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Abstract

This thesis is about drowsiness characterization systems that operate non-invasively,
automatically, and in real-time from a video stream of face images, with a focus on the
analysis of eye closure dynamics. In addition to providing a comprehensive discussion
about the development of such systems, we present three novel systems: a baseline system,
a multi-timescale system, and a parametric system. While our three systems each char-
acterize drowsiness in their own manner, they share the following two aspects of design:
(1) they use a 1-min sequence of eyelids distances as an intermediate representation, and
(2) their models are trained with a ground truth of drowsiness based on impairments of
psychomotor performance.

The baseline system characterizes drowsiness from a set of pre-defined ocular features,
which is a typical approach used by most systems of other studies. As output, this system
estimates a binary Level of Drowsiness (LoD) or the mean reaction time (RT). This system
allows us to study the relationship between eye closure dynamics and performance impair-
ments, as well as to rank the ocular features in terms of importance in the decision of the
machine learning models. Our system tends to confirm that several standard ocular fea-
tures, such as the number of long eye closures, the percentage of eye closure (PERCLOS),
and the average eye closure duration, are well correlated with drowsiness.

The multi-timescale system characterizes drowsiness from four sets of data-driven ocu-
lar features, with each set extracted at a different timescale, i.e., window length. As output,
this system estimates four binary LoDs with diverse trade-offs between accuracy and re-
sponsiveness. By combining these four LoDs, this system is able to (1) detect drowsiness
onsets further in advance (but at the cost of lower accuracy), and to (2) detect drowsiness
onsets with high accuracy (but at the cost of lower responsiveness). We show that the use
of data-driven ocular features instead of pre-defined ones increases the performance of the
system.

The parametric system characterizes drowsiness from a set of data-driven ocular fea-
tures. As output, this system estimates the two parameters (mean and variance) of the
instantaneous reciprocal normal (“recinormal”) probability density function of drowsiness-
induced RTs. The results show that this system estimates well the mean parameter, but es-
timates poorly the variance parameter. With the goal of understanding the inner-workings
of this system, we conduct a visual, and partly analytic interpretation of the ocular features
learned by this system. We show that these features, which are data-driven, are closely
related to some pre-defined features typically found in the literature such as the PERCLOS
and the number of long eye closures, as well as to some novel ones that we introduce such
as the integration of a “droopy eye” signal and the number of “sudden recovery in alertness”
events.
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Résumé

Cette thèse traite de systèmes de caractérisation de la somnolence opérant de manière
non-invasive, automatique, et temps-réel à partir d’un flux vidéo d’images du visage, et
ce en se concentrant sur la dynamique de la fermeture des yeux. En plus de mener une
discussion complète sur le développement de tels systèmes, nous présentons trois systèmes
innovants : un système de référence, un système à multi-facteurs d’échelle temporel, et un
système paramétrique. Bien que ces trois systèmes caractérisent chacun la somnolence de
manières différentes, ils partagent deux points communs suivants dans leur conception : (1)
ils utilisent, comme représentation intermédiaire, une séquence d’une minute composée des
distances inter-paupières, et (2) leurs modèles sont appris avec une référence de somnolence
basée sur la dégradation des performances psychomotrices.

Le système de référence caractérise la somnolence à partir d’un ensemble de para-
mètres oculaires pré-définis, ce qui est une approche typiquement utilisée par la plupart
des systèmes de la littérature. En sortie, ce système soit estime soit prédit un niveau de
somnolence binaire ou le temps de réaction moyen. Ce système nous permet d’étudier le
lien entre la dynamique de la fermeture des yeux et la dégradation des performances, ainsi
que d’identifier les paramètres oculaires les plus importants dans la décision des modèles.
Nous confirmons bien que plusieurs paramètres oculaires standards, tels que le nombre de
longues fermetures des yeux, le pourcentage de fermeture (PERCLOS), et la durée moyenne
de fermeture, sont fortement corrélés avec la somnolence.

Le système à multi-facteurs d’échelle temporel caractérise la somnolence à partir de
quatre ensembles de paramètres oculaires appris, où chaque ensemble est lié à un facteur
d’échelle temporel différent. En sortie, ce système estime quatre niveaux de somnolence
binaires avec divers compromis entre la précision et la réactivité. En combinant ces quatre
niveaux de somnolence, ce système est capable (1) d’avertir à l’avance l’opérateur du
véhicule d’épisodes de somnolence (au prix d’une précision réduite), et (2) de détecter avec
précision les épisodes de somnolence (au prix d’une réactivité réduite). Nous montrons que
l’utilisation de paramètres oculaires appris-des-données plutôt que pré-définis améliore la
performance du système.

Le système paramétrique caractérise la somnolence à partir d’une ensemble de pa-
ramètres oculaires appris. En sortie, ce système estime les deux paramètres (moyenne et
variance) de la fonction de densité de probabilité réciproque-normale instantanée des temps
de réactions dégradés par un état de somnolence. Les résultats montrent que ce système
estime avec succès le paramètre lié à la moyenne, mais pas celui lié à la variance. Afin de
comprendre le fonctionnement interne de ce système, nous effectuons une interprétation
visuelle—et en partie analytique—des paramètres oculaires appris. Nous montrons que ces
paramètres appris sont étroitement liés à certains paramètres pré-définis utilisés dans la
littérature tels que le PERCLOS et le nombre de longues fermetures des yeux, ainsi qu’à
de nouveaux paramètres que nous introduisons tels que l’intégration d’un signal de “yeux
tombants” et le nombre de “regains soudain de la vigilance”.
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Chapter 1

Introduction

1.1 Context

Drowsiness is an unavoidable physiological state with significant repercussions on the mind
and body. Whether drowsiness is caused by sleep degradation due to sleep apnea, by sleep
restriction due to a baby regularly crying at night, or by sleep deprivation due to staying up
late with friends—the negative effects are vast and include: impairments of psychomotor
performance, poor decision making, mood alteration, attentional lapses, and other physical
and mental health consequences [10, 57, 132, 142]. Although one can experience drowsi-
ness at any time of the day, drowsiness becomes more likely the longer one remains awake,
particularly during the night and early morning. For instance, at a waking duration of 17
hours, impairments of performance reaches levels equivalent to a blood alcohol concentra-
tion (BAC) of 0.05%, and 24 hours to 0.10% [37]. For comparison, in Belgium, the legal
BAC limit that must not be exceeded to be authorized to drive is 0.05%.

Clearly, when performing a critical task, e.g., operating a vehicle or controlling air traf-
fic, drowsiness can lead to accidents with considerable environmental, property, financial,
and health-related costs. In the road transportation sector, drowsiness is a leading cause
of fatal accidents. Indeed, a drowsy driver will experience difficulties in tracking lanes, in
maintaining a constant speed, and in keeping a safe distance from other vehicles. On the
highway, accidents thus happen in the matter of a few seconds [88], and definitely result in
severe damages both to humans and property. In numbers, drowsiness is estimated to be
responsible for about 10% of all road accidents [106, 131], and about 20–30% of all fatal
road accidents [17, 39, 100, 131]. Each year in the United States, drowsiness therefore
leads to more than 6000 deaths, and causes an estimated societal cost of 109 billion dol-
lars [66, 101]. Notably because of these figures, the National Transportation Safety Board
(NTSB), i.e., the U.S. government agency responsible for the investigation of civil trans-
portation accidents, has made the reduction of drowsiness-related accidents an important
item on its most-wanted list of transportation safety improvements since 2016 [16, 17].

However, official statistics are widely regarded as substantial underestimates of reality.
Indeed, identifying drowsiness as a probable cause or a contributing factor to an accident
is a challenging task to perform [49, 131]. Reasons are numerous: the lack of identifiable or
conclusive evidence of such involvement during the police post-accident investigation; the
unawareness or forgetfulness of the drivers about the role of drowsiness in the accident; the
reluctance of the drivers to admit they had fallen asleep or were tired; and/or the death
of the driver.

Even though the figures differ across studies, the majority of experts consider drowsy
driving as an important traffic safety problem, and so does the public. In a 2002 National

1
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Highway Traffic Safety Administration (NHTSA) survey [119], 95% of drivers evaluated
drowsy driving by others to be a major threat to their safety, whereas 5% of them evaluated
it as a minor threat. In the 2017 AAA’s Traffic Safety Culture Index [5], 87.9% of drivers
considered drowsy driving as a serious or somewhat serious threat, and 95.2% of them
considered it as an unacceptable behavior. Yet, despise the public’s correct assessment of
this safety threat, 75.4% of Belgian drivers reported having experienced drowsiness at the
wheel at least once in their lifetime [73], 37% of US drivers reported having nodded off
or fallen asleep at the wheel at least once in their lifetime [119], and 30.8% of US drivers
admitted having driven while having a hard time keeping their eyes open at least once in
the past month [5].

In addition to the road transportation sector, drowsiness is responsible for serious
accidents in other types of transportation sectors (aviation, marine, and rail), as well as
in the industry sector. For examples, in the aviation sector, the NTSB has identified
drowsiness as a contributing cause [17] to the crash of the Colgan Air Flight 3407 into a
residence in Clarence Center, New York, in 2009 (50 fatalities); the crash of a sightseeing
tour helicopter in Las Vegas, Nevada, in 2011 (5 fatalities); the UPS Flight 1354 accident
in Birmingham, Alabama, in 2013 (2 fatalities). In the industry sector, human errors
and poor judgments induced by drowsiness have been recognized as having contributed to
the disaster at the Three Mile Island nuclear plant in Dauphin County, Pennsylvania, in
1979 [29]; the catastrophe at the Chernobyl nuclear plant in Pripyat, Ukraine, in 1986 [30];
and the launch disaster of the Space Shuttle Challenger in Florida, in 1986 [28].

Automatic and real-time drowsiness characterization systems have certainly the po-
tential to prevent transportation accidents by issuing timely drowsiness warnings to the
vehicle operator. Such systems are generally based on driving performance (e.g., wheel
steering, braking, and line crossing) and/or operator physiology (e.g., brain signals, heart
rate, and facial expressions). In addition to providing drowsiness warnings, such systems
could also adjust the way the vehicle systems operate, and this as a function of the driver’s
estimated level of drowsiness. For instance, collision avoidance systems could adjust their
settings and start braking further in advance; integrated navigation systems could give
directions to the nearest rest area, and inform about the most-adequate countermeasures
against drowsiness given the remaining trip duration; and (semi-)autonomous systems
could autonomously bring the vehicle to the nearest rest area. Furthermore, drowsiness
monitoring systems could provide valuable information to investigators for determining the
contributing causes of an accident.

1.2 Goals and approach

The main goal of this thesis is to develop novel drowsiness characterization systems that op-
erate automatically from a video stream of face images, with a focus on the analysis of eye
closure dynamics. Systems based on eye closure dynamics have the significant advantages
of being mostly independent of applications and vehicle types, less sensitive to external
conditions (e.g., weather, and traffic), and non-intrusively implementable with remote sen-
sors such as cameras. As such, they require no action from the vehicle operator other than
reacting to the timely-issued drowsiness warnings. The dynamics of eye closures is recog-
nized as a strong and reliable physiological indicator of drowsiness [4, 40, 41, 122, 136].
And, considering that blinks naturally occur once every few seconds, eye closure dynamics
constitutes a regular stream of insights about the physiological impacts of drowsiness. This
inherent attribute makes the eye closure dynamics an indicator of choice to base automatic,
real-time drowsiness characterization systems upon.
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Training these automatic, real-time systems requires data labeled with a measure of
drowsiness, i.e., a ground truth of drowsiness. Unfortunately, the level of drowsiness is not
a precisely and numerically defined quantity that can be measured directly. Therefore,
the practical approach to quantifying drowsiness is by characterizing it (i.e., describe its
distinctive nature) based on measurable, but imperfect, indicators of drowsiness. The
choice of which indicator to use depends on whether it will be used (1) as an input to the
system, or (2) to produce a ground truth to train and evaluate the system. When used as
an input, the indicator has to be automatically measurable in operational settings, which
is the case for driving performance, facial expressions, and eye closure dynamics. When
used to produce a ground truth, the scientific community has yet to reach a clear consensus
on which indicator is the best. Therefore, the choice of indicator is typically based on its
ease of use, and on whether the study protocol enables its acquisition or not.

In this thesis, to produce a ground truth of drowsiness, we made the choice of using
the reaction times (RTs) observed during the performance of a Psychomotor Vigilance
Task (PVT). The impairment of RTs is recognized as a reliable and sensitive performance-
based indicator of drowsiness [10, 13, 14, 42]. The RT has the significant advantages of
being automatically-annotated, of being objective (i.e., free of the subjective interpretation
of human annotators), of being relatively densely-annotated (every few seconds), and of
embodying meaningful effects of drowsiness w.r.t. operating a vehicle. Note that there
exist diverse approaches to producing a ground truth of drowsiness from a set of RTs.
We consider and present some of them in this thesis. Also note that, although RTs are
well-suited for producing a ground truth of drowsiness, they are not well suited to be used
as inputs to an automatic system since their stimulus-based acquisition would hinder the
performance of the main task in operational settings, e.g., operating a vehicle.

In addition to the development of systems, the secondary goals of this thesis are (1) to
provide a comprehensive discussion about the development of drowsiness characterization
systems, and (2) to propose novel algorithms for the extraction of the eyelids distance from
a face image.

1.3 Contributions and outline

In Chapter 2, we present a comprehensive review on drowsiness and its characterization.
In particular, we (1) define drowsiness, (2) review the determinants of its onset, (3) address
the question whether drowsy individuals can reliably evaluate their own level of drowsiness,
and (4) report on the efficient and inefficient countermeasures against drowsiness at the
wheel. Moreover, we propose a classification of indicators of drowsiness, present their
associated standard measures, and identify which indicators are most suited to be used as
(1) an input or as (2) a ground truth for the development of drowsiness characterization
systems. Finally, we provide a technical review of the scientific literature on automatic,
real-time drowsiness characterization systems based on eye closure dynamics.

In Chapter 3, we describe the sleep-deprivation dataset we collected for the purpose
of developing the novel systems presented in this thesis. There are many possibilities for
designing the protocol of such dataset. Therefore, we motivate our design choices but still
point out our limitations and potential improvements. Furthermore, we discuss, as best
as possible, the ecological validity of such laboratory dataset, i.e., the extent to which the
conclusions and findings drawn from a laboratory dataset can be generalized to real-life, op-
erational settings. Although very little work discuss this intricate topic, we highlight some
key considerations to keep in mind when developing drowsiness characterization systems
intended to be adapted for real-life, operational settings. Finally, we analyze the diverse
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indicators of drowsiness that we recorded alongside images of the face, and highlight some
of their properties.

In Chapter 4, we present a baseline drowsiness characterization system. We designed
this system to extract a set of pre-defined ocular features prior to characterizing drowsiness,
which is a typical approach used by most systems of other studies. In addition to pro-
viding a performance baseline, this system enabled us to study the relationship between
eye closure dynamics and impairments of psychomotor performance, as well as to rank
the ocular features in terms of importance in the decision of the machine-learning clas-
sification/regression models. This chapter is based on the following published conference
paper [91]:

• Q. Massoz, T. Langohr, C. François, and J. Verly. The ULg multimodality drowsiness
database (called DROZY) and examples of use. In IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 1–7, Lake Placid, NY, USA, March
2016.

In Chapter 5, we present a novel multi-timescale drowsiness characterization system
that aims at dealing with the trade-off between accuracy and responsiveness. Indeed,
we identified that most systems typically make use of eye closure dynamics by averaging
ocular features over a time window of fixed length. However, this strategy suffers from
an inherent trade-off between accuracy (best achieved with long time windows, i.e., at
long timescales) and responsiveness (best achieved with short time windows, i.e., at short
timescales). With the goal of satisfying both accuracy and responsiveness, our multi-
timescale system characterizes drowsiness from a sequence of eyelids distances by using
four binary classifiers operating at four distinct timescales (5s, 15s, 30s, and 60s). We
jointly trained these data-driven classifiers using a carefully-crafted multi-timescale ground
truth of drowsiness based on impairments of psychomotor performance. We discuss how
to combine and use these four drowsiness classifiers in operational settings. This chapter
is based on the following published journal article [93]:

• Q. Massoz, J. Verly, and M. Van Droogenbroeck. Multi-timescale drowsiness char-
acterization based on a video of a driver’s face. Sensors, 18(9):1–17, August 2018.

In Chapter 6, we present a novel parametric drowsiness characterization system that
aims at estimating the instantaneous probability density function (pdf) of drowsiness-
induced reaction times (RTs). Whereas our previous systems were trained with a continu-
ous or discrete ground-truth quantity mapped from a set of RTs, our parametric system is
trained directly with such a set of RTs as ground truth. Considering that the RT follows
relatively well a reciprocal normal distribution, our parametric system can therefore learn
to estimate the pdf parameters by maximizing their likelihood given the set of observed
RTs. In the same process, our system also learns to extract the most informative features
related to eye closure dynamics. With the goal of understanding the inner-workings of our
system based on convolutional neural networks, we conduct a visual interpretation, and a
first analytic analysis, of these data-driven ocular features. This chapter is based on the
following published conference paper [92]:

• Q. Massoz and J. Verly. Vision-based system for monitoring vehicle operator respon-
siveness from face images. In International Conference on Managing Fatigue, pages
1–3, San Diego, CA, USA, March 2017.

In Chapter 7, we conclude this thesis, identify the limitations and potential improve-
ments, and discuss the path forward for mitigating drowsy driving.

The list of publications is given at the end of this thesis.



Chapter 2

Background on drowsiness and its
characterization

This chapter presents a background on drowsiness, as well as a review on its character-
ization in operational and non-operational settings. Section 2.1 defines drowsiness. Sec-
tion 2.2 reviews the determinants and influencing factors of drowsiness. Section 2.3 dis-
cusses whether drowsy individuals are reliably self-aware of being drowsy. Note that this
latter topic is fundamentally important for motivating operational drowsiness characteri-
zation systems. Section 2.4 reviews the reliable and non-reliable countermeasures against
drowsiness at the wheel. Section 2.5 reviews the diverse indicators of drowsiness, along with
their standard measures typically found in the literature. Section 2.6 reviews related work
on drowsiness characterization systems, in particular with respect to the design choice of
ground truth of drowsiness and of system architecture. Section 2.7 concludes this chapter.

2.1 Definitions of drowsiness

Drowsiness is defined as the state of being drowsy, that is, having a difficulty of staying
awake, a strong inclination toward falling asleep. Here follow the main characteristics of
drowsiness:

• it is an intermediate state between fully awake and asleep;

• it is experienced at a continuous level that varies in time;

• it is characterized by physiological changes [4, 7, 10, 15], and by impairments of both
cognitive performance [10, 11, 62] and psychomotor performance [44, 54, 55].

It is also often interpreted as a basic physiologic need state, like hunger and thirst, existing
for the survival of the individual organism [117]. As such, drowsiness could be seen as a
way for our own body to indicate that we need to sleep, similarly to hunger indicating a
need to eat, and thirst a need to drink. Complying with this need, i.e., by sleeping, reverses
the state of drowsiness—at least for healthy individuals.

Note that the term “drowsiness” is regularly used interchangeably with the terms “sleepi-
ness”, “somnolence”, and “fatigue”. However, the use of the term “fatigue” is not recom-
mended as it can also describe the subjective feeling of tiredness, induced by prolonged
periods of physical exercise or cognitive activity. Fatigue and drowsiness are distinct states;
the first is alleviated by taking a break, whereas the second is alleviated by sleeping. Yet,
fatigue and drowsiness are not unrelated: both manifest themselves as the inability to com-
plete a task at normal performance. It is therefore easy to misdiagnose one for the other.

5
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In this thesis, we consider only the terms “drowsiness”, “sleepiness”, and “somnolence” as
synonyms.

In the field of sleep medicine, drowsiness is not defined as a time-varying state, but it
is instead defined as a symptom with a high “propensity to fall asleep” [10, 75]. In this
field, drowsiness represents an ease of falling asleep as measured objectively by the sleep
latency, i.e., the time it takes to fall asleep, when the patient is instructed either to “try to
sleep” [25] or to “try to stay awake” [96]. To sleep clinicians, the sleep latency is a valuable
metric, as a low-enough value indicates that the patient suffers from a sleep disorder such
as excessive somnolence or narcolepsy [96].

In this thesis, we will not adopt this propensity definition as we are interested in
characterizing the state of drowsiness automatically, in real-time, and in situations where
the individual is busy performing a task such as driving. In such active situations, the
individual is torn between his/her need to sleep and the necessity to perform his/her task,
and thus adopts perceptible countermeasures to fight the urge to sleep. Therefore, we
define drowsiness as a physiological state, the continuous level of which varies in time.

2.2 Determinants of drowsiness

The continuous and time-varying level of drowsiness is determined by diverse factors, which
are mostly related to sleep. In this section, we take the time to introduce these determinants
of drowsiness, and alongside a few figures, so as to inform about how one could preventively
reduce the risk of being drowsy in critical situations.

2.2.1 Sleep-wake cycle

To a great degree, drowsiness is driven by the sleep-wake cycle, the timing and structure
of which are considered well described by the two-process model [3, 10]. The first process,
called the sleep-wake homeostasis, corresponds to a sleep debt/pressure that builds up
during wakefulness (mainly due to daytime cerebral/cognitive activity) and declines during
sleep in a non-linear fashion [10]. It explains why the level of drowsiness increases during
the day, and increases day by day when the sleep duration is lower than needed. The
second process, called the circadian rhythm, corresponds to a body clock oscillating with
a 24-h period that regulates the favorable periods of sleep and wake throughout the day.
It explains why the level of drowsiness peaks in the early morning (at 2–6 am) and in
the mid-afternoon (at 2–4 pm), and also why one is relatively more alert outside of these
peak hours [3, 69, 117]. In such a manner, the effective sleep-wake cycle, and therefore
drowsiness, is driven by the dynamic balance between these two regulatory processes.

2.2.2 Sleep quantity

As modeled by the homeostatic process, the quantity of sleep directly impacts the amount
of daytime drowsiness. The quantity of sleep can be shortened either by acute sleep de-
privation, i.e., with a wake duration greater than the usual duration of 16–18 hours, or by
sleep restriction, i.e., with a reduced sleep duration for prolonged periods. Based on sleep
research, the recommended quantity of sleep per night is of 7–8 hours for adults [142], and of
about 9–10 hours for adolescents and youths [3, 117]. Extending bedtime beyond this rec-
ommended baseline has been shown to be beneficial as it increases alertness (i.e., decreases
drowsiness) throughout the day [117]. Recent surveys reported that 35–40% of the adult
U.S. population sleep less that 7–8 hours, and about 15% less than 6 hours [10]. Moreover,
another survey reported that 50% of French drivers sleep intentionally less the night prior
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to a departure, and 10% do not even sleep at all [3]. These numbers are quite alarming
because sleep deprivation and sleep restriction have been shown to induce—in addition to
drowsiness and impairments of performance—a mood of irritability and reduced empathy,
higher sensitivity and reactivity to stress, and several health-related consequences such as
an increased risk of obesity, diabetes, hypertension, cardiovascular diseases, and all-around
mortality [10, 42, 62, 111, 142].

For the purpose of comparison, Dawson and Reid [37] measured the impairments of
performance of subjects in two distinct conditions: acutely sleep deprived and alcohol
intoxicated. They showed that performance impairments after 17 hours of sustained wake-
fulness (measured at 1 am) were comparable to those with a blood alcohol concentration
(BAC) of 0.05%, whereas 24 hours of being awake (measured at 8 am) was comparable
to a BAC of 0.10%. In other words, a drowsy driver with minimal alcohol levels may be
as dangerous as an alert driver who is legally intoxicated. In another study, Van Don-
gen et al. [43] showed that sleep restriction to 4 hours per night during two weeks led to
comparable impairments of performance than acute sleep deprivation during 3 days. How-
ever, note that sleep loss appears to affect each individual differently [15]. Indeed, some
individuals are very resilient to sleep loss and sustain minimal performance impairments
from it, some are moderately affected by it, and others are particularly vulnerable to it.
These differences have been shown to be trait-like, which may reflects underlying genetic
involvements [15, 57, 120].

2.2.3 Sleep quality and sleep disorders

Daytime drowsiness also strongly relates to the quality and continuity of sleep [3, 117],
which can be severely degraded and fragmented by various sleep disorders. Many sleep dis-
orders, such as sleep apnea and narcolepsy, lead to the symptom called “excessive daytime
sleepiness”. About half of the patients with “excessive daytime sleepiness” report having
road and/or work accidents, with some being life threatening and some costing them their
job [117]. Common sleep disorders include insomnia, sleep apnea, and narcolepsy; informa-
tion about them follows. Insomnia is characterized by a difficulty of falling asleep and/or
difficulty of maintaining sleep. Insomnia is often considered as a symptom, but can be
considered as a sleep disorder when no other cause is found. It is present in approximately
20–30% of the adult general population [3, 118]. Sleep apnea is characterized by frequent,
brief micro-awakenings with duration of up to 15 seconds during sleep, leading to a non-
restorative sleep. It is present in about 3–7% of adult men and 2–5% of adult women [111],
and is also commonly present in the elderly population and overweight population [3].
Narcolepsy is characterized by “excessive daytime sleepiness” even after having an ade-
quate night of sleep. A narcoleptic patient is likely to experience unavoidable episodes of
drowsiness and fall asleep several times a day, indiscriminately of the place, situation, or
time of day. It is rather a rare condition as it is estimated to be present in 0.047% of the
European general population [105] and in less than 0.01% of the general population [3].

2.2.4 Other factors

On top of the quantity and quality of sleep, drowsiness can also be influenced by one or
more external factors including sleep inertia; jet lag; alcohol, drugs, and medication in-
takes [3, 117]; bad environmental conditions such as high density traffic, poor visibility,
and darkness [1, 3]; the type, length, and monotonicity of the task that is being per-
formed [3, 7, 108]; and irregular and prolonged working schedules [2, 3, 7]. Some of these
external factors are more likely to affect some sub-populations than others. For example,
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young drivers, in addition to having higher requirements of sleep, tend to overestimate
their driving skills and more often engage in risky behaviors such as driving under the in-
fluence of alcohol and drugs [3]. Likewise, professional drivers are particularly affected as
their work involves long and monotonous drives every day, as well as regular modifications
in their sleep-wake schedules.

2.3 Self-awareness of drowsiness

Are drowsy individuals self-aware of being in a state of drowsiness while performing a
task? If so, is this self-assessment reliable and accurate? Having concrete answers to
these important questions has many implications, such as the motivation for drowsiness
characterization systems (like the ones developed in the present thesis) and the validity
of subjective self-ratings of drowsiness. Unfortunately, studies often draw contradicting
conclusions on this matter. On the one hand, many studies conclude that people are well
aware of their drowsiness [4, 11, 54, 55, 68, 78, 88, 95, 123], as evidenced by the correlation
between their subjective ratings and objective indicators of drowsiness such as performance
impairments or physiological changes. On the other hand, many studies conclude that peo-
ple are unable to correctly rate their drowsiness [10, 43, 77, 97, 107], as evidenced by the
lack of correlation between subjective and objective ratings. It is likely that these disputed
results are caused by differences in the experimental protocol, the subjective scale they
used, and/or the way in which the subjects had their sleep duration reduced, i.e., the
type of sleep loss. The type of sleep loss has been proven of importance. Indeed, Van
Dongen et al. [43] studied the effects of the type of sleep loss on the subjective ratings
and performance impairments. They found that (1) sleep-deprived subjects (acutely over
three days) reported self-ratings that were coherent with their increasing performance im-
pairments, but that (2) sleep-restricted subjects (cumulatively over two weeks) reported
significantly lower self-ratings even though they experienced equivalent performance im-
pairments to sleep-deprived subjects. These findings suggest that, once sleep restriction
becomes chronic, individuals lose the ability to reliably assess their drowsiness, as if they
had forgotten how being alert feels like and consider “drowsy” as the new “alert”. This loss-
of-perspective theory is further supported by the fact that patients suffering from chronic
sleep disorders may consider themselves as alert even when they fall asleep throughout the
day [117].

Furthermore, a fair amount of considerations are generally raised against the validity
and reliability of self-ratings of drowsiness. Indeed, many researchers consider self-ratings
of drowsiness to be susceptible to manipulation [122]. It implies that, by knowing the
fact that the level of drowsiness typically increases with sleep deprivation, subjects report
increasingly greater self-ratings as the study they participate in progresses, thereby intro-
ducing fake correlations between self-ratings and objective ratings in studies. This manip-
ulative behavior has yet—to our knowledge—to be scientifically proven, which may prove
to be challenging if subjects adopt such behavior unconsciously. Besides, it is likely that
by periodically asking subjects to self-rate their drowsiness, their perception of drowsiness
is being heightened [68, 116]. It implies that drivers may need to ask themselves whether
they are drowsy to become aware of any drowsiness, otherwise they may not be so aware
of it. This may be true, but then educating drivers about the risks of drowsy driving
may encourage them to ask themselves this question more often, which could help prevent
accidents.

That being said, the majority of research data supports the fact that healthy, educated
individuals are able to reliably report on their drowsiness when induced by acute sleep
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deprivation. Nevertheless, even with a good perception of drowsiness, not everyone has a
good perception of the likelihood of falling asleep while being drowsy [116]. In practice,
drowsy drivers often underestimate how much time it would take them to fall asleep [69],
and then even deny having fallen asleep when this happened for a short duration [18, 69].

2.4 Countermeasures against drowsiness at the wheel

The best advice to a driver falling asleep at the wheel is to stop driving as soon as possible.
However, lots of drivers keep driving anyway [8]. The given reasons for why they do so
are that they want to get to their destination, that they are close to home, and/or that
they are in a hurry [8]. Even though drivers correctly perceive stopping to take a nap and
swapping drivers as the most effective countermeasures [8], that knowledge of the safest
strategies does not translate into their actual use. Anund et al. [6] identified the most
self-administered countermeasures to be: stopping to take a walk (reported by 54% of the
1885 respondents), turning on the radio (52%), opening a window (47%), drinking coffee
(45%), and engaging in social interactions (35%). However, only 18% of drivers reported
counteracting drowsiness by stopping to take a nap. Further analysis indicated that the
following sub-populations were more likely to adopt naps as countermeasures: individuals
that have already been involved in sleep-related crashes, individuals that have already
experienced driving with severe drowsiness, professional drivers, males, and drivers aged
46–64 years.

Several laboratory studies have been conducted to evaluate the effectiveness of the most
common countermeasures. In this endeavor, naps (up to 15 minutes long) and intakes of
caffeine (150 mg) were found to be effective countermeasures [70]. The effects of caffeine
were found to be more consistent than those of naps as not every subjects managed to fall
asleep on the spot. Experts even recommend to combine both by drinking a caffeinated
beverage immediately before a 15-min nap [3], because the effects of caffeine take about 20
minutes to kick in. On the opposite, taking a break, turning on the radio, or opening the
window were found to be ineffective countermeasures [70, 115]. The radio and the opened
window have—at best—only temporary effects that would give the driver just enough time
to find a suitable resting area [115].

Lastly, it is of great importance to mention that not all countermeasures are self-
administered; well-accommodated road infrastructures and technologies can be considered
as countermeasures against drowsiness. Indeed, the presence of rumble strips (also known
as sleeper lines) and resting areas have significant, positive impacts on the reduction of the
number of accidents on the highway [3]. Furthermore, technologies such as collision avoid-
ance systems, lane departure warning systems, and drowsiness characterization systems
have the clear potential to reduce accidents and save lives on the road.

2.5 Indicators of drowsiness, and their standard measures

Drowsiness is a complex physiological state that one can experience at diverse continuous
levels. Indeed, a drowsy individual can be slightly drowsy, moderately drowsy, critically
drowsy, or at any levels in-between. However, the level of drowsiness is not a precisely
and numerically defined quantity that can be directly measured. Therefore, the practical
approach to quantifying drowsiness is by characterizing it (i.e., describe its distinctive
nature) based on measurable, but imperfect, indicators of drowsiness. We distinguish
four categories of indicators: (1) the indicators based on physiology, (2) those based on
impairments of performance, (3) those based on spontaneous facial expressions, (4) those
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based on subjective ratings. These indicators are measurable, and associated with multiple
standard measures proven to be sensitive to drowsiness.

In this section, we present the most common indicators of drowsiness and their stan-
dard measures. It is important to note that, to date, there is no clear consensus on which
indicator is best to use to characterize drowsiness [75]. However, the most used indicators
of drowsiness are the brain activity, eye movements and eye closures, psychomotor perfor-
mance, driving performance, and subjective assessment. The structure of the subsections
below follows that of Table 2.1, which contains an overview of the indicators of drowsiness
and their related standard measures.

Category Indicator of drowsiness Standard measures

Based on
physiology

Brain activity (EEG) θ and α (relative) powers
Eye movements and
closures (EOG)

Mean blink duration and interval;
mean closure and opening speed

Experts scoring (EEG & EOG) KDS; OSS
Heart rate (ECG) LF/HF power ratio of HRV

Skin conductance Mean frequency of skin response;
skin conductance level

Based on
impairments of
performance

Psychomotor performance Number of lapses; mean RT; mean RS
(to a stimulus-based task)

Cognitive performance Mean RT (to a cognitive task)
Driving performance SDLP; TLC; steering wheel variability

Based on
spontaneous

facial expressions

Eye closures PERCLOS; mean blink duration and
interval; mean closure and reopening speed

Pupil diameter
instabilities

Mean and variability of pupil diameter;
power of diameter variations at LF

Yawns Occurrence frequency
Eyebrows rises Correlation with eye openness
Head pose Variability of head roll and pitch

Experts scoring Scale of [104]; scale of [144]
Based on

subjective ratings
Self-assessment

via a questionnaire KSS; SSS; VAS; TSS

Table 2.1 – Overview of drowsiness indicators and their standard measures.

