% of the diagnosed with children neurofibromatosis type 1 (NF-1) [1].

Growth

- Iongitudinal growth of long bones is fueled by progressive proliferation and hypertrophy Of which are regulated differentiated chondrocytes through interaction between parathyroid hormone related peptide (PHRP) and Indian Hedgehog (Ihh)
- represents interstitial fluid velocity and was obtained by solving equations of poroelasticity:

$$\nabla \cdot \tau = 0$$
(5)
$$\nabla \cdot \dot{u} - \nabla \cdot \left(\frac{k}{\rho g} \nabla P\right) = 0$$
(6)

- Tibial bowing could further increase growth, leading with to fracture (Fig 1), spontaneous nonunion, and amputation in severe cases.
- NF-1 has been shown to influence cellular interactions involved in angiogenesis and bone formation.

(Fig 3) whose spatiotemporal variation are governed by reaction-diffusion equation (eq. 1).

 $\frac{DS_i}{Dt} + v_f \cdot \nabla S_i + S_i \nabla \cdot v_g = D_i \nabla^2 S_i + b_i$

source terms, b_i , were represented by Schnakenberg equation [2, 3]:

 $b_{PHRP} = C_{pc} \left(\alpha_1 - \beta_1 S_{PHRP} + \gamma_1 S_{PHRP}^2 S_{Ihh} \right)$

$$b_{Ihh} = C_{pc} \left(\alpha_2 - \gamma_1 S_{PHRP}^2 S_{Ihh} \right)$$

Fig 3) Negative feedback loop between PHRP and Ihh [3]

- in which τ is stress tensor, u is displacement vector, Pis pressure, k is coefficient of permeability, ρ is density, and g is gravity constant.
- Angiogenesis is enhanced via VEGF production by hypertrophic chondrocytes whose spatiotemporal distribution obeys eq. 1 with the source term, b_{VEGF} , as [2]:

(2)
$$b_{VEGF} = rs_{VEGF} C_{hc} \left(1 - \frac{s_{VEGF}}{P_{VEGF}}\right) + \chi_{VEGF} C_{hc}$$
 (7)

Bone formation was assumed to occur when a certain (3)threshold of VEGF concentration is reached.

Analysis

(1)

- The constants in eqs. 1 to 7 were adopted from literature [1-4].
- The system of eqs. 1 to 7 were solved using finite element method in the FreeFEM++ environment.

Results

• Predictions of spatial arrangement of proliferative chondrocytes (Fig 4) fit well with physiological observations of the growing tibia [3].

Fig 1) Tibia spontaneous fracture due to NF 1 related excessive bowing [1]

Objective

The objective of this study was to develop a valid mechanobiological model of early long bone growth to investigate the role of NF-1 relevant delayed bone formation in tibial anterolateral bowing at birth.

Methodology

Initial geometry and loading conditions

- initial geometry mimicking • An condensed the of anlage mesenchymal stem cells was first considered.
- mechanical Dynamic loads representing contact pressure at

represents growth velocity vector, obtained v_a considering proliferation rate of chondrocytes and the enlargement rate of hypertrophic chondrocytes, γ [4]:

 $t^{\beta-1}e^{-t/\theta}$ $\gamma(t) = \alpha_{mech} \frac{1}{\nu}$

in which t is the time elapsed since hypertrophy has started and α_{mech} is a dimensionless factor, between 0.75 to 1.25, depending on the mechanical stress [4].

• Our results revealed increased bowing at birth with higher thresholds of VEGF (Fig 5).

Conclusion

NF-1 related delayed bone formation may explain anterolateral bowing of tibia at birth.

(4)

medial/lateral plateaus were the applied to the growing model (Fig 2) from embryonic day 90 onwards [2].

Fig 2) Initial anlage geometry with applied loading and boundary conditions

8e4 10e4 4e4 6e4 **764**

Fig 4) Distribution pattern of proliferative chondrocytes from embryonic day 50 to 270

Fig 5) Predicted morphology of the tibial bone at birth for VEGF concentration of 0.027, 0.030, and 0.033 ng/mm (from left to right).

References

[1] Pannier S., 2011, Orthopaedics and Traumatology. [2] Vaca-Gonzalez, J. J. et al., 2018, Biomech Model Mechanobiol. [3] Garzon-Alvarado D. A. et al., 2009, Biomech Model Mechanobiol. [4] Castro-Abril H. A. et al., 2017, Theoretical Biology.