Extensions of the Pascal Triangle to Words, and Related Counting Problems

Manon Stipulanti

Liège
April 2, 2019
Classical Pascal triangle

Definition:

Let \(P : (m, k) \in \mathbb{N} \times \mathbb{N} \mapsto \binom{m}{k} \in \mathbb{N} \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>21</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
</tr>
</tbody>
</table>

Binomial coefficients of integers:

\[
\binom{m}{k} = \frac{m!}{(m-k)!k!}
\]
A specific construction

- Grid: first 2^n rows and columns of the Pascal triangle

\[
\begin{pmatrix} \left(\binom{m}{k} \mod 2 \right) \end{pmatrix}_{0 \leq m, k < 2^n}
\]
A specific construction

- Grid: first 2^n rows and columns of the Pascal triangle
 $$\left(\begin{pmatrix} m \\ k \end{pmatrix} \mod 2 \right)_{0 \leq m, k < 2^n}$$

- Color each square in
 - white if $\left(\begin{pmatrix} m \\ k \end{pmatrix} \right) \equiv 0 \mod 2$
 - black if $\left(\begin{pmatrix} m \\ k \end{pmatrix} \right) \equiv 1 \mod 2$
A specific construction

- Grid: first 2^n rows and columns of the Pascal triangle

$$\left(\begin{array}{c} m \\ k \end{array} \right) \mod 2$$

$0 \leq m, k < 2^n$

- Color each square in
 - white if $\left(\begin{array}{c} m \\ k \end{array} \right) \equiv 0 \mod 2$
 - black if $\left(\begin{array}{c} m \\ k \end{array} \right) \equiv 1 \mod 2$

- Normalize by a homothety of ratio $1/2^n$
 (bring into $[0, 1]^2$)
A specific construction

- Grid: first 2^n rows and columns of the Pascal triangle
 \[
 \left(\binom{m}{k} \mod 2 \right)_{0 \leq m, k < 2^n}
 \]

- Color each square in
 - white if \(\binom{m}{k} \equiv 0 \mod 2 \)
 - black if \(\binom{m}{k} \equiv 1 \mod 2 \)

- Normalize by a homothety of ratio \(1/2^n \)
 (bring into \([0, 1]^2\))

\(\rightsquigarrow \) sequence of compact sets belonging to \([0, 1]^2\)
The first six elements of the sequence

\[
\begin{array}{cccc}
0 & 1 & & \\
2 & 2 & & \\
0 & 2 & & \\
2 & 2 & & \\
0 & 2 & & \\
2 & 2 & & \\
\end{array}
\]

Generalized Pascal Triangles, and Related Counting Problems

M. Stipulanti (ULiège)
Folklore fact
The latter sequence of compact sets converges to the Sierpiński gasket (w.r.t. the Hausdorff distance).

Definitions:
• \(\epsilon \)-fattening of a subset \(S \subset \mathbb{R}^2 \)
 \[[S]_\epsilon = \bigcup_{x \in S} B(x, \epsilon) \]
• \((\mathcal{H}(\mathbb{R}^2), d_h)\) complete space of the non-empty compact subsets of \(\mathbb{R}^2 \) equipped with the Hausdorff distance \(d_h \)
 \[d_h(S, S') = \inf\{ \epsilon \in \mathbb{R}_{>0} \mid S \subset [S']_\epsilon \quad \text{and} \quad S' \subset [S]_\epsilon \} \]
Theorem (von Haeseler, Peitgen, and Skordev, 1992)

Let p be a prime and $s > 0$.
The sequence of compact sets corresponding to

\[
\left(\left(\binom{m}{k} \mod p^s \right) \right)_{0 \leq m, k < p^n}
\]

converges when n tends to infinity (w.r.t. the Hausdorff distance).

\begin{align*}
p = 2, & \quad s = 1 \\
p = 2, & \quad s = 2 \\
p = 2, & \quad s = 3
\end{align*}
Part I
Let u, v be two finite words over the alphabet A. The *binomial coefficient* $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).
Binomial coefficient of finite words

Let u, v be two finite words over the alphabet A. The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a “scattered” subword).

Example: $u = 101001$ \hspace{1cm} $v = 101$

\[
101001, 101001, 101001, 101001, 101001 \Rightarrow \binom{101001}{101} = 6
\]
Binomial coefficient of finite words

Let \(u, v \) be two finite words over the alphabet \(A \).
The \textit{binomial coefficient} \(\binom{u}{v} \) of \(u \) and \(v \) is the number of times \(v \) occurs as a subsequence of \(u \) (meaning as a “scattered” subword).

Example: \(u = 101001 \quad v = 101 \)

\[
101001, 101001, 101001, 101001, 101001, 101001 \Rightarrow \binom{101001}{101} = 6
\]

Natural generalization:

\[
\binom{a^m}{a^k} = \binom{\underbrace{a \cdots a}_{m \text{ times}}}{\underbrace{a \cdots a}_{k \text{ times}}} = \binom{m}{k} \quad \forall \ m, k \in \mathbb{N}
\]
Let \((A, <)\) be a totally ordered alphabet.
Let \((A, <)\) be a totally ordered alphabet. Let \(L \subset A^*\) be an infinite language over \(A\).
Let \((A, <)\) be a totally ordered alphabet.
Let \(L \subseteq A^*\) be an infinite language over \(A\).
The words in \(L\) are genealogically ordered

\[w_0 <_{\text{gen}} w_1 <_{\text{gen}} w_2 <_{\text{gen}} \cdots. \]
Generalized Pascal triangles

Let \((A, <)\) be a totally ordered alphabet.
Let \(L \subset A^*\) be an infinite language over \(A\).
The words in \(L\) are genealogically ordered

\[w_0 <_{\text{gen}} w_1 <_{\text{gen}} w_2 <_{\text{gen}} \cdots. \]