2.5.1 Indicators based on physiology

The state of drowsiness is first and foremost a physiological state. In reality, drowsiness
is manifested by glands releasing various hormones, mainly melatonin [48], as a way to
signal to multiple organs to regulate their physiology and functioning behavior. These
physiological and behavior changes—albeit complex—can be measured via electrodes con-
veniently positioned in contact with the skin. Electroencephalography (EEG) enables the
electrophysiological monitoring of the brain activity, the electrooculography (EOG) enables
the monitoring of the eye movements, the electrocardiogram (ECG or EKG) enables the
monitoring of the heart activity, and skin conductance electrodes enable the monitoring of
the electrodermal activity. Note that, while they are pragmatic and practical to measure
physiological changes in well-controlled laboratory settings, these electrodes-based meth-
ods are not well suited for operational use, i.e., in real-world situations, mostly due to
the occurrence of many artifacts and noises induced by vibrations, movements, and loose
electrodes.
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Brain activity and eye movements

The most substantial changes in physiology are found in the brain activity and eye move-
ments, as measured by the EEG and EOG, respectively. In a general context, different
frequency bands in the brain waves correlate with different physiological states. As such,
delta (δ) waves (0.5–3 Hz) are generally associated (for healthy individuals) to deep sleep,
theta (θ) waves (4–7 Hz) to drowsiness and idling, alpha (α) waves (8–12 Hz) to relaxation
and closed eyes, and beta (β) waves (13–25 Hz) to active thinking and alertness. In a con-
text where an individual is performing a task such as driving, drowsiness has been proved
to be characterized by increased levels of energy in the θ and α bands [4], as well as long
blinks and slow eye movements (SEM) [4, 122]. The standard measures of brain activity
are the θ and α powers, Pθ and Pα, which are generally (1) extracted via spectral analysis,
(2) expressed relative to either the total EEG power [110] or some baseline power measured
in a state of alertness [4], and (3) finally combined in various ways (e.g., the sum Pθ + Pα
or the ratio Pθ+Pα

Pβ
). The standard measures of eye movements include the mean and

standard deviation of blink durations, blink intervals, eye closure speeds, and eye opening
speeds [122]. Furthermore, trained experts can also score drowsiness by visually counting
the symptoms in both the EEG (i.e., θ and α activity bursts) and the EOG (i.e., SEMs).
To this end, several objective scales have been developed, such as the Karolinska Drowsi-
ness Scale (KDS) [7, 55] and the Objective Sleepiness Scale (OSS) [99, 109]. In practice,
these expert-produced scores are each associated with a 20-s epoch, and range from 0% to
100% by steps of 10% for KDS and from 0 to 4 for OSS. Table 2.2 contains the criteria of
OSS.

OSS Cumulative duration
of θ and/or α activities

Blinks and eye
movements

0 Negligible Normal
1 Less than 5s Normal

2
Less than 5s

or
Less than 10s

Slow

Normal

3
Less than 10s

or
More than 10s

Slow

Normal
4 More than 10s Slow

Table 2.2 – The Objective Sleepiness Scale (OSS), adapted from [109].

Heart activity

Changes in physiology also manifest themselves in the heart activity, as measured by the
ECG. Indeed, as drowsiness increases, the heart rate (HR) decreases and the heart rate
variability (HRV) increases [137]. HRV is generally analyzed in the frequency domain via
spectral analysis, and decomposed into a low frequency (LF) band (0.04–0.15 Hz) and a
high frequency (HF) band (0.15–0.4 Hz). The standard measures of heart activity include
the ratio of the LF power to the HF power which decreases as drowsiness increases [137].
However, note that the HR is influenced by various other factors such as age, health
condition, stress, anxiety, and, most importantly, body movements, which increase the
difficulty in linking its variation to drowsiness.
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Electrodermal activity

Drowsiness also leads to changes in the electrodermal activity (also known as skin con-
ductance or galvanic skin response) which relates to the electrical resistance measured via
electrodes on the surface of the skin. This skin resistance fluctuates with sweating, the
level of which is controlled by the sympathetic nervous system, which also autonomously
regulates emotional states such as drowsiness [95]. However, skin conductance is influ-
enced by the environment (temperature, humidity, etc.) and other arousing factors (stress,
anxiety, emotions, demanding tasks, etc.). Therefore, skin conductance is, in practice, an
indicator of unspecified arousal rather than purely drowsiness. However, it becomes a good
indicator of drowsiness under neutral, controlled conditions (e.g., opened eyes and resting
conditions). The standard measures of electrodermal activity include the skin conductance
level and the mean frequency of the (non-specific) skin conductance response [95].

Gold standard

Overall, changes in physiology as captured via the EEG and EOG are recognized as well-
validated indicators of drowsiness. As a matter of fact, their combination is often—but
arguably—called the “gold standard” to estimate drowsiness. Concerning the other phys-
iological indicators such as heart rate, and skin conductance, researchers have certainly
linked them to drowsiness in controlled laboratory settings, but have yet to demonstrate
their ability to automatically detect drowsiness in more complex situations such as driving
in real-world settings [84].

2.5.2 Indicators based on impairments of performance

As by-products of the above physiological changes, the performances of a drowsy indi-
vidual on diverse—and sometimes critical—tasks are impaired. When tasked to respond
quickly to a sudden event, a drowsy individual will inevitably demonstrate a slower reaction
time [13, 24]. Moreover, when tasked to solve a cognitive challenge, a drowsy individual
will likely demonstrate reductions in innovation; flexibility of thinking; the abilities to
avoid distractions and to communicate effectively; and the assessments of the risk, the
task feasibility, and their own strengths and weaknesses [11].

Psychomotor and cognitive performance

In the context of driving, the performance requirements may range from simple to highly
complex depending on the situation. In the most extreme of cases, the driver has to
react quickly to sudden and unexpected situations by first deciding on the best strategy
to adopt, and then executing it in a timely manner. It is thus not surprising that the
standard measures of impairments of performance are related to the reaction time (RT), the
impairment of which is known to be a reliable and very sensitive indicator of drowsiness [10,
13, 14, 40, 42, 88].

For the psychomotor performance, the RT is defined as the time that it takes to react
to a visual or auditory stimulus. A well-known stimulus-based task is the Psychomotor
Vigilance Task (PVT), which has the advantages of being simple and requiring minimal
mental processing. The standard measures of psychomotor performance include the num-
ber of lapses (where a lapse is conventionally defined as a RT greater than 500ms [44]), the
mean RT, the mean reaction speed (RS, corresponding to the reciprocal of the RT), and
the mean of the 10% fastest (or slowest) RTs (or RSs) [13].
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For the cognitive performance, the RT is defined as the time that it takes to solve and
answer a cognitive task. We did not find any standard measure of cognitive performance,
but we found the work of Baranski et al. [11] to be providing an interesting measure of
cognitive performance. Their measure is the mean RT, as measured by the time it takes
to calculate the sum of eight numbers consecutively presented every 1.25s. In this way,
they were able to adjust the task difficulty by selecting sets of different numbers to add
(e.g., a level-one difficulty requires to add numbers in the range 1–2, a level-three in the
range 4–8, and a level-six in the range 12–16). It is important to note that this cognitive
task is not excessively complex. Because, when the task becomes too complex, subjects
will most probably apply compensatory efforts and perform normally [62], and by doing
so render the measure of cognitive performance significantly less sensitive to sleep loss.

Driving performance

In practice, the RT is preferably measured in controlled laboratory settings. However,
measuring the RT is not always feasible or adequate, especially in operational settings
such as on the road. Under these circumstances, the RT task for measuring the RT is
secondary, and would hinder the performance of the main task, i.e., driving. An alternative
approach is to take advantage of the fact that the driver is already performing a task,
i.e., driving, and measure their performance at this task, which is known to degrade with
increasing drowsiness [50, 84, 145]. Standard measures of driving performance include
standard deviation of lateral position (SDLP), steering wheel variability, and time to line
crossing (TLC) [56, 136]. Indeed, as drowsiness progresses, the driver looses his/her ability
(1) to track lanes, (2) to apply breaks and accelerator adequately, and (3) to apply regular
and micro wheel corrections to adjust the vehicle trajectory [84, 145]. As a result, the
driving of a drowsy individual tends to be characterized by delayed, sudden brakings,
and large wheel corrections. While the above standard measures reflect well the erratic
behavior of drowsy driving, they are also heavily influenced by external conditions such
as the weather (snowy, rainy, or sunny), road type (curvy or straight), road condition
(presence of potholes), and traffic (dense or not).

2.5.3 Indicators based on spontaneous facial expressions

We define spontaneous facial expressions as perceptible patterns of facial muscle contrac-
tions (facial expressions) that are not consciously controlled by the individual (hence spon-
taneous). Like impairments of performance, spontaneous facial expressions are closely re-
lated to physiology, and could even be considered as such. Yet, we make the distinction
between (1) changes in physiology and (2) changes in facial expressions as changes in fa-
cial expressions are non-invasively and visually observable from outside the body, whereas
changes in physiology are semi-invasively observable via electrodes in contact with the skin.
In the context of drowsiness, the spontaneous facial expressions of interest mostly include
fast and slow eye closures; pupil diameter instabilities; yawns; eyebrows rises; and—if we
extend our definition to neck muscles—head nods and rolls.

Eye closure

Long and slow spontaneous eye closures are generally considered the indicators of choice to
identify drowsiness [4, 40, 41, 84, 122, 136, 144]. A reason for this is that blinks naturally
occur once every 2–10 seconds. Meaning that eye closures constitute a regular stream of
insights about the physiological impacts of drowsiness, which is a well-suited attribute for
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basing drowsiness characterization systems upon. The most standard measure of sponta-
neous eye closure is the percentage of closure (PERCLOS) [40, 41, 145]. The PERCLOS
is usually defined as the proportion of time (over a given time window) that the pupils are
at least 70% (or 80%) covered by the eyelids. As the level of drowsiness increases, the eye
closures become slower and longer, and the upper eyelid droops, all of which contribute
to an increase of the PERCLOS. Other reliable, standard measures include mean blink
duration [7, 122], mean blink frequency or interval [88, 122], and eye closing and reopening
speed [122].

Pupil diameter

The pupil diameter instability has also been linked to drowsiness. Indeed, several studies
found that the pupil diameter fluctuates at a low frequency with a high amplitude whenever
subjects reported being drowsy [90, 103, 146]. Furthermore, this fluctuation is, most of the
time, preceded by a gradual miosis (i.e., a severe constriction of the pupil) [103], during
which the subject has yet to be aware of his/her own drowsiness. In other words, gradual
miosis is a strong premonitor of drowsiness, and the large, low frequency fluctuation of
the pupil diameter is a reliable indicator of drowsiness. Nevertheless, the pupil diameter is
highly influenced by external lighting conditions, which makes it inappropriate for outdoor,
operational uses. The standard measures of pupil diameter include the average pupil
diameter, the variability of pupil diameter, and the power of pupil diameter variation of
low frequencies (e.g., below 0.8 Hz [146]).

Yawning

Yawning is as much associated to drowsiness, as it is to boredom and to nervousness. One
also yawns when someone nearby yawned recently, hypothetically out of social empathy. To
date, yawning is considered to be “the least understood, common human behavior” [60].
The scientific literature offers multiple theories about the purpose of yawns, the most
probable being: (1) to increase alertness, (2) to reduce the brain temperature so as to
increase its effectiveness, and (3) to show social empathy. Purposes (1–2) are clearly
compatible with the need of leaving states of boredom, nervousness, or drowsiness; whereas
purpose (3) could explain why one yawns when somebody nearby yawned recently. It is
suspected that yawns serve more than one of these physiological functions. In the context
of drowsiness, the study of Vural et al. [140] suggests that yawns occur less often during
the 60s period before a crash. An explanation could be that individuals on the brink of
falling asleep lack the energy to even yawn. In other words, yawns appear to be indicators
of drowsiness, but negative indicators of high levels of drowsiness. The standard measures
of yawning usually consist of the frequency of yawn occurrence.

Eyebrows rising

In the same study, Vural et al. [140] showed that the raising of the eyebrows could be
indicative of drowsiness. More specifically, they showed that drowsy individuals displayed
an increased correlation between eyebrows raising and eye opening. They argue that drowsy
individuals fight the urge to sleep by applying supplementary efforts to keep their eyes open,
and this by raising the eyebrows. The standard measure would be the correlation between
eyebrow positions with eye openness.
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Microsleeps

At some point, a severely drowsy individual will uncontrollably experience microsleeps,
i.e., brief episodes of sleep. The duration of each microsleep is typically of 0.5–1 second [88].
During this brief period, the individual is unable to assess and respond to his/her surround-
ings, which may be enough to cause an accident in itself. During a microsleep, the head
may drop by either nodding downwards or rolling sideways. Therefore, the variability of
head roll [139, 140] and variability of head yaw [94] are considered indicators of microsleeps
and, by extension, of drowsiness.

Qualitative evaluation

As can be seen, there exists a wide variety of indicators of drowsiness related to quantitative
measures of spontaneous facial expressions. However, having measures that are qualitative
(e.g., answering “are the eye closures unusually long?”) rather than quantitative (e.g., PER-
CLOS) may be fundamentally valuable to develop drowsiness characterization systems. To
do so, several authors have developed their own scale so that trained experts could pro-
duce a score of drowsiness by visually inspecting—in a qualitative way—the spontaneous
facial expressions. Wierwille and Ellsworth [144] proposed a linear, gradual scale with ver-
bal descriptions ranging from “not drowsy”, “slightly drowsy”, “moderately drowsy”, “very
drowsy”, to “extremely drowsy”. The trained experts based their scoring decisions on the
eye closure dynamics of the subjects. Nopsuwanchai et al. [104] proposed a bidimensional
scale (Table 2.3). The first dimension of this scale represents the degree of drowsiness
(ranging from 1 to 4, corresponding to “high alertness”, “slightly low alertness”, “very low
alertness”, and “extremely low alertness”, respectively), whereas the second dimension is
whether or not the driver applied efforts to counter drowsiness (binary). To do so, the
trained experts based their scoring decisions on the facial tone, eye closure dynamics, and
countermeasure efforts. Overall, the main concern of such scales is the inter-experts and
intra-experts reliability. Wierwille and Ellsworth [144] showed that sufficiently trained
experts were found to be consistent within and among themselves.

LoD Definition Facial expressions Countermeasure effort

1 High alertness
Normal facial tone (mouth firmly
closed, clear-eye appearance),

normal or fast blinks
No effort

2 α Slightly
low alertness

Facial tone is likely to decrease
(loosing mouth, upper eyelid slightly

falls down), slightly longer blinks period
No effort

2 β
Slightly

low alertness
with struggling

Facial tone is likely to decrease
(loosing mouth, upper eyelid slightly

falls down), burst blinks

Moving mouth,
rubbing face, moving
restlessly in the seat

3 α Very low alertness
Facial tone decreases (mouth opened,
upper eyelid falls down, not properly

focusing the eyes), slow blinks
Lack of activity

3 β Very low alertness
with struggling

Facial tone decreases (mouth opened,
upper eyelid falls down, not properly

focusing the eyes), slow blinks,
facial part movements

Head movements,
conscious blinking,
conscious deep

breathing

4 Extremely
low arousal

Facial tone absolutely decreased,
prolonged eye closure Lack of activity

Table 2.3 – Bidimensional (1–4 and {α, β}) scale of drowsiness, based on changes
in spontaneous facial expressions, adapted from [104].
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2.5.4 Indicators based on subjective ratings

The validity and reliability of self-ratings of drowsiness have already been thoroughly dis-
cussed in Section 2.3. However, we have yet to introduce the different scales that have
been developed to record self-ratings in a standardized manner. The most popular subjec-
tive scale is the Karolinska Sleepiness Scale (KSS) [4, 54, 78]. The KSS consists of nine
verbally-anchored levels, out of which the respondent has to pick the one that most accu-
rately reflects his/her subjective state of drowsiness. The nine KSS levels and their verbal
description, which ranges from “extremely alert” to “very sleepy—fighting sleep”, can be
found in Table 2.4. Similarly, the Stanford Sleepiness Scale (SSS) [67] is a 7-valued scale
(Table 2.5), but it is less popular due to its use of unusual or vague words such as “vital”,
“foggy”, and “woozy”. Another subjective scale is the Visual Analogue Scale (VAS) [98].
In drowsiness studies, the VAS usually takes the form of a 100 mm straight line on paper,
the ends of which correspond to the extreme limits of alertness and drowsiness, i.e., “very
alert” and “very sleepy” [4]. The VAS enables researchers to obtain subjective measures of
drowsiness across a continuum of values as the respondent marks their subjective state on
the 100 mm line. Differently, the Tiredness Symptom Scale (TSS) [124] asks the subject
to indicate how many drowsiness-related symptoms—out of a list of 14—occurred during
the performance of a task, and which ones. The proposed symptoms are as follow [95]:
(1) heavy head, (2) sore eyes, (3) watering eyes, (4) heavy eyelids, (5) heavy legs, (6) gen-
eral weakness, (7) feeling cold, (8) sensitivity to noise, (9) yawning, (10) loss of interest,
(11) poor concentration, (12) irritability, (13) little desire to speak with others, (14) urge
to move around. Upon completion, the TSS score is computed as the total number of
confirmed symptoms. A neat advantage is that the TSS enables researchers to obtain sep-
arate subjective scores of drowsiness based on either cognitive symptoms (items 8, 10–14)
or physical symptoms (items 1–7, 9).

KSS Level description
1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to remain awake
8 Sleepy, some effort to stay awake
9 Very sleepy, great effort to stay awake, fighting sleep

Table 2.4 – The Karolinska Sleepiness Scale (KSS), after [4].

2.6 Operational, real-time drowsiness characterization sys-
tems

As seen in the previous section, there exists a wide diversity of indicators of drowsiness. In
the context of developing an operational drowsiness characterization system, the choice of
which indicator to use depends on whether it will be used (1) as an input to the system,
or (2) as a ground truth of drowsiness to train the system and evaluate its performance.

When used as an input, the indicator has to be pragmatically and automatically mea-
surable in operational settings, which is the case for driving performance, facial expres-
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SSS Level description
1 Feeling active, vital, alert, or wide awake
2 Functioning at high levels, but not at a peak; able to concentrate
3 Awake, but relaxed; responsive but not full alert
4 Somewhat foggy, let down
5 Foggy; loosing interest in remaining awake; slowed down
6 Sleepy, woozy, fighting sleep; prefer to lie down
7 No longer fighting sleep, sleep onset soon; have dream-like thoughts

Table 2.5 – The Stanford Sleepiness Scale (SSS), adapted from
https://web.stanford.edu/∼dement/sss.html.

sions, and eye closure dynamics. However, other indicators are generally inadequate for
operational use as they would either hinder the performance of the primary task (e.g., a
secondary psychomotor/cognitive task), or be afflicted with a low signal-to-noise ratio
(e.g., EEG, EOG, ECG, and pupil diameter).

When used as a ground truth, the scientific community has yet to reach a clear con-
sensus on which indicator is the best [75]. Therefore, the choice of indicator is typically
based on its ease of use, and on whether the study protocol enables its acquisition or not.

The below subsections review the state of the art on operational drowsiness charac-
terization systems, the development of which is the main purpose of the present thesis.
We focus on two important, yet essentially independent, design aspects: how to produce
a ground truth of drowsiness, and what kind of system architecture to use. Furthermore,
for conciseness, we limit the scope of this review to drowsiness characterization systems
that are based on ocular features. We summarize this state-of-the-art review in Table 2.6,
which can be found at the end of this chapter.

2.6.1 Design of ground truth of drowsiness

The scientific literature displays a large variety of approaches to producing a ground truth
of drowsiness. In general, a ground truth of drowsiness is produced by mapping an indicator
of drowsiness (or, to be more accurate, a measure of this indicator) to a quantized Level of
Drowsiness (LoD) taking 2 (a binary LoD) or n (n-valued LoD) distinct integer values. In
this way, the task of characterizing drowsiness can be formulated as a classification problem,
and be tackled using well-known machine learning models trained in a supervised manner.
Note that the ground-truth LoD could be continuous, the task of characterizing drowsiness
would then be formulated as a regression problem.

The most straightforward approach to produce a ground truth of drowsiness is by means
of a subjective scale, such as those presented in Section 2.5.4. Following this approach,
Wang and Xu [141] and Ebrahim et al. [45] asked their subjects to self-rate their own
LoD in terms of the KSS. To reduce the number of levels, Wang and Xu [141] associated
KSS values of 1–6 to “alertness”, a KSS value of 7 to “moderate-level drowsiness”, and
KSS values of 8–9 to “high-level drowsiness”. Similarly, Ebrahim et al. [45] considered the
subjects reporting a KSS value in the range 1–6 as “alert”, and 7–9 as “drowsy”.

Another approach is to take notes of when breakdowns of driving performance occur.
Following this approach, Vural et al. [139, 140] and Liang et al. [87] labeled the drivers
as drowsy whenever a line crossing occurred, either in a driving simulator or on straight
segments of real roads, respectively. More precisely, Vural et al. [139, 140] considered
as “drowsy” the minute prior to each line crossing, whereas Liang et al. [87] considered

https://web.stanford.edu/~dement/sss.html
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as “drowsy” any minute during which a minimum of one line crossing occurred. In all
other cases, the subject was considered as “alert”. This performance-based approach has
the significant advantage of producing an LoD that is both objective, and meaningful for
practical use. The annotation of such a ground truth is automatic in a simulator, and fast
and simple on real roads.

A family of approaches involves having trained experts score the LoD by visually search-
ing for specific indicators of drowsiness, either in brain signals or in the face video. Along
these lines, François et al. [51] had one trained expert score the 11-valued LoD according to
the KDS, i.e., by looking, in the EEG and EOG signals, for neurophysiological indicators of
drowsiness such as alpha rhythm, theta activity, and slow eye movement. Similarly, Liang
et al. [87] had one trained expert label each minute either as “drowsy” (if there was at least
one burst of theta activities lasting longer than 3 seconds), or as “alert” (if there was none).
García et al. [53] had three psychologist experts subjectively score the binary LoD by a
majority vote from the video of the driver’s face. Also from the face video, Matsuo and
Khiat et al. [94] and Nopsuwanchai et al. [104] each had three trained experts score, by
majority vote, a 6-valued LoD defined on a bidimensional scale crafted by Nopsuwanchai
et al. [104] (see Section 2.5.3).

One last approach is to establish a list of facial expressions indicative of drowsiness, and
then have subjects act them out according to a pre-defined script. In this fashion, Weng
et al. [143] constructed the Drowsy Driver Detection (DDD) dataset, upon which Shih and
Hsu [125] and Huynh et al. [72] developed and tested their systems. To enact “drowsi-
ness”, the subjects were asked to act out the following facial expressions: (1) yawning, (2)
high PERCLOS (i.e., long and frequent eye closures), (3) high PERCLOS then frequent
nodding, and (4) a combination of yawning, high PERCLOS, and frequent nodding. To
enact “alertness”, the subjects were asked to act out the following facial expressions: (1)
normal driving (i.e., low PERCLOS), (2) surprised face and bursting out laughing, and
(3) combination of talking, laughing, and looking sideways. This approach has the ad-
vantage of having the possibility to produce an LoD in both controlled conditions and
real-world conditions, but has the significant disadvantage of being based on pre-defined
and non-spontaneous facial expressions. Training on non-spontaneous facial expressions is
problematic for operational use, as a system trained with such ground truth may not be
able to detect subtle, less exaggerated facial expressions that would in fact be indicative
of actual drowsiness.

2.6.2 Design of system

Drowsiness characterization systems generally adopt a cascade structure, consisting in (1)
extracting an intermediate representation, e.g., a feature vector or a sequence of feature
vectors, from the input sequence; and then (2) characterizing drowsiness, as defined by the
selected type of ground truth of drowsiness. As stated previously, we focus the present
state-of-the-art review on systems that are based on ocular features, i.e., systems that use,
at the very least, ocular features as their intermediate representation.

Extraction of the intermediate representation

For most drowsiness characterization systems, the input consists of a sequence of face
images. Face images can be acquired remotely, which is convenient and non-intrusive, and
they can be processed to extract a wide range of indicators of drowsiness (see Section 2.5.3).
On the downside, extracting the semantic information from an image remains a task that
is computationally expensive and far from being straightforward.
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The systems of Wang and Xu [141] and García et al. [53] extract a vector of features
related to eye closure dynamics (i.e., ocular features) and driving performance (i.e., driving
features). Driving features (i.e., average speed, SDLP, variability of steering wheel, etc.)
are automatically recorded via either the driving simulator software [141], or multiple
in-car sensors in real-roads conditions [53]. The ocular features of Wang and Xu [141]
(i.e., PERCLOS, average blink duration and frequency, and average pupil diameter) are
automatically measured with the proprietary Smarteye Pro software, whereas those of
García et al. [53] (i.e., PERCLOS) are extracted (1) by using adaptive image filters, and
then (2) by fitting a Gaussian function on the vertical profile of the image variance.

In addition to the PERCLOS, Matsuo and Khiat [94] incorporates the variability of the
head center position (i.e., head pose features) and the frequency of subsidiary behaviors
into the intermediate representation. Subsidiary behaviors are defined as “behavioral events
that are unrelated to and unnecessary for the main task of driving” [94], which include
yawning, stifling a yawn, exhaling and breathing deeply, touching one’s face (i.e., hand
motion), flexing one’s neck or one’s shoulders, adjusting one’s pose, and closing one’s eyes
for a long duration. Their extraction algorithm involves tracking facial landmarks [147] to
produce the ocular and head pose features, and using an array of specialized, data-driven
detectors to count the frequency of subsidiary behaviors.

With investigative goals in mind, Vural et al. [139, 140] do not restrict themselves
to eye closure dynamics, but instead evaluate the relevance of more than 20 facial action
units (AUs) codified by the Facial Action Coding System (FACS) [46]. These facial actions
include inner and outer brow raising (AU 1 and 2); blinking and eye closing (AU 45); lid
tightening (AU 7); jaw dropping (AU 26); nose wrinkling and nostril compressing (AU 9 and
39); cheek raising (AU 6); lip puck, funneling, and pressing (AU 18, 22, and 24); and upper
lip raising (AU 10). In both work, the system automatically extracts the facial AUs using
algorithms based on Gabor filters, feature selection, and machine learning classifiers; the
implementations of which are bundled into the Computer Expression Recognition Toolbox
(CERT) [12]. In their work of 2009 [140], they concatenated the mean intensity of each of
the 31 AUs into a feature vector as the intermediate representation. They observed that
drowsy individuals tend to display a correlation between eyebrows raising and eye opening,
as they “raised their eyebrows in an attempt to keep their eyes open”. Furthermore, they
also found that yawning occurred less often in the 60-s period prior to an accident (i.e., line
crossing), suggesting that yawns are a negative indicator of drowsiness in situations of
most extreme drowsiness. However, these appealing findings still need to be confirmed via
a study at a much larger scale than on 4 subjects. They showed that the most discriminative
features are related to eye blink and eye closure, followed by outer brow raise, frown,
chin raise, and nose wrinkle. One year later, in 2010, Vural et al. [139] incorporated
aspects of temporal dynamics by applying 306 temporal Gabor filters on each of 20 AUs,
and concatenated their magnitudes, real components, and imaginary components into the
intermediate vector. They showed that the most discriminative features were related to
eye closing, lip puck, head rolling, nose wrinkling, and lid tightening.

In a further intent to incorporate temporal dynamics, Weng et al. [143] devise their
intermediate representation to be a sequence of feature vectors, rather than a feature
vector. To do so, their extraction algorithm proceeds in two steps. First, they extract
low-level spatiotemporal features (related to the eye, mouth, and head pose) based on
face landmarks aligned on the face image via the supervised descent method of Xiong and
Torre [148]. Then, they generate the sequence of high-level features with three separate
deep belief networks (DBNs), each applied at a frame level. These high-level features con-
sist of the probabilities of stillness, nodding, and looking aside for the head pose features;
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the probabilities of stillness, laughing/talking, and yawning for the mouth features; and
the probabilities of normal and sleepy eyes for the eye features. Having such sequence of
feature vectors, rather than a feature vector, has the advantage of enabling the drowsiness
model to discover the most discriminative temporal patterns.

Likewise, the system of Nopsuwanchai et al. [104] extracts a sequence of normalized
histograms of five blink categories, i.e., a sequence of ocular features. The five blink
categories differ from one another according to their structural characteristics, such as
their amplitudes, their closing durations, and their opening durations. The intermediate
representation is obtained in three steps. First, the sequence of normalized eyelids distance
is produced by the alignment of eyelid landmarks via an Active Shape Model (ASM) [34].
Second, the blinks are categorized using five hidden Markov models (HMMs), one for each
category. Third, the normalized histograms of blink categories are computed within a
sliding window.

Shih and Hsu [125] use existing algorithms to extract the intermediate representation.
As such, they pre-processed each face image with a pre-trained Convolutional Neural Net-
work (CNN), i.e., VGG-16 [127], so as to produce, as an intermediate representation, a
sequence of VGG-16 features. Note that the features of such an intermediate sequence are
not easily interpretable.

To further push the concept of discovering patterns in the temporal data, the next step
is to map directly the input to the output, i.e., to remove the intermediate representation.
In this way, the learning algorithm is not limited to discovering patterns in a sequence of
pre-defined features. Instead, the learning algorithm has access to the sequence of raw data,
which may enable the discovery of a better intermediate representation than the ones that
one would design manually. However, this potential increase in discovery capability comes
at the cost of more complexity in the training of the system, since the input dimensionality
and the required amount of data grow larger. Adopting such approach, the system of
Huynh et al. [72] consists in a three-dimensional CNN (3D-CNN), which directly maps the
sequence of raw face images into a binary LoD.

In some cases, instead of face images, the vertical EOG is used as input by drowsi-
ness characterization systems. The EOG provides a simpler way of obtaining eye closure
dynamics than a sequence of face images. However, interpretation of the EOG may be
ambiguous at times since the movements of the eyeball and of the eyelids can manifest
in a very similar fashion in the EOG signal. Situations can be found where a downward
glance of a few seconds may be misinterpreted as an eye closure of the same duration, even
visually by experts. Besides, the EOG requires the wearing of electrodes, which would
make EOG-based technologies unlikely to be accepted by the operators.

Ebrahim et al. [45] extract, from each blink individually, 8 amplitude-based features
and 10 duration-based features by applying thresholds on the derivative of the vertical EOG
signal. Amplitude-based features of a blink include its amplitude; its energy; its average
and maximum opening and closing speed; and ratios between some of these quantities.
Duration-based features of a blink include its frequency; its duration; its closing, closed,
and opening durations; PERCLOS (here defined as the ratio between blink duration and
closed duration). The vectorized intermediate representation is then produced by averaging
these blink features over one minute.

In other cases, the input of drowsiness characterization systems is provided via an
instrumented pair of eyeglasses. Even though wearing a pair of eyeglasses may be incon-
venient for some people, it is well adapted for applications where the wearer has to be
mobile, i.e., able to move freely in his/her environment. Furthermore, this solution has the
advantages of producing measures or images of the eye that are stable (the head-mounted
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sensors perfectly follow the head) and clean (the glass can filter the sun away with a proper
coating).

For instance, the system of Liang et al. [87] produces, as an intermediate representa-
tion, a vector of ocular features (i.e., amplitude-velocity ratio and PERCLOS) and driving
features (i.e., SDLP and standard deviation of steering wheel position). While the driving
features were measured via automotive sensors, the ocular features were measured via eye
reflectometry by the Optalert system [76]. In practice, the Optalert system consists of a
pair of eyeglasses equipped with infrared light emitters and transducers. At a frequency of
500 Hz, the emitters send pulses of low-power infrared light over the eye and eyelids. The
emitted light is reflected on the complex, multi-layered surface composed of the cornea,
iris, sclera, conjunctiva, and skin of the eyelids, each of which has their own reflectance,
distance, and orientation with respect to the transducers. The characteristics of this com-
plex surface mostly vary with the eyeball and eyelids movements, making the intensity of
the reflected light mostly a function of the eye configuration. As a result, the transducers
convert the reflected light into an electrical signal that is mostly sensitive to eyeball and
eyelid movements, which allows the characterization of eye closure dynamics.

In a like manner, François et al. [51] use the Phasya system to extract a vector of
ocular parameters, such as the PERCLOS, mean blink duration, and the percentage of
microsleeps (with a microsleep being defined as an eye closure longer than 500ms). In
practice, the Phasya system consists of a pair of eyeglasses equipped with an infrared
LED, a hot mirror, and a high-speed infrared camera, so as to produce eye images at
a framerate of 120 FPS. On the upside, eye images provide more information about the
state of the eye than eye reflectometry, such as the pupil diameter and gaze orientation.
The latter may be of great help in disambiguating whether the eye is closed or looking
down, as both cases manifest themselves with a smaller distance between the eyelids. On
the downside, eye images require greater computation power to be processed, which is a
challenge on a pair of eyeglasses.