The \textit{generalized Pascal triangle} \(P_L\) associated with \(L\) is defined by

\[P_L: (m, k) \in \mathbb{N} \times \mathbb{N} \mapsto \binom{w_m}{w_k} \in \mathbb{N}. \]
Generalized Pascal triangles

Let \((A, <)\) be a totally ordered alphabet.
Let \(L \subseteq A^*\) be an infinite language over \(A\).
The words in \(L\) are genealogically ordered

\[
w_0 <_{\text{gen}} w_1 <_{\text{gen}} w_2 <_{\text{gen}} \cdots.
\]

The generalized Pascal triangle \(P_L\) associated with \(L\) is defined by

\[
P_L : (m, k) \in \mathbb{N} \times \mathbb{N} \mapsto \binom{w_m}{w_k} \in \mathbb{N}.
\]

Questions:

- With a similar construction, can we expect the convergence to an analogue of the Sierpiński gasket?
- In particular, where should we cut to normalize a given generalized Pascal triangle?
- Could we describe this limit object?
Definition

A *numeration system* is a sequence $U = (U(n))_{n \geq 0}$ of integers s.t.

- U increasing
- $U(0) = 1$
- $\sup_{n \geq 0} \frac{U(n+1)}{U(n)}$ bounded by a constant \leadsto finite alphabet.
A \emph{numeration system} is a sequence $U = (U(n))_{n \geq 0}$ of integers s.t.

- U increasing
- $U(0) = 1$
- $\sup_{n \geq 0} \frac{U(n+1)}{U(n)}$ bounded by a constant \sim finite alphabet.

A numeration system U is \emph{linear} if $\exists k \geq 1, \exists a_0, \ldots, a_{k-1} \in \mathbb{Z}$ s.t.

$$U(n + k) = a_{k-1} U(n + k - 1) + \cdots + a_0 U(n) \quad \forall n \geq 0.$$
Definition

A numeration system is a sequence $U = (U(n))_{n \geq 0}$ of integers s.t.

- U increasing
- $U(0) = 1$
- $\sup_{n \geq 0} \frac{U(n+1)}{U(n)}$ bounded by a constant \sim finite alphabet.

A numeration system U is linear if $\exists k \geq 1, \exists a_0, \ldots, a_{k-1} \in \mathbb{Z}$ s.t.

$$U(n + k) = a_{k-1} U(n + k - 1) + \cdots + a_0 U(n) \quad \forall n \geq 0.$$

Greedy representation in $(U(n))_{n \geq 0}$:

$$n = \sum_{i=0}^{\ell} c_i U(i) \quad \text{with} \quad \sum_{i=0}^{j-1} c_i U(i) < U(j)$$

$$\text{rep}_U(n) = c_\ell \cdots c_0 \in \mathcal{L}_U = \text{rep}_U(\mathbb{N})$$

numeration language
Parry numbers

\(\beta \in \mathbb{R}_{>1} \quad A_\beta = \{0, 1, \ldots, \lceil \beta \rceil - 1\} \)

\[x \in [0, 1] \mapsto x = \sum_{j=1}^{+\infty} c_j \beta^{-j}, \quad c_j \in A_\beta \]

Greedy way: \(c_j \beta^{-j} + c_{j+1} \beta^{-j-1} + \cdots < \beta^{-(j-1)} \)

\(\beta \)-expansion of \(x \): \(d_\beta(x) = c_1 c_2 c_3 \cdots \)
Parry numbers

\[\beta \in \mathbb{R}_{>1} \quad A_\beta = \{0, 1, \ldots, \lceil \beta \rceil - 1\} \]

\[x \in [0, 1] \mapsto x = \sum_{j=1}^{+\infty} c_j \beta^{-j}, \quad c_j \in A_\beta \]

Greedy way: \(c_j \beta^{-j} + c_{j+1} \beta^{-j-1} + \cdots < \beta^{-(j-1)}\)

\(\beta\)-expansion of \(x\): \(d_\beta(x) = c_1 c_2 c_3 \cdots\)

Definition

\(\beta \in \mathbb{R}_{>1}\) is a *Parry number* if \(d_\beta(1)\) is ultimately periodic.
Parry numbers

\[\beta \in \mathbb{R}_{>1} \quad A_\beta = \{0, 1, \ldots, \lceil \beta \rceil - 1\} \]

\[x \in [0, 1] \mapsto x = \sum_{j=1}^{+\infty} c_j \beta^{-j}, \quad c_j \in A_\beta \]

Greedy way: \(c_j \beta^{-j} + c_{j+1} \beta^{-j-1} + \cdots < \beta^{-(j-1)} \)

\(\beta \)-expansion of \(x \): \(d_\beta(x) = c_1 c_2 c_3 \cdots \)

Definition

\(\beta \in \mathbb{R}_{>1} \) is a *Parry number* if \(d_\beta(1) \) is ultimately periodic.

Example: \(b \in \mathbb{N}_{>1} \): \(d_b(1) = (b - 1)^\omega \)

Golden ratio \(\varphi \): \(d_\varphi(1) = 110^\omega \)
Parry numeration system

Parry number $\beta \in \mathbb{R}_{>1} \rightarrow$ linear numeration system $(U_{\beta}(n))_{n \geq 0}$

- $d_{\beta}(1) = t_1 \cdots t_m 0^\omega$

 \[
 \begin{align*}
 U_{\beta}(0) &= 1 \\
 U_{\beta}(i) &= t_1 U_{\beta}(i-1) + \cdots + t_i U_{\beta}(0) + 1 \quad \forall 1 \leq i \leq m-1 \\
 U_{\beta}(n) &= t_1 U_{\beta}(n-1) + \cdots + t_m U_{\beta}(n-m) \quad \forall n \geq m
 \end{align*}
 \]

- $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+k})^\omega$

 \[
 \begin{align*}
 U_{\beta}(0) &= 1 \\
 U_{\beta}(i) &= t_1 U_{\beta}(i-1) + \cdots + t_i U_{\beta}(0) + 1 \quad \forall 1 \leq i \leq m+k-1 \\
 U_{\beta}(n) &= t_1 U_{\beta}(n-1) + \cdots + t_{m+k} U_{\beta}(n-m-k) + U_{\beta}(n-k) \\
 &\quad - t_1 U_{\beta}(n-k-1) - \cdots - t_m U_{\beta}(n-m-k)
 \end{align*}
 \]

Examples:

- $b \in \mathbb{N}_{>1} \rightarrow (b^n)_{n \geq 0}$ base b
- Golden ratio $\varphi \rightarrow (F(n))_{n \geq 0}$ Fibonacci numeration system
Parry number $\beta \in \mathbb{R}_{>1} \leadsto$ linear numeration system U_β

$\leadsto P_\beta: (m, k) \in \mathbb{N} \times \mathbb{N} \mapsto \left(\begin{array}{c} \text{rep}_{U_\beta}(m) \\ \text{rep}_{U_\beta}(k) \end{array} \right) \in \mathbb{N}$
Parry number $\beta \in \mathbb{R}_{>1}$ \leadsto linear numeration system U_β

$\leadsto P_\beta: (m, k) \in \mathbb{N} \times \mathbb{N} \mapsto \left(\begin{array}{c} \text{rep}_{U_\beta}(m) \\ \text{rep}_{U_\beta}(k) \end{array} \right) \in \mathbb{N}$

Examples:

Base-2 numeration system

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$L_2 = 1\{0, 1\}^* \cup \{\varepsilon\}$

Fibonacci numeration system

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>101</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1010</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$L_\varphi = 1\{01, 0\}^* \cup \{\varepsilon\}$
Special case of generalized Pascal triangles

Parry number $\beta \in \mathbb{R}_{>1} \Rightarrow$ linear numeration system U_β

$\Rightarrow P_\beta : (m, k) \in \mathbb{N} \times \mathbb{N} \mapsto \left(\text{rep}_{U_\beta}(m), \text{rep}_{U_\beta}(k)\right) \in \mathbb{N}$

Examples:

Base-2 numeration system

<table>
<thead>
<tr>
<th>ε</th>
<th>ε</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$L_2 = 1\{0, 1\}^* \cup \{\varepsilon\}$

Fibonacci numeration system

<table>
<thead>
<tr>
<th>ε</th>
<th>ε</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>101</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1010</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$L_\phi = 1\{01, 0\}^* \cup \{\varepsilon\}$

Remark: Copies of the usual Pascal triangle
Sequence of compact sets (first $U_\beta(n)$ rows and columns of P_β) in $[0,1]^2$:

$$U_\beta^n = \frac{1}{U_\beta(n)} \bigcup_{u,v \in LU_\beta, |u|,|v| \leq n} \text{val}_{U_\beta}(v,u) + [0,1]^2$$

$(\frac{u}{v}) \equiv 1 \mod 2$

Examples: Base-2 numeration system

Generalized Pascal Triangles, and Related Counting Problems

M. Stipulanti (ULiège)
Sequence of compact sets (first $U_\beta(n)$ rows and columns of P_β) in $[0, 1]^2$:

$$U_\beta^U = \frac{1}{U_\beta(n)} \bigcup_{u,v \in L_{U_\beta}, |u|, |v| \leq n} \text{val}_{U_\beta}(v, u) + [0, 1]^2$$

$(\binom{u}{v}) \equiv 1 \mod 2$

Examples: Fibonacci numeration system

Generalized Pascal Triangles, and Related Counting Problems

M. Stipulanti (ULiège)
Base-2 numeration system

Lines of slopes: $2^n, n \geq 0$

Fibonacci numeration system

Lines of slopes: $\varphi^n, n \geq 0$

General case: Lines of slopes: $\beta^n, n \geq 0$
\[p(u, v) \in \mathbb{N} \text{ s.t. } u0^p(u,v)w, v0^p(u,v)w \in L_{U_\beta} \text{ for all } w \in 0^*L_{U_\beta} \]

\[(\star) \]

\((u, v)\) satisfies \((\star)\) iff \(u = v = \varepsilon\) or
\[
\begin{cases}
 u, v \neq \varepsilon \\
 (u0^p(u,v)) \equiv 1 \pmod{2} \\
 (v0^p(u,v)) = 0 \\
 (u0^p(u,v))_a = 0 \quad \forall a \in A_{U_\beta}.
\end{cases}
\]
• The (⋆) condition describes lines of slope 1 in $[0, 1]^2$.

$$(u, v) \in L_{U_\beta} \times L_{U_\beta} \text{ satisfying (⋆) \implies closed segment } S_{u,v}$$

- slope 1
- length $\sqrt{2} \cdot \beta^{-|u|-p(u,v)}$
- origin $A_{u,v} = (0.0|u|-|v|, 0.0)$
The (*) condition describes lines of slope 1 in $[0, 1]^2$.

$(u, v) \in L_{U\beta} \times L_{U\beta}$ satisfying (*)

\rightsquigarrow closed segment $S_{u,v}$

- slope 1
- length $\sqrt{2} \cdot \beta^{-|u|} - p(u,v)$
- origin $A_{u,v} = (0.0|u| - |v|, 0.u)$

New compact set containing those lines:

$A_0^\beta = \bigcup_{(u,v) \text{ satisfying } (\ast)} S_{u,v} \subset [0, 1]^2$
- Two maps $c: (x, y) \mapsto (\frac{x}{\beta}, \frac{y}{\beta})$ and $h: (x, y) \mapsto (x, \beta y)$

Example:
- Two maps \(c : (x, y) \mapsto \left(\frac{x}{\beta}, \frac{y}{\beta} \right) \) and \(h : (x, y) \mapsto (x, \beta y) \)

Example:

\[\begin{array}{c|c|c|c}
\hline
0 & 1 & \beta & 1 \\
\hline
1 & \beta & 1 & \beta \\
\hline
\end{array} \]
Two maps $c: (x, y) \mapsto \left(\frac{x}{\beta}, \frac{y}{\beta}\right)$ and $h: (x, y) \mapsto (x, \beta y)$