Characterization of drowsiness

The task of characterizing a physiological state such as drowsiness from a set of imperfect
indicators is complex and challenging. Therefore, drowsiness characterization systems
generally use machine learning models trained in a supervised manner. Of course, the
choice of which model to use depends on whether the intermediate representation is a
feature vector or a sequence of feature vectors. For processing a feature vector, popular
models include Artificial Neural Network (ANN) [45, 53, 94, 141], Support Vector Machine
(SVM) [45], and logistic regression [87, 139, 140]. For processing a sequence of feature
vectors, popular models include Hidden Markov Model (HMM) [104, 143], and Long Short-
Term Memory (LSTM) network [125]. For processing a sequence of raw face images, Huynh
et al. [72] use a 3D-CNN.

2.6.3 Comparison of performance

The comparison of performance of the reviewed systems requires some caution. Indeed,
the various studies differ in many ways, including: the number of subjects, the type of task
performed by the subjects, the acquisition settings, the evaluation procedure, the reported
performance metric(s), and the ground truth of drowsiness. Furthermore, the unavailability
of datasets and of trained models makes fair comparisons infeasible in practice.

Nevertheless, we provide the classification performances of the reviewed systems in
Table 2.7, which can be found at the end of this chapter. We observe that some studies
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(e.g., Garcìa et al. [53]) report significantly higher performance than others (e.g., Ebrahim
et al. [45]). Considering that all the reviewed systems are based on ocular features, these
differences in performance are most probably due to the differences in ground truth. Indeed,
as we have seen, there exists a wide range of approaches to annotating the ground-truth
LoD. In particular, some of these annotated ground-truth LoDs are intrinsically more
correlated with the eye closure dynamics than others. For instance, Garcìa et al. [53]
annotate the ground-truth LoD via three experts visually looking for behavioral signs of
drowsiness in the face video, which is more correlated with the eye closure dynamics than
ground-truth LoDs annotated from physiology-based indicators or subjective indicators.
It is therefore expected that using a ground truth that is strongly correlated with the eye
closure dynamics will lead to higher performance than using a ground truth that is not as
much.

2.7 Conclusion

Drowsiness is the intermediate physiological state between fully awake and asleep. The
continuous and time-varying level of drowsiness is determined by diverse factors including
time of day; sleep quantity, quality, and schedule; sleep disorders; task type and length;
age; and—most probably—genetics, as supported by the difference in vulnerability to
drowsiness across individuals. Generally, educated and healthy individuals are able to
reliably assess their own level of drowsiness when it is induced by acute sleep deprivation.
However, when the sleep loss turns chronic, due to either sustained sleep restriction or
sleep disorders, which are both very commonly experienced in the general population, this
self-assessment of drowsiness has been shown to become less reliable. When experiencing
drowsiness at the wheel, the best countermeasure is to cease driving and to take a short, 15-
min nap. The intake of caffeine (150 mg) is also reliable countermeasure against drowsiness,
and can even be combined with a nap. On the opposite, taking a break, turning on the
radio, and opening the windows are not reliable countermeasures and only provide—at
best—temporary arousal.

The level of drowsiness is not a precisely and numerically defined quantity that can
be directly measured. Therefore, the practical approach to estimate the onset and level of
drowsiness is by means of measurable, yet imperfect, indicators of drowsiness. There exists
a wide range of indicators, including brain activity, spontaneous eye closure dynamics,
impairments of performance, and subjective ratings. The most standard measures for
brain activity are the α and θ activity powers; the ones for eye closure dynamics are the
PERCLOS, mean blink duration and interval, and mean closure and opening speeds; the
ones for psychomotor performance are the number of lapses, mean RT, and mean RS;
the ones for driving performance are the SDLP and steering wheel variability; the one for
subjective ratings is KSS.

In the context of developing automatic, real-time drowsiness characterization systems,
the choice of which indicator to use depends on whether it will be used (1) as an input
to the system, or (2) as a ground truth of drowsiness to train the system and evaluate
its performance. Only a subset of the indicators are well suited to be used as an input
(e.g., driving performance, spontaneous facial expressions, and eye closure dynamics) as
they require to be pragmatically and automatically measurable in operational settings. The
brain activity, subjective ratings, and psychomotor performance are well suited to used as
a ground truth, but there is still no clear consensus on which one is best to use. Generally,
the ground truth of drowsiness consists of a quantized Level of Drowsiness (LoD) taking 2
or n distinct integer values annotated using various approaches.
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Automatic, real-time drowsiness characterization systems usually adopt a cascade struc-
ture, which consists in (1) extracting an intermediate representation, e.g., a feature vector
or sequence of feature vectors; and then in (2) characterizing drowsiness, using machine
learning models trained in a supervised manner. Compared to systems with a single
module, systems with a cascade structure have the key properties of having greater in-
terpretability, modularity, and data efficiency. Interpretability facilitates the explanation
of the system’s decisions, which is of great importance since wrong decisions—although
intrinsically unavoidable—should be explainable to humans for (1) the legal and public
acceptance of the technology, and for (2) its future improvements, in particular for safety-
related applications where human lives are at stake. Modularity enables (online and offline)
adaptations to how the intermediate representation is extracted so as to perform better in
real-life, operational settings, while being able to keep the characterization of drowsiness
as is, i.e., as developed in laboratory settings. Data efficiency enables the system to obtain
better performance with an equivalent, limited amount of data.

In the next chapters, we describe three automatic, real-time drowsiness characterization
systems. We made the following design choices for our systems:

1. the input must be a sequence of face images;

2. the intermediate representation must be based on the eye closure dynamics;

3. the ground truth of drowsiness must be based on responsiveness (i.e., psychomotor
performance) indicators of drowsiness, acquired while performing a PVT.

We made choice (1) so that our systems are well-suited for operational use, choice (2)
because eye closure dynamics is the most reliable indicator of drowsiness based on sponta-
neous facial expression [4, 40, 41, 84, 122, 136, 144], and choice (3) because impairments
of performance is a reliable indicator of drowsiness [10, 13, 14, 40, 42, 88] that has the
advantages of being objectively, automatically, and densely annotated.
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Chapter 3

Sleep-deprivation dataset

This chapter describes the sleep-deprivation dataset that we collected for the purpose of
developing automatic, real-time drowsiness characterization systems based on face images.
Section 3.1 motivates our sleep-deprivation dataset, and discusses the design choices of the
study protocol. Section 3.2 details the acquisition of data. Section 3.3 informs about the
availability of our dataset to the research community. Section 3.4 discusses the ecological
validity of our dataset, i.e., the extent to which the conclusions and findings drawn from our
laboratory-acquired dataset can be generalized to real-life, operational settings. Section 3.5
highlights some limitations of our dataset. Section 3.6 analyzes the statistical distribution
of drowsiness data in our dataset, i.e., the three recorded ground truths based on physiology,
performance impairments, and subjective ratings. Section 3.7 concludes this chapter.

3.1 Motivation and design choices

The main goal of this thesis is the development of drowsiness characterization systems
based on face images. To achieve this goal, one of the most crucial components is a well-
designed dataset, which must—at the very least—contain the following ingredients:

1. the input that will be fed to the system in operational settings, i.e., the video of the
face;

2. the output that the system should learn to produce, i.e., the ground truth of drowsi-
ness derived from some indicator(s) of drowsiness.

Ideally, the dataset is acquired in conditions as close as possible to real-life, operational
settings, meaning in a real car, on real roads, and with real, spontaneous drowsiness. How-
ever, in practice, several considerations make this difficult to achieve. First, as seen in
the previous chapter, several indicators of drowsiness are not easily measurable in real
conditions, such as brain signals and psychomotor performance. Second, inserting drowsy
drivers into the road traffic is dangerous, unethical, and would require strong security pre-
cautions (e.g., an alert copilot ready to take the commands of the vehicle at any time).
Acquiring the dataset in laboratory, controlled conditions however eliminates these incon-
veniences, and opens more possibilities to the development of drowsiness characterization
systems. In practice, multiple design choices still have to be made in order to produce a
sleep-deprivation dataset.

26
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3.1.1 Type of ground truth of drowsiness

Some design choices relate to the ground truth of drowsiness: which indicator(s) of drowsi-
ness we should acquire, and which task the participants should perform. In our case, we
decided to gather as many indicators as possible, so as to gain as much freedom as possible
in our research and development. We decided to record three indicators of drowsiness:
an objective physiology-based indicator, an objective performance-based indicator, and a
subjective indicator. The tasks of (1) performing a Psychomotor Vigilance Task (PVT)
and (2) driving in a driving simulator can both be performed in adequate conditions for
measuring such indicators. However, our choice leaned towards the PVT because its associ-
ated responsiveness performance metric is more standard, and more practical to work with
than driving performance metrics. Moreover, the PVT’s short duration of 10 minutes sub-
stantially simplifies the elaboration of the study protocol. The physiology-based indicator
consists of the polysomnography (PSG) signals, i.e., the electroencephalography (EEG),
electrooculography (EOG), electromyography (EMG), and electrocardiography (ECG) sig-
nals, acquired during the PVT via electrodes in contact with the skin. The performance-
based indicator consists of the reaction times (RTs) to visual stimuli displayed during the
PVT. The subjective indicator is obtained by asking the subjects to self-assess their own
drowsiness via the Karolinska Sleepiness Scale (KSS) prior to each PVT. It is important
to note that the physiology-based and performance-based indicators were recorded in a
perfectly time-synchronized manner with the face images during the PVT.

3.1.2 Inducement of drowsiness

Some design choices relate to how much drowsiness to induce, and in which manner. In
our case, we aim to induce levels of spontaneous drowsiness in a range as wide as possible.
In this way, the dataset contains realistic data with states ranging from full alertness,
moderate drowsiness, to extreme drowsiness. To this end, we chose to induce drowsiness
via acute sleep deprivation rather than accumulated sleep restriction. Multiple reasons
justify this decision. First, acute sleep deprivation enables high levels of drowsiness to be
reached quickly. Second, accumulated sleep restriction would require to be sustained for
long periods, which would be difficult to enforce and far more burdensome for the subjects.
Third, it has been shown that subjects self-rate their drowsiness more reliably when acutely
sleep deprived than when chronically sleep restricted [43]. On top of the sleep deprivation,
several factors may help in further reaching high levels of drowsiness, such as performing
a monotonous task in the dark, in a quiet and isolated room, and at specific times of
the day. The latter is particularly important given that the circadian and homeostatic
processes regulate together the most adequate times for sleep, which correspond to the
most vulnerable times for drowsiness. Therefore, we carefully selected the right times of
day during which the PVT should be performed at so as to favor data of drowsiness.

3.1.3 Choice of participants

Some design choices concern the inclusion and exclusion criteria for the subjects partic-
ipating in the study. In our case, we wanted a dataset composed of healthy subjects,
meaning subjects without any sleep disorders, drugs addictions, or alcohol dependencies.
The reasons are diverse. First, we wanted to dissociate the drowsiness induced by acute
sleep deprivation from the one induced by these factors. In this way, we could study the
drowsiness dynamics of healthy individuals before studying the one of patients. Studies
incorporating patients suffering from sleep disorders would be of major importance since
sleep disorders affect a significant part of the general population. Second, we wanted to
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obtain baseline data of alertness, so as to (1) have a wide range of levels of drowsiness
and (2) be able to normalize inputs and ground truths considering that many indicators of
drowsiness have significant inter-subject variability (see previous chapter). Patients with
sleep disorders would not display such baseline data of alertness as they typically experi-
ence basic levels of drowsiness higher than those of healthy individuals. Finally, we had no
exclusion criterion based on the age of the participants. However, it turned out that only
young individuals (mostly students from our university) were interested in participating in
our study.

3.1.4 Type of face images

Some design choices concern what type(s) of face images to record as inputs, i.e., color
images, near-infrared intensity images, and/or range images, and with which camera. In
our case, we needed types of face images that could be acquired in a lighted room as well
as in total darkness, and in accordance with our study protocol and future operational
use. Furthermore, we wanted—at the beginning—to explore the benefits of using 3D data
in the context of facial expressions analysis. Taking all these requirements into account,
we chose to acquire near-infrared intensity and range images directly using a 3D range
camera, the best at the time in terms of resolution and image quality being the Microsoft
Kinect v2 sensor.

3.2 Data acquisition

3.2.1 Study protocol

Thirty-five young, healthy subjects (14 males, 21 females), aged 23.3 ± 3.6 years (mean
± standard deviation), participated in our study that extended from November 2014 to
June 2015. Our study protocol—approved by the Ethics Committee of the University
of Liège—led each subject to perform three 10-minutes PVTs over two consecutive days,
under conditions of increasing sleep deprivation conditions induced by acute, prolonged
waking.

The protocol required subjects without any alcohol dependencies, drug addictions, or
sleep disorders. Each was asked to maintain a normal sleep pattern for the week prior
to taking the first PVT, and to have a full night sleep (of 7–8 hours at least) just before
this PVT. Each was also asked to maintain a sleep diary during that week, to allow us to
verify that the sleep requirements were met. Once a subject took the first PVT, he/she
was not allowed to sleep until after the third and last PVT, thereby inducing a total sleep
deprivation of 28–30 hours. We organized several sessions of three PVTs, each with a few
subjects (typically 2–3 subjects) successively taking each PVT.

The details of the tests follow. Day 1. At 8:30 (in 24 hour time), the scheduled subjects
arrived at the laboratory, and were equipped with the PSG electrodes. Between 10:00 and
11:00, they (successively) carried out the first PVT, called PVT1. Afterwards, they were
equipped with wrist actigraphs to verify that they would not sleep, and were allowed to
leave the laboratory. From 12:00 on, they were not allowed to consume any coffee, tea,
energy drinks, or other stimulants. At 20:30, they returned to the laboratory, and were
equipped with the PSG electrodes. They stayed overnight in the laboratory, and until
the end of the tests. During the night, they were allowed to use multimedia devices, to
play card and board games, to interact with the laboratory staff, and to consume the soft
drinks and biscuits that we provided. Day 2. Between 3:30 and 4:00, they carried out the
second PVT, called PVT2. At 8:30, we provided breakfast. Between 12:00 and 12:30, they
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Subject free Subject at the lab.

PVT1 PVT2 PVT3

No stimulant

Normal sleep Sleep deprivation

Subject free + actigraph Subject at the lab.

7:00 8:30 10:00 11:00 12:00 20:30 3:30 4:00 12:00 12:30

DAY 1 DAY 2

Figure 3.1 – Pictorial summary of the data acquisition schedule.

carried out the third PVT, called PVT3. This concluded the tests. We strongly advised
the participants not to drive home by themselves, and we offered alternative transportation
solutions when necessary. Figure 3.1 depicts the data acquisition schedule for each subject.

The PVTs were all performed in a quiet, isolated laboratory environment without any
temporal cues (e.g., watch or smartphone). The room lights were turned off for PVT2 and
PVT3. For a 15-minute period before each PVT, we instructed the subjects to part with
their phones, computers, and any other screen devices. At the beginning of each PVT, we
asked the participant to self-estimate their own level of drowsiness in terms of the KSS.
During each PVT, we also recorded the PSG signals, the RTs (in milliseconds), and the
face images of the subject, all in a perfectly time-synchronized manner. All data were
collected anonymously.

3.2.2 Psychomotor Vigilance Task (PVT)

The PVT has become one of the most widely used tools to measure performance impair-
ments induced by drowsiness. Multiple studies have shown its validity, reliability, and
extreme sensitivity to sleep deprivation [13, 44], and by extension to drowsiness. The PVT
gives the RTs to visual or auditory stimuli that occur at random inter-stimulus interval.
Compared to other tests, the PVT has the advantage of being almost independent of ap-
titude (low inter-subject variability) and learning (high intra-subject reproducibility) [44].
In our study, we implemented our own version of the 10-minute PVT, adapted from the
one proposed by Basner and Dinges [13]. The subjects were instructed to monitor a red
rectangular box over a black background on a computer screen, and to press a physical,
response button as soon as they noticed the appearance within the box of a yellow stimulus
counter (expressed in milliseconds). When the button was pressed, the counter stopped
and the achieved RT remained displayed for 1 second. RTs below 100 milliseconds were
discarded as false starts (errors of commission). After 30 seconds without any response,
the counter timed out and displayed a yellow “overrun” message inside the box for a few
seconds. The inter-stimulus interval, defined as the time interval between the last response
and the appearance of the next stimulus, was varied randomly between 2 and 10 seconds.
Furthermore, each time the achieved RT was stopped being displayed, the red box position
was randomly varied among five positions on the computer screen, i.e., at its center and
at its four corners. In this way, the face images contain more variability in head pose and
eye gaze direction, in a similar manner to what would be found in real-life settings.

3.2.3 Polysomnography (PSG) signals

The PSG signals, i.e., the EEG, EOG, ECG, and EMG, are regarded as the “Gold Standard”
to study sleep and, in particular, to score sleep stages [112]. As seen in the previous chapter,
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such PSG signals are also useful to characterize drowsiness since the activity in the alpha
(8–12 Hz) and theta (4–8 Hz) bands in the EEG signal, and the slow eye movements in the
EOG signal are strong, reliable indicators of drowsiness when performing a task [4, 54]. In
our study, we recorded the following channels via electrodes and the portable, laboratory
Embla Titanium system, all sampled at a frequency of 512 Hz:

• EEG: Fz, Pz, Cz, C3, and C4 channels, all referenced to the A1 channel, via electrodes
positioned on the scalp following the international 10–20 system [65];

• EOG: two channels for the vertical EOG, via electrodes positioned above and below
the right eye; and two channels for the horizontal EOG, via electrodes positioned at
the right and the left of the eyes;

• EMC: two channels, via electrodes positioned below the chin;

• ECG: two channels, via electrodes positioned on the chest;

• PGND: one ground channel, used for common mode rejection, via an electrode posi-
tioned on the scalp.

3.2.4 Face images

The face images were acquired with the Microsoft Kinect v2 sensor, which provides—for
each video frame—a color image, and a pair of aligned, near-infrared intensity and range
images. Since drowsiness characterization systems must generally operate in all lighting
conditions, including in total darkness, we only retained the intensity and range images,
which are both related to active near-infrared illumination. The near-infrared intensity and
range images are of size 512×424 pixels, have 16-bit values, and are recorded at 30 FPS.
Note that a framerate of 30 FPS corresponds to a temporal resolution of ∼ 33ms, which is
sufficient as (1) the duration of a blink is on average greater than 100ms and (2) drowsiness
is characterized by long blinks. The camera was positioned just below the computer screen
used for the PVTs, at a distance of about 0.7 m from the subject. Figure 3.2 shows pairs
of example of near-infrared intensity and range images.

3.2.5 Loss of data

Due to some technical issues, only 88 PVTs (out of 105) from 32 subjects (12 males, 20
females) turned out to be usable. In particular, the PVT1 data was lost for subjects 9, 11,
31, and 32, and never occurred for subjects 7 and 24; the PVT2 data was lost for subjects
9, 12, 14, 31, and 32; and the PVT3 data was lost for subjects 9, 14, 15, 16, 31, and 32.

3.3 Availability to the research community

We made available to the research community the data for a subset of 14 subjects via
the “ULg Multimodality Drowsiness Database” [91], also called “DROZY”. The DROZY
dataset contains all the modalities acquired during the study, i.e., the intensity and range
images from the Kinect v2 sensor, the KSS scores, the PSG signals, and the PVT data,
as well as 2D (in pixels) and 3D (in millimeters) annotations of 68 face landmarks (1)
for 720 hand-selected frames via manual annotations and (2) for all frames via automatic
annotations using subject-specific constrained local models [121]. Instructions for obtaining
the DROZY dataset can be found on the associated website (http://www.drozy.ulg.ac.be).

http://www.drozy.ulg.ac.be
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Figure 3.2 – Examples of cropped, near-infrared, intensity (top) and range (bot-
tom) images of the face obtained with the Kinect v2 sensor. For visualization
purposes, the range images were monochromatically colorized with colors ranging
from white (for the closest point) to black (for points at least 18cm farther than

the closest point).

In addition, we made available to the research community a subset of the data for
all 32 subjects alongside the Massoz et al. [93] article. This data contains only two
components: (1) the sequences of eyelids distances produced by the presented system,
and (2) the PVT data. Links to this data can be found on the associated website
(http://www.telecom.ulg.ac.be/mts-drowsiness).

3.4 Ecological validity

As stated previously, while the dataset should ideally be acquired in real-life, operational
settings, it is instead acquired—for practical reasons—in controlled, laboratory settings.
Therefore, an important topic of discussion is about the ecological validity of such lab-
oratory dataset, i.e., the extent to which the conclusions and findings drawn from such
laboratory dataset can be generalized to real-life, operational settings. Evaluating this
ecological validity is far from being straightforward, and is really tackled by very few pub-
lications [61, 108]. We would recommend that the scientific community conduct further
research so as to be able to evaluate this validity more thoroughly. Nevertheless, here is a
list of key points, in the form of questions and first answers, so as to feed this discussion.

• Are the RTs measured in a PVT indicative of real-life performance? Yes, the RTs
recorded in laboratory conditions are considered as valid and meaningful (though not
absolute) measures of real-life performance [44, 107, 108]. Indeed, the PVT requires

http://www.telecom.ulg.ac.be/mts-drowsiness
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a sustained attention and quick responses to sudden events, just like driving and
many other tasks in the real world.

• Do performance impairments induced by (acute) sleep deprivation generalize to ones
induced by other type of sleep loss, such as (accumulated) sleep restriction? Yes,
Van Dongen et al. [43] showed that the number of lapses are near-linearly related
to the “cumulative duration of wakefulness in excess”, regardless of the type of sleep
loss (i.e., sleep deprived or sleep restricted). This is an important point since the
general population probably experiences drowsiness induced by sleep restriction more
regularly than by sleep deprivation, which is the type of sleep loss depicted in this
dataset. However, the generalization to drowsiness induced by sleep disorders, most
of which degrade sleep quality rather than sleep quantity, remains an open question.

• What about the other indicators, i.e., the subjective and physiology-based ones, do
they also generalize to real-life settings? To some extent, yes. Hallvig et al. [61]
compared such indicators (in terms of KSS and KDS, respectively) during both sim-
ulated driving and real driving, both during the day and during the night. Results
show that higher KSS and KDS scores were reached in the simulator, which suggests
low absolute validity. For instance, at the same time of day, KSS scores were about
two units higher in the simulator. A possible explanation would be the soporific
aspect of the simulator given the lack of danger, and the lower level of stimulation
(e.g., traffic, lights, speed limits). However, it could also be that simulated driving
manifests the latent, underlying, level of drowsiness better than real driving, as real
driving is likely to mask latent drowsiness [117]. Reassuringly, results also indicate a
good relative validity at night, meaning that both indicators of drowsiness, i.e., KSS
and KDS, showed a similar response pattern at night both during simulated and real
driving. We found no study comparing these indicators acquired during both a PVT
(which is a monotonous but stimulating task) and real driving.

• Given that the present thesis focuses on the analysis of eye closure dynamics, would
eye closure dynamics be different if it was measured in operational settings? To some
extent, yes. Compared to performing a PVT in front of a computer, driving a car
requires that the driver look at diverse elements (such as the road, the dashboard, and
the rear-view mirrors), and in doing so modifies the eyelids configuration (e.g., looking
down below the optical axis of a camera naturally brings the eyelids closer). This
is also one of the reasons why we randomly moved the stimulus box of the PVT to
various positions across the computer screen. Moreover, external conditions such as
bright sunlight may cause the driver to squint, i.e., to close slightly their eyes in an
attempt to see more clearly, which also modifies the eyelids configuration. Yet, the
eye closure dynamics that are most indicative of drowsiness (i.e., slower and longer eye
closures) are still found to be valid in real-life settings [45, 87], although the average
eye closure duration during real driving appears to be shorter than during simulated
driving [61]. In the meantime, the development of specialized detectors may help in
disambiguating whether the driver closes his/her eyes because of drowsiness, bright
sunlights, or downward glances, and thus improve the measurement of the eye closure
dynamics of interest.

• Are the recorded faces images comparable to the ones recorded in real-life settings?
No, there are some major differences in the properties of the face images, such as the
variability in head poses and in illumination conditions, that motivate the need of
further algorithm developments to process face images acquired “in the wild”, i.e., in
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real-life, operational settings. Indeed, the recorded face images consist mostly of
frontal and near frontal faces, acquired in a laboratory room that is either well lit
or in total darkness, which does not cover the full range of head poses (e.g., head
turned while checking a blind spot) and illumination conditions (e.g., face partly
illuminated by the sunlight) occurring during naturalistic driving. Furthermore, as
seen in Figure 3.2, the PSG electrodes are visible as artifacts on the recorded face
images. However, experimental results indicate that these artifacts do not interfere
with the processing of face images, considering that even off-the-shelf algorithms
handle them well, as if these artifacts were absent.

Overall, this discussion highlighted some key considerations to keep in mind when develop-
ing drowsiness characterization systems from a dataset acquired in laboratory settings, and
intended to be adapted for real-life, operational settings. The main conclusions concerning
the ecological validity of laboratory datasets are as follow.

1. The indicators of drowsiness based on psychomotor performance, physiology, and
subjective ratings appear to have high—though not absolute—ecological validity in
laboratory settings. This suggests the need for some kind of post-development cali-
bration of the characterized drowsiness to fit operational settings.

2. The eye closure dynamics appears to have high ecological validity in laboratory set-
tings, but the processing of face images does not. This suggests that a good system
architecture would be to isolate the processing of face images from the characteriza-
tion of drowsiness based on eye closure dynamics, similarly to the cascade structure
presented in the previous chapter. In this way, the processing of face images could
be modified to perform better in operational settings while the other parts of the
system could be kept as they are.

3.5 Limitations and potential improvements

Our sleep-deprivation dataset has some limitations that mostly concern the limited repre-
sentativity in subjects, and the small amount of data.

Indeed, the subjects of our study were relatively young, i.e., with ages in the range of
19–34 years. Given the fact that the vulnerability to drowsiness varies with age [7, 69], there
is a clear interest in incorporating older subjects in such study. Certainly, the more the
general population is represented in the dataset in terms of facial expressions, of ethnicities,
and of drowsiness dynamics, the better the developed systems will generalize to operational
settings. Following the same idea, there is also a clear interest in incorporating patients
suffering from sleep disorders (i.e., sleep patients), as they represent a significant part of
the general population. However, our study protocol involves an inconvenient, acute sleep
deprivation of 28–30 hours, which is definitely not appealing to older individuals and sleep
patients.

Furthermore, the size of our dataset can be considered relatively small in terms of (1)
the number of subjects (35), as well as of (2) the amount of data per subject (3 PVTs
with durations of 10 minutes). Whereas the number of subjects could have been improved
by prolonging the study, the amount of data per subject could have been improved by
increasing the number of PVTs performed over the two consecutive days. However, the
subjects were actually participating in three studies conducted at the same time: our study,
another PVT study, and a stereoscopic-3D driving simulator study; the schedules of which
were intertwined and spread over the same two days. As a result, increasing the number
of PVTs in our study has been somewhat challenging.
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3.6 Analysis of drowsiness data

Before blindly jumping into the development of drowsiness characterization systems, it is
important to take the time to inspect and analyze the drowsiness data contained in our
sleep-deprivation dataset. To this end, we plot and analyze the statistical distributions of
the following standard measures of drowsiness:

• the Karolinska Drowsiness Scale (KDS) score, visually annotated, from the PSG
signals, by one trained expert;

• the Karolinska Sleepiness Scale (KSS) score, directly annotated by the subject before
each PVT;

• two performance measures, i.e., the mean RT and the percentage of lapses, computed
from the raw RTs over 1-min time windows.

3.6.1 Statistical distribution of KDS scores

To annotate the KDS scores, the trained expert visually looks for signs of drowsiness
(i.e., alpha rhythms, theta activities, and slow eye movements) within every successive, non-
overlapping, and butting 2-s segments of the EEG and EOG signals. The KDS score is then
computed, for each 20-s epoch, as the number of 2-s segments (within the epoch) containing
at least one sign of drowsiness. The KDS score ranges thus from 0 to 10. Note that an
epoch with a KDS score of 5 or above is generally associated with drowsiness [55]. This
results in 30 KDS scores per 10-min PVT. Because of the difficulty and time-consuming
aspects of this annotation, the KDS score was annotated only for subjects 1–4, resulting
in a total of 12 annotated PVTs.

Table 3.1 contains the annotated KDS scores, and Figure 3.3 shows the box plot of
the KDS score as a function of the PVT index. As expected, we observe, in the table
and in the figure, that the physiological drowsiness score increases with the duration of
sustained waking, which increases from PVT1 to PVT3. Furthermore, even with the small
number of annotated subjects, we observe a significant variability in the vulnerability of
subjects to drowsiness. For instance, subject #4 appears quite vulnerable given his/her
relatively high minimum KDS score (i.e., mean KDS of 1.8 during PVT1), and his/her
significant relative increase in drowsiness when sleep deprived (i.e., mean KDS of 2.4 and
6.1 for PVT2 and PVT3, respectively). On the opposite, subjects #2 and #3 appear less
vulnerable given their low basal KDS scores, and their moderate increases in drowsiness
when sleep deprived.
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Epoch index Mean
KDS1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1
P1 0 0 0 1 1 0 1 0 1 0 0 2 0 1 0 0 0 0 2 0 1 0 2 0 0 1 1 0 1 0 0.5
P2 1 0 0 3 3 4 3 3 6 2 3 3 3 4 1 4 2 3 4 3 3 3 3 5 3 4 4 3 5 3 3
P3 1 4 3 5 4 5 3 2 4 4 3 3 4 1 2 4 3 3 2 4 4 2 3 2 2 6 5 5 3 3 3.3

S2
P1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 2 0 1 0 0 0 0 0 0 0 0.3
P2 0 0 0 1 1 2 0 1 1 1 2 0 0 4 1 1 1 3 1 2 1 3 2 0 0 0 0 1 1 2 1
P3 1 2 1 2 0 3 1 2 2 3 3 2 2 2 2 1 1 2 3 1 2 1 0 1 2 2 2 1 1 1 1.6

S3
P1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0.4
P2 0 0 1 0 1 0 1 0 0 0 1 2 0 1 0 0 1 0 0 1 2 1 3 0 0 0 1 0 0 2 0.6
P3 2 0 1 1 2 1 1 3 1 1 1 1 2 1 0 2 2 1 1 1 2 0 3 0 1 0 1 2 1 0 1.2

S4
P1 2 2 3 4 4 1 1 0 1 3 0 2 2 1 1 3 1 0 1 4 3 3 0 1 2 1 2 1 2 3 1.8
P2 - - - - - - - - - - - - 3 5 5 5 5 8 7 10 8 2 2 1 2 2 5 7 6 1 2.4
P3 4 4 4 6 6 5 7 3 7 7 8 10 5 6 7 6 8 6 4 7 5 9 5 5 6 8 6 4 8 8 6.1

Table 3.1 – KDS score as a function of the subject index (Sx), the PVT index
(Px), and the 20-s epoch index (1–30). KDS scores greater than, or equal to,
5 (generally associated with drowsiness) are highlighted in red. The value “-”
indicates that scoring was impossible at the corresponding epoch because of high
amplitude noise. We observe (1) the inter-subject difference in vulnerability to
drowsiness, and (2) the effects of sustained waking duration on the physiology-

based drowsiness score.
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Figure 3.3 – Box plot of the KDS score as a function of the PVT index, over
subjects 1–4. Note that the median KDS score for PVT1 is 0. We observe that
objective drowsiness increases with increasingly sustained waking, i.e., from PVT1

to PVT3.

What is and how to read a box plot? The box plot is a standardized way of displaying
the distribution of the data. The bottom and top of the box correspond to the first and
third quartiles of the data, respectively. The bottom (resp. top) whisker corresponds to
the lowest (resp. highest) datum still within 1.5 interquartile range (IQR) of the first
(resp. third) quartile. The line inside the box represents the median of the data, whereas
the dots represent outliers.
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3.6.2 Statistical distribution of KSS scores

The analyses and observations based on the KSS scores are similar to those based on the
KDS scores. Table 3.2 contains the self-annotated KSS scores (before each PVT), and
Figure 3.4 displays the box plot of the KSS score as a function of the PVT index, i.e., 1,
2, and 3. We observe a difference in vulnerability to drowsiness across subjects, as well
as an increase in the subjective drowsiness score with the PVT index, i.e., the duration of
sustained waking.

Subject index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
PVT1 3 3 2 4 3 2 - 2 2 4 2 3 4 2 2 6 2 2
PVT2 6 7 3 8 7 3 4 6 7 3 6 6 7 5 3 3 5 5
PVT3 7 6 4 9 8 7 9 8 9 8 8 7 7 6 4 7 5 8

Subject index 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
PVT1 3 3 5 2 1 - 3 2 2 2 2 3 4 2 1 1 2
PVT2 6 5 7 6 4 6 5 4 6 5 5 3 6 7 4 5 6
PVT3 3 4 8 7 6 6 4 4 7 8 7 5 8 3 4 6 5

Table 3.2 – KSS score as a function of the subject and PVT indices. KSS scores
greater than, or equal to, 7 (associated with drowsiness) are highlighted in red.
The value “-” indicates that the corresponding subject did not perform the first
PVT, and thus did not self-evaluate his/her KSS score. We observe (1) the inter-
subject difference in vulnerability to drowsiness, and (2) the effects of sustained

waking duration on the subjective drowsiness score.
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Figure 3.4 – Box plot of the KSS score as a function of the PVT index, over
all the subjects. Note that the median KSS score for PVT1 is 2. We observe
that subjective drowsiness increases with increasingly sustained waking, i.e., from

PVT1 to PVT3.
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3.6.3 Comparison between KDS and KSS scores

It is interesting to compare, for each PVT, (1) the KSS scores and (2) the mean KDS
scores. To this end, Table 3.3 compiles the KSS and KDS scores for subjects #1–4, i.e., the
subjects with both KSS and KDS annotations. We observe that subject #2 reported high
KSS scores at the beginning of PVT2 and PVT3, even though the corresponding mean
KDS scores were within the range of the alertness ones, i.e., low. However, we observe that
subjects #1, #2, and #4 self-estimate correctly their physiological state of drowsiness, as
evidenced by the Spearman’s rank correlation coefficient of 0.94 between KSS and KDS
for these three subjects.