Example:
• Two maps $c: (x, y) \mapsto (\frac{x}{\beta}, \frac{y}{\beta})$ and $h: (x, y) \mapsto (x, \beta y)$

Example:
Two maps $c: (x, y) \mapsto (\frac{x}{\beta}, \frac{y}{\beta})$ and $h: (x, y) \mapsto (x, \beta y)$

Example:
• Two maps \(c: (x, y) \mapsto \left(\frac{x}{\beta}, \frac{y}{\beta} \right) \) and \(h: (x, y) \mapsto (x, \beta y) \)

Example:

\[
\begin{array}{cccc}
0 & \frac{1}{\beta} & \frac{1}{\beta} & 1 \\
1 & \frac{1}{\beta} & \frac{1}{\beta} & 1 \\
\ldots & \ldots & \ldots & \ldots \\
1 & 1 & 1 & 1
\end{array}
\]

• New compact set containing lines of slopes \(1, \beta, \ldots, \beta^n \):

\[
\mathcal{A}^\beta_n = \bigcup_{0 \leq i \leq n, 0 \leq j \leq i} h^j(c^i(\mathcal{A}^\beta_0)) \subset [0, 1]^2.
\]
- Two maps \(c: (x, y) \mapsto \left(\frac{x}{\beta}, \frac{y}{\beta} \right) \) and \(h: (x, y) \mapsto (x, \beta y) \)

Example:

![Graph showing two maps]

- New compact set containing lines of slopes \(1, \beta, \ldots, \beta^n \):

 \[
 \mathcal{A}_n^\beta = \bigcup_{0 \leq i \leq n, 0 \leq j \leq i} h^j(c^i(\mathcal{A}_0^\beta)) \subset [0, 1]^2.
 \]

- The compact sets \((\mathcal{A}_n^\beta)_{n \geq 0}\) are increasingly nested and their union is bounded.

\((\mathcal{A}_n^\beta)_{n \geq 0}\) converges to \(\mathcal{L}_n^\beta = \bigcup_{n \geq 0} \mathcal{A}_n^\beta\) w.r.t. the Hausdorff distance.
(\mathcal{U}_n^\beta)_{n\geq 0} \text{ converges to } \mathcal{L}^\beta \text{ w.r.t. the Hausdorff distance.}

3 \rightsquigarrow \mathcal{L}^3 \quad \varphi \rightsquigarrow \mathcal{L}^\varphi \quad \varphi^2 \rightsquigarrow \mathcal{L}^{\varphi^2}

\beta_1 \approx 2.47098 \rightsquigarrow \mathcal{L}^{\beta_1} \quad \beta_2 \approx 1.38028 \rightsquigarrow \mathcal{L}^{\beta_2} \quad \beta_3 \approx 2.80399 \rightsquigarrow \mathcal{L}^{\beta_3}
Theorem

Let p be a prime and $r \in \{1, \ldots, p - 1\}$. When considering binomial coefficients congruent to $r \pmod{p}$, the sequence $(U_{n,p,r}^\beta)_{n \geq 0}$ converges to a well-defined compact set $L_{p,r}^\beta$ w.r.t. the Hausdorff distance.

Example: $L_{3,1}^2 \cup L_{3,2}^2$
Part II
Example: \(P_\varphi \) (Fibonacci numeration system)

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>101</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>(n)</th>
<th>(S_\varphi(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1010</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Generalized Pascal Triangles, and Related Counting Problems

M. Stipulanti (ULiège)
Classical Pascal triangle: $S(n) = n + 1 \quad \forall n \geq 0$
Classical Pascal triangle: \(S(n) = n + 1 \quad \forall n \geq 0 \)

Base-2 numeration system:
\[S_2 = 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, \ldots \]

OEIS tag: A007306

Fibonacci numeration system:
\[S_\phi = 1, 2, 3, 4, 4, 5, 6, 6, 6, 8, 9, 8, 8, 7, 10, 12, 12, 12, 10, 12, 12, 8, 12, \ldots \]

OEIS tag: A282717
Example: Sum-of-digits function Sum_2 in base 2

$\text{Sum}_2(n) = \#$ of 1’s in $\text{rep}_2(n)$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{rep}_2(n)$</td>
<td>ε</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>$\text{Sum}_2(n)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Example: Sum-of-digits function Sum_2 in base 2

$\text{Sum}_2(n) = \# \text{ of 1's in } \text{rep}_2(n)$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{rep}_2(n)$</td>
<td>ε</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>$\text{Sum}_2(n)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2-kernel $\mathcal{K}_2(\text{Sum}_2)$:
Example: Sum-of-digits function Sum_2 in base 2

$\text{Sum}_2(n) = \# \text{ of 1's in } \text{rep}_2(n)$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{rep}_2(n)$</td>
<td>ε</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>$\text{Sum}_2(n)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2-kernel $\mathcal{K}_2(\text{Sum}_2)$:

<table>
<thead>
<tr>
<th>Suffix</th>
<th>$(\text{Sum}2(n)){n \geq 0}$</th>
<th>Suffix 1</th>
<th>$(\text{Sum}2(2n + 1)){n \geq 0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suffix</td>
<td>$(\text{Sum}2(2n)){n \geq 0}$</td>
<td>Suffix 01</td>
<td>$(\text{Sum}2(4n + 1)){n \geq 0}$</td>
</tr>
<tr>
<td>Suffix 00</td>
<td>$(\text{Sum}2(4n)){n \geq 0}$</td>
<td>Suffix 11</td>
<td>$(\text{Sum}2(4n + 3)){n \geq 0}$</td>
</tr>
<tr>
<td>Suffix 10</td>
<td>$(\text{Sum}2(4n + 2)){n \geq 0}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{Sum}_2(2n) = \text{Sum}_2(n) + \text{Sum}_2(n)$