Subject index 1 2 3 4

KSS
PVT1 3 3 2 4
PVT2 6 7 3 8
PVT3 7 6 4 9

Mean
KDS

PVT1 0.5 0.3 0.4 1.8
PVT2 3 1 0.6 2.4
PVT3 3.3 1.6 1.2 6.1

Table 3.3 – Comparison between the self-annotated KSS scores, and the expert-
annotated mean KDS scores, for the subjects 1–4. We observe that subject #2
reported high KSS scores at the beginning of PVT2 and PVT3, even though the
corresponding mean KDS scores were within the range of alertness ones. How-
ever, subjects #1, #2 and #4 appear to self-estimate correctly their physiological

drowsiness.

This disparity for subject #2 may hint at one, or both, of the following possibilities:
(1) not everyone can reliably self-estimate their physiological state of drowsiness (implying
that KSS is sometimes unreliable), and/or (2) the scoring criteria of the KDS are not
suited for everyone (implying that KDS is sometimes unreliable). The latter is probable
given that the expert only found theta activities and slow eye movements, i.e., no alpha
rhythms, in the PSG signals of subject #2. This lack of alpha rhythms may be due to
the “constant definition” of the frequency bands (i.e., 4–8 Hz for theta activity and 8–12
Hz for alpha rhythms) adopted by KDS. Indeed, the alpha frequency has been shown to
vary to a large extent as a function of age, brain volume, neurological diseases, memory
performance, and task difficulty [85]. Therefore, in practice, the alpha frequency band
should rather be defined around an individualized anchor frequency called the individual
alpha frequency (IAF) [85], which denotes the dominant EEG frequency (i.e., the frequency
at peak EEG power). With this “individualized definition”, a low IAF (i.e., lower alpha and
theta frequency bands) would explain the lack of alpha rhythms: the alpha rhythms (in
the “individualized definition”) would be misdiagnosed as theta activities (in the “constant
definition” of KDS), and the theta activities (in the “individualized definition”) would
be unnoticed as their frequencies would be below the frequency band of the “constant
definition”. As a result, the KDS scores would be underestimated, which is probably the
case for subject #2.

3.6.4 Statistical distribution of measures of performance impairment

In practice, measures of performance impairments can be automatically and objectively
produced from the RTs using sliding time windows, which is convenient. However, the
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mapping of performance measures to a score of drowsiness is not straightforward. To
increase our understanding of performance measures and their link to drowsiness, let us
analyze two standard measures computed over time windows of 60s with a step of 30s: the
mean RT and the percentage of lapses.

Figure 3.5 shows the box plot of the mean RT and the percentage of lapses as a
function of the PVT index. Overall, we observe that performance is increasingly impaired
with increasing sustained waking, i.e., from PVT1 to PVT3. Furthermore, we observe
that 75% of the mean RTs are below 382ms during PVT1; and that 50% of the mean
RTs are above 382ms during PVT2, and above 404ms during PVT3. We also observe
that (nearly) all mean RTs above 500ms (which is the threshold above which a RT is
conventionally considered as a lapse) were recorded during PVT2 or PVT3, i.e., in sleep-
deprived conditions where drowsiness is greatly favored.

Figure 3.6 shows the mean RT and the mean percentage of lapses as a function of time
elapsed during each PVT. Again, we observe that performance is increasingly impaired with
increasing sustained waking. However, we also observe the impact of the time-on-task on
performance impairment: the performance measures remain almost constant during PVT1,
slightly increase during PVT2, and significantly increase during PVT3. Indeed, via least-
squares linear regression, we obtain the following line equations respectively for the mean
RT (in ms), and mean percentage of lapses (in %): 0.7x+ 355ms, and −0.08x+ 5% during
PVT1; 3.6x+394ms, and 0.5x+12% during PVT2; and 11x+391ms, and 1.5x+11% during
PVT3; where x is the time across the 10-min PVT expressed in minutes. Therefore, the
more sleep-deprived an individual is, the more the time-on-task has an impact on his/her
performance.

Figure 3.7 shows the box plot of the mean RT as a function of the subject index in
two conditions: non sleep-deprived (PVT1) and sleep-deprived (PVT2 and PVT3). In non
sleep-deprived conditions, we observe a significant inter-subject variability in the mean
RT, as quantified by the median (of the mean RT) ranging from 264ms to 441ms. This
greatly suggests that the PVT is affected by aptitude, which is in contradiction to what
is stated in the literature [44]. However, the non sleep-deprived intra-subject variability is
small, i.e., the distribution of their mean RTs is narrow, as quantified by the fact that 50%
of the data (between the first and third quartiles, i.e., the box height) is contained within
27 ± 11ms (mean ± standard deviation). In sleep-deprived condition, the median (of the
mean RT) ranges from 302ms to 615ms, which demonstrates the inter-subject difference
in vulnerability to drowsiness, i.e., the impairments of performance are severe for some
subjects, yet rather modest for others. The intra-subject variability is also greater when
sleep-deprived, with 50% of the data contained within 73± 72ms.
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Figure 3.5 – Box plot of the performance measures (the mean RT at the top, and
the percentage of lapses at the bottom) as a function of the PVT index, over all the
subjects. The performance measures (i.e., mean RTs and percentages of lapses)
are generated via a sliding time window with a step of 30s and a duration of 60s.
Note that (1) the highest mean RT for PVT2 and PVT3 are 964ms and 1578ms,
respectively, and (2) the median percentage of lapses for PVT1 is 0. Overall,
we observe the increasing impairments of performance with the increasing sleep

deprivation conditions, i.e., from PVT1 to PVT3.
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Figure 3.6 – Plot of the mean performance measures (the mean RT at the top,
and the mean percentage of lapses at the bottom) as a function of time elapsed
during each PVT. The performances measures are each generated differently, and
defined as follows. At time t, the “mean RT” corresponds to the average of all the
RTs that occurred within the [t, t+60s] time window, across all subjects. At time
t, the “mean percentage of lapses” corresponds to the average, over all subjects, of
the percentage of lapses computed within the [t, t+60s] time window. We observe
the impairment effects of time on the performance metrics in terms of both the
time across the day (from PVT1 to PVT3), and the time elapsed during the PVT

(from 0 to 10 minutes).
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Figure 3.7 – Box plot of the mean RT as a function of the subject index during
either PVT1 (top), or during PVT2 and PVT3 (bottom). Carefully note the
difference in y-axis scale between both figures. The mean RTs are generated via
a sliding time window with a step of 30s and a duration of 60s. We observe a
significant inter-subject variability in the median (of the mean RT) during PVT1
(non sleep-deprived conditions). The intra-subject variability in the mean RT is
small during PVT1, and increased during PVT2 and PVT3. We also observe the

inter-subject difference in vulnerability to drowsiness.
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3.7 Conclusion

In conclusion, we designed and acquired1 a sleep-deprivation dataset that:

1. involves 32 young, healthy subjects, who each performed three 10-min PVTs;

2. involves a wide range of drowsiness levels, induced by acute sleep deprivation of up
to 30 hours, i.e., by prolonged, sustained waking over 2 days;

3. contains (time-synchronized) near-infrared intensity and range images of the face at
a frame rate of 30 frames per second;

4. contains the (time-synchronized) RTs to random, visual stimuli, i.e., performance-
based indicator of drowsiness;

5. contains the (time-synchronized) PSG signals, i.e., physiology-based indicators of
drowsiness;

6. contains the KSS, i.e., a subjective indicator of drowsiness, at the beginning of each
PVT;

7. is available to the scientific community for both a subset of subjects [91], and for a
subset of the data [93];

8. appears to have strong (relative) ecological validity.

By inspecting and analyzing standard measures of the three indicators of drowsiness we
recorded, we highlighted the following properties about the indicators of drowsiness:

1. the measures of all three indicators increase when the duration of sustained waking
increases, i.e., from PVT1 to PVT3;

2. there exists an inter-subject difference in vulnerability to drowsiness;

3. the annotation criteria of KDS might not be suited to all subjects, potentially because
of the constant definition of the frequency bands of the brain waves;

4. the two measures of performance impairment increase with the time-on-task, and the
impact of time-of-task grows larger the more the subject is sleep-deprived, i.e., from
PVT1 to PVT3;

5. there exists an inter-subject difference in aptitude/skill when performing a PVT.

In the next chapters, we detail the drowsiness characterization systems that we designed
in this thesis. Each of our drowsiness characterization systems use this sleep-deprivation
dataset in a different way. However, the definition of their ground truth of drowsiness is
always in terms of the RTs, i.e., a performance-based indicator of drowsiness. The reasons
for not using other indicators for training our systems are as follows. For the physiology-
based indicator, the analysis of the PSG signals to produce KDS scores is challenging,
time-consuming, and affected by the subjective interpretation of the human annotator(s).
For the subjective indicator, we have collected only one KSS score per PVT, which is
too sparse of an annotation to develop real-time drowsiness characterization systems. In

1We thank Clémentine François, David Grogna, Thomas Langohr, and Philippe Latour for their help
in setting up and supervising the collection of data.
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contrast, the RTs are objective (i.e., free of any human’s interpretation), automatically-
annotated, and relatively densely-annotated. Although mapping the RTs to a level of
drowsiness is not straightforward, the impairments of RTs still carry valuable information
about the physiological impacts of drowsiness. However, note that this holds true as far
as the impairments of RTs are induced by drowsiness, which is mainly the case given the
controlled conditions of our study protocol that involves acute sleep deprivation.



Chapter 4

Baseline drowsiness characterization
system

This chapter presents a baseline drowsiness characterization system that is representative
of most systems of other studies, and that enables us to study eye closure dynamics with
respect to the level of drowsiness. Section 4.1 introduces and motivates our baseline system.
Section 4.2 describes our system. Section 4.3 details the training of our system. Section 4.4
reports experimental results, and evaluates the performance. Section 4.5 concludes this
chapter. This chapter is based on the following published conference paper [91]: Q. Massoz,
T. Langohr, C. François, and J. Verly. The ULg multimodality drowsiness database (called
DROZY) and examples of use. In IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1–7, Lake Placid, NY, USA, March 2016.

4.1 Introduction

As seen in Chapter 2, eye closure dynamics and performance impairments are both recog-
nized as strong indicators of drowsiness. Whereas eye closure dynamics may be acquired
in a wide range of settings via computer vision algorithms, performance impairments can
be automatically recorded during Psychomotor Vigilance Tasks (PVTs). One may thus de-
velop an automatic, real-time drowsiness characterization system that produces an estimate
of drowsiness-induced performance impairments from eye closure dynamics. However, the
scientific literature has so far given little attention to the relationship between eye closure
dynamics and performance impairments.

With the goals of (1) representing a panel of systems of other studies that is as wide as
possible and (2) studying the relationship between eye closure dynamics and performance
impairments, we present a baseline drowsiness characterization system that automatically
extracts a vector of standard, pre-defined ocular features from a face video. Based on
this vector of ocular features, we consider four ways of characterizing drowsiness that are
formulated as four problems: (1) an estimative regression problem; (2) a predictive regres-
sion problem; (3) an estimative binary classification problem; and (4) a predictive binary
classification problem. The regression problems aim at outputting the mean reaction time
(RT), whereas the classification problems aim at outputting a binary Level of Drowsiness
(LoD) based on impairments of performance. The estimative problems aim at estimating
the output of the current minute, whereas the predictive problems aim at predicting the
output of the next minute. We evaluate the performance of the baseline system at these
four problems, we compare the performance between estimative and predictive problems,
we analyze the importance of each ocular features in the system decision, and we analyze

44
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the correlation of standard ocular features with several standard measures of drowsiness.

4.2 Baseline system

Our baseline drowsiness characterization system is composed of four modules operating in
cascade: the “face landmarks” module, the “eyelids distance” module, the “ocular features”
module, and the “drowsiness” module. Figure 4.1 depicts the baseline system and its four
modules.

Sequence of
face landmarks

"Face landmarks"
module

"Eyelids distance"
module

"Drowsiness"
module

Sequence of
face images

d

d

d

d

1) Estimative regression

2) Predictive regression

3) Estimative classification

4) Predictive classification

Sequence of
eyelids distances

Vector of
ocular features

Characterization of
drowsiness

"Ocular features"
module

Figure 4.1 – Overview of the baseline drowsiness characterization system operating
on any given 1-min sequence of face images. First, from each face image, the “face
landmarks” module tracks the position of 68 face landmarks via subject-specific
constrained local models (CLMs). Second, from the eyelids landmarks of each
frame, the “eyelids distance” module extracts the average eyelids distance. Third,
from the most-recent 1-min sequence of eyelids distances, the “ocular features”
module extracts a vector of ocular features via an algorithm that temporally
segments each blink. Fourth, from the vector of ocular features, the “drowsiness”
module characterizes drowsiness in four different ways. The “drowsiness” module
consists of a Support Vector Machine (SVM) model for classification problems,

and a Support Vector Regression (SVR) model for regression problems.

4.2.1 “Face landmarks” module

The “face landmarks” module tracks the 3D position of 68 face landmarks from the sequence
of video frames, where a video frame consists of two co-registered images: a near-infrared
(NIR) image, denoted by I, and a depth map, denoted by D. We filter D first with a
median filter with a kernel size of 3 × 3, then with a bilateral filter with a kernel size of
5× 5 and standard deviations of 200 (in the coordinate space and in the intensity space).
Then, we iteratively align a 68-landmarks deformable shape model using constrained local
models (CLM) and the regularized landmark mean-shift (RLMS) fitting procedure. We
provide a technical background on these methods in Appendix A, and we list the several
adjustments we made to the classic formulation of CLM and RLMS to obtain (1) better
robustness to occlusions and (2) better alignment performance for landmarks with multi-
modal appearance (such as the ones located on the eyelids and the mouth). We initialized
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Initialization Optimization Results

Figure 4.2 – Illustration of the “face landmarks” module. We initialize the 68
face landmarks from either the Viola and Jones algorithm or the previous frame
(left), iteratively minimize the misalignment error using the RLMS fitting strategy
(middle), and obtain the location of 68 landmarks aligned on the target image

(right).

(or re-initialized, in case of tracking failures) the tracking with the OpenCV [20] imple-
mentation of the Viola and Jones algorithm [138] by centering a neutral face shape around
the center of the detected box. Figure 4.2 illustrates the initialization, optimization, and
results of the “face landmarks” module.

4.2.2 “Eyelids distance” module

The “eyelids distance” module extracts the average 3D eyelids distance (a real positive
number, expressed in mm) from the 68 face landmarks, denoted by Xi ∈ R3 with i ∈ [1, 68].
The eyelids of each eye are described by 6 face landmarks: 2 at the corners, 2 on the upper
eyelid, and 2 on the lower one. The average eyelids distance is defined as the average of the
four 3D inter-eyelid Euclidean distances, i.e., the distances, for each eye, between the two
face landmarks positioned on the upper eyelid, and the two on the lower eyelid. Figure 4.3
illustrates the four pairs of eyelids landmarks used to compute the average eyelids distance.

Figure 4.3 – Illustration of the “eyelids distance” module. The eyelids distance
is computed from the 3D face landmarks (green dots) as the average of four 3D

Euclidean distances (green lines).

4.2.3 “Ocular features” module

The “ocular features” module extracts a vector of ocular features from the most-recent
1-min sequence of eyelids distances, this in three steps. First, we adaptively-normalize the
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Figure 4.4 – Illustration of the “ocular features” module. The top graph illustrates
a sequence of eyelids distances (in blue) and the corresponding baseline sequence
(in red). The bottom graph illustrates the corresponding sequence of adaptively-
normalized eyelids distances (in blue), where the eye-closing segments are colored
in red and the eye-opening segments in green. Note that there is no eye-closed

segment in this example.

sequence of eyelids distances. Second, we identify the time segments corresponding to the
three phases (the closing phase, the closed phase, and the opening phase) of each blink.
Third, we extract the ocular features. Figure 4.4 illustrates the adaptative normalization
step and the segmentation step of the “ocular features” module.

Adaptive normalization of eyelids distances

We denote the sequence of eyelids distances by d[n], where n ∈ N is the discrete time index.
Since the maximum opening of the eye changes with time, e.g., with the gaze direction
and the head pose, it proves useful to divide d[n] by the maximum opening at time n,
denoted by b[n], which results in the sequence of adaptively-normalized eyelids distances
s[n] = d[n]/b[n]. The baseline sequence b[n] is computed recursively according to

b[n] = (1− α[n]) b[n− 1] + α[n]d[n], (4.1)

where α [n] is a smoothing factor defined as

α[n] = α0 exp
(
−αd (d [n]− d [n− 1])2

)
∗ exp

(
−αa

[
d[n]− b[n− 1]

]
+

)
∗ exp

(
−αb

[
b[n− 1]− d[n]

]
+

)
∗H (d[n]− αmdmedian [n]) ,

(4.2)

where ∗ denotes multiplication, [x]+ is x if x ≥ 0, and 0 otherwise; H (x) is the Heaviside
step function defined as 1 if x ≥ 0, and 0 otherwise; and dmedian [n] is the median value of
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{d [i] : ∀i ∈ [1, n]}. The values of α0, αd, αa, and αm are empirically set to 0.4, 15, 0.5, 2,
and 0.7, respectively.

The smoothing factor α[n] is designed to favor eyelids idleness (i.e., small values of the
difference of d[n]) but not when the eye is nearly closed eyelids (i.e., d[n] below its median
value). It is also designed to be flexible enough to allow for the baseline signal b[n] to
quickly adapt when the gaze direction changes.

Segmentation of blinks

A blink is composed of three phases: the closing phase, the closed phase, and the opening
phase. The segmentation of blinks consists therefore in identifying the three time segments
(each defined as a set of contiguous time indices) corresponding to the three phase of each
blink. We proceed in four steps.

In the first step, we identify candidate time segments by applying experimentally-set
thresholds on the backward difference of s[n], ∇s[n] ≡ s[n] − s[n − 1]. More specifically,
we identify three classes of candidate segments:

1. the candidate closing segments: {n ∈ N : n1 ≤ n ≤ n2 and ∇s[n] ≤ λ1},

2. the candidate opening segments: {n ∈ N : n1 ≤ n ≤ n2 and ∇s[n] ≥ λ2},

3. the candidate plateau segments: {n ∈ N : n1 ≤ n ≤ n2 and λ1 < ∇s[n] < λ2},

where n1 ∈ N is the time index of the start of the candidate segment, n2 ∈ N is the
time index of the end, and λ1 = −13.2e−3 and λ2 = 5.5e−3 are the experimentally-
set thresholds. We define a plateau as an eye state that is either continuously closed
or continuously open. Note that each and every time index n belongs to exactly one
candidate segment because (1) n1 can equal n2 (making the candidate segment consisting
of one sample at time index n1), and (2) the conditions on ∇s[n] are mutually exclusive.

This first step results in a sequence of candidate segments, denoted by a[k] where
k ∈ N is the candidate segment index. If we denote the three classes of candidate segments
respectively by “c”, “o”, and “-”, one would expect each blink to be associated with a
subsequence of a[k], denoted by (a[k1], a[k1 + 1], . . . , a[k2]), similar to (c, o) for short blinks,
or to (c, -, o) for long blinks. However, given the noise in s[n] and—by extension—in
∇s[n], candidate segments can be misclassified, thereby resulting in blinks associated with
subsequence of a[k] similar to (c, -, c, o), (c, o, -, o), or (c, -, c, -, o, -, o, -, o). Therefore,
in the next steps, we aim at finding the best combination of (potentially misclassified)
candidate segments so as to obtain the true closing segment and the true opening segment
of each blink.

In the second step, we clean a[k] by discarding (i.e., classifying as candidate plateau
segments) the candidate closing segments and the candidate opening segments that do not
satisfy the following conditions: min (s[n1], s[n2]) ≤ 0.81 and |s[n1]− s[n2]| > 0.13. Then,
to avoid having two contiguous candidate segments of the same class, we combine contigu-
ous candidate segments together, and denote this new sequence of candidate segments by
a′[k′]. For examples, the following subsequence of a[k] (c1, -, c2, -, o1, -, o2) may become
(-, c2, -, o2), (c1, -, o1, -, o2), (-, c2, -), or even (-) as subsequence of a′[k′].

In the third step, we parse a′[k′] into subsequences each corresponding to one blink.
We consider that a candidate closing segment, “c”, cannot be misclassified as an candidate
opening segment, “o”, and vice-versa. Therefore, the subsequence of a blink (1) always
starts by a “c” that is preceded by an “o” or by (o, -), and (2) always ends by an “o” that
is followed by a “c” or by (-, c). Obviously, we make some exceptions at the boundaries of
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a′[k′], e.g., the full sequence of a′[k′] (-, c, o, -, c, -, c, o, c, -, o, -, o) is parsed into the
three subsequences (c, o), (c, -, c, o), and (c, -, o, -, o).

In the fourth step, we analyze each subsequence of a blink so as to identify the three
phases of this blink. We consider that the true closing (opening, respectively) segment is
composed of successive “c”s (successive “o”s, resp.) that can be interspersed by “-”s. For
example, the true closing segment of (c1, -, c2, -, o1, -, o2) can be (c1), (c2), or (c1, -,
c2). Therefore, we search, over all pair combinations of true closing segments (successive
“c”s) and true opening segments (successive “o”s), the one that best represents the blink,
i.e., that maximizes the following quantity:

B (n1, n2, n3, n4) = exp (−|∆hp|)
∗ exp (−|∆hc −∆ho |)
∗H (∆hc − 0.1)

∗H (∆ho − 0.1) ,

(4.3)

where n1 (n2, resp.) is the time index of the start (end, resp.) of the first (last, resp.) “c”
in the true closing segment, n3 (n4, resp.) is the time index of the start (end, resp.) of
the first (last, resp.) “o” of the true opening segment, ∆hp = s[n3] − s[n2] is the “height”
of the true closed segment, ∆hc = s[n1]− s[n2] is the “height” of the true closing segment,
∆ho = s[n4] − s[n3] is is the “height” of the true opening segment. In other words, we
consider a pair of a true closing segment and a true opening segment to be probable if ∆hf
is close to zero, ∆hc is close to ∆ho , ∆hc is greater than 0.1, and ∆ho is greater than
0.1. Note that, if the subsequence of a blink is composed of Nc candidate closing segments
(“c”s) and No candidate opening segments (“o”s), we maximize B over (Nc!) ∗ (No!) pair
combinations. In the case where B equals 0 for every pair combinations, we discard the
corresponding blink.

In such a manner, for each blink, we identify (1) the true closing segment, (2) the true
opening segment, and (3) the true closed segment, which is defined as the time segment
between (1) and (2).

Extraction of ocular features

We consider 15 ocular features, all computed for a contiguous time window W that ends
at the present time index. (The length of W is specified below.) Ten features are related
to the histogram of the values of s[n] in W , and five are related to the segmented blinks
in W .

The 10 histogram-related features are the 10 proportions of elements in each the 10
successive bins of a 10-bins histogram, in which all values of s[n] in W are arranged,
with all values of s[n] above 1 placed in the last bin. The 10 histogram-related features,
i.e., proportions, sum to 1. We denote these histogram-related features by H[0,0.1], H[0.1,0.2],
H[0.2,0.3], H[0.3,0.4], H[0.4,0.5], H[0.5,0.6], H[0.6,0.7], H[0.7,0.8], H[0.8,0.9], and H[0.9,1].

The 5 blink-related features are average metrics computed over the segmented blinks
that end within W . The blink-related features are the average blink duration, Dblink ; the
average closing duration, Dclosing ; the average closed duration, Dclosed ; the average opening
duration, Dclosing ; and the number of microsleeps, Nµsleeps , where a microsleep is defined
as a blink with a duration greater or equal than 500ms. The durations are expressed
in milliseconds. The closing duration is the time duration to go from 70% to 0% of the
amplitude of the closing segment. The closed duration is the time duration to go from 10%
of the amplitude of the closing segment to 10% of the amplitude of the opening segment.
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The opening duration is the time duration to go from 0% to 70% of the amplitude of the
opening segment. The blink duration is the time duration to go from 70% of the amplitude
of the closing segment to 70% of the amplitude of the opening segment.

We extract these 15 ocular parameters for 7 time windows with lengths of {30, 35, 40,
45, 50, 55, 60} seconds, which results in a vector of 105 ocular features.

4.2.4 “Drowsiness” module

The “drowsiness” module characterizes drowsiness from the vector of 105 ocular features.
We consider four ways for characterizing drowsiness that are formulated as four problems:

1. estimative regression of the mean RT of the most-recent minute;

2. predictive regression of the mean RT of the next minute;

3. estimative binary classification of the Level of Drowsiness (LoD) of the most-recent
minute;

4. predictive binary classification of the LoD of the next minute.

For regression problems, the “drowsiness” module consists of a Support Vector Regres-
sion (SVR) model. For binary classification problems, the “drowsiness” module consists
of a Support Vector Machine (SVM) model. We provide a technical background on SVM
and SVR in Appendix B. Note that the adjectives “estimative” and “predictive” are non-
standard terms, but are used here to indicate that the ground truth has been produced,
respectively, from the current present minute (estimate of the present) and from the fol-
lowing minute (prediction of the future).

4.3 Training of the system

Two of the modules require training: the “face landmarks” module and the “drowsiness”
module. We trained these two modules using the data from 14 subjects of our sleep-
deprivation dataset (detailed in Chapter 3). We emphasize that the “eyelids distance”
module and the “ocular features” module do not require any training.

4.3.1 “Face landmarks” module

Rather than training one “face landmarks” module, we trained 14 subject-specific modules,
i.e., one specific CLM per subject. The reason was to ensure that the face landmarks were
located as precisely as possible, so that further analyses of the “drowsiness” module were as
least as possible affected by tracking errors. Note that this choice makes the system non-
automatic. However, we could make it automatic by training a generic “face landmarks”
module.

Dataset

For training the 14 “face landmarks” modules, we built the “face landmarks” dataset. This
dataset is composed of 720 manually-selected key frames spread across the 14 subjects
(about 51 frames per subject) and judged to represent rather completely the various ap-
pearances of the face of each subject. For each of these frames, we manually annotated
68 landmarks both in 2D (in the two image coordinates, expressed in pixels) and in 3D
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Figure 4.5 – The software we developed for annotating a set of face landmarks in
2D on the image (left), and in 3D on the reconstructed 3D mesh (right).

(in the three camera coordinates, expressed in millimeters) by the means of a specifically-
developed annotation software. This annotation software, illustrated in Figure 4.5, auto-
matically builds a 3D surface of the face from the depth map D with the texture sampled
from the (co-registered) NIR image I. By looking jointly at I and the rotatable, textured
3D surface, we pinpointed the 2D location of each visible landmark in the video frame.
Since I and D are co-registered, the location of each such landmark was also immediately
known and annotated in 3D.

Training

We provide in Appendix A.5 the details for training the subject-specific CLMs, i.e., the
subject-specific deformable shape models and the subject-specific multimodal appearance
models.

4.3.2 “Drowsiness” module

Dataset

For training the “drowsiness” module, we built the “drowsiness” dataset from 14 subjects
who performed a total of 36 PVTs. In particular, we sampled the 1-min sequences of video
frames that end at the occurrence time of every PVT stimulus (except for the PVT stimuli
that occurred within the first minute of the PVT). This sampling strategy leads to 3064
samples, with an average of about 85 samples per PVT, and of about 219 samples per
subject. We pre-processed each 1-min sequence with the subject-specific “face landmarks”
module, the “eyelids distance” module, and the “ocular features” module, so as to obtain a
vector of 105 ocular features per sample, which is the input to the “drowsiness” module.
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Ground truth of drowsiness

Since we consider four distinct problems for the baseline drowsiness characterization sys-
tem, we define a distinct ground truth of drowsiness for each problem.

• For the estimative (predictive, respectively) regression problem, the ground truth of
drowsiness consists of the pre-stimulus (post-stimulus, respectively) mean RT (ex-
pressed in milliseconds), where the mean is computed over the 1-min period before
(after, respectively) the stimulus occurrence.

• For the estimative (predictive, respectively) classification problem, the ground truth
of drowsiness consists of a binary LoD based on whether or not the pre-stimulus (post-
stimulus, respectively) mean RT is above some fixed threshold, where the mean is
computed over the 1-min period before (after, respectively) the stimulus occurrence.
We set the threshold to 500ms since an RT (observed during a PVT) above this
value is conventionally interpreted as a lapse [13, 44], i.e., an error of omission. The
“drowsy” label (“positive” class, an LoD of 1) corresponds to a mean RT ≥ 500ms,
whereas the “alert” label (“negative” class, an LoD of 0) corresponds to a mean RT
< 500ms. Out of the 3064 samples, 448 are labeled “drowsy” and 2616 “alert” for the
estimative problem, and 383 are labeled “drowsy” and 2681 “alert” for the predictive
problem.

Training and optimization

For each of the four problems, we trained 14 models (SVMs for classification problems, and
SVRs for regression problems) following a leave-one-subject-out cross-validation strategy
of 14 folds, i.e., one test set for each subject. For each fold, we validated the hyper-
parameters (i.e., {C} for classification problems, and {C, ε} for regression problems) via
an inner leave-one-subject-out cross-validation strategy of 13 folds, i.e., all subjects but
the one in the test set of the outer cross-validation. Upon determination of the optimal
set of hyper-parameters, we trained the final model on all 13 subjects of the training set
(of the outer cross-validation). We individually scaled each ocular feature such that each
feature of training samples ranges within [0, 1]. For classification, we weighted the two
classes (i.e., “alert” and “drowsy”) in the SVM optimization routine with the reciprocal of
the number of their occurrence in the training set. We performed no data augmentation.
We performed training and inference of SVRs and SVMs with the LIBLINEAR library [47]
and LIBSVM library [26].

4.4 Experimental results and performance

4.4.1 Evaluation of performance

We evaluated the performance of our baseline system by aggregating the results of the
14 test sets, each associated with one trained model, before computing the performance
metrics. We did not average the performance metrics across the 14 subjects because (1)
the amount of data is not identical for all subjects (some PVTs were missing), and (2) the
proportion of “drowsy”/”alert” samples varies significantly between subjects. We trained
either with a linear kernel for interpretability, or with an RBF kernel for performance.
Table 4.1 summarizes the results obtained, and these are further discussed below, first for
the linear kernel, and then for the RBF kernel.
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Estimation Prediction
Linear RBF Linear RBF

Regression PCC 0.58 0.62 0.54 0.60
RMSE 108 104 120 114

Classification
TNR 77.40% 87.73% 77.37% 86.51%
TPR 79.11% 75.46% 75.89% 75.45%
Acc. 77.61% 86.19% 77.15% 84.89%

Table 4.1 – Performance metrics of the baseline system with each kernel function
and for each problem. The RMSE is expressed in milliseconds.

Linear kernel

1. For the estimative regression problem, we obtained a Pearson correlation coefficient
(PCC) of 0.58 and a Root Mean Square Error (RMSE) of 108ms.

2. For the predictive regression problem, we obtained a PCC of 0.54 and an RMSE of
120ms.

3. For the estimative classification problem, we obtained a specificity (true negative
rate or TNR) of 77.40%, a sensitivity (true positive rate or TPR) of 79.11%, and a
global accuracy of 77.61%.

4. For the predictive classification problem, we obtained a TNR of 77.37%, a TPR of
75.89%, and a global accuracy of 77.15%.

RBF kernel

1. For the estimative regression problem, we obtained a PCC of 0.62 and an RMSE of
104ms.

2. For the predictive regression problem, we obtained a PCC of 0.60 and an RMSE of
114ms.

3. For the estimative classification problem, we obtained a TNR of 87.73%, a TPR of
75.46%, and a global accuracy of 86.19%.

4. For the predictive classification problem, we obtained a TNR of 86.51%, a TPR of
75.45%, and a global accuracy of 84.89%.

4.4.2 Comparison of performance between estimation and prediction
problems

Overall, the estimation performance is greater than the prediction performance, this for
both regression and classification problems. This difference in performance is consistent
with expectations. Indeed, even though the model could incorporate the knowledge that
impairment of RT increases with time-on-task (see Chapter 3), prediction is a challenge
as the subject’s physiological state can change in unpredictable ways. It would be even
more the case in operational, real-life settings, where the external conditions also change
in unpredictable ways, thereby further impacting the subject in even less predictable ways.
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Figure 4.6 – Scatter plot of the true pre-stimulus mean RT vs the true post-
stimulus mean RT. We observe that most samples have a mean RT that is similar
when computed from the minute before the stimulus (pre-stimulus) and from the

minute after (post-stimulus).

Interestingly, the difference in performance between estimation and prediction is not
that large. A possible reason is that the ground truth for estimation (based on the pre-
stimulus mean RT) and the one for prediction (based on the post-stimulus mean RT)
differ little from each other. If this reason is true, the trained models for estimation and
prediction would then be nearly identical, and so would their performance. We check this
possibility by comparing the two ground truths, this separately for regression problems and
for classification problems. Figure 4.6 shows the pre-stimulus and post-stimulus mean RT
that we used to produce the ground truth for estimation and prediction, respectively. We
observe that most samples have a pre-stimulus mean RT equivalent to the post-stimulus
one, which explains why the performance metrics for estimation problems and for prediction
problems are similar to each other. On a side note, we also observe that the mean RT can
significantly vary in the lapse of just one minute, e.g., the mean RT can vary from 450ms
(pre-stimulus) to 1050ms (post-stimulus). This demonstrates the significant time-varying
aspect of the level of drowsiness.

For regression problems, the ground truth consists of a mean RT (computed pre-
stimulus for estimation, and post-stimulus for prediction). We observe that the two types
of mean RT increasingly differ from each other with increasing values of mean RT, re-
sulting in a PCC of 0.69 between the two. However, the estimative regressors and the
predictive regressors are almost identical. With an RBF kernel, we observe (1) a PCC of
0.97 between the output of the two regressors and (2) a fitted linear regression model of
E (x) = −22.1364 + 1.0659P (x) where x is a vector of scaled ocular features, E (x) is the
output of an estimative regressor, and P (x) is the output of the corresponding predictive
regressor (i.e., of the same fold). With a linear kernel, we observe (1) a PCC of 0.99 and
(2) a fitted linear regression model of E (x) = −5.9271 + 1.0283P (x). These observations
and results support the fact that the future of mean RTs is unpredictable; the best strategy
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for predicting the future mean RT (post-stimulus) is therefore to output an estimate of the
present mean RT (pre-stimulus). Figure 4.7 shows scatter plot results for the estimative
regressor and the predictive regressor, both with an RBF kernel. We observe that, in both
problems, the regression errors are the largest at high values of the mean RT, i.e., where the
ground truths differ the most. The regression errors are thus similar, but not distributed
similarly among samples.

For classification problems, the binary ground truth is produced by thresholding the
mean RT at 500ms. Between estimation and prediction, only 203 out of 3064 samples
have a ground truth labeled differently. More specifically, 69 samples are labeled as “alert”
after the stimulus but labeled as “drowsy” before, 134 samples are labeled as “drowsy” after
the stimulus but “alert” before, 314 samples are labeled as “drowsy” before and after the
stimulus, and 2547 samples are labeled as “alert” before and after the stimulus. Hence,
considering that the two types of ground truth differ little from each other, it is natural
that the estimation performance and the prediction performance differ little from each
other.

4.4.3 Importance of both window lengths and types of ocular features

Given that we trained 14 linear models per problem, we can produce, for each problem,
importance scores for the 105 features by summing the model linear weights, w, over the 14
trained linear models. We can then produce importance scores for the 7 window lengths by
summing over the 15 types of ocular features. Similarly, we can produce importance scores
for the 15 types of ocular features by summing over the 7 window lengths. Considering
that alertness corresponds to the “negative” class and drowsiness to the “positive” one, we
can associate negative importance scores to alertness and positive ones to drowsiness.

Window lengths

Table 4.2 shows the importance scores of the 7 time windows for the four problems. Over-
all, we observe that longer window lengths have higher importance scores, i.e., have more
importance in the model decision/approximation function. For the estimative classification
problem, the importance score (2.9667) of the 60-s window is more than twice the impor-
tance score (1.3973) of the 30-s window. However, for the predictive regression problem,
we observe that the 30-s window is more important than the 35-s, 40-s, and 45-s windows,
but is less important than the 50-s, 55-s, and 60-s windows.

Regression Classification Normalized
sumEstim. Pred. Estim. Pred.

W
in
d
ow

le
n
gt
h
s 30s 458.9 1324.5 1.3973 1.6842 0.3616

35s 664.8 1137.2 1.5917 1.8714 0.3878
40s 978.4 1206.3 1.7800 1.9778 0.4434
45s 1316.1 1165.6 2.3572 2.5241 0.5426
50s 1725.2 1568.2 2.5751 2.7171 0.6463
55s 2321.1 1913.3 2.7816 2.8467 0.7582
60s 2793.4 2249.6 2.9667 3.0456 0.8600

Table 4.2 – Importance scores of the window lengths for the four problems.
The last column contains the sum of importance scores that were normalized,

i.e., scaled such that the sum over each of the four columns equals one.
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Figure 4.7 – Scatter plot of the estimated pre-stimulus mean RT (top) and pre-
dicted post-stimulus mean RT (bottom) produced with an RBF kernel vs their
true value. The red line is the perfect regressor. We observe similar distributions

of errors in both graphs, with the large errors at high values of mean RT.
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Types of ocular features

Table 4.3 shows the importance scores of the 15 types of ocular features for the four
problems, and it highlights the five most-important features for drowsiness (in red) and
the two most-important features for alertness (in blue). We observe that H[0.9,1], i.e., the
proportion of normalized eyelids distances within [0.9, 1], has a large negative importance
score for each problem. To a lesser extent, H[0.7,0.8] has also a negative importance score
for each problem. Overall, we observe that Nµsleeps , Dblinks , Dopening , Dclosed , and H[0,0.1]

are the most-important ocular features for drowsiness. These observations are coherent
with the literature since drowsiness is characterized by slower and longer blinks, and thus
by reduced times of eyes openness.

Regression Classification Normalized
sumEstim. Pred. Estim. Pred.

O
cu

la
r
fe
at
u
re
s

Dblink 2261.3 2523 2.9487 3.3997 0.8541

Dclosing −496.4 −485.7 1.4725 1.7917 0.1084

Dclosed 2005.5 2827.9 1.4419 2.9961 0.6698

Dopening 2505.6 2353.0 2.6904 1.8874 0.8209
Nµsleeps 2508.3 2121.6 3.6297 3.6669 0.9003
H[0,0.1] 965.8 1099.8 −2.8398 3.0365 0.5643

H[0.1,0.2] 647.7 457.9 −3.5860 2.8229 0.5080

H[0.2,0.3] −980.8 −118.7 2.0314 1.9696 0.1428

H[0.3,0.4] 442.0 150.1 1.2400 1.3297 0.2173

H[0.4,0.5] −24.8 −253.1 1.3936 0.9592 0.1214

H[0.5,0.6] 1358.9 270.8 1.3545 1.1048 0.3121

H[0.6,0.7] −431.6 −59.2 0.0839 −0.0442 −0.0449

H[0.7,0.8] −522.9 −259.5 −0.6205 −0.3818 −0.1386

H[0.8,0.9] 703.8 724.6 0.0596 0.7764 0.1876

H[0.9,1] −684.6 −787.9 −8.7020 −8.6480 −1.2234

Table 4.3 – Importance scores of the ocular features for the four problems. The last
column contains the sum of importance scores that were normalized, i.e., scaled
such that the sum over each of the four columns equals one. We highlight the five
most-important features related to drowsiness in red, and the two most-important

features related to alertness in blue.

4.4.4 Correlation of standard ocular features with standard drowsiness
measures

For the development of our baseline system, we only considered the mean RT as the ground
truth of drowsiness. Therefore, it is interesting to perform a statistical analysis of several
standard ocular features (produced in a similar manner than with our baseline system)
with different standard measures of drowsiness (recorded in our sleep-deprivation dataset).

We consider the following seven ocular features: Dblink , Dclosing , Dclosed , Dopening ,
Nµsleeps , Nblinks (the number of blinks), and PERCLOS (the percentage of eye closure,
where an eye closure is defined as a normalized eyelids distance below 0.7). Note that we
did not use Nblinks in our baseline system, and that PERCLOS is equivalent to a linear
combination of the histogram features, i.e., PERCLOS = H[0,0.7]. The time window, over
which these ocular features are computed, depends on the time resolution of the standard
measure of drowsiness, with which these ocular features are compared to.
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We consider the following four measures of drowsiness: (1) the KSS score, with one
value per 10-min PVT; (2) the KDS score, with one value per 20-s epoch, available only
for four subjects; (3) the mean RT, with one value per 1-min epoch; and (4) the number of
lapses, with one value per minute 1-min epoch. Therefore, the ocular features compared
with (1), (2), (3), and (4) are computed over a window with a length of 10min, 20s, 1min,
and 1min, respectively.

Table 4.4 shows the PCC of each ocular feature with each drowsiness measure. The
number of blinks, Nblinks , is weakly correlated to the KDS score (Pearson correlation
coefficient, PCC, of 0.39), but uncorrelated to the other drowsiness measures (PCCs of
0.19, 0.05, and 0.07). Indeed, we noticed during the development of our baseline system
that Nblinks is more a function of the subject than a function of the level of drowsiness.
This could explain the correlation of Nblinks with the KDS score since it is computed from
four subjects. The other ocular features are well correlated to the drowsiness measures,
where the most-correlated is Dblink (average PCC of 0.65) followed by PERCLOS and
Nµsleeps and Dopening (0.59), then by Dclosed (0.56), and then by Dclosing (0.49).

Ocular features
Dblink Dclosing Dclosed Dopening Nblinks Nµsleeps PERCLOS

KSS score 0.59 0.54 0.46 0.67 0.19 0.51 0.53
KDS score 0.7 0.46 0.64 0.6 0.39 0.61 0.65
Mean RT 0.69 0.48 0.64 0.54 0.05 0.66 0.58

Nb. of lapses 0.6 0.48 0.5 0.56 0.07 0.59 0.59
Average 0.65 0.49 0.56 0.59 0.17 0.59 0.59

Table 4.4 – Pearson correlation coefficients (PCC) between 7 standard ocular
features (listed on the second line) and 4 standard measures of drowsiness (listed

in the first column).

Figure 4.8 shows the distribution of Dblink and PERCLOS as a function of the KSS
score, the KDS score, and the number of lapses. Overall, we observe that these two ocular
features increase when the measures of drowsiness increase, although not always in a close-
to-linear fashion.

4.5 Conclusion

In this chapter, we presented a baseline drowsiness characterization system. Our base-
line system processes a 1-min sequence of face images with four successive modules, ex-
tracts standard ocular features, and characterizes drowsiness in four different ways. Com-
pared to the systems that we present in the following chapters, the baseline system uses a
person-specific “face landmarks” module. Therefore, the baseline system is not thoroughly
generic and automatic. However, it allows us to study the relationship between eye clo-
sure dynamics and performance impairments without worrying about the performance of
the computer-vision modules of our system. In the next chapter, with the goal of com-
paring the performance of our baseline system with those of our other systems, we make
modifications to the baseline system which make it generic and automatic.

We evaluated our baseline system in controlled, laboratory conditions on 14 subjects via
a leave-one-subject-out cross-validation. The results show that the estimation performance
of estimative problems are higher that the performance of predictive problems. For the
estimative regression problem, the baseline system achieves a Pearson correlation coefficient
(PCC) of 0.62 and a Root Mean Square Error (RMSE) of 104ms. For the estimative



Chapter 4. Baseline drowsiness characterization system 59

2 3 4 5 6 7 8 9

KSS

150

200

250

300

350

400

450

500

550

600

650
M

e
a
n

 b
li

n
k

 d
u

ra
ti

o
n

 (
m

s)

2 3 4 5 6 7 8 9

KSS

0

10

20

30

40

50

60

70

80

P
E

R
C

L
O

S
 (

%
)

0 1 2 3 4 5 6 7 8 9 10

KDS

100

200

300

400

500

600

700

800

900

M
e
a
n

 b
li

n
k

 d
u

ra
ti

o
n

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10

KDS

0

10

20

30

40

50

P
E

R
C

L
O

S
 (

%
)

0 1 2 3 4 5 6 7 8 9

Number of lapses

100

200

300

400

500

600

700

800

900

1000

M
ea

n
 b

li
n

k
 d

u
ra

ti
o

n
 (

m
s)

0 1 2 3 4 5 6 7 8 9

Number of lapses

0

20

40

60

80

100

P
E

R
C

L
O

S
 (

%
)

Figure 4.8 – Box plots of the mean blink duration (left column) and the PERCLOS
(right column) as a function of KSS scores (first row), KDS scores (second row),
and the number of lapses (third row). From left to right and top to bottom, the

PCCs are 0.59, 0.53, 0.7, 0.69, 0.6, and 0.59.
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classification problem, the baseline system achieves a true detection of alertness of 87.73%,
a true detection of drowsiness of 75.46%, and a global accuracy of 86.19%.

We found that the number of microsleeps (Nµsleeps), the average blink duration (Dblinks),
the average opening duration (Dopening), the average closed duration (Dclosed ), and the pro-
portion of normalized eyelids distance below 10% (H[0,0.1]) are the most-important ocular
features related to impairments of performance due to drowsiness. When comparing to
other standard measures of drowsiness, we found the following ocular features to be the
most correlated with drowsiness: Dblink (average PCC of 0.65) followed by PERCLOS and
Nµsleeps and Dopening (0.59), then by Dclosed (0.56), and then by Dclosing (0.49).



Chapter 5

Multi-timescale drowsiness
characterization system

This chapter presents a multi-timescale drowsiness characterization system that aims at
dealing with the trade-off between accuracy and responsiveness. Section 5.1 introduces
and motivates our multi-timescale system. Section 5.2 describes our system. Section 5.3
details the training of our system. Section 5.4 reports experimental results, and evaluates
the performance. Section 5.5 investigates the combination of the binary LoDs into a single
LoD, which is more convenient to use operationally. Section 5.6 concludes this chapter.
This chapter is based on the following published journal article [93]: Q. Massoz, J. Verly,
and M. Van Droogenbroeck. Multi-timescale drowsiness characterization based on a video
of a driver’s face. Sensors, 18(9):1–17, August 2018.

5.1 Introduction

In the scientific literature, drowsiness characterization systems typically make use of eye
closure dynamics by averaging blink-related features (e.g., blink duration) over a time
window of fixed length (e.g., one minute). However, systems using this strategy suffer from
a trade-off between accuracy and responsiveness. Indeed, a system based on a short time
window (of eye closure dynamics) will be very responsive to sudden changes in eye closure
dynamics and, therefore, to brief episodes of drowsiness such as lapses and microsleeps,
but it will not characterize drowsiness with high accuracy. By contrast, a system based
on a long time window will be more accurate, but less responsive. Ideally, drowsiness
characterization systems should be both accurate and responsive.

With the goal of satisfying both accuracy and responsiveness, we present a novel multi-
timescale drowsiness characterization system that is data-driven, automatic, real-time,
and generic. Our system extracts, via convolutional neural networks (CNNs), data-driven
features related to eye closure dynamics at four timescales, i.e., four time windows of
increasing lengths (5s, 15s, 30s, and 60s) and all extending up to the present, so as to infer
four binary Levels of Drowsiness (LoDs). We design a novel multi-timescale ground truth
of drowsiness in such a manner that (1) an LoD inferred at a low timescale is an early and
responsive, but noisy estimate of drowsiness, and (2) an LoD inferred at a high timescale
is an accurate, but less responsive estimate of drowsiness. To obtain such multi-timescale
ground truth, we produce four binary ground-truth LoDs (one per inferred LoD) based
on the median values—computed over time windows of increasing lengths—of the reaction
times (RTs) performed during standard Psychomotor Vigilance Tasks (PVTs). In such a
manner, our system produces, from any 1-min sequence of face images, four binary LoDs

61
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Figure 5.1 – Overview of the multi-timescale drowsiness characterization system
operating on any given 1-min sequence of face images. First, from each face image,
the “eye image” module produces two eye images (left and right) via off-the-shelf
algorithms. Second, from each eye image, the “eyelids distance” module produces
the eyelids distance via a convolution neural network (CNN). Third, from the
1-min sequence of eyelids distances and via a temporal CNN, the “drowsiness”
module (1) extracts data-driven ocular features at four timescales, i.e., for the four
most-recent time windows with increasing lengths of 5s, 15s, 30s, and 60s, and (2)
produces four probabilities of drowsiness of increasing accuracy, but decreasing

responsiveness.

with diverse trade-offs between accuracy and responsiveness.

5.2 Multi-timescale system

Our multi-timescale drowsiness characterization system is composed of three modules op-
erating in cascade: the “eye image” module, the “eyelids distance” module, and the “drowsi-
ness” module. Figure 5.1 depicts the multi-timescale system and its three modules.

5.2.1 “Eye image” module

The “eye image” module is composed of off-the-shelf algorithms and extracts, for each frame
and for each eye, an eye image of size 24 × 24 pixels, this in four successive steps. First,
we detect the face region using the OpenCV [20] implementation of the Viola and Jones
algorithm [138]. Second, within the detected face region, we localize 68 face landmarks
using the dlib [82] implementation of the Kazemi and Sullivan algorithm [81]. Third, from
the 12 eyelids landmarks, we compute the eye center positions of the right and left eye, cr
and cl, respectively, and the rotation angle needed to align them horizontally, α. Fourth
(and last), we extract the right and left eye images using affine warping so as to obtain a
right (respectively left) eye image centered on cr (respectively cl), rotated by an angle of
α around cr (respectively cl), scaled at 24% of the face region width (from the first step),
and with size of 24× 24 pixels. Figure 5.2 depicts the extraction of both eye images.
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Right eye image

Left eye image

Figure 5.2 – Illustration of the steps of the “eye image” module. In succession, we
detect the face (green square), we align the eyelids landmarks (green dots), and
we geometrically extract the right eye image (blue square) and the left eye image

(red square) with a common size of 24× 24 pixels.

5.2.2 “Eyelids distance” module

The “eyelids distance” module is a spatial CNN taking, as input, a grayscale eye image,
and producing, as output, an estimate of the eyelids distance (i.e., a real number) in pixels
(referenced in the eye image, not in the original frame). The architecture of the module is
very similar to the VGGNet architecture [126]. We provide a short technical background
on CNNs in Appendix C.

The eye image is sequentially processed by (1) eight 3× 3 convolutional layers (stride
of 1, padding of 2, depths of 32, 32, 64, 64, 128, 128, 256, and 256, respectively, followed by
the ReLU non-linearity then batch normalization [74]) interspersed with three 2 × 2 max
pooling layers (padding of 2) positioned after every two convolutional layers, (2) a global
max pooling, and (3) a fully connected layer (1 output neuron) so as to output the eyelids
distance, i.e., a real number. Figure 5.3 depicts the architecture of the “eyelids distance”
module.

Convolution + ReLU + batch normalization

Max pooling Fully connected

32

64

128

256

1

24 24

or or

dr

dl

Figure 5.3 – Architecture of the “eyelids distance” module. The CNN produces an
estimate of the right (or left, respectively) eyelids distance (i.e., a real number)
from the right (or left, respectively) eye image of size 24 × 24 pixels. Note that

one can process both eye images simultaneously in a batch of size 2.
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Figure 5.4 – Architecture of the “drowsiness” module. The temporal CNN pro-
cesses a 1-min sequence of eyelids distances using multiple time windows extend-
ing up to the present (via global pooling) to characterize drowsiness at multiple

timescales.

5.2.3 “Drowsiness” module

The “drowsiness” module is a temporal CNN taking, as input, a 1-min sequence of eyelids
distances related to both eyes (1800 × 2 values, at a framerate of 30 frames per second),
and producing, as output, four binary LoDs associated to four timescales, i.e., 5s, 15s, 30s,
and 60s. The processing is depicted in Figure 5.4, and is as follows.

First, the module processes the input sequence with two temporal convolutional layers
(depth of 32, receptive field of 15, stride of 1, padding of 7, followed by ReLU then batch
normalization) separated by a max pooling layer (receptive field k of 3, and stride s of
3). These two convolutional layers are densely connected [71], meaning that their outputs
are concatenated with their inputs via a skip connection, leading to output sequences with
dimensions of 34 and 66, respectively.

Second, the module forwards the resulting sequence (with depth of 66) to four branches,
each tasked to produce one of the four estimated probabilities of drowsiness p̂i. Each
branch consists of (1) a temporal convolutional layer (depth of 32, receptive field k of 31,
stride s of 1, padding of 15, followed by ReLU then batch normalization, and without skip
connection), (2) a global pooling layer (different for each branch, see below), (3) a first
fully connected layer (depth of 16, and followed by ReLU), and (4) a last fully connected
layer (depth of 2) followed by the softmax function.

Because the ground-truth LoD varies rapidly in time at a low timescale (see Sec-
tion 5.3.2), the estimation of drowsiness should be mostly based on a short time window so
as to be responsive to sudden changes in the eye closure dynamics. Therefore, the global
pooling of the first three branches (timescales of 5s, 15s, and 30s) focus their attention
over the recent past of varying length n0 (of 5s, 15s, and 30s, respectively) via a “temporal
sigmoid-weighted pooling” layer, represented in Figure 5.4, and defined as
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a(n0) =

600∑
n=1

σ
(
3
2 (n− 600 + 10n0)

)
600∑
k=1

σ
(
3
2 (k − 600 + 10n0)

)vn, (5.1)

where a is the output feature vector, vn is the feature vector at the nth position in the
input sequence, σ(x) is the sigmoid function expressed as (1 + e−x)

−1, and n0 is the cut-off
time (expressed in seconds) of the attention weights. We chose the sigmoid function to
have the temporal weights decrease sharply, yet smoothly, at n0. The global pooling of the
fourth branch (timescale of 60s) corresponds to a global average pooling.

Furthermore, we add what we call “multi-timescale context” to each branch: the outputs
of the global pooling layer of each branch are concatenated together, processed by a fully
connected layer (depth of 16, and followed by ReLU), and then concatenated back into each
branch with the output of their respective first fully connected layer. This is equivalent
to adding dependencies between the branches, which we will show to be crucial to obtain
strong performance for estimating drowsiness at low timescales.

5.3 Training of the system

We trained the “eyelids distance” module and the “drowsiness” module sequentially.

5.3.1 “Eyelids distance” module

Dataset

We built the “eyelids distance” dataset for training and evaluating the performance of the
“eyelids distance” module. This dataset consists of the Multi-PIE (MPIE) face dataset [59]
augmented with a subset of near-infrared face images (834) from our sleep-deprivation
dataset (denoted SDD). We chose the MPIE dataset because of its variety in subjects,
illumination conditions, head poses (from frontal to near-profile head poses), and types of
eyeglasses (when present).

For each face image (of both sub-datasets), we extracted two eye images, i.e., one for
each eye, by making use of the 68 manually-annotated face landmarks. For each eye image,
we computed the ground-truth eyelids distance (i.e., the regression target) as the average
of the two inter-eyelid Euclidean distances (referenced in the eye image) between the two
face landmarks positioned on the upper eyelid, and the two on the lower eyelid.

Training and optimization

We split the “eyelids distance” dataset into a training set, a validation set, and a test set
intended for training the model parameters, validating its hyper-parameters (via random
search), and evaluating its performance, respectively. Table 5.1 contains the number of
subjects and samples in these three sets, and from each of the two sub-datasets (MPIE or
SDD). We randomly split the subjects so that the training, validation, and test sets have
(1) an approximate ratio of 70/10/20 for both the numbers of subjects and samples, and
(2) no overlap in subjects between them. We doubled the amounts of training, validation,
and test data by flipping horizontally each eye image.

We trained the “eyelids distance” module with the Mean Squared Error (MSE) loss
function using the RMSProp [133] optimization routine with a smoothing constant α of
0.9886, a batch size of 32, and a learning rate of 0.001428. We normalized the eye images
by subtracting the average pixel value computed from the training set. We doubled the
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MPIE SDD Total
Number

of
subjects

Training set 242 11 253
Validation set 28 2 31

Test set 67 3 70
Number

of
samples

Training set 6438 1090 7528
Validation set 794 182 976

Test set 1924 396 2320

Table 5.1 – Numbers of subjects and samples in the training, validation, and
test sets, and from each sub-datasets (MPIE and SDD) of the “eyelids distance”
dataset. For each set, horizontal flipping of every eye image doubles the number

of samples contained in this table.

number of samples of the training, validation, and test sets by horizontally flipping every
eye images. We performed no other data augmentation.

5.3.2 “Drowsiness” module

Dataset

Out of the 88 PVTs of our sleep-deprivation dataset, we only used 82 PVTs (from 29
subjects, 18 females and 11 males) for the development of the multi-timescale system. The
reason is that the PVT1 data, which are necessary for the inter-subject normalization of
the RTs, were missing for 3 subjects.

Inter-subject normalization of the reaction times (RTs)

While performing a PVT, the RT achieved by a subject depends on various factors includ-
ing drowsiness, time-on-task (i.e., fatigue), and individual skills. Drowsiness is the state
that we wish to characterize, time-on-task is considered to have minor impact given the
short PVT duration of 10 minutes, and individual skills can be mitigated by inter-subject
normalization. Considering that the reciprocal of the RT (i.e., the reaction speed) of an
individual follows relatively well a normal distribution [24], we normalize each RT from
each subject according to

x′ =

(
1

x
− µk +

1

29

29∑
i=1

µi

)−1
, (5.2)

where k is the subject index, x is an observed RT from subject k, x′ is the corresponding
normalized RT for subject k, and µk is the mean of the reciprocal of all RTs recorded
during PVT1 of subject k. This normalization shifts the RT distribution of a subject in an
alert state (i.e., in the first morning, during PVT1) to the population average (estimated
from the 29 subjects).

Multi-timescale ground truth of drowsiness

We want to develop a system that operates both at long timescales (leading to accu-
rate estimation of drowsiness) and at short timescales (leading to responsive estimation of
drowsiness). Therefore, we need to produce the appropriate ground-truth LoDs of increas-
ing accuracy and of decreasing responsiveness. Given that drowsiness is characterized by
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impairments of performance, i.e., overall longer RTs while performing a PVT, a ground-
truth LoD could be generated by thresholding either (1) a single RT, which is perfectly
time-localized (resulting in a responsive, but noisy estimate of drowsiness) or (2) a metric
computed from a set of RTs within a time window (resulting in a more accurate, but less
responsive estimate of drowsiness).

Accordingly, we define four metrics of performance, which we call “median RTs”, denoted
by mi with i ∈ {1, 2, 3, 4}. The first median RT, m1, corresponds to a single RT that either
(1) occurs within the [−1s,+1s] time window or (2) is a linear interpolation between the
previous RT and the next RT. The other median RTs, m2, m3, and m4, are computed
as the harmonic means (equivalent to the medians of the reciprocal normal distributions)
of the RTs that occur within the [−15s,+5s], [−30s,+5s], and [−60s,+5s] time windows,
respectively. Each median RT can be considered as being a continuous signal that varies
in time at a specific timescale, induced by its corresponding sliding time window (i.e., with
a specific length). These time windows are allowed to be non-causal since they are used
for producing the ground-truth LoDs, and thus not for operational use.

By thresholding these four median RTs, we obtain four binary ground-truth LoDs, each
varying at a distinct timescale, and each associated with a ground-truth likelihood score
of drowsiness (loosely referred to as a probability of drowsiness from here on), denoted by
pi and defined as

pi =


0

0.5

1

if mi ≤ 400ms
if mi ∈ ]400, 500[ ms
if mi ≥ 500ms.

, for each i ∈ {1, 2, 3, 4} (5.3)

The above thresholds of 400ms and 500ms were chosen empirically, yet pertinently. Indeed,
the threshold of 400ms corresponds to about the 98–99th percentile of the distribution of
m4 during PVT1 (i.e., in non-sleep deprived conditions), whereas the threshold of 500ms
corresponds to the value above which a RT (such as m1) is conventionally interpreted as a
lapse [13, 44]. From here on, each ground-truth LoD is referenced either by its index (from
1 to 4), or by the timescale at which the classifier estimating it operates (i.e., 5s, 15s, 30s,
and 60s, respectively).

Loss function

We trained the “drowsiness” module with the average of four binary relative entropies, each
associated with one of the four probabilities of drowsiness. The loss function is given for
one sample by

L(p̂,p) =
−1

4

4∑
i=1

[
pi ln

(
p̂i
pi

)
+ (1− pi) ln

(
1− p̂i
1− pi

)]
, (5.4)

where p̂i is the ith estimated probability of drowsiness produced by the “drowsiness” mod-
ule, and pi is the ith ground-truth probability of drowsiness defined in Equation 5.3.

Training and optimization

Given the limited number of subjects (29), we trained 29 models following a leave-one-
subject-out cross-validation strategy of 29 folds. Each fold consists of a training set of 23
subjects, a validation set of 5 subjects, and a test set of 1 subject. Moreover, each subject
appears in an equal number of folds (23, 5, and 1, respectively) for each of the three sets,
and with no overlap in subjects between sets of the same fold. The “eye image” module and
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the “eyelids distance” module were shared across folds. The samples (i.e., 1-min sequences
of face images) composing each set are obtained as follows.

For the training set, we adopted a stratified random sampling strategy, where each
training epoch consists of an equal number (256) of 1-min sequences randomly drawn from
each of five groups (also known as strata). All possible 1-min sequences (of the training
set, at a frame level) were divided into five strata based on the number of their four median
RTs (noted mi) that are greater than or equal to 470ms, with this number ranging from 0
to 4 for the five strata, respectively.

For the validation set and test set, we sampled the 1-min sequences that end at the
occurrence time of every PVT stimulus (except for the PVT stimuli that occurred within
the first minute of the PVT). In this way, the first ground-truth LoD is perfectly time-
synchronized with the 1-min sequence. This deterministic sampling strategy leads to an
average of about 85 samples per PVT.

We validated the hyper-parameters via random search so as to minimize the average
validation loss across the 29 folds. Moreover, while we balanced the training sets (at an
epoch level) via stratified random sampling, we balanced the validation sets (across folds)
by weighting each sample in the ith relative entropy loss function (i.e., the ith term of
the sum constituting the loss function in Equation 5.4) based on whether the median RT
mi (of the sample) is lower or greater than 470ms. This results in eight weights (two per
timescale, shared across folds) with values that equal half of the reciprocal of the occurrence
frequencies at a specific timescale (indexed by i), and across folds. Table 5.2 shows the
eight computed occurrence frequencies, and the eight resulting weight values.

Timescale
index i

Occurrence frequency f (%) Weight value w = f−1/2
mi < 470ms mi ≥ 470ms mi < 470ms mi ≥ 470ms

1 87.29 12.71 0.5728 3.9318
2 92.97 7.03 0.5378 7.1173
3 94.79 5.21 0.5275 9.5810
4 95.75 4.25 0.5222 11.7821

Table 5.2 – The computed occurrence frequencies, f , and resulting weight values,
w, that are used to balance the alert/drowsy samples in the average validation loss
(across the 29 folds). Note that both f and w are functions of (1) the timescale
index i, and (2) whether the median RT mi is lower or greater than 470 ms.

We trained the 29 models (one per fold) using the Adam [83] optimization routine with
a first moment coefficient of 0.9, a second moment coefficient of 0.999, a batch size of 32,
and a learning rate of 0.0016029. We used dropout [128] with probabilities of 0.35, 0.7,
and 0.35 respectively at three positions: (1) right after the concatenation of the second
convolutional layer, (2) right after each global pooling layer, and (3) right before each last
fully connected layer. Independently for each fold, we normalized the eyelids distances by
subtracting the average eyelids distance computed from the training set. We augmented
the data by randomly swapping (with a probability of 0.5) the right and left sequences of
eyelids distances.
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5.4 Experimental results and performance

5.4.1 “Eye image” module

We evaluated the performance of the “eye image” module on the held-out test set of the
“eyelids distance” dataset. We computed the Root Mean Square Error (RMSE) between
(1) the true eye positions obtained from the manually-annotated eye landmarks, and (2)
the estimated eye positions obtained from the eyelids landmarks of the “eye image” mod-
ule. We discarded samples with large errors (distances above 80 pixels) in estimated eye
positions, i.e., when the algorithm did not converge. The reason is that, when processing a
sequence of face images, we can easily detect such large errors (e.g., with a threshold on the
variation in eye positions), and then estimate better eye positions by either interpolating
or extrapolating them from the eye positions of other frames.

Following this evaluation scheme, we obtained an RMSE of 1.2 pixels, which is low
enough for the eye to be always entirely contained within the eye image produced by the
“eye image” module.

5.4.2 “Eyelids distance” module

We evaluated the performance of the “eyelids distance” module on the held-out test set
composed of 4640 eye images from 70 subjects, and obtained an RMSE of 0.523 pixel.
Figure 5.5 shows a scatter plot of the estimated eyelids distances versus their ground-truth
value. We observe that the absolute error remains below 2, 1, and 0.5 pixel(s) for 99.9%,
93.1%, and 70.5% of the test samples, respectively.

For purposes of comparison, we also produced the eyelids distances directly from the
eyelids landmarks localized by the “eye image” module, scaled them to be referenced in
the coordinates of the eye image (rather than those of the face image), and obtained
an RMSE of 1.152 pixels on the same held-out test set. This significant difference of a
1.152/0.523 = 2.2 factor in performance clearly motivates the use of a specialized module,
i.e., the “eyelids distance” module, for producing the eyelids distances.

Indeed, face alignment techniques, such as the one used in the “eye image” module, aim
at localizing landmarks positioned on the entire face, rather than only those positioned on
the eyelids. Because of this, the localization of eyelids landmarks significantly depends on
the positions of other landmarks. This inter-landmark dependency is crucial for good coarse
localization of the eyelids landmarks, but limits the fine localization of these landmarks
since these are few in number (about ∼ 20% of all face landmarks). On the contrary, the
“eyelids distance” module aims at directly producing an estimate of the eyelids distance
from the eye image, which can be efficiently carried out with a CNN.