$\text{Sum}_2(2n + 1) = \text{Sum}_2(2n) + 1$

Sum_2 is 2-regular:

Sequences in $\mathcal{K}_2(\text{Sum}_2)$ are \mathbb{Z}-linear combinations of Sum_2. For example:

$\text{Sum}_2(4n + 1) = \text{Sum}_2(2(2n) + 1) = \text{Sum}_2(2n) + 1 = \text{Sum}_2(n) + 1$
Regularity

Example: Sum-of-digits function \(\text{Sum}_2 \) in base 2

\(\text{Sum}_2(n) = \# \text{ of 1's in } \text{rep}_2(n) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{rep}_2(n))</td>
<td>(\varepsilon)</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>(\text{Sum}_2(n))</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2-kernel \(K_2(\text{Sum}_2) \):

- Suffix \(\varepsilon \) \((\text{Sum}_2(n))^n \geq 0 \)
- Suffix 0 \((\text{Sum}_2(2n))^n \geq 0 \)
- Suffix 00 \((\text{Sum}_2(4n))^n \geq 0 \)
- Suffix 10 \((\text{Sum}_2(4n + 2))^n \geq 0 \)
- Suffix 1 \((\text{Sum}_2(2n + 1))^n \geq 0 \)
- Suffix 01 \((\text{Sum}_2(4n + 1))^n \geq 0 \)
- Suffix 11 \((\text{Sum}_2(4n + 3))^n \geq 0 \)
Example: Sum-of-digits function Sum_2 in base 2

$\text{Sum}_2(n) = \# \text{ of 1's in } \text{rep}_2(n)$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{rep}_2(n)$</td>
<td>ε</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>$\text{Sum}_2(n)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2-kernel $\mathcal{K}_2(\text{Sum}_2)$:

- Suffix $\varepsilon \quad (\text{Sum}_2(n))_{n \geq 0}$
- Suffix 0 \quad (\text{Sum}_2(2n))_{n \geq 0}
- Suffix 00 \quad (\text{Sum}_2(4n))_{n \geq 0}
- Suffix 10 \quad (\text{Sum}_2(4n + 2))_{n \geq 0}
- Suffix 1 \quad (\text{Sum}_2(2n + 1))_{n \geq 0}
- Suffix 01 \quad (\text{Sum}_2(4n + 1))_{n \geq 0}
- Suffix 11 \quad (\text{Sum}_2(4n + 3))_{n \geq 0}$
Example: Sum-of-digits function \(\text{Sum}_2 \) in base 2

\(\text{Sum}_2(n) = \# \) of 1’s in \(\text{rep}_2(n) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{rep}_2(n))</td>
<td>(\varepsilon)</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>(\text{Sum}_2(n))</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2-kernel \(K_2(\text{Sum}_2) \):

- Suffix \(\varepsilon \) \((\text{Sum}_2(n))_{n \geq 0} \)
- Suffix 0 \((\text{Sum}_2(2n))_{n \geq 0} \)
- Suffix 00 \((\text{Sum}_2(4n))_{n \geq 0} \)
- Suffix 10 \((\text{Sum}_2(4n + 2))_{n \geq 0} \)
- Suffix 1 \((\text{Sum}_2(2n + 1))_{n \geq 0} \)
- Suffix 01 \((\text{Sum}_2(4n + 1))_{n \geq 0} \)
- Suffix 11 \((\text{Sum}_2(4n + 3))_{n \geq 0} \)
Regularity

Example: Sum-of-digits function Sum_2 in base 2
$\text{Sum}_2(n) = \# \text{ of } 1\text{'s in } \text{rep}_2(n)$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{rep}_2(n)$</td>
<td>ε</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>$\text{Sum}_2(n)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2-kernel $K_2(\text{Sum}_2)$:

- Suffix ε \((\text{Sum}_2(n))_{n\geq0}\)
- Suffix 0 \((\text{Sum}_2(2n))_{n\geq0}\)
- Suffix 00 \((\text{Sum}_2(4n))_{n\geq0}\)
- Suffix 10 \((\text{Sum}_2(4n+2))_{n\geq0}\)
- Suffix 01 \((\text{Sum}_2(4n+1))_{n\geq0}\)
- Suffix 11 \((\text{Sum}_2(4n+3))_{n\geq0}\)

$\text{Sum}_2(2n) = \text{Sum}_2(n)$ \hspace{1cm} $\text{Sum}_2(2n+1) = \text{Sum}_2(n)+1$

Sum_2 2-regular:
sequences in $K_2(\text{Sum}_2)$ are \mathbb{Z}-linear combinations of Sum_2, 1

e.g. $\text{Sum}_2(4n+1) = \text{Sum}_2(2(2n)+1) = \text{Sum}_2(2n)+1 = 1 \cdot \text{Sum}_2(n)+1 \cdot 1$
Regularity: general case

Let $U = (U(n))_{n \geq 0}$ be a numeration system.
Let $s = (s(n))_{n \geq 0}$ be a sequence.

- The sequence $(s(i_w(n)))_{n \geq 0}$ is called the subsequence of s with least significant digits equal to w w.r.t. representations in the numeration system U.
- The U-kernel of s is the set
 \[K_U(s) = \{(s(i_w(n)))_{n \geq 0} \mid \text{for all suffixes } w\} \].
- A sequence s of integers is U-regular if there exists a finite number of sequences $t_1 = (t_1(n))_{n \geq 0}$, ..., $t_\ell = (t_\ell(n))_{n \geq 0}$ s.t. every sequence in the U-kernel $K_U(s)$ is a \mathbb{Z}-linear combination of the sequences t_1, \ldots, t_ℓ.
Method

Define, study, use a new tree structure called *tries of scattered subwords*.

\[\Rightarrow \text{easily count/enumerate scattered subwords} \]

Example: in base 2

Scattered subwords of 10110:

\[\varepsilon, 1, 10, 11, 100, 101, 110, 111, \\
 1010, 1011, 1110, 10110 \]

\[S_2(\text{val}_2(10110)) = S_2(22) = \# \text{ nodes} = 12 \]

Internal structure: subtree of root 11 \(\cong \) subtree of root 101

Consequence: Study trees to deduce properties of \(S_\beta \)
Define, study, use a new tree structure called *tries of scattered subwords*. Easily count/enumerate scattered subwords

Example: in base 2

Scattered subwords of 10110:

\[\varepsilon, 1, 10, 11, 100, 101, 110, 111, 1010, 1011, 1110, 10110 \]

\[S_2(\text{val}_2(10110)) = S_2(22) = \# \text{ nodes} = 12 \]

Internal structure: subtree of root 11 \(\cong \) subtree of root 101

Consequence: Study trees to deduce properties of \(S_\beta \)
Define, study, use a new tree structure called \textit{tries of scattered subwords}. Easily count/enumerate scattered subwords.

\textbf{Example:} in base 2

\[
\begin{align*}
S_2(\text{val}_2(10110)) &= S_2(22) = \# \text{ nodes} = 12
\end{align*}
\]

Scattered subwords of 10110:
\[
\varepsilon, 1, 10, 11, 100, 101, 110, 111, 1010, 1011, 1110, 10110
\]

Internal structure: subtree of root 11 ≈ subtree of root 101

\textbf{Consequence:} Study trees to deduce properties of \(S_\beta \)
Define, study, use a new tree structure called *tries of scattered subwords*. Easily count/enumerate scattered subwords.

Example: in base 2

- Scattered subwords of 10110:
 - ε, 1, 10, 11, 100, 101, 110, 111, 1010, 1011, 1110, 10110
 - $S_2(\text{val}_2(10110)) = S_2(22) = \# \text{ nodes} = 12$

Internal structure: subtree of root 11 \cong subtree of root 101

Consequence: Study trees to deduce properties of S_β
Define, study, use a new tree structure called *tries of scattered subwords.*

\[\Rightarrow \text{easily count/enumerate scattered subwords} \]

Example: in base 2

Scattered subwords of 10110:

\[\varepsilon, 1, 10, 11, 100, 101, 110, 111, 1010, 1011, 1110, 10110 \]

\[S_2(\text{val}_2(10110)) = S_2(22) = \# \text{ nodes} = 12 \]

Internal structure: subtree of root 11 \(\cong \) subtree of root 101

Consequence: Study trees to deduce properties of \(S_\beta \)
Define, study, use a new tree structure called *tries of scattered subwords.*

\leadsto easily count/enumerate scattered subwords

Example: in base 2

![Tree Diagram](image)

Scattered subwords of 10110:

$\varepsilon, 1, 10, 11, 100, 101, 110, 111, 1010, 1011, 1110, 10110$

$S_2(\text{val}_2(10110)) = S_2(22) = \# \text{ nodes} = 12$

Internal structure: subtree of root 11 \cong subtree of root 101

Consequence: Study trees to deduce properties of S_β
Define, study, use a new tree structure called *tries of scattered subwords.*

\[\Rightarrow \text{easily count/enumerate scattered subwords} \]

Example: in base 2

Scattered subwords of 10110:

\[\varepsilon, 1, 10, 11, 100, 101, 110, 111, 1010, 1011, 1110, 10110 \]

\[S_2(\text{val}_2(10110)) = S_2(22) = \# \text{ nodes} = 12 \]

Internal structure: subtree of root 11 \(\cong \) subtree of root 101

Consequence: Study trees to deduce properties of \(S_\beta \)
Results

Integer base case:

- The sequence \((S_b(n))_{n \geq 0}\) satisfies recurrence relations.
Results

Integer base case:

- The sequence \((S_b(n))_{n \geq 0}\) satisfies recurrence relations.
- The sequence \((S_b(n))_{n \geq 0}\) is palindromic over intervals of the form \([(b - 1)b^\ell, b^{\ell+1}]\).
Integer base case:

- The sequence \((S_b(n))_{n \geq 0}\) satisfies recurrence relations.
- The sequence \((S_b(n))_{n \geq 0}\) is palindromic over intervals of the form \([b^{\ell-1}b, b^{\ell+1}]\).
- The sequence \((S_b(n))_{n \geq 0}\) is \(b\)-regular.
Results

Integer base case:

- The sequence \((S_b(n))_{n \geq 0}\) satisfies recurrence relations.
- The sequence \((S_b(n))_{n \geq 0}\) is palindromic over intervals of the form \([(b - 1)b^\ell, b^{\ell+1}]\).
- The sequence \((S_b(n))_{n \geq 0}\) is \(b\)-regular.
- We obtain a matrix representation for the sequence \((S_b(n))_{n \geq 0}\).
Results

Integer base case:

- The sequence \((S_b(n))_{n \geq 0}\) satisfies recurrence relations.
- The sequence \((S_b(n))_{n \geq 0}\) is palindromic over intervals of the form \([(b - 1)b^\ell, b^{\ell+1}]\).
- The sequence \((S_b(n))_{n \geq 0}\) is \(b\)-regular.
- We obtain a matrix representation for the sequence \((S_b(n))_{n \geq 0}\).

Fibonacci case:

- The sequence \((S_\varphi(n))_{n \geq 0}\) satisfies recurrence relations.
Results

Integer base case:

- The sequence \((S_b(n))_{n \geq 0} \) satisfies recurrence relations.
- The sequence \((S_b(n))_{n \geq 0} \) is palindromic over intervals of the form \([(b - 1)b^\ell, b^{\ell+1}]\).
- The sequence \((S_b(n))_{n \geq 0} \) is \(b \)-regular.
- We obtain a matrix representation for the sequence \((S_b(n))_{n \geq 0} \).