5.4.3 “Drowsiness” module

We evaluated the performance of the “drowsiness” module by aggregating the results of
the 29 test sets, each associated to one trained model, before computing the performance
metrics. We did not average the performance metrics across the 29 subjects because (1)
the amount of data was not identical for all subjects (some PVTs were missing), and (2)
the proportion of fast/slow RTs varied significantly between subjects.

In addition, we discarded, at each timescale i independently, the samples with a ground-
truth probability of drowsiness pi of 0.5. That is, we only kept the samples of which the
median RT mi is below 400ms (pi = 0, the sample is labeled as alert, the negative class), or
above 500ms (pi = 1, the sample is labeled as drowsy, the positive class). This discarding
resulted, for the 1st, 2nd, 3rd, and 4th timescales respectively, in aggregated (across folds)
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Figure 5.5 – Scatter plot of the estimated eyelids distance produced by our “eyelids
distance” module vs. its ground-truth value (both expressed in pixels). The red

line is the perfect regressor.

System Timescale (s) TNR (%) TPR (%) Accuracy (%)

Multi-timescale system

5 72.26 58.69 70.68
15 86.29 71.84 85.45
30 90.44 75.76 89.82
60 94.80 74.19 94.22

Table 5.3 – Classification performance of the multi-timescale system. The negative
class corresponds to the “alert” label, and the positive class to the “drowsy” label.

numbers of alert/drowsy (i.e., negative/positive) samples of 4845/639, 5100/316, 5221/231,
and 5345/155, respectively.

The obtained results are shown in Table 5.3. The multi-timescale system achieved, for
the 1st, 2nd, 3rd, and 4th timescales respectively, a specificity (i.e., true negative rate,
TNR) of 72.26%, 89.29%, 90.44%, and 94.80%; a sensitivity (i.e., true positive rate, TPR)
of 58.69%, 71.84%, 75.76%, and 74.19%; and a global accuracy of 70.69%, 85.45%, 89.82%,
and 94.22%. Overall, we observe that all performance metrics increase with the timescale
at which the LoD is inferred. The most significant increase in accuracy (of 14.77%) is
found from the 1st timescale to the 2nd timescale. These results could be explained by
the fact that, as the timescale increases, the characterization of drowsiness becomes less
challenging because (1) the associated ground-truth LoD estimates more accurately the
level of drowsiness, and (2) the data-driven features (related to eye closure dynamics)
becomes less noisy as they are averaged over a longer time window.

5.4.4 Processing times

We evaluated the processing time of each module on a computer equipped with a Nvidia
GeForce GTX TITAN X (Maxwell architecture) and an Intel i7-6700. The “eye image”
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module processes one video frame in 12ms. The “eyelids distance” module processes one
pair of eye images (i.e., the left one and the right one) in 1.2ms. The “drowsiness” module
processes an 1-min sequence of eyelids distances in 2.5ms, 13ms, or 62ms when using 1, 6,
or 29 models, respectively. Note that, although the “eye image” module and the “eyelids
distance” module have to be applied at each and every new frame, i.e., at 30 times per
second, the “drowsiness” module can be applied at a lower rate, e.g., at 10 times per second.
In this way, real-time constraints can be satisfied with an adjustable, comfortable margin.

5.4.5 Impact on performance of the “multi-timescale context”

We study the impact on performance of the “multi-timescale context” (defined in Sec-
tion 5.2.3) by training, validating the hyper-parameters, and evaluating the 29 models
without this context, i.e., by removing the auxiliary branch that is concatenated into each
of the four main branches. We doubled the depth of the first fully connected layer to
compensate for the reduced number of parameters.

The results in Table 5.4 show that the accuracy significantly drops at the 1st timescale
(from 70.68% to 61.94%) accompanied with an increase in sensitivity (from 58.69% to
65.26%), and that the sensitivity drops at the 2nd, 3rd, and 4th timescales (by 3.49%,
7.79%, and 3.87%, respectively). This mostly shows that the context (of eye closure dy-
namics) from the higher timescales is crucial for good performance at the lower timescales.
This makes sense since a single long blink is more probably associated with a lapse of
attention if the driver has been experiencing long blinks for the last minute than if he has
not.

System Timescale (s) TNR (%) TPR (%) Accuracy (%)

Multi-timescale system
with “multi-timescale

context”

5 72.26 58.69 70.68
15 86.29 71.84 85.45
30 90.44 75.76 89.82
60 94.80 74.19 94.22

Multi-timescale system
without “multi-timescale

context”

5 61.51 65.26 61.94
15 82.94 68.35 82.09
30 91.02 67.97 90.04
60 94.78 70.32 94.09

Table 5.4 – Comparison of the performance of the system with and without “multi-
timescale context”.

5.4.6 Comparison of performance with the baseline system

As seen in Chapter 2, the fair comparison between systems of different studies is infeasible.
The principal reason is that the data and the ground truth of drowsiness differ between
studies. To provide comparisons that are as fair as possible, we compare the performance
of our multi-timescale system with our baseline system (presented in Chapter 4), which
is representative of a large panel of systems of other studies. We modified, re-trained,
and re-evaluated the baseline system to provide a fair comparison with our multi-timescale
system. Details follow.

Modifications to the baseline system

We made modifications to each module of the baseline system.
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1. We replaced the “face landmarks” and “eyelids distance” modules of our baseline
system with the “eye image” and “eyelids distance” modules of our multi-timescale
system. In this way, the baseline system (1) processes the same sequence of eyelids
distances as the one produced by our multi-timescale system, and (2) is subject-
generic, i.e., can be applied to each of the 29 subjects.

2. We modified the “ocular features” module of our baseline system to extract six stan-
dard ocular features from four time windows with lengths of 5s, 15s, 30s, and 60s,
resulting in a vector of 24 ocular features. We used the six following standard ocular
features: the mean blink duration, Dblink ; the mean closing duration, Dclosing ; the
mean closed duration, Dclosed ; the mean opening duration, Dopening ; the number of
microsleeps, Nµsleeps ; and the percentage of eye closure below 70%, PERCLOS . In
this way, the baseline system uses (1) ocular features typically found in other studies,
and (2) the same time windows as the ones of our multi-timescale system.

3. We modified the “drowsiness” module of our baseline system such that it is composed
of four SVM classifiers (one per timescale). We considered both a linear kernel and
a radial basis function (RBF) kernel. Note that, by feeding, as input, ocular features
computed from four time windows, each SVM characterizes drowsiness with “multi-
timescale context”.

Training of the baseline system

We trained each SVM, i.e., each timescale, separately. At each timescale, we trained
29 models following a leave-one-subject-out cross-validation strategy of 29 folds. However,
considering the significantly faster training time of SVMs compared to CNNs, we validated
the hyper-parameters (C for the linear kernel, C and γ for the RBF kernel) via an inner
leave-one-subject-out cross-validation strategy of 28 folds, i.e., all subjects (29) but the one
(1) in the test set of the outer cross-validation. Upon determination of the optimal values
of hyper-parameters, we trained the final model on all 28 subjects of the training set (of
the outer cross-validation).

We obtained all samples of the training, validation, and test sets in the same manner,
i.e., by sampling the 1-min sequences that end at the occurrence time of every PVT stim-
ulus (except for the PVT stimuli that occurred within the first minute of the PVT). We
discarded samples with a ground-truth probability of drowsiness pi of 0.5, for all three sets
and at each timescale i independently (as in Section 5.4.3). We individually scaled each
feature so as to be within the range [0, 1] for the samples of the training set. We weighted
the classes (i.e., “alert” and “drowsy”) in the SVM optimization routine with the reciprocal
of the number of their occurrence in the training set. We performed training and inference
with the LIBLINEAR library [47] and the LIBSVM library [26] for the linear kernel and
the RBF kernel, respectively. We performed no data augmentation.

Evaluation of the performance of the baseline system

We evaluated the performance of the baseline system by aggregating the results of the 29
test sets, each associated to one trained model, before computing the performance metrics.
The obtained results are shown in Table 5.5, with a comparison with our multi-timescale
system. With a linear kernel, our baseline system achieved, for the 1st, 2nd, 3rd, and 4th
timescales respectively, a specificity (i.e., TNR) of 64.43%, 78.71%, 81.06%, and 84.49%;
a sensitivity (i.e., TPR) of 61.03%, 65.81%, 60.34%, 64.52%; and a global accuracy of
64.03%, 77.97%, 80.18%, and 83.93%. With an RBF kernel, our baseline system achieved,
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System Timescale (s) TNR (%) TPR (%) Accuracy (%)

Multi-timescale system

5 72.26 58.69 70.68
15 86.29 71.84 85.45
30 90.44 75.76 89.82
60 94.80 74.19 94.22

Baseline system
(linear kernel)

5 64.43% 61.03% 64.03%
15 78.71% 65.81% 77.97%
30 81.06% 60.34% 80.18%
60 84.49% 64.52% 83.93%

Baseline system
(RBF kernel)

5 75.56% 53.83% 73.03%
15 85.74% 69.36% 84.80%
30 87.71% 74.14% 87.14%
60 88.61% 82.58% 88.44%

Table 5.5 – Comparison of performance between the multi-timescale system and
the baseline system (with a linear kernel or an RBF kernel).

for the 1st, 2nd, 3rd, and 4th timescales respectively, a TNR of 75.56%, 85.74%, 87.71%,
and 88.61%; a TPR of 53.83%, 69.36%, 74.14%, and 82.58%; and a global accuracy of
73.03%, 84.80%, 87.14%, and 88.44%.

Compared to our multi-timescale system, the baseline system has a greater specificity
(+3.3%) and a greater global accuracy (+2.35%) at the first timescale, and a greater
sensitivity (+8.39%) at the fourth timescale. On all the other performance metrics, the
multi-timescale system outperforms the baseline system, which demonstrates the appro-
priateness of using a temporal CNN architecture to process a sequence of eyelids distances
so as to characterize drowsiness.

5.5 Combination of multi-timescale decisions

Up to now, we attained the above results and observations by considering the four bi-
nary LoDs individually. When considered together, the four LoDs have 24 (16) possible
outcomes. Interestingly, whereas the (combined) ground-truth LoD takes its value from
all of the 16 possible outcomes, the (combined) inferred LoD takes its value only from 5
outcomes: “0000”, “1000”,”1100”, “1110”, and “1111”. This means, that if the system detects
drowsiness at one timescale (e.g., 30s), it will consequently detect drowsiness at all lower
timescales (e.g., 5s and 15s). As a corollary, it also means that the detection of drowsiness
at one timescale (e.g., 5s) will happen before (or, at worst, at the same time) than the
detections at higher timescales (e.g., 15s and above).

This suggests that the system has “learned” some form of internal timescale hierarchy
as a result of the fact that we have trained the four classifiers together. However, it is
also possible that this behavior of the system simply stems from the built-in hierarchy of
the time windows (of 5s, 15s, 30s, and 60s) at the global pooling stage of the “drowsiness”
module.

One could thus build a unified classifier by adding the binary decisions of each classifier
so as to output a combined LoD ranging from 0 to 4 (with the lower levels being more
responsive, and the higher ones more accurate). In real-world applications, one can conve-
niently feed such combined LoD back to the driver and/or to a semi-autonomous driving
system. Indeed, when the (combined) LoD reaches 1, the driver would take notice early
that he/she might be starting to be drowsy. At this time, the driver should determine the
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plausibility of drowsiness by answering whether he/she has been driving for a long time,
and whether he/she had enough sleep. When the LoD reaches 2–3, drowsiness becomes
more and more probable, and the driver can start taking early safety actions. When the
LoD reaches 4, drowsiness is most probable, and the driver would have had enough time
to decide the best safety actions to take, such as pulling to the nearest rest area to switch
drivers, take a 15-min nap, and/or consume a caffeinated beverage [70]. Note that, whereas
a driver may become too drowsy to take any safety actions, a semi-autonomous driving
system would always be ready to take the actions necessary to prevent any accidents,
including autonomously bringing the vehicle to the nearest rest area.

5.6 Conclusion

In this chapter, we presented a multi-timescale drowsiness characterization system that
is novel, data-driven, automatic, real-time, and generic. Our multi-timescale system pro-
cesses a 1-min sequence of face images with three successive modules, extracts data-driven
features related to eye closure dynamics at distinct timescales (5s, 15s, 30s, and 60s), and
outputs four binary LoDs with diverse trade-offs between accuracy and responsiveness. To
train our system, we introduced a multi-timescale ground truth of drowsiness that consists
of four ground-truth LoDs based on thresholded, normalized median RTs computed from
time windows of different lengths.

We evaluated our multi-timescale system in controlled, laboratory conditions on 29
subjects via a leave-one-subject-out cross-validation. The results show that the system
achieves overall strong performance, with the highest performance (specificity of 94.80%,
and sensitivity of 74.19%) at the 4th timescale (of 60s). We showed that the system
outperforms our baseline system based on a vector of multi-timescale, standard ocular
features being fed to timescale-specific SVMs, which is representative of a wide range of
systems found in other studies.

In real-world applications, the driver (or a monitoring system and/or a semi-autonomous
driving system) could combine these four estimated LoDs (of increasing accuracy, and of
decreasing responsiveness) to assess the driver’s physiological state of drowsiness, and then
decide—with full knowledge—to take safety actions.



Chapter 6

Parametric drowsiness
characterization system

This chapter presents a parametric drowsiness characterization system that aims at estimat-
ing the parameters of the instantaneous probability density function of drowsiness-induced
reaction times. Section 6.1 introduces and motivates our parametric system. Section 6.2
describes our system. Section 6.3 details the training of our system. Section 6.4 reports
experimental results, and evaluates the performance. Section 6.5 provides a visual interpre-
tation, and a first analytic analysis, of the data-driven features learned by our system, and
related to eye closure dynamics. Section 6.6 concludes this article. This chapter is based
on the following published conference paper [92]: Q. Massoz and J. Verly. Vision-based
system for monitoring vehicle operator responsiveness from face images. In International
Conference on Managing Fatigue, pages 1–3, San Diego, CA, USA, March 2017.

6.1 Introduction

In the two previous chapters, we defined the ground truth (of drowsiness) in the terms
of the mean/median reaction time (RT) computed over a time window. For our baseline
system, the ground truth is (1) the mean RT computed over a 1-min window for regression
problems, or (2) the thresholded mean RT computed over a 1-min window for classifica-
tion problems. For our multi-timescale system, the multi-timescale ground truth is four
thresholded median RTs computed over four windows with lengths of 5s, 15s, 30s, and 60s.

In other words, we defined a function that maps a set of recent RTs into a continuous
or discrete ground-truth quantity. Such mapping functions are non-injective, i.e., different
sets of RTs can be mapped to the same ground-truth quantity. For instance, let’s consider
the following two sets of RTs: (A) {330, 350, 370, 750}ms and (B) {430, 440, 450, 480}ms.
These sets have both a mean RT of 450ms. However, these sets are most probably not
sampled from the same distribution. Indeed, one would expect the probability of observing
a RT of 500ms to be higher for the underlying distribution from which B is sampled than
for the distribution from which A is sampled. Therefore, mapping the set of RTs to a single
quantity results in a loss of information.

In this chapter, we make directly use of the set of observed RTs to train a para-
metric system that estimates the underlying probability density function (pdf) of these
drowsiness-induced RTs. Mathematically, the RT, x, is an observation of a random pro-
cess, X (ω, t) : Ω, T ⊂ R → R+. For a fixed sample path ω, this process is a function of
time, where the set of RTs observed during a 10-min Psychomotor Vigilance Task (PVT) is
a trajectory of this process. For a fixed time t, this process is a random variable associated

75
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with an instantaneous pdf, f tX(x). This instantaneous pdf is what we are interested in
as it represents the distribution of how fast an individual may react to a sudden event
happening at time t. However, in general settings such as operating a vehicle, X (ω, t)
is non-stationary as f tX(x) depends on many time-varying variables including the task’s
difficulty, the individual’s skill, the level of distraction, and the level of drowsiness. The
non-stationarity property renders the estimation of f tX(x) from sparsely-observed RTs in-
feasible as we would need multiple RTs observed at the same time t.

Nevertheless, in the controlled settings of a PVT, f tX(x) depends mainly on the level
of drowsiness because (1) the task’s difficulty is fixed, (2) the individual’s skill can be
normalized (e.g., with a baseline), (3) the level of distraction is fixed, and (4) impairments
of performance are mostly driven by an increase in the level of drowsiness (induced by sleep
deprivation). In such settings, because the level of drowsiness should not vary drastically in
time, we assume X (ω, t) to be locally stationary [36], i.e., stationary in a reasonably small
time segment. By also assuming ergodicity in the mean and variance, one can estimate
f tX(x) via stationary methods on the RTs observed in a small time segment centered around
time t. Note that this estimation procedure causes a bias which depends on the degree
of non-stationarity of the random process in the time segment, but that we assume to be
negligible. In controlled PVT settings, it has been empirically shown that the distribution
of RTs is well approximated by a reciprocal normal (“recinormal”) distribution [24, 86],
i.e., the reciprocal of the RT is normally distributed:

f tX(x) ≈ R[µ,σ2] (x) =
1√

2πσ2
exp

(
−
(
1
x − µ

)2
2σ2

)
, (6.1)

whereR[µ,σ2] (x) is the recinormal pdf, and µ and σ2 are respectively the mean and variance
parameters.

With the goal of estimating the instantaneous pdf of drowsiness-induced RTs, we
present a novel parametric drowsiness characterization system that is data-driven, au-
tomatic, real-time, and generic. Our system produces, via convolutional neural networks
(CNNs), an estimate of the parameters of f tX(x), µ̂ and σ̂2, based on eye closure dynamics
extracted from a face video. To train such systems, we use the locally-observed, skill-
normalized RTs as ground truth to maximize the likelihood of the two estimated parame-
ters, µ̂ and σ̂2. In such a manner, our system produces, from any 1-min sequence of face
images, an estimate of the parameters of the instantaneous recinormal pdf of drowsiness-
induced RTs, R[µ̂,σ̂2] (x).

Note that, if used in general settings, our system would not produce an absolute es-
timate of the instantaneous pdf of RTs, but would instead produce an estimate of the
instantaneous pdf of drowsiness-induced RTs that would be observed during a PVT per-
formed in controlled settings. Estimating such pdf is still useful in general settings as
one can use it as a proxy to indirectly estimate the instantaneous level of drowsiness,
i.e., characterize drowsiness.

6.2 Parametric system

Our parametric drowsiness characterization system is composed of two successive mod-
ules operating in cascade: the “eyelids distance” module and the “drowsiness” module.
The “eyelids distance” module estimates the eyelids distance from each face image. The
“drowsiness” module estimates, from the most-recent 1-min sequence of eyelids distances,
the two parameters of R[µ̂,σ̂2] (x), µ̂ and σ̂2. Figure 6.1 depicts the parametric system and
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Figure 6.1 – Overview of our parametric drowsiness characterization system. First,
the “eyelids distance” module estimates, for each frame and via a convolutional
neural network (CNN), the eyelids distance (a real number expressed in pixels).
Then, the “drowsiness” module estimates, via a temporal CNN, the parameters of
the recinormal probability density function (pdf) of drowsiness-induced reaction

times (RTs) based on the sequence of eyelids distances of the past minute.

its two modules. Note that the face image is extracted from the complete frame using the
OpenCV [20] implementation of the Viola and Jones algorithm [138].

6.2.1 “Eyelids distance” module

For measuring the eyelids distance, the common approach consists to (1) locate face land-
marks in 2D/3D via face alignment, and then (2) compute the Euclidean distance between
the located upper and lower eyelid landmarks. As seen in Chapter 4, one may perform face
alignment using parametric deformable models iteratively fitted with the Gauss-Newton
algorithm [31, 121], iterative additive position updates learned by cascaded regression mod-
els [23, 81, 114, 149], or landmarks position heat-maps jointly generated by CNNs [22].

Our “eyelids distance” module uses a more straightforward way of measuring the eyelids
distance: we estimate the eyelids distance directly from the face image using a spatial CNN.
This approach has the advantages of not requiring the definition of a deformable shape
model and of being fast (with the adequate hardware), and turned out to be reasonably
robust to occlusions (including glasses and hands) and other facial expressions.

More precisely, the “eyelids distance” module is a spatial CNN taking, as input, a
128×128 grayscale face image, and producing, as output, an estimate of the eyelids distance
(a real number expressed in pixels) of the most-opened visible eye. Focusing on the most-
opened visible eye increases the system’s robustness by allowing the module to (1) generate
a single value per face; to (2) naturally deal with some common occlusions of the eyes,
such as self-occlusions (induced by large head rotations); and to (3) ignore the cases where
one eye blinks but not the other, which we consider to be the consequence of conscious
behaviors and therefore not of interest to characterize drowsiness. Technically, we achieve
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Figure 6.2 – Architecture of the “eyelids distance” module. The spatial CNN
estimates, from a 128× 128 grayscale face image, the eyelids distance, i.e., a real

number expressed in pixels.

this focus on the most-opened eye by using a global max pooling in the model architecture,
and by selecting the maximum (annotated) eyelids distance as the ground-truth target.

The model architecture is a stack of eight convolutional layers disposed in a similar
fashion to the architecture of VGGNet [127]. Convolutional layers all have a receptive field
of 3×3, a stride of 1, and a padding of 1. They are followed by the ReLU activation function
then batch normalization [74]. Max pooling is performed after every two convolutional
layers, over a 2×2 window and with a stride of 2. The depth of the convolutional layers is
doubled after every max pooling, thus ranging from 32 for the first two layers to 256 for
the last two layers. The model architecture ends with a global max pooling followed by a
fully connected layer (1 output neuron). Figure 6.2 depicts this model architecture.

6.2.2 “Drowsiness” module

The “drowsiness” module consists of a temporal CNN taking, as input, a 1-min sequence
of eyelids distances (that is 1800 values, at a framerate of 30 frames per second), and
producing, as output, an estimate of the log-mean, ln (µ̂), and log-variance, ln

(
σ̂2
)
, pa-

rameterizing R[µ̂,σ̂2] (x). The reason why we chose the log-mean and log-variance as the
two outputs is to enforce the positivity constraint on the mean and variance parameters.

The model architecture is composed of (1) a temporal convolution layer (depth of 32,
receptive field of 15, a stride of 1, and a padding of 7), (2) a max pooling layer (receptive
field of 3, and a stride of 3), (3) a temporal convolutional layer (depth of 32, receptive
field of 31, a stride of 1, and a padding of 15), (4) a global average pooling layer, (5)
a fully connected layer (32 neurons) followed by the ReLU activation function, and (7)
a final fully connected layer (2 output neurons) that outputs ln (µ̂) and ln

(
σ̂2
)
. Both

temporal convolutional layers are followed by the ReLU activation function then batch
normalization. Figure 6.3 depicts this model architecture.

6.3 Training of the system

We trained the “eyelids distance” module and the “drowsiness” module sequentially.
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Figure 6.3 – Architecture of the “drowsiness” module. The temporal CNN esti-
mates, from the most-recent 1-min sequence of eyelids distances, the log-mean
and log-variance parameters of the recinormal distribution of the reactions times.

6.3.1 “Eyelids distance” module

Dataset

We built the “eyelids distance” dataset for training and evaluating the performance of
the “eyelids distance” module. This dataset is composed of face images (i.e., inputs) and
ground-truth eyelids distances (i.e., targets) aggregated from three separate datasets: (1)
the CMU “MPIE” Face dataset [58] that is used for its variety in subjects and facial
expressions, (2) the “PUT” Face dataset [80] used for its variety in head pose, and (3) a
subset of near-infrared images from our sleep-deprivation dataset (denoted “SDD”).

We produced the face images and ground-truth eyelids distances by making extended
use of the provided, manually annotated face landmarks (with a number of 68, 30, and 68
face landmarks per image, respectively for MPIE, PUT, and SDD). More specifically, we
automatically extracted, from each image of our “eyelids distance” dataset, a grayscale face
image of size 128×128 pixels that is centered on the average position of the face landmarks
(i.e., the face center), and scaled so that the vertical range of face landmarks (in most cases,
between the chin landmarks and the eyebrows landmarks) equals 70 pixels. Likewise, we
automatically produced the ground-truth eyelids distances by taking the maximum eyelids
distance between the right eye and the left eye. For one eye, we computed the eyelids
distance as the average of the two inter-eyelid Euclidean distances between the two face
landmarks positioned on the upper eyelid, and the two on the lower eyelid. We discarded
6 and 705 images we found to be either erroneously or poorly annotated from the MPIE
and PUT datasets, respectively.

Training and optimization

We split the “eyelids distance” dataset into a training set, a validation set, and a test set
intended for training the model parameters, validating its hyper-parameters (via random
search), and evaluating its performance, respectively. Table 6.1 contains the number of
subjects and samples in these three sets, and from each of the three datasets (MPIE,
PUT, and SDD). We randomly split the subjects so that the training, validation, and
test sets have (1) an approximate ratio of 70/10/20 for both the numbers of subjects and
samples, and (2) no overlap in subjects between them. We doubled the amounts of training,
validation, and test data by a step of data augmentation consisting in flipping each face
image horizontally.
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MPIE PUT SDD Total
Number

of
subjects

Training set 242 69 11 322
Validation set 28 11 2 41

Test set 67 20 3 90

Number
of

samples

Training set 3219 6380 545 10144
Validation set 397 1043 91 1531

Test set 962 1843 198 3003

Table 6.1 – Numbers of subjects and samples in the training, validation, and test
sets, and from each datasets (MPIE, PUT, and SDD) of the “eyelid distance”
dataset. For each set, horizontal flipping of every face image doubles the number

of samples contained in this table.

We optimized the hyper-parameters via random search. We trained the “eyelids dis-
tance” module via the Mean Squared Error (MSE) loss function using the RMSProp [133]
optimization routine with a smoothing constant α of 0.9811, a batch size of 32, and a
learning rate of 0.001195. We used dropout [128] with a probability of 0.5 after the global
max pooling. We normalized the face images by subtracting the global mean pixel value
of the face images computed from the training set. We augmented the training data by
randomly rotating the training face images uniformly between −30 and 30 degrees, and
this with different rotation angle for each sample at each epoch.

6.3.2 “Drowsiness” module

Dataset

Out of the 88 PVTs of our sleep-deprivation dataset, we only use 82 PVTs (from 29 subjects,
18 females and 11 males) for the development of the parametric system. The reason is that
the PVT1 data, which are necessary for the inter-subject normalization of the RTs, are
missing for 3 subjects.

Inter-subject normalization of the reaction times (RTs)

While performing a PVT, the instantaneous pdf, f tX(x), depends on some time-varying
variables, including the level of drowsiness, the time-on-task (i.e., fatigue), and the indi-
vidual skill. Drowsiness is the state we wish to characterize, time-on-task is considered to
have minor impact given the short PVT duration of 10 minutes, and individual skill can
be mitigated by inter-subject normalization. Therefore, given that f tX(x) is well approx-
imated by a recinormal distribution, we normalize each RT from each subject according
to

x′ =

(
1
x − µk
σk

σ∗ + µ∗

)−1
, (6.2)

where k is the subject index, x is a RT observed from subject k, x′ is the corresponding
normalized RT for subject k, µk (resp. σk) is the “subject mean” (resp. “subject SD”)
defined as the mean (resp. SD) of the reciprocal of all RTs observed during PVT1 of
subject k, and µ∗ (resp. σ∗) is the “population mean” (resp. “population SD”) defined
as the average of all 29 “subject means” (resp. “subject SDs”). In the present study, we
measured a “population mean”, µ∗, of about 1

346 ms−1 and a “population SD”, σ∗, of about
1

2228 ms−1.



Chapter 6. Parametric drowsiness characterization system 81

This inter-subject normalization aligns the normal pdf of the reciprocal RTs of each
subject in an alert state (in the first morning, during PVT1) to the population average
(estimated from 29 subjects). Note that, since (1) f tX(x) is recinormal (i.e., f tX(x−1) is
normal) and (2) x′−1 is linear with respect to x−1, the pdf of the normalized RTs, f tX(x′),
is also recinormal (i.e., f tX(x′−1) is normal) .

Instantaneous ground truth of drowsiness

We want to develop a system that automatically estimates the two parameters, µ̂ and σ̂2, of
the instantaneous recinormal pdf of drowsiness-induced RTs, and this based on the recent
eye closure dynamics. Because we assume the random process X (ω, t) from which the RTs
are sampled is (1) locally stationary, i.e., stationary in a reasonably small time segment,
and (2) ergodic in its mean and variance, we can use the RTs locally observed in time as
an instantaneous ground truth of drowsiness. Accordingly, for a fixed time t, we define the
“ground-truth set”, SGT , as the set of skill-normalized RTs that are locally observed within
the [t− 60s, t+ 30s] time window: SGT = {x′ : x′ occurred within [t− 60s, t+ 30s]}. The
size of the ground-truth set, |SGT | = n, varies with time since the inter-stimulus interval
varies randomly between 2 and 10 seconds. On average, the ground-truth set is composed
of n = 14 RTs. Note that the ground-truth set is a non-causal set of recently-observed
RTs. This is not a problem since the ground-truth set is only used for training the system,
thus not for operational use.

Furthermore, we define the ground-truth mean parameter, µGT , and the ground-truth
variance parameter, σ2GT , that are computed, respectively, as the mean and the variance
of the reciprocal of the n RTs of SGT:

µGT = 1
n

n∑
j=1

1
x′j

σ2GT = 1
n−1

n∑
j=1

(
1
x′j
− µGT

)2
,

(6.3)

where x′j is the jth normalized RT in the ground-truth set.

Loss function

For training the “drowsiness” module, we need to optimize with respect to a loss function
that measures how well/poorly R[µ̂,σ̂2] (x), i.e., the output of our system, fits the observa-
tions of the ground-truth set, i.e., SGT = {x′1, . . . , x′n}. There are mostly two approaches
to do so:

1. minimize the MSE function between the estimated parameters of R[µ̂,σ̂2] (x) (µ̂ and
σ̂2) and the parameters computed from the observations of SGT (µGT and σ2GT),

2. maximize the likelihood function for the estimated parameters of R[µ̂,σ̂2] (x) given
the observations of SGT.

The first approach amounts to a regression of the two pdf parameters. Empirically, we
found that the first approach tends to quickly overfit the training data, thereby leading to
poor generalization performance. Therefore, we use the second approach. More specifically,
we use a combination of two loss functions:

L = LNLL + λLBCE , (6.4)

where LNLL is an average negative log-likelihood (NLL) loss function, LBCE is a binary
cross-entropy (BCE) loss function, and λ is a constant weight empirically set to 0.2. Details
about the NLL function and the BCE function follow.
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NLL: The NLL loss function is a regression loss that relates to the plausibility of the
estimated distribution parameters, i.e., ln (µ̂) and ln

(
σ̂2
)
, given the observed RTs in the

ground-truth set. By assuming the RTs in the ground-truth set independent and identically
distributed, the likelihood function for the distribution parameters is expressed for one data
sample as

L
(
µ̂, σ̂2 | SGT

)
=

n∏
j=1
L
(
µ̂, σ̂2 | x′j

)
=

n∏
j=1
R[µ̂,σ̂2]

(
x′j

)
=

n∏
j=1

1√
2πσ̂2

exp

(
− 1

2σ̂2

(
1
x′j
− µ̂

)2)
=

(
2πσ̂2

)−n
2 exp

(
− 1

2σ̂2

n∑
j=1

(
1
x′j
− µ̂

)2)
,

(6.5)

where n is the size of the ground-truth set, x′j is the jth normalized RT in SGT . By taking
the Napierian logarithm of equation (6.5), we obtain the log-likelihood function:

lnL
(
µ̂, σ̂2 | SGT

)
= −n

2
ln (2π)− n

2
ln
(
σ̂2
)
− 1

2σ̂2

n∑
j=1

(
1

x′j
− µ̂

)2

. (6.6)

The NLL loss function is the average negative log-likelihood:

LNLL

(
µ̂, σ̂2, SGT

)
= − 1

n lnL
(
µ̂, σ̂2 | SGT

)
= 1

2 ln (2π) + 1
2 ln

(
σ̂2
)

+ 1
2nσ̂2

n∑
j=1

(
1
x′j
− µ̂

)2
. (6.7)

Since the “drowsiness” module output the log-mean and log-variance, we rewrite equa-
tion (6.7) with a change of variables a = ln (µ̂) and b = ln

(
σ̂2
)
:

LNLL(a, b, SGT ) =
1

2
ln (2π) +

b

2
+

exp (−b)
2n

n∑
j=1

(
1

x′j
− exp (a)

)2

. (6.8)

The first partial derivatives of LNLL w.r.t. a and b are

∂LNLL (a, b, SGT )

∂a
= −exp (a− b)

n

n∑
j=1

(
1

x′j
− exp (a)

)
, (6.9)

∂LNLL (a, b, SGT )

∂b
=

1

2
− exp (−b)

2n

n∑
j=1

(
1

x′j
− exp (a)

)2

. (6.10)

BCE: The BCE loss function is a classification loss that penalizes large errors, i.e., sam-
ples that are misclassified w.r.t. a confidence score of drowsiness computed from the mean
parameter. For one data sample, LBCE is expressed as

LBCE (µ̂, µGT ) = −sd (µGT ) ln
(
sd (µ̂)

)
− (1− sd (µGT )) ln

(
1− sd (µ̂)

)
, (6.11)

where sd (µ) = sigmoid (α ln (µ) + β) is a function that maps a log-mean parameter, ln (µ),
to a confidence score of drowsiness, µ̂ is the estimated mean parameter produced by the
“drowsiness” module, and µGT is the ground-truth mean parameter computed from SGT.
We set the parameters α and β such as to satisfy sd

(
1

450ms

)
= 0.5 and sd

(
1

500ms

)
= 0.95,

resulting in α ≈ −29.44 and β ≈ −179.91.
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Training and optimization

Given the limited number of subjects (29), we trained 29 models following a leave-one-
subject-out cross-validation strategy of 29 folds. For each fold, we randomly split the 29
subjects into a training set of 24 subjects, a validation set of 4 subjects, and a test set of
1 subject. Furthermore, we made sure that every subject appears, across folds, in only 1
test set, in 4 validation sets, and in 24 training sets. The samples, i.e., the 1-min sequences
of eyelids distances and their associated ground-truth set of RTs, composing each set are
obtained as follows.