Fibonacci case:

- The sequence \((S_\varphi(n))_{n \geq 0} \) satisfies recurrence relations.
- The sequence \((S_\varphi(n))_{n \geq 0} \) is Fibonacci-regular.
Results

Integer base case:

- The sequence $(S_b(n))_{n \geq 0}$ satisfies recurrence relations.
- The sequence $(S_b(n))_{n \geq 0}$ is palindromic over intervals of the form $[(b-1)b^\ell, b^\ell+1]$.
- The sequence $(S_b(n))_{n \geq 0}$ is b-regular.
- We obtain a matrix representation for the sequence $(S_b(n))_{n \geq 0}$.

Fibonacci case:

- The sequence $(S_\varphi(n))_{n \geq 0}$ satisfies recurrence relations.
- The sequence $(S_\varphi(n))_{n \geq 0}$ is Fibonacci-regular.
- We obtain a matrix representation for the sequence $(S_\varphi(n))_{n \geq 0}$.
• Connection with the Farey tree (every reduced positive rational less than 1 exactly once).

Let \(w \in 1\{0, 1\}^* \) with \(\text{val}_2(w) = 2^k + r \).

\[
\begin{array}{c}
0 & 1 & \cdots & w & S_2(r) \\
1 & & & & S_2(2^k+r)
\end{array}
\]

• The Stern–Brocot sequence \((SB(n))_{n \geq 0}\) contains the numerators and denominators in the Farey tree. Then \(S_2(n) = SB(2n + 1) \) for all \(n \geq 0 \).
Part III
Behavior of summatory functions

Example: Sum-of-digits function Sum_2 in base 2

$\text{Sum}_2(n) = \# \text{ of } 1\text{'s in } \text{rep}_2(n)$

Sum_2 is 2-regular

Summatory function A of Sum_2

$$A(n) = \sum_{j=0}^{n-1} \text{Sum}_2(j) \quad \forall n \geq 0$$

Theorem (Delange, 1975)

There exists a continuous nowhere differentiable periodic function \mathcal{G} of period 1 s.t.

$$\frac{A(n)}{n} = \frac{1}{2} \log_2 n + \mathcal{G}(\log_2 n).$$
Summatory functions of b-regular sequences
⇝ algebraic or analytic methods

New method: to tackle the behavior of the summatory function

Let $s = (s(n))_{n \geq 0}$ be a regular sequence

- Find $r = (r(n))_{n \geq 0}$ and $t = (t(n))_{n \geq 0}$ each satisfying a linear recurrence relation,
- verifying $A_s \circ r = t$.

Relevant representations of A_s in some exotic numeration system associated with t.

"Exotic" ⇝ possibly unbounded coefficients

The behavior of A_s depends on

- the dominant root of the characteristic polynomial of the linear recurrence relation defining t,
- a periodic fluctuation.

Definition: $A_\beta = (A_\beta(n))_{n \geq 0}$ is the summatory function of S_β.
Summatory functions of b-regular sequences
⇝ algebraic or analytic methods

New method: to tackle the behavior of the summatory function

$$A_s = (A_s(n))_{n \geq 0}$$

of a regular sequence $s = (s(n))_{n \geq 0}$
Summatory functions of b-regular sequences
⇝ algebraic or analytic methods

New method: to tackle the behavior of the summatory function
\[A_s = (A_s(n))_{n \geq 0} \] of a regular sequence \[s = (s(n))_{n \geq 0} \]

- Find \[r = (r(n))_{n \geq 0} \] and \[t = (t(n))_{n \geq 0} \]
 - each satisfying a linear recurrence relation,
 - verifying \[A_s \circ r = t. \]
Summatory functions of b-regular sequences
\[
\leadsto \text{algebraic or analytic methods}
\]

New method: to tackle the behavior of the summatory function
\[
A_s = (A_s(n))_{n \geq 0}
\]
of a regular sequence $s = (s(n))_{n \geq 0}$

- Find $r = (r(n))_{n \geq 0}$ and $t = (t(n))_{n \geq 0}$
 - each satisfying a linear recurrence relation,
 - verifying $A_s \circ r = t$.

- Recurrence relation for s
\[
\leadsto \text{recurrence relation for } A_s \text{ in which } t \text{ is involved.}
\]
Summatory functions of b-regular sequences
⇝ algebraic or analytic methods

New method: to tackle the behavior of the summatory function

\[A_s = (A_s(n))_{n \geq 0} \text{ of a regular sequence } s = (s(n))_{n \geq 0} \]

- Find \(r = (r(n))_{n \geq 0} \) and \(t = (t(n))_{n \geq 0} \)
 - each satisfying a linear recurrence relation,
 - verifying \(A_s \circ r = t \).

- Recurrence relation for \(s \)
 ⇝ recurrence relation for \(A_s \) in which \(t \) is involved.

- Relevant representations of \(A_s \) in some exotic numeration system associated with \(t \).
 “Exotic” ⇝ possibly unbounded coefficients
Summatory functions of b-regular sequences
⇝ algebraic or analytic methods

New method: to tackle the behavior of the summatory function
\[A_s = (A_s(n))_{n \geq 0} \]
of a regular sequence \(s = (s(n))_{n \geq 0} \)

- Find \(r = (r(n))_{n \geq 0} \) and \(t = (t(n))_{n \geq 0} \)
 - each satisfying a linear recurrence relation,
 - verifying \(A_s \circ r = t \).

- Recurrence relation for \(s \)
 ⇝ recurrence relation for \(A_s \) in which \(t \) is involved.

- Relevant representations of \(A_s \) in some exotic numeration system
 associated with \(t \).
 "Exotic" ⇝ possibly unbounded coefficients

- The behavior of \(A_s \) depends on
 - the dominant root of the characteristic polynomial of the linear
 recurrence relation defining \(t \),
 - a periodic fluctuation.
Summatory functions of b-regular sequences
⇝ algebraic or analytic methods

New method: to tackle the behavior of the summatory function

$$ A_s = (A_s(n))_{n \geq 0} \text{ of a regular sequence } s = (s(n))_{n \geq 0} $$

- Find $r = (r(n))_{n \geq 0}$ and $t = (t(n))_{n \geq 0}$
 - each satisfying a linear recurrence relation,
 - verifying $A_s \circ r = t$.