For the training set, we adopted a stratified random sampling strategy where each
training epoch consists of an equal number (1056) of 1-min sequences randomly drawn
from each of three groups (also known as strata). The first stratum contains all the 1-min
sequences (from the training set, at a frame level) with a reciprocal ground-truth mean
parameter, µ−1GT , below 400ms (i.e., normal responsiveness), the second stratum those with
one between 400ms and 500ms (i.e., slow responsiveness), and the third stratum those
with one above 500ms (i.e., very slow responsiveness). Note that, given the recinormal
distribution of the RTs, the reciprocal of the mean parameter is equivalent to the median
RT.

For the validation set and the test set, we extracted 37 samples from each 10-min PVT
using a deterministic sliding window strategy with a step of 15s.

We validated the hyper-parameters via random search so as to minimize the average
validation loss across the 29 folds. We trained the 29 models (one per fold) using the
Adam [83] optimization routine with a first moment coefficient β1 of 0.9, a second moment
coefficient β2 of 0.999, a batch size of 32, no dropout, and a learning rate of 0.008745.
Independently for each fold, we normalized the sequences of eyelids distances by subtracting
the average eyelids distance computed from the training set.

6.4 Experimental results and performance

6.4.1 “Eyelids distance” module

We evaluated the performance of the “eyelids distance” module on the held-out test set
composed of 6006 samples from 90 subjects, and obtained a Root Mean Square Error
(RMSE) of 0.582 pixel. Figure 6.4 shows a scatter plot of the 6006 estimated eyelids
distances versus their ground-truth value. We observe that the eyelids distance ranges
from 0 to 6 pixels for 96% of samples. Furthermore, we observe that the absolute error
remains below 2, 1, and 0.5 pixel(s) for 99.7%, 91.5%, and 64.9% of the test samples,
respectively.

For the purpose of comparison, we evaluated the performance of a face alignment al-
gorithm. In particular, we used the dlib [82] implementation of the Kazemi and Sullivan
algorithm [81], localized 68 face landmarks on each face image of the test set, and then ge-
ometrically produced each maximum eyelids distance from these localized face landmarks.
This algorithm obtained an RMSE of 0.99 pixel, which is significantly higher than the one
obtained by our “eyelids distance” module.

Figure 6.5 illustrates some input-output results, including six of the largest errors in
the last row (noted e). Although the interpretation of CNNs is complex, results empirically
appear unaffected by glasses, hands, facial expressions, and moderate head pose, thereby
suggesting that the spatial CNN has learned to focus on the small regions of the eyes and
to discard the superfluous information. Interestingly, some large error results (in row e)
might be explained by the challenging conditions in the input. For instance, because of the
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Figure 6.4 – Scatter plot of the estimated eyelids distance produced by our “eyelids
distance” module vs its ground-truth value. The red line is the perfect regressor.

subject’s long eyelashes, the closed eyes in e1 is visually similar to the downward look in
d1, which could explain why our “eyelids distance” module incorrectly estimates an eyelids
distance of ∼3 pixels instead of ∼0 pixel. Another, but less likely, possible explanation
is that the CNN has learned that, when the head is tilted downwards, there is a higher
probability that the subject is looking downward (i.e., small eyelids distance) than closing
his/her eyes (i.e., minimum eyelids distance).

6.4.2 “Drowsiness” module

We evaluated the performance of the “drowsiness” module by aggregating the results of
the 29 test sets, each associated to one trained model, before computing the performance
metrics. We did not average the performance metrics across the 29 subjects because (1)
the amount of data was not identical for all subjects (some PVTs were missing), and (2)
the range of observed RTs varied greatly between subjects.

Figure 6.6 shows a scatter plot of the results aggregated from the 29 test sets, for both
the estimated log-mean and log-variance parameters vs their corresponding ground-truth
value computed from SGT . Note that the reciprocal of the mean parameter is equivalent to
the median RT, therefore a lower (log-)mean parameter corresponds to a higher median RT.
We observe a Pearson correlation coefficient (PCC) of 0.52 between ln (µ̂) and ln (µGT ),
and a PCC of 0.15 between ln

(
σ̂2
)
and ln

(
σ2GT

)
. The log-mean parameter is thus well

correlated with its ground-truth value, whereas the log-variance parameter is not. This
lack of correlation for the log-variance parameter may be explained by two facts: (1) the
low amount of RT observations contained in the ground-truth set (with an average of 14
RTs/SGT), resulting in a noisy ground-truth variance, and (2) the absence of discriminative
features in the temporal sequence of eyelids distances to produce a good estimate of the log-
variance parameter. This is further evidenced by the fact that ln

(
σ̂2
)
is nearly constant,

i.e., remains close to its average value of −15, whereas ln
(
σ2GT

)
ranges from −19 to −13.
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Figure 6.5 – Examples of input-output results of the “eyelids distance” module,
sampled from the test set. The red bar represents the estimated eyelids distance,
and the green bar the ground-truth value. The bar height is proportional to the
eyelids distance; a bar height that equals the image height corresponds to an
eyelids distance of 6 pixels. For ease of reference, we index the lines with letters

and the columns with numbers.
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Figure 6.6 – Scatter plot of the estimated log-mean (left) and log-variance (right)
parameters, ln (µ̂) and ln

(
σ̂2
)
, produced by the “drowsiness” module vs their

ground-truth value, ln (µGT ) and ln
(
σ2GT

)
. The red lines are perfect regressors.

Intra-subject analysis

Note that the correlation coefficients reported above correspond to inter-subject correla-
tions. It would therefore be interesting to analyze the intra-subject correlations. Table 6.2
contains the intra-subject PCCs for the log-mean and log-variance parameters, as well
as the intra-subject range of median RTs (= µ−1GT ) observed over the three PVTs. Out
of 29 subjects, we observe that 18 subjects (62%) have a PCC above 0.4 between ln (µ̂)
and ln (µGT ), and that only 5 subjects (17%) have a PCC above 0.4 between ln

(
σ̂2
)
and

ln
(
σ2GT

)
. Let us focus our analysis on the log-mean parameter. We observe negative cor-

relations (PCC < 0) for 5 subjects, and low correlations (PCC ∈ [0, 0.4]) for 6 subjects.
Out of these 11 subjects, 6 subjects have relatively low maximum median RT (i.e., 410ms,
414ms, 375ms, 379ms, 373ms, and 423ms for subjects #3, #10, #12, #13, #25, and
#26, respectively), which could explain their bad correlations, whereas 5 subjects have
a maximum median RT close to 500ms (i.e., 506ms, 510ms, 507ms, 502ms, and 504ms
for subjects #8, #15, #18, #21, and #28, respectively). Further explaining these linear
intra-subject correlations is challenging as each can stem from the subject (1) sustaining
minimal/moderate performance impairments from sleep deprivation, and/or (2) displaying
eye closure dynamics that are not representative of the performance impairments.

Classification of the level of drowsiness

We can convert our parametric system into a binary classifier so as to produce a binary
Level of Drowsiness (LoD). To do so, we consider the subject to be “drowsy” if the probabil-
ity of his/her RT taking on a value above 500ms is greater than 0.5, i.e.,

´ +∞
500 R[µ̂,σ̂2] (x) dx ≥

0.5, and we consider the subject to be “alert” otherwise. This is equivalent to thresholding
the log-mean parameter: we consider the subject to be “drowsy” if ln (µ̂) ≤ ln

(
1

500ms

)
≈

−6.215, and we consider the subject to be “alert” otherwise. We chose this particular
threshold since a RT greater than 500ms is conventionally interpreted as a lapse [13, 44].
Following this procedure, the aggregated 29 test sets contained 2931 samples labeled as
“alert” (negative class), and 103 samples labeled as “drowsy” (positive class).

The binary classifier achieved a specificity (i.e., true negative rate, TNR) of 95.19%, a
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Subject PCC for Median
log-mean log-var RT (ms)

1 0.746 0.147 311–450
2 0.632 0.189 320–401
3 −0.338 −0.081 317–410
4 0.825 0.574 325–593
5 0.864 0.692 330–658
6 0.870 0.392 309–734
7 0.891 0.291 323–516
8 0.286 0.089 318–506
9 0.634 −0.459 308–431
10 0.161 0.218 318–414
11 0.470 −0.051 323–367
12 −0.440 0.446 296–375
13 −0.592 0.115 280–379
14 0.598 0.199 324–800
15 0.104 0.183 307–510

Subject PCC for Median
log-mean log-var RT (ms)

16 0.701 0.165 316–498
17 0.701 0.116 323–465
18 0.361 0.346 313–507
19 0.459 0.138 298–384
20 0.614 0.397 304–476
21 −0.316 −0.221 326–502
22 0.599 0.484 331–491
23 0.414 0.008 324–460
24 0.720 0.606 320–593
25 0.265 0.231 308–373
26 0.046 0.203 313–423
27 0.527 0.133 299–384
28 −0.671 −0.131 326–504
29 0.409 −0.307 325–453
All 0.515 0.148 280–800

Table 6.2 – Intra-subject Pearson correlation coefficients (PCCs) between the
estimated distribution parameters (ln (µ̂) and ln

(
σ̂2
)
) and the ground-truth dis-

tribution parameters (ln (µGT ) and ln
(
σ2GT

)
). To feed our analysis, we added (1)

the intra-subject ranges of median RT (= µ−1GT ) observed over the three PVTs
and (2) the inter-subject PCC and range of median RT (“All” line).

sensitivity (i.e., true positive rate, TPR) of 73.79%, and an accuracy of 94.46%. Further-
more, by varying the classification threshold on the log-mean parameter, we produced a
ROC curve, and obtained an Area Under the ROC Curve (AUC) of 0.744.

6.4.3 Processing times

We evaluated the processing time of each module on a computer equipped with a Nvidia
GeForce GTX TITAN X (Maxwell architecture) and an Intel i7-6700. As pre-processing
for one frame, the Viola and Jones algorithm [138] extracts the face image in 8–10ms. The
“eyelids distance” module processes one face image in 1.6ms. The “drowsiness” module
processes a 1-min sequence of eyelids distances in 0.1ms, 2.1ms, and 9.5ms when using 1,
6, and 29 models, respectively. Therefore, our system satisfies real-time constraints.

6.4.4 Comparison of performance with the baseline system

Similarly to the previous chapter, we compare the performance of our parametric system
with the performance of our baseline system. We modified, re-trained, and re-evaluated
the baseline system to provide fair comparison with our parametric system. Details follow.

Modifications to the baseline system

We made modifications to each module of the baseline system.

1. We replaced the “face landmarks” and “eyelids distance” modules of our baseline
system with the “eyelids distance” module of our parametric system.

2. We modified the “ocular features” module of our baseline system to extract six stan-
dard ocular features from a single time window with a length of 60s. We used the six
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following standard ocular features: the mean blink duration, Dblink ; the mean clos-
ing duration, Dclosing ; the mean closed duration, Dclosed ; the mean opening duration,
Dopening ; the number of microsleeps, Nµsleeps ; and the percentage of eye closure below
70%, PERCLOS .

3. We modified the “drowsiness” module of our baseline system to regress the median
RT, i.e., µ̂−1, with one Support Vector Regression (SVR) model. We considered both
a linear kernel and a radial basis function (RBF) kernel.

Training of the baseline system

We trained 29 SVRs following a leave-one-subject-out cross-validation strategy of 29 folds.
However, considering the significantly faster training time of SVRs compared to CNNs, we
validated the hyper-parameters (C and ε for the linear kernel; C, ε, and γ for the RBF
kernel) via an inner leave-one-subject-out cross-validation strategy of 28 folds, i.e., all sub-
jects (29) but the one (1) in the test set of the outer cross-validation. Upon determination
of the optimal values of hyper-parameters, we trained the final model on all 28 subjects of
the training set (of the outer cross-validation).

We obtained all samples of the training, validation, and test sets in the same manner,
i.e., by extracting 37 samples from each 10-min PVT using a deterministic sliding window
strategy with a step of 15s. We individually scaled each feature so as to be within the
range [0, 1] for the samples of the training set. We performed training and inference with
the LIBSVM library [26]. We performed no data augmentation.

Evaluation of the performance of the baseline system and comparison

We evaluated the performance of the baseline system by aggregating the results of the 29
test sets, each associated to one trained model, before computing the performance metrics
between µ̂−1 and µ−1GT . The obtained results are shown in Table 6.3, with a comparison
with the parametric system.

System PCC RMSE (ms) Linear regression model (ms)
Parametric system 0.55 60.88 µ̂−1 = 0.67µ−1GT + 140

Baseline system
(linear kernel) 0.48 48.40 µ̂−1 = 0.22µ−1GT + 301

Baseline system
(RBF kernel) 0.49 48.41 µ̂−1 = 0.21µ−1GT + 306

Table 6.3 – Comparison of performance between the parametric system and the
baseline system (with a linear kernel or an RBF kernel).

With a linear kernel, the baseline system achieved an inter-subject PCC of 0.48 and
an RMSE of 48.40ms. With an RBF kernel, the baseline system achieved an inter-subject
PCC of 0.49 and an RMSE of 48.41ms. In comparison, the parametric system achieved,
between µ̂−1 and µ−1GT , an inter-subject PCC of 0.55 and an RMSE of 60.88ms. Therefore,
the baseline system outperforms the parametric system in terms of RMSE, but falls behind
it in terms of PCC. We can disambiguate these results by fitting a linear regression model
with the form of µ̂−1 = aµ−1GT + b, where a and b are the slope and bias, respectively.
We obtained, as the fitted models, µ̂−1 = 0.22µ−1GT + 301 for the baseline system with
a linear kernel, µ̂−1 = 0.21µ−1GT + 306 for the baseline system with an RBF kernel, and
µ̂−1 = 0.67µ−1GT + 140 for the parametric system. Figure 6.7 displays, for each system,
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the fitted model over the scatter plot of the median RT. We observe that the output
(µ̂−1) of the baseline system mostly ranges between 350–450ms, whereas the output of
the parametric system mostly ranges between 300–700ms. As a consequence, considering
that the ground-truth median RT mostly ranges between 300–450ms, the baseline system
naturally achieves a smaller RMSE than the parametric system does. Evidenced by a
larger PCC and a greater slope a, we conclude that the parametric system (based on a
temporal CNN model) outperforms the baseline system (based on an SVR model).

6.5 Interpretation of the learned features

Interpretability of automatic systems is crucial, especially for safety-related applications
where human lives are at stake. In this thesis, we designed our systems with interpretability
in mind: we chose to decompose our system into successive modules with intermediate
representations that are interpretable. For the parametric system, we chose to use the
sequence of eyelids distances (1D) as the intermediate representation. This choice facilitates
the interpretation of the data-driven features learned by the “drowsiness” module, which
is the module we focus our analysis on. We perform the interpretation visually with the
procedure detailed below. Note that, at the current stage of theoretical knowledge of
CNNs, visual interpretation is a common and interesting approach for gaining insights into
how the model operates.

6.5.1 Procedure

We interpret the learned features (of the “drowsiness” module) by visually comparing each
of them side-by-side with the input that activates them the most. More specifically, we
installed an individual in front of a video camera, processed his face images in real-time
with our parametric system, and visually compared the sequence of eyelids distances (the
input) with the learned features at two different positions in the temporal CNN.

1. The first position is the output of the ReLU layer after the first temporal convo-
lution. At this position, the 32 features have the same temporal resolution as the
sequence of eyelids distances; we call them the “local features”. We will show that
the local features are equivalent to temporally segmenting the different phases of a
blink (opened, closing, closed, and opening).

2. The second position is the output of the global average pooling layer. At this position,
the 32 features consist of one scalar for the whole sequence of eyelids distances; we
call them the “global features”. We will show that the global features include ocular
features typically found in the literature such as the PERCLOS or the number of
(long) blinks, as well as novel ones discovered by the training algorithm.

In such a manner, the individual in front of the video camera could control the input (by
opening/closing his eyes) and find the patterns that activate the most the learned feature
to interpret. We restricted our interpretation to the trained model of the 6th fold (out of
the 29 folds). The reason is that this model performed well on its test set, which has the
second largest range of median RTs (i.e., from 309ms to 734ms).

6.5.2 Interpretation of local features

The local features are the outputs of the ReLU layer after the first temporal convolution.
By definition, they are sequences with the same temporal resolution as the input sequence
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Figure 6.7 – Scatter plots of the estimated median RT, µ̂−1, produced by the
parametric system (top), the baseline system with a linear kernel (middle), and
the baseline system with an RBF kernel (bottom) vs its ground-truth value, µ−1GT .
The red lines are the perfect regressors. The black dashed lines are the fitted

linear regression models.
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Figure 6.8 – Examples of four local features (bottoms) time-synchronized with
a 20-s sequence of eyelids distances (top). Feature #20 (green) activates with
opened eyes, #23 (red) with closed eyes and sharp eye opening, #7 (blue) with
sharp eye closing, and #9 (black) with sharp eye opening. The amplitude of each
local feature is normalized for visualization purposes. This figure is best viewed

in color.

of eyelids distances. As a result, their visual interpretation is straightforward since their
“activations”, i.e., values greater than zero, are temporally localized, i.e., time-synchronized
with the input. Figure 6.8 illustrates four local features time-synchronized with the same
input sequence of eyelids distances.

As shown in Table 6.4, we distinguish five conditions under which a local feature may
activate. We observed that 17 local features activate when the eye is opened, 9 activate
when the eye is closed, 11 when the eye sharply closes, 17 when the eye sharply opens,
and 6 when the eye shortly blinks. Notice that these numbers do not sum to 32, i.e., the
total number of local features. The reason is that one local feature can activate because
of more than one condition. For example, as is visible in Figure 6.8, the local feature #23
activates when the eye is closed, but also when the eye sharply opens.

Activating condition Local feature index Total

Eye opened 1, 3, 5, 6, 8, 10, 12, 13, 15,
16, 18, 19, 20, 22, 24, 27, 31 17

Eye closed 2, 4, 11, 17, 23, 25, 26, 29, 32 9

Eye (sharp) closing 2, 7, 13, 14, 17, 25, 26, 28, 29, 30, 31 11

Eye (sharp) opening 2, 3, 4, 8, 9, 11, 12, 14, 15,
16, 18, 21, 22, 23, 24, 27, 30

17

Short blink 1, 5, 6, 10, 19, 32 6

Table 6.4 – Summary of the visual interpretation of the local features of our
“drowsiness” module.

6.5.3 Interpretation of global features

The global features are the outputs of the global average pooling layer. By definition, each
of them consists of one real number computed from the whole 1-min sequence of eyelids
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Global feature index 1 2 3 4 5 6 7 8 9 10 11

Category

Integrated closed + +* +* +* +* +*
Integrated opened
Integrated droopy + + +

PERCLOS
Number of blinks +* +* +*

Other +

PCC with analytic implement. 0.97 0.82 0.39 0.95 0.97 0.21 0.9 0.27 0.9 0.93 0.88

Global feature index 12 13 14 15 16 17 18 19 20 21 22

Category

Integrated closed + +
*

Integrated opened + + + + +
Integrated droopy

PERCLOS + +
Number of blinks +* + +*

Other
PCC with analytic implement. 0.81 0.99 0.99 0.99 0.99 0.91 0.23 0.76 0.99 0.56 0.52

Global feature index 23 24 25 26 27 28 29 30 31 32 Total

Category

Integrated closed

C
on

st
an

t
va
lu
e +* 9

Integrated opened + + + 8
Integrated droopy + + − 6

PERCLOS 2
Number of blinks +* 7

Other + 2
PCC with analytic implement. 0.32 0.82 0.85 0.97 0.74 / −0.73 0.18 0.93

Table 6.5 – Summary of the visual interpretation of the global features of our
“drowsiness” module. The symbol “+” corresponds to a positive relationship, the
symbol “−” to a negative one, and the symbol “*” indicates that the corresponding
global feature is a “variant”, i.e., that behaves differently than the other features

within the same category.

distances. To facilitate the visual interpretation of a global feature, we construct its “global
feature sequence”, corresponding to the sequence of partial sums (i.e., the cumulative sum)
of the input sequence of the global average pooling layer. In this way, we can visually
associate an increase/decrease in these global feature sequences with an “activation event”
occurring in the sequence of eyelids distances (e.g., a blink or a value). Note that the
global feature sequences and the eyelids distance sequence are time-synchronized, but have
different temporal resolutions (of 10 and 30 frames per second, respectively). Figure 6.9
illustrates eight global feature sequences each time-synchronized with an eyelids distance
sequence that highly activates each of them.

As shown in Table 6.5, we observed that each global feature belongs to at least one
of six categories. We observed 9 global features that are equivalent to an integration of
a closed eye signal, 8 equivalent to an integration of an opened eye signal, 6 equivalent
to an integration of a slightly closed, droopy eye signal, 2 equivalent to a PERCLOS of
long blinks, 7 similar to the number of blinks, and 2 outsiders which are sensitive to
opening/closing activation events. Furthermore, we noticed 11 “variants”, which we define
as global features that have activation events slightly different than the other features
within the same category. For instance, a variant in the “number of blinks” category might
be related to the number of blinks longer than 400ms rather than the number of blinks of
any duration. Details about each category follow.

1. Global features in the “integrated closed” category activate (i.e., have their sequence
increase) when, and by an amount proportional to how much, the eyelids distance
is below a particular threshold. We estimated the thresholds to equal 2.6, 2.7, 3,
3.4, 3.6, 4.1, 4.3, 4.4, and 5.1 pixels for features #3, #2, #10, #1, #5, #17, #11,



Chapter 6. Parametric drowsiness characterization system 93

#18, and #24, respectively. Variants activate when the eyelids distance is below the
threshold during a long eye closure, but not during a short blink.

2. Global features in the “integrated opened” category activate when, and by an amount
proportional to how much, the eyelids distance is above a particular threshold. We
estimated the thresholds to equal 3.8, 4, 4.2, 4.2, 4.3, 4.3, 4.7, and 5.3 for features
#20, #13, #14, #27, #15, #16, #32, and #31, respectively. We observed no
variants.

3. Global features in the “integrated droopy” category activate when the eyelids distance
is between two particular thresholds, and by an amount proportional to how close
this eyelids distance is to the middle of these thresholds. We estimate the pair of
thresholds to equal {2.8, 4.6}, {3.2, 6.1}, {2.8, 4.5}, {0, 4.7}, {3.5, 5}, and {3.8, 7.9}
for features #4, #7, #9, #25, #26, and #30, respectively. We observed no variants,
except feature #30, which activates negatively (its sequence decreases rather than
increasing) because of a negative multiplicative weight in the batch normalization
layer.

4. Global features in the “PERCLOS” category activate (by a constant amount) when
the eyelids distance is below a particular threshold (4.5 pixels for #12, and 4.3 pixels
for #19) during a long blink. We observed no variants.

5. Global features in the “number of blinks” category activate (by a step) whenever
a blink occurs. The variants of this category add some constraints on the blinks.
Variants #2, #6, and #22 only activate for blinks longer than ∼250ms, ∼400ms,
and ∼1300ms, respectively. Variants #3 and #18 only activate for short blinks
that are preceded by at least ∼2.5s of eye openness. Variant #28 activates for (1)
medium blinks of duration between 100ms and 250ms, and (2) short blinks preceded
by another blink at most ∼2.5s before.

6. Global features #8 and #29 do not fit in any category and are considered as outsiders.
Feature #8 activates (by a step) when the eyelids distance rapidly increase from
[3, 4.5] pixels to above 5 pixels. This activation event may correspond to a sudden
recovery in alertness, which is a common behavior following a micro-sleep. Feature
#29 activates when the eye slowly closes within a particular range of eyelids distances.
Note that global feature #23 “died” during training, and always returns a constant
value.

Note that we visually performed these interpretations of global features via trials and errors,
which may lead to observation biases. Therefore, we checked our interpretation of most
global features by (1) analytically implementing them as best as possible (based on our
visual interpretation), and by (2) computing the correlation between their true, observed
value and their analytic value. As shown in Table 6.5, a total of 22 global features (out of
31) are strongly correlated (PCC above 0.7) with their analytic value.

6.5.4 Interpretation of inner-workings

By putting together the interpretations of local and global features, we can point out some
similarities between (1) the inner-workings of our parametric system and (2) the inner-
workings of systems typically found in other studies, i.e., based on pre-defined, hard-coded
ocular features. Indeed, other systems would first segment the blinks into four eye states
(opened, closing, closed, and opening) based on the sequence of eyelids distances and/or
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Figure 6.9 – Examples of the cumulative sum of eight global features (green) time-
synchronized with a 1-min sequence of eyelids distances that highly activates
each of them (blue). The amplitude of each global feature is normalized for
visualization purposes. Feature #1 is similar to an integration of a closed eye
signal (below ∼3.7 pixels), feature #13 to an integration of an opened eye signal
(above 4 pixels), feature #9 to an integration of a slightly closed, droopy eye
signal (between 3 and 4.3 pixels), feature #12 to the PERCLOS of long blinks,
feature #2 to a combination of (1) an integration of a long closed eye signal and
(2) the number of blinks longer than 100ms, feature #22 to the number of very
long blinks (longer than ∼1300ms), feature #8 to the number of sharp eye opening
from [3, 4.5] pixels to above 5 pixels, and feature #29 to the number of slow eye

closing.



Chapter 6. Parametric drowsiness characterization system 95

its derivative, just like our local features do. Then, these other systems would compute
some ocular features such as the PERCLOS, the mean closing/opening speed, or the mean
blink duration, just like our global features do. To process these ocular features, other
systems would finally use machine learning models (e.g., an artificial neural network, an
SVM, and a logistic regression model) to characterize drowsiness, just like the last two
fully connected layers of the “drowsiness” module of our parametric system.

While there are some clear similarities in inner-workings, it is important to note that our
parametric system is data-driven, i.e., its inner-workings has been tweaked and shaped from
data rather than from prior knowledge. One could argue that the choice of architecture
we made for the temporal CNN constitutes prior knowledge. This is true to some extent,
but such choice is significantly less restricting than the choice of using hard-coded ocular
features. As proof, our parametric has learned to extract some global features that relate
to some typical hard-coded ocular features, as well as some novel global features.

6.6 Conclusion

In this chapter, we presented a parametric drowsiness characterization system that is novel,
data-driven, automatic, real-time, and generic. Our parametric system processes a 1-min
sequence of face images with two successive modules, extracts data-driven features related
to eye closure dynamics, and estimates the recinormal pdf of drowsiness-induced RTs,
R[µ̂,σ̂2] (x). To train our system, we introduced (1) a ground-truth set of skill-normalized
RTs that were locally observed, SGT , and (2) a loss function that measures how well
R[µ̂,σ̂2] (x) fits the observations of SGT.

We evaluated our parametric system in controlled, laboratory conditions on 29 subjects
via leave-one-subject-out cross-validation. The results show that our system produces a
meaningful estimate of the log-mean parameter, ln (µ̂), but produces a poor estimate of
the log-variance parameter, ln

(
σ̂2
)
. Indeed, the estimated log-mean parameter is well

correlated (inter-subject PCC of 0.52) to its ground-truth value, but the estimated log-
variance parameter is not (inter-subject PCC of 0.15). Out of 29 subjects, we observed
that 18 subjects (62%) have an intra-subject PCC above 0.4 between ln (µ̂) and ln (µGT ),
and that only 5 subjects (17%) have a PCC above 0.4 between ln

(
σ̂2
)
and ln

(
σ2GT

)
.

We converted our system into a binary classifier by thresholding the median RT at
500ms, and achieved a specificity of 95.19%, a sensitivity of 73.79%, an accuracy of 94.46%,
and an AUC of 0.744. We showed that our parametric system outperforms our baseline
system based on a vector of standard ocular features being fed to an SVR, which is repre-
sentative of a wide range of systems found in other studies.

We conducted a visual, and partly analytic, interpretation of the features learned by
our system and related to eye closure dynamics. We found that the model has learned
to extract some (global) features that are closely related to those typically found in the
literature such as the PERCLOS and the number of long blinks, as well as to some novel
ones such as the integration of a “droopy eye” signal and the number of “sudden recovery
in alertness” events.

In real-world applications, the driver (or a monitoring system and/or a semi-autonomous
driving system) could take advantage of this distribution (or any derived metrics, such as
the median RT), realize there is a high (or higher than usual) probability that he/she will
not be able to react fast enough to sudden and potentially dangerous situations, and then
decide to take safety actions with full knowledge.



Chapter 7

Conclusion

Drowsiness is a complex physiological state associated with a difficulty of staying awake,
a strong inclination toward falling asleep. During the performance of a task, drowsiness
impairs the ability of an individual to make sound decisions and to complete the task at
normal performance. When the task is critical, drowsiness therefore becomes a danger
that puts human lives at risk. In facts, drowsiness is a major cause of fatal accidents, in
particular in the transportation sector where it is estimated to be responsible for 20–30%
of them. There is thus a clear need for automatic, real-time drowsiness characterization
systems that aim at preventing such accidents by issuing timely drowsiness warnings to
vehicle operators.

The main goal of this thesis is the development of novel, automatic, and real-time
drowsiness characterization systems that (1) operate on a video stream of face images, (2)
focus on the analysis of eye closure dynamics, and (3) are trained with a ground truth of
drowsiness based on impairments of psychomotor performance. To this end, we collected a
dataset composed of 32 subjects who each performed three Psychomotor Vigilance Tasks
(PVTs) under increasing acute sleep deprivation conditions (see Chapter 3). From this
dataset, we developed three novel systems operating each on a 1-min sequence of face
images: a baseline system in Chapter 4, a multi-timescale system in Chapter 5, and a
parametric system in Chapter 6.

The baseline system characterizes drowsiness from a set of pre-defined ocular features,
which is a typical approach used by most systems of other studies. As output, this system
estimates (or predicts) a binary Level of Drowsiness (LoD) or the mean reaction time (RT).
The baseline system allowed us to study the relationship between eye closure dynamics and
performance impairments. We found that the number of microsleeps (Nµsleeps), the aver-
age blink duration (Dblinks), the average opening duration (Dopening), the average closed
duration (Dclosed ), and the proportion of normalized eyelids distance below 10% (H[0,0.1])
are the most-important ocular features related to impairments of performance induced by
drowsiness. We evaluated the performance of the baseline system at four different problems
on 14 subjects using a leave-one-subject-out cross-validation. For the estimative regres-
sion problem, the baseline system achieved an inter-subject Pearson correlation coefficient
(PCC) of 0.62 and an inter-subject Root Mean Square Error (RMSE) of 103ms. For the
estimative classification problem, the baseline system achieved a true detection rate of
alertness of 87.73%, a true detection rate of drowsiness of 75.46%, and a global accuracy
of 86.19%. For the predictive classification (regression, respectively) problem, the baseline
system achieved slightly lower performance than for the estimative classification (regres-
sion, respectively) problem. Upon further analysis, we found that the baseline system has
learned predictive models that are almost identical to their equivalent estimative mod-
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els, which stems from the fact that the future of performance impairments is somewhat
unpredictable—the best strategy for predicting the future is therefore to use the estimate
of the present.

The multi-timescale system characterizes drowsiness from four sets of data-driven oc-
ular features, with each set extracted at a different timescale, i.e., window length. As
output, this system estimates four binary LoDs with diverse trade-offs between accuracy
and responsiveness. When combining these four LoDs, the system is able to (1) detect
drowsiness onsets further in advance (at the cost of accuracy), and to (2) detect drowsi-
ness onsets with high accuracy (at the cost of responsiveness). To train such a system,
we introduced a multi-timescale ground truth of drowsiness based on skill-normalized RTs
produced from four sliding time windows of diverse lengths. We evaluated the performance
of the multi-timescale system on 29 subjects using a leave-one-subject-out cross-validation.
The multi-timescale system achieved, for the 1st, 2nd, 3rd, and 4th timescales respectively,
a true detection rate of alertness of 72.26%, 89.29%, 90.44%, and 94.80%; a true detec-
tion rate of drowsiness of 58.69%, 71.84%, 75.76%, and 74.19%; and a global accuracy of
70.69%, 85.45%, 89.82%, and 94.22%. We showed that context from the higher timescales
is crucial for obtaining strong performance at the short timescale. This makes sense since
a single long blink is more probably associated with a brief episode of drowsiness if the
driver has been experiencing long blinks for the last minute than if he has not. Further-
more, we showed that the multi-timescale system outperforms the baseline system. This
demonstrates the appropriateness of using a temporal convolutional neural network (CNN)
model to characterize drowsiness from a sequence of eyelids distances.

The parametric system characterizes drowsiness from a set of data-driven ocular fea-
tures. As output, this system estimates the two parameters (mean and variance) of
the instantaneous reciprocal normal (“recinormal”) probability density function (pdf) of
drowsiness-induced RTs. The ground truth of drowsiness consists of a set of skill-normalized
RTs that occurred recently within a sliding time-window, and does therefore not consist
of a single continuous or discrete quantity like the ground truths of the previous systems
do. We evaluated the performance of the parametric system on 29 subjects using a leave-
one-subject-out cross-validation. We showed that the parametric system estimates well
the log-mean parameter (PCC of 0.52), but estimates poorly the log-variance parameter
(PCC of 0.15) of the recinormal pdf. We converted our parametric system into a binary
classifier by thresholding at 0.5 the probability of observing a RT above 500ms, which
achieved a true detection rate of alertness of 95.19%, a true detection rate of drowsiness of
73.79%, a global accuracy of 94.46%, and an Area Under the ROC Curve (AUC) of 0.744.
Furthermore, we showed that the parametric systems outperforms the baseline system.
This again demonstrates the appropriateness of using a temporal CNN model to charac-
terize drowsiness from a sequence of eyelids distances. With the goal of understanding the
inner-workings of such temporal CNN, we conducted a visual interpretation—and a first
analytic analysis—of the data-driven ocular features that the temporal CNN learned to
extract from the sequence of eyelids distances. We pointed out strong similarities between
the ocular features learned parametric system and the typical ocular features used by other
systems in the literature. We found that the CNN learned to extract “local features” that
are equivalent to a temporal segmentation of the different phases of a blink (i.e., opened,
closing, closed, and opening), or of a combination of these phases (e.g., a combination of
opened and opening phases). The CNN also learned to extract “global features” that are
closely related to those typically found in the literature such as the PERCLOS and the
number of long blinks, as well as to some novel ones such as the integration of a “droopy
eye” signal and the number of “sudden recovery in alertness” events. Interestingly, whereas
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most global features take into account every blink, we observed some variants that take
into account only the blinks of specific durations, e.g., above 400ms, or within the range
100–250ms.

Throughout this thesis, we discussed various aspects of the development of drowsiness
characterization systems. In Chapter 2, we proposed a classification of indicators of drowsi-
ness, provided a list of their associated standard measures, and indicated which indicators
are most suited to be used as (1) an input to a system or as (2) a ground truth to train and
evaluate a system. Moreover, we provided a comprehensive review of the systems of other
studies in the scientific literature. In Chapter 3, we discussed various choices for designing
the protocol of the sleep-deprivation dataset, which is essential for the development of
drowsiness characterization systems. Furthermore, we discussed the ecological validity of a
laboratory dataset, i.e., the extent to which the conclusions and findings drawn from a lab-
oratory dataset can be generalized to real-life, operational settings. Although we strongly
advocate for further research on this particular topic, laboratory sleep-deprivation datasets
appear to have high relative—though not absolute—ecological validity. Indeed, laboratory
protocols are designed to (1) favor drowsiness via monotonous tasks—for practical and
conditions-controlling reasons, and to (2) not expose the subject to danger—for ethical
and safety reasons. Therefore, drowsiness reaches generally higher levels in a laboratory
study than in real-life settings, but increases with a similar pattern in both cases. One
may thus develop a drowsiness characterization system with laboratory data, but should
probably adjust the system’s thresholds for producing drowsiness warnings in operational
settings.

Furthermore, we proposed novel algorithms for the extraction of the eyelids distance
from a face image. In this respect, we introduced in Chapter 4 (and detailed in Ap-
pendix A.4) several adjustments to the classic formulation of constrained local models
(CLMs) and the regularized landmark mean-shift (RLMS) fitting strategy. Although we
did not perform a quantitative evaluation, these adjustments led to a gain in alignment
performance for landmarks with multi-modal appearance (e.g., eyes and mouth), and an
increase in robustness to occlusions based on the discrepancy between the depth map and
the 3D shape model. However, we still did not manage to obtain a generic CLM-based
model that is able to align the eyelids landmarks with satisfactory accuracy. For this rea-
son, we explored the use of CNNs to straightforwardly estimate (1) the eyelids distance
from an eye image in Chapter 5, and (2) the maximum eyelids distance from a face image in
Chapter 6. Both of these approaches achieved strong performance, i.e., an RMSE of about
0.5 pixel, have the advantages of being simple and fast (with the adequate hardware), and
turned out to be reasonably robust to occlusions (including glasses and hands) and other
facial expressions.

The systems developed in this thesis have some limitations. First, our sleep-deprivation
dataset suffers from a small amount of data. Indeed, our dataset is composed of 32
subjects—29 out of which are usable for developments—who each performed three 10-
min PVTs. We recommend using a greater number of subjects in order to develop and
validate a drowsiness characterization system that generalizes well to a wide range of in-
dividuals in operational settings. In addition, we recommend using a greater number of
PVTs, thereby increasing the representativity in the time-of-day (circadian rhythm) which
is known to be a crucial determinant of drowsiness. Second, our sleep-deprivation dataset
suffers from a limited representativity in subjects. Indeed, the subjects of our dataset were
relatively young, i.e., with ages in the range of 19–34 years. We recommend incorporating
in the dataset older subjects and patients suffering from sleep disorders.

In addition, there is still some room for further improvements that one could imple-
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ment. For example, one could incorporate in the decision of the system the time-of-day
and the time-on-task, i.e., two important and easily-obtainable determinants of drowsi-
ness. One could compute/learn a baseline of eyelids distance or a baseline of (pre-defined
or data-driven) ocular features, which would enable some kind of normalization, and po-
tentially improve characterization performance. Also, one could develop a way to adapt
automatically or semi-automatically the threshold of the drowsiness warnings, which would
be a way to personalize the characterization of drowsiness to the vehicle operator.

Lastly, there are still some key questions that we have not addressed in this thesis.
What is the legal and public acceptance of automatic, real-time drowsiness characterization
systems based on face images? What would be the behavior of a vehicle operator in
the presence of a system monitoring them? Would they accept the warnings and adopt
adequate countermeasures? Or would they try to fool the monitoring system to keep
driving anyway? Should the drowsiness warnings be a sound, a vibration, a message,
an indication via a gauge, or via another mean? Nevertheless, what we do know is that
efficiently mitigating drowsy driving will require a combination of multi-disciplinary efforts:
(1) the development of reliable drowsiness characterization systems and other vehicular
technologies such as collision avoidance systems, (2) new legislations about liability of
drowsy driving and monitoring technologies, (3) public education and awareness about the
problem and its current solutions, and (4) further fundamental sleep research to discover
new and more reliable indicators of drowsiness.
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Appendix A

Face alignment with constrained
local models

Face alignment is the problem of localizing a set of face landmarks in a target image I,
i.e., the problem of fitting a face shape to a target image. Fundamentally, face alignment
is challenging as it involves an optimization in a high-dimensional space, where the ap-
pearance of the face can vary greatly between instances due to rigid (i.e., rotation and
translation in 3D) and non-rigid (i.e., facial expressions and identity) deformations of the
face, lightning conditions, image noises, and occlusions. Face alignment requires three
main components: (1) a deformable shape model that constrains the fitting procedure to
lead to valid face shape configurations, (2) an appearance model that drives the fitting
procedure across the image content, and (3) a strategy, i.e., algorithm, for the fitting pro-
cedure that puts components (1) and (2) together. Unless stated otherwise, the equations
in this appendix are adapted from Saragih et al. [121] and from the PhD thesis of Tadas
Baltrušaitis [9].

A.1 Deformable shape model

The deformable shape model, also known as the point density model (PDM), parameterizes
how the face rigidly and non-rigidly deforms. More specifically, the PDM is a generative
function producing a 2D face shape, x, from a set of parameters, p. Note that the PDM
generates a valid face shape only when the parameter values are valid, i.e., statistically
consistent with those computed from a set of annotated face shapes. The PDM mapping
is a composition of three operations: (1) the application of non-rigid deformations to a 3D
average, neutral face shape within a 3D, zero-centered, reference space; (2) the application
of rigid deformations to place the 3D face shape into the 3D camera coordinates; and (3)
the projection of the 3D face shape into the 2D image coordinates, usually using weak
perspective projection. In practice, non-rigid deformations are linearly approximated by
applying a principal component analysis (PCA) on a set of annotated face shapes that
were rigidly aligned into the reference space. The number of non-rigid parameters, k, is
generally chosen such that the k PCA’s basis vectors account for a portion, e.g., 99%, of the
variance of non-rigid deformations. Rigid deformations and the weak perspective projection
are often combined so as to re-parameterize the 6 rigid parameters. Mathematically, the
2D location of the PDM’s ith landmark, xi ∈ R2, is given by

xi = Pwp,i (p) =

[
s 0 0
0 s 0

]
R(θp, θy, θr)

(
X̄i + Φiq

)
+

[
tx
ty

]
, ∀i ∈ [1, n], (A.1)
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where n is the PDM’s number of face landmarks; Pwp,i : R(6+k) → R2 denotes the weak
perspective projection of the ith 3D face landmark of the PDM; X̄i ∈ R3 is the 3D location
of the neutral face’s ith landmark; Φi ∈ R3×k is the PCA’s sub-matrix of basis of non-rigid
deformations, Φ ∈ R3n×k, associated to the ith landmark; q ∈ Rk is the vector of non-rigid
parameters; R ∈ R3×3 is the 3D rotation matrix which is parameterized by the pitch θp,
yaw θy, and roll θr rotation angles; tx and ty are translations in the x- and y-coordinates,
respectively; s is a scaling factor; and p = [θp; θy; θr; tx; ty; s;q] ∈ R(6+k) is the vector
shape parameters.

Using such a deformable shape model, face alignment translates into finding an optimal
and valid set of 6 + k shape parameters p∗ = [θ∗p; θ

∗
y; θ
∗
r ; t
∗
x; t∗y; s

∗;q∗] that minimizes the
misalignment error

p∗ = argmin
p

Q(p)

= argmin
p

R(p)+
n∑
i=1
Mi(xi; I),

(A.2)

whereQ (p) is a regularized misalignment error function, R (p) penalizes deformations that
are not valid (a.k.a. the regularization term or the prior term), and Mi (xi; I) measures
the misalignment error that the ith landmark is experiencing at position xi (which is a
function of p) in the image I (a.k.a. the data term or the likelihood term). Assuming
that the PCA-embedded non-rigid parameters are distributed according to a Gaussian
probability density function, the prior on q can be expressed as

R (q) = qTΛ−1q = ‖q‖2Λ−1 , (A.3)

where Λ−1 = diag{[λ−11 ; . . . ;λ−1k ]} ∈ Rk×k is the inverse covariance matrix, i.e., a diag-
onal matrix with elements λi denoting the eigenvalue of the ith PCA mode of non-rigid
deformations. Given that rigid deformations are all considered equally likely, and are thus
generally not penalized, the prior on p is given by

R (p) = pT Λ̃−1p, (A.4)

where Λ̃−1 = diag{[0; 0; 0; 0; 0; 0;λ−11 ; . . . ;λ−1k ]} ∈ R(6+k)×(6+k).

A.2 Appearance model

The appearance model parameterizes what the face looks like in an image. Such a model
that relates the data x to the world state w can be either (1) generative, i.e., it models
the contingency of the data on the world state p (x | w), or (2) discriminative, i.e., it mod-
els the contingency of the world state on the data p (w | x). The first type of model is
able to generate a valid face appearance from a given valid set of parameters, whereas the
second type is able to estimate how valid a given face appearance is. In both cases, the
model enables the measurement of a misalignment error that a landmark is experiencing
at a position in the image. In particular, constrained local models (CLM) [32, 121] is a
family of face-alignment approaches that locally and discriminatively model the face ap-
pearance using local image patches centered on each face landmark. Compared to a holistic
appearance model, e.g., such as the one used by active appearance models (AAM) [31], a
local appearance model has the downside of being harder to build and optimize but has the
advantages of generalizing better, of being faster, and thus of having stronger performance.

More specifically, a local appearance model consist of n independent local detectors,
called local experts, each associated to one face landmark. The ith local expert discrimi-
natively produces, from the local image patch centered on xi, a probability map (called a
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response map) that holds the probability of correct alignment, πyi , that the ith landmark
is experiencing at each of the positions, yi ∈ Ψi, within the grid-like neighborhood of xi,
Ψi. The production of such response map can be efficiently performed using a convolution,
the parameters (i.e., weights) of which can be learned from a set of training local image
patches that were either aligned or misaligned with the annotated landmark locations.
However, due to their small local support and the large variation in the local appearance
around their landmark, these simple local experts suffer from the problem of ambiguity.
Indeed, their response map may be multimodal, where the maximum of the response may
not always correspond to the correct landmark location. However, this ambiguity problem
is naturally addressed during the fitting procedure, where the n local response maps are
holistically used to align the PDM’s face shape on the target image.

A.3 Regularized landmarks mean-shift fitting procedure

Regularized landmarks mean-shift (RLMS) [121] is an iterative algorithm to fit the de-
formable shape model to the location likelihood grids (i.e., response maps) produced by
the local appearance models. The RLMS algorithm works in a way similar to that of the
Expectation-Maximization (EM) [38] algorithm. By considering the true landmark loca-
tions as hidden, latent variables, the RLMS algorithms alternates between performing an
expectation (E) step, and a maximization (M) step.

Expectation step

During the E-step, using the current estimate for the face shape parameters p and for
each xi = Pwp,i (p) independently, we evaluate the posterior probabilities over candidate
positions yi as

wyi = p (yi|li = 1,xi, I) =
πyiN (xi; yi, ρI)∑

zi∈Ψi
πziN (xi; zi, ρI)

, (A.5)

where wyi is the posterior probability of the candidate yi, i.e., the posterior probability
that the candidate position yi is where the ith landmark is truly located (li = 1) in the
image I; N (x;µ,Σ) is the evaluation at x of the multivariate Gaussian function with a
location µ and a covariance matrix Σ; and ρ is the noise variance on landmark location,
usually computed as the arithmetic average of the eigenvalues in the subspace orthogonal
to Φ [121]. Note that the sum over all candidates equals one, i.e.,

∑
yi∈Ψi

wyi = 1.

Maximization step

During the M-step, we find a new set of parameters, p(t+1), that maximizes the posterior
found in the E-step, i.e., we minimize Q (p):

p(t+1) = argmin
p

Q (p)

= argmin
p

‖p‖2
Λ̃−1 + C

n∑
i=1

∑
yi∈Ψi

wyi ‖Pwp,i (p)− yi‖2 ,
(A.6)

where C is a weighting coefficient, Pwp,i (p) = xi is the 2D location of the PDM’s ith
landmark, and wyi is constant (i.e., as computed in the E-step). This least-squares problem
can be solved with the Gauss-Newton algorithm by finding the additive update, ∆p, to
the current estimate of shape parameters, p(t), that satisfies
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∂Q (p + ∆p)

∂∆p

∣∣∣∣
p=p(t)

= 0, (A.7)

where Q (p + ∆p) is linearized about the point p = p(t) using Taylor series expansion:

Q
(
p(t) + ∆p

)
= ‖p(t) + ∆p‖2

Λ̃−1 + C

n∑
i=1

∑
yi∈Ψi

wyi

∥∥∥(Pwp,i

(
p(t)
)

+ Ji∆p
)
− yi

∥∥∥2 ,
(A.8)

where Ji ∈ R2×(6+k) is the Jacobian matrix of the projected position of the ith PDM
landmark w.r.t. the PDM parameters. The solution to A.7 is therefore given by

∆p =
(
Λ̃−1 + CJTJ

)−1 (
−Λ̃−1p(t) + CJTv

)
, (A.9)

where J ∈ R2n×(6+k) is the Jacobian matrix, v = [v1; . . . ; vn] ∈ R2n is the concatenation
of the mean-shift vectors from each landmark, vi, given by

vi =

 ∑
yi∈Ψi

wyiyi

− Pwp,i

(
p(t)
)
, ∀i ∈ {1, . . . , n}. (A.10)

Notice that the term in parenthesis of Equation A.10 is reminiscent of the well-known mean-
shift algorithm [52] which is used to iteratively locate the mode(s) of a density function
(i.e., the response map in the RLMS algorithm). Therefore, the M-step produces the new
estimate of the shape parameters

p(t+1) = p(t) + ∆p. (A.11)

We redirect the interested reader to the PhD thesis of Tadas Baltrušaitis [9] for fur-
ther details on CLM, in particular on implementation details and on how to compute the
Jacobian matrix of the PDM, J.

A.4 Adjustments for the baseline system

For the “face landmarks” module of our baseline system, we made several adjustments to
the classic formulation of CLM and RLMS presented above. One reason is that, in addition
to the image I, our baseline system should be able to process the depth map D which is
perfectly aligned with I. Details of these adjustments follow. The equations in this section
are original.

• We use a multimodal appearance model because the local appearance around a land-
mark can vary drastically, e.g., when the eye is closed vs open, or when the mouth
is closed vs open. More specifically, we compute, during the E-step, the multimodal
response maps with probability values given by

wyi = max
(
w1

yi , . . . , w
Mi
yi

)
, (A.12)

where Mi is the number of modes for the ith landmark, and wmyi is the mth-mode’s
posterior probability of the candidate position yi in I. We use Mi = 2 for the 12 eye
landmarks and the 20 mouth landmarks, andMi = 1 for the other 36 face landmarks.
We detail the training procedure of the multimodal appearance model in the next
section.
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• For the purpose of fully exploiting the 3D information contained in D, we reduce the
projection errors by using a full perspective projection rather than a weak perspective
projection. As a consequence, the re-parametrization of the rigid shape parameters
(i.e., 3D rotation and 3D translation) to incorporate the projection is no longer
feasible given that the “scaling factor” becomes function of the landmark and its
distance from the camera (in the z axis). Therefore, the 3D locations of the landmarks
are given by

Xi = Wi (p) = R
(
X̄i + Φiq

)
+ T, (A.13)

where Xi is the 3D location of the PDM’s ith landmark in the camera coordinates,
Wi : R6+k → R3 maps the shape parameters p to Xi, R ∈ R3×3 is the 3D rotation
matrix, and T ∈ R3 is the 3D translation vector. The 2D locations of the landmarks
are given by

xi = Pf

Xi =

 Xi

Yi
Zi

 =
f

Zi

[
Xi

Yi

]
+

[
cx
cy

]
, (A.14)

where Pf : R3 → R2 denotes the full perspective projection, f is the focal length of the
camera, and cx and cy are the x- and y-coordinates, respectively, of the principal point
of the camera. Note that weak perspective projection assumes that each individual
Zi can be replaced by a constant depth, Z∗, because the depth of the object/face is
assumed to be small/negligible compared to its distance from the camera, thereby
leading to the definition of a scaling factor s = f/Z∗ and a 2D translation vector
t = [tx; ty] = [sTx + cx; sTy + cy] .

• We incorporate D into the fitting procedure by adding a likelihood term that mini-
mizes the depth residual between (1) the depth values of D and (2) the depth values
of the PDM’s landmarks. The misalignment error function becomes

Q(p) = C1 ‖p‖2Λ̃−1︸ ︷︷ ︸
prior

+
n∑
i=1

∑
yi∈Ψi

wyi ‖xi − yi‖2︸ ︷︷ ︸
likelihood from image I

+C2

n∑
i=1

‖D (xi)− Zi‖2︸ ︷︷ ︸
likelihood from depth map D

, (A.15)

where D (x) is the depth value of D at the 2D location x, and C1 and C2 are weighting
coefficients empirically set to 20 and 1e−4, respectively..

• For the purpose of increasing the robustness to occlusions, e.g., occluding hands or
self-occlusions, we weigh each landmark in Q (p) using the depth residual. During
the E-step, we compute the weights according to the Welsch weighting function [64]:

γi = exp

(
−
(rd,i
τ

)2)
, (A.16)

where γi is the depth-disparity weight of the ith landmark, rd,i = D (xi) − Zi is
the depth residual of the ith landmark, and τ is a scaling factor that is empirically
set to 20. The weight γi decreases towards zero when rd,i grows large, i.e., when
the ith landmark is most probably occluded. Note that we set γi = 1 for the two
iterations after initializing p to let the PDM coarsely fit the video frame content.
The misalignment error function becomes

Q(p) = C1‖p‖2Λ̃−1+

n∑
i=1

γi

 ∑
yi∈Ψi

wyi ‖xi − yi‖2 + C2 ‖rd,i‖2
 . (A.17)
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Using the Gauss-Newton algorithm, the solution to this re-weighted least-squares
problem is

∆p =
(
C1Λ̃

−1 + JT Γ̃J + C2J
T
rd

ΓJrd

)−1 (
−C1Λ̃

−1p(t) + JT Γ̃v − C2J
T
rd

Γrd

)
,

(A.18)
where rd = [rd,1; . . . ; rd,n] is the concatenation of the depth residuals from each
landmark; Γ = diag{[γ1; . . . ; γn]} ∈ Rn×n and Γ̃ = diag{[γ1; γ1; γ2; γ2; . . . ; γn; γn]} ∈
R2n×2n are diagonal matrices of the depth-disparity weights; and Jrd = JD − JZ ∈
Rn×(6+k) is the Jacobian matrix of the depth residuals.

A.5 Training for the baseline system

For the “face landmarks” module of our baseline system, we trained 14 subject-specific
modules, i.e., subject-specific deformable shape models and subject-specific multimodal
appearance models. The equations and notations in this section are original.

Training of the deformable shape model

We trained the subject-specific shape models in four steps using the annotated 3D face
shapes.

1. We translationally aligned the 720 annotated face shapes by centering each of them
on zero, i.e., the mean of the X-, Y-, and Z-coordinates of their 68 landmarks are set
to zero.

2. We doubled the number of samples by flipping every zero-centered face shapes about
the X-axis of the camera.

3. We rotationally aligned the 1440 zero-centered face shapes using Procrustes Analy-
sis [33], which iteratively minimizes the sum of distances of each shape to the mean
shape.

4. We trained 14 subject-specific shape model using PCA with k = 25 non-rigid defor-
mation modes. More specifically, we find a linear subspace shape model for subject j
by applying PCA on (1) the aligned face shapes of subject j, augmented with (2) the
aligned face shapes of the other 13 subjects that had their subject-specific neutral
face shape (i.e., the mean of their aligned face shapes) replaced by the neutral face
shape of subject j.

Training of the multimodal appearance model

We trained the subject-specific local experts using only their respective images annotated
with the 2D face landmarks. More specifically, for each landmark i of subject j, we trained
the Mi modes of the local expert in four steps using {(Ik,xki ) : k ∈ [1, lj ]} with k the
index of the annotated frame and lj the number of annotated frames for subject j. Let
P (I; x) : RH×W ;R2 → R121 be the function that extracts a local patch (with size of
11 × 11 pixels, squeezed into a vector of size 121) of the image I (with size of H ×W
pixels) centered on the 2D location x.

1. If Mi > 1, we clustered the lj patches around the ith landmark, {P (Ik; xki ) : k ∈
[1, lj ]}, by fitting a mixture of Mi Gaussians using the EM algorithm. In such a
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manner, we effectively arranged the lj samples into Mi clusters, {(Ik,xki ) : k ∈
[1, lmj ],m ∈ [1,Mi]} with the sum of lmj being lj . We applied the next steps on each
cluster independently.

2. We trained a discriminative Support Vector Machine (SVM) model on the aggre-
gation of three types of patches, for a total number of 6lmj patch samples: the
perfectly-located patches, {P (Ik; xki ) : k ∈ [1, lmj ]}; the nearby-located patches,
{P (Ik; xki + Uk (1, 4)) : k ∈ [1, 2lmj ]} where U(a, b) is a random 2D perturbation uni-
formly distributed between a and b pixels; and badly-located patches, {P (Ik; xki +
Uk (5, 11)) : k ∈ [1, 3lmj ]}. We labeled the perfectly-located patches as “positive”,
and the nearby- and badly-located ones as “negative”. We only retained the trained
weights, wi,j,m ∈ R121, for the next steps.

3. We trained a logistic regression model σi,j,m : R→ [0, 1] defined as

σi,j,m (t) = (1 + exp (− (ai,j,mt+ bi,j,m)))−1 , (A.19)

where t = wT
i,j,mP (I; x) relates to the projection of the local patch (from image I

centered on x) on the direction orthogonal to the SVM’s hyperplane. To do so, we
associated to each patch sample of the second step, P (Ik; xk) with k ∈ [1, 6lmj ], a
target value, zk, given by

zk = exp

(
−
(
dk
)2
/2

)
, (A.20)

where dk = ‖xki − xk ‖2 is the distance between the annotated landmark location,
xki , and the center of the sample patch, xk.

4. For the purpose of streamlining the inference, we (1) re-arranged the SVM weights
onto a 2D grid, wi,j,m ∈ R121 7→ w′i,j,m ∈ R11×11, (2) combined ai,j,m with w′i,j,m,
and (3) redefined the patch extraction function, P (I; x) 7→ P ′(I; x) : RH×W ;R2 →
R11×11. The correct alignment probability πi,j,mx ∈ [0, 1] at location x in image I for
the ith landmark, subject j, and cluster m is thus given by

πi,j,mx =
(
1 + exp

(
−
(
ai,j,mw′i,j,m

)
~ P ′ (I; x)− bi,j,m

))−1
, (A.21)

where ~ is the 2D convolution operator. Note that, if P ′(I; x) produces a local patch
of size Rw×w, we can straightforwardly obtain from equation (A.21) the response map
of size (w − 11 + 1) × (w − 11 + 1) candidate locations. We set w to 21 to produce
response maps of size 11× 11 candidate locations.

A.6 Comparison with “modern” face alignment techniques

Modern face alignment techniques rely more and more on machine learning models, and
this for modeling the shape model and the appearance model as well as for learning the
fitting procedure, thereby achieving greater performance than CLM. Indeed, instead of
iteratively computing additive updates of the shape parameters with the Gauss-Newton
algorithm, modern face alignment techniques iteratively estimate the additive update either
(1) of the landmark positions [23, 81, 114] or (2) of the shape parameters [149] that are
learned via cascaded regression models. The replacement of the Gauss-Newton algorithm
by machine learning algorithms has multiple advantages: (1) the processing is generally
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faster, because inference does not require the computation of an inverse matrix as in
Equation A.9; and (2) the appearance model and the optimization procedure are jointly
contained in the regression model, the optimization of which leads to faster convergence
and better performance, but requires a greater amount of data. Note that, when directly
estimating the additive update of the landmark positions, the shape model, i.e., the inter-
landmarks relationship, is contained in the regression model.



Appendix B

Support Vector Machine and
Regression

B.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) [19, 35] is a discriminative binary classifier, i.e., a clas-
sification machine learning model, formally defined by an hyperplane separating training
instances of two classes by an optimal margin. An SVM is trained in a supervised manner
from a set of l training points, {(xi, yi) : i ∈ [1, l]}, where xi ∈ Rn is a vector of n features,
and yi ∈ {1,−1} is the ground-truth class. Under given the regularization hyper-parameter
C > 0, training an SVM classifier means solving the following primal optimization problem:

minimize
w,b,ξ

1
2wTw + C

l∑
i=1

ξi

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l,

(B.1)

where w is the weight vector of the hyperplane, b is the bias of the hyperplane, φ(xi) is
a function that maps xi into a high-dimensional space, C is a weighting coefficient, and
ξi is the slack variable of the ith training point. However, because of the possible high
dimensionality of the weight vector w, we usually solve the following dual problem:

minimize
α

1
2α

TQα− eTα

subject to yTα = 0,
0 ≤ αi ≤ C, i = 1, . . . , l,

(B.2)

where e = [1, . . . , 1]T ] is the vector of all ones, Q is an l by l positive semidefinite matrix
with elements Qij ≡ yiyjK(xi,xj), and K(xi,xj) ≡ φ(xi)

Tφ(xj) is the kernel function
which quantifies the similarity between xi and xj . Note that the mapping function, φ(x),
does not need to be explicitly defined, given that only the kernel function, K (xi,xj),
appears in the dual problem. Popular kernel functions include

• the linear kernel: K (xi,xj) = xTi xj ;

• the polynomial kernel: K (xi,xj) =
(
γxTi xj + r

)d with hyper-parameters r, d, and
γ > 0;

• the radial basis function (RBF) kernel: K (xi,xj) = exp
(
−γ‖xi − xj‖2

)
with hyper-

parameter γ > 0.
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After solving problem B.2 and by using the primal-dual relationship, the optimal w
satisfies

w =
l∑

i=1

yiαiφ(xi), (B.3)

and the decision function is

y(x) = sgn
(
wTφ(x) + b

)
= sgn

(
l∑

i=1

yiαiK(xi,x) + b

)
. (B.4)

B.2 Support Vector Regression (SVR)

Support Vector Regression (SVR) [135] is an extension of SVMs for regression problems.
An SVR is trained in supervised manner from a set of l training points, {(xi, zi) : i ∈ [1, l]},
where xi ∈ Rn is a vector of n features, and zi ∈ R is the ground-truth target. Under given
hyper-parameters C > 0 and ε > 0, training an SVR means solving the following primal
problem:

minimize
w,b,ξ,ξ∗

1
2wTw + C

l∑
i=1

ξi + C
l∑

i=1
ξ∗i

subject to wTφ(xi) + b− zi ≤ ε+ ξi,
zi −wTφ(xi)− b ≤ ε+ ξ∗i ,
ξi, ξ

∗
i ≥ 0, i = 1, . . . , l.

(B.5)

The dual problem is

minimize
α,α∗

1
2 (α−α∗)T Q (α−α∗) + ε

l∑
i=1

(αi + α∗i ) +
l∑

i=1
zi(αi − α∗i )

subject to eT (α−α∗) = 0,
0 ≤ αi, α∗i ≤ C, i = 1, . . . , l,

(B.6)

where Qi,j ≡ K(xi,xj) ≡ φ(xi)
Tφ(xj).

After solving problem B.6, the approximate function is

z(x) =
l∑

i=1

(−αi + α∗i )K(xi,x) + b. (B.7)

If one uses the linear kernel K(xi,xj) = xTi xj , the approximate function becomes

z(x) = wTx + b, (B.8)

where w is given by

w =

l∑
i=1

(−αi + α∗i ) xi. (B.9)



Appendix C

Convolutional neural networks

Convolutional neural networks (CNNs) are non-linear, composite machine learning models
that are commonly used for efficiently processing structured data such as videos, images,
and time series. Applications of CNNs are diverse and include: image classification [63],
landmarks alignment [22], object detection [113], object segmentation [89], semantic back-
ground subtraction [21], face recognition [130], video frame interpolation [102], text-to-
speech generation [134], and natural language processing [79]. In Chapters 5 and 6, our
applications of CNNs are eyelids distance regression and drowsiness characterization.

C.1 Model architecture

A CNN model is a composition of functions, but this model is preferably formulated as
a graph of layers, which is mathematically equivalent but more convenient to work with
and design around. In the context of the layer-based formulation, there exist a wide range
of layer types and a wide range of model architectures that combine such layers. In the
simplest case, the model architecture is a cascade of layers with the four following types
of layer:

1. the convolutional layer, which performs a spatial and/or temporal convolution oper-
ation;

2. the non-linear activation layer, which performs an element-wise non-linear operation,
e.g., the rectified linear unit (ReLU) max (0, x);

3. the pooling layer, which performs a downsampling operation along spatial and/or
temporal dimensions, e.g., average pooling;

4. the fully-connected layer, which performs a matrix product operation.

Each of these layer types has a specific purpose. The convolutional layer efficiently ex-
tracts local patterns from the data. The non-linear activation layer evidently introduces
non-linearity into the model. The pooling layer reduces the data size, which enables the
convolutional layer to cover, in a faster way, larger spatial and/or temporal patterns in
data. The fully-connected layer efficiently maps a vector of features to another, which
is mainly used nowadays for formatting the output vector. When adequately combined
together, these layers make up a powerful non-linear model able to fit well the intricate
statistical properties of structured data.

This simple architecture is also the architecture that “VGGNet” [127] uses, with convo-
lutions over 3×3 pixel windows and pooling operations over 2×2 pixel windows. More com-
plex architectures exist, such as “GoogleLeNet” [129], “Xception” [27], and “ResNet” [63].
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C.2 Model training

Typically, a CNN model is trained in a iterative and supervised manner from a set of train-
ing data. More specifically, training a CNN consists in the repetition of the following two
steps. In the first step, one computes, via the backpropagation algorithm, the gradient of
the loss function, i.e., the partial derivative of the loss function w.r.t. each of the parame-
ters (of the CNN model). This gradient is generally evaluated for a mini-batch (i.e., a small
subset) of training data. Doing so speeds up the model convergence considerably since the
mini-batch gradient approximates relatively well the full gradient (i.e., evaluated for all of
the training data) due to the actual correlation between training data. In the second step,
one updates the parameters via gradient descent, i.e., by subtracting a fraction (a.k.a. the
learning rate) of the mini-batch gradient from the current estimate of the parameters.

In practice, this two-step training procedure has shown to produce models that gen-
eralize well to previously unseen data (thus not used for training), which is the funda-
mental goal of machine learning. However, such high-dimensional optimization has many
pitfalls that may prevent good generalization. Indeed, good generalization may require
a large amount of training data, especially when the task to learn is complex, e.g., the
classification of non-rigid objects in an image. If the number of training of data is not
large enough, a classic approach for artificially increasing this number is to “augment”,
e.g., randomly rotate, crop, and scale, the training data. Furthermore, good generalization
is greatly dependent on the initialization of the parameters due to vanishing/exploding
gradient, especially when the model architecture is composed of many layers. Therefore,
a good initialization strategy is often required. However, this sensitivity to initialization
can be mitigated by using a residual architecture (e.g., “ResNet”) and/or normalization
layers [74].
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