- Recurrence relation for s
 ⇝ recurrence relation for A_s in which t is involved.

- Relevant representations of A_s in some exotic numeration system associated with t.
 “Exotic” ⇝ possibly unbounded coefficients

- The behavior of A_s depends on
 - the dominant root of the characteristic polynomial of the linear recurrence relation defining t,
 - a periodic fluctuation.

Definition: $A_\beta = (A_\beta(n))_{n \geq 0}$ is the summatory function of S_β.
• The sequence \((A_b(n))_{n \geq 0}\) is \(b\)-regular.
Results in the integer base case

- The sequence \((A_b(n))_{n \geq 0}\) is \(b\)-regular.
- Matrix representation for the sequence \((A_b(n))_{n \geq 0}\).

\(\text{(2b-1)-decomposition of } A_b: \text{mixing the base } b \text{ and the base } 2b-1\)
Results in the integer base case

- The sequence \((A_b(n))_{n \geq 0}\) is \(b\)-regular.
- Matrix representation for the sequence \((A_b(n))_{n \geq 0}\).
- For all \(n \geq 0\), \(A_b\left(\begin{array}{c} b^n \\ r(n) \\ t(n) \end{array}\right) = (2b - 1)^n\).
Results in the integer base case

- The sequence \((A_b(n))_{n \geq 0}\) is \(b\)-regular.
- Matrix representation for the sequence \((A_b(n))_{n \geq 0}\).
- For all \(n \geq 0\), \(A_b(b^n) = (2b - 1)^n\).
- Recurrence relations for \(A_b\) involving \(2b - 1\).

For all \(a, a' \in \{1, \ldots, b - 1\}\) with \(a \neq a'\), all \(\ell \geq 1\) and all \(r \in \{0, \ldots, b^{\ell-1}\}\)

\[
A_b(ab^\ell + r) = (2b - 2) \cdot (2a - 1) \cdot (2b - 1)^{\ell-1} + A_b(ab^{\ell-1} + r) + A_b(r),
\]

\[
A_b(ab^\ell + ab^{\ell-1} + r) = (4ab - 2a - 2b + 2) \cdot (2b - 1)^{\ell-1} + 2A_b(ab^{\ell-1} + r) - A_b(r),
\]

\[
A_b(ab^\ell + a'b^{\ell-1} + r) = \begin{cases}
(4ab - 4a - 2b + 3) \cdot (2b - 1)^{\ell-1} + A_b(ab^{\ell-1} + r) \\
+2A_b(a'b^{\ell-1} + r) - 2A_b(r), & \text{if } a' < a; \\
(4ab - 4a - 2b + 2) \cdot (2b - 1)^{\ell-1} + A_b(ab^{\ell-1} + r) \\
+2A_b(a'b^{\ell-1} + r) - 2A_b(r), & \text{if } a' > a.
\end{cases}
\]
Results in the integer base case

- The sequence \((A_b(n))_{n \geq 0} \) is \(b \)-regular.
- Matrix representation for the sequence \((A_b(n))_{n \geq 0} \).
- For all \(n \geq 0 \), \(A_b(\begin{array}{c} b^n \\ r(n) \\ t(n) \end{array}) = (2b - 1)^n \).

- Recurrence relations for \(A_b \) involving \(2b - 1 \).

For all \(a, a' \in \{1, \ldots, b-1\} \) with \(a \neq a' \), all \(\ell \geq 1 \) and all \(r \in \{0, \ldots, b^{\ell-1}\} \)

\[
A_b(ab^\ell + r) = (2b - 2) \cdot (2a - 1) \cdot (2b - 1)^{\ell-1} + A_b(ab^\ell-1 + r) + A_b(r),
\]

\[
A_b(ab^\ell + ab^{\ell-1} + r) = (4ab - 2a - 2b + 2) \cdot (2b - 1)^{\ell-1} + 2A_b(ab^\ell-1 + r) - A_b(r),
\]

\[
A_b(ab^\ell + a'b^{\ell-1} + r) = \begin{cases}
(4ab - 4a - 2b + 3) \cdot (2b - 1)^{\ell-1} + A_b(ab^{\ell-1} + r) \\
+ 2A_b(a'b^{\ell-1} + r) - 2A_b(r), & \text{if } a' < a; \\
(4ab - 4a - 2b + 2) \cdot (2b - 1)^{\ell-1} + A_b(ab^{\ell-1} + r) \\
+ 2A_b(a'b^{\ell-1} + r) - 2A_b(r), & \text{if } a' > a.
\end{cases}
\]

- \((2b-1) \)-decomposition of \(A_b \): mixing the base \(b \) and the base \(2b-1 \) numeration systems
Illustration in base 2

\[
\begin{array}{cccc}
2^{n+1} & 2^{n+2} \\
\hline
\alpha & \\
\end{array}
\]

\[\alpha \in [0, 1) \text{ with } d_2(\alpha) = d_1 d_2 d_3 \cdots \]
\[\leadsto e_n(\alpha) = \text{val}_2(1d_1 \cdots d_n1)\]

Example: \(\alpha = \pi - 3\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(e_n(\pi - 3))</th>
<th>(3\text{dec}(A_2(e_n(\pi - 3))))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2 7</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2 2 8</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>2 6 -2 5</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>2 6 -6 6 15</td>
</tr>
<tr>
<td>5</td>
<td>73</td>
<td>2 6 -6 2 8 31</td>
</tr>
<tr>
<td>6</td>
<td>147</td>
<td>2 6 -6 2 24 -8 14</td>
</tr>
<tr>
<td>7</td>
<td>293</td>
<td>2 6 -6 2 24 -24 22 53</td>
</tr>
<tr>
<td>8</td>
<td>585</td>
<td>2 6 -6 2 24 -24 6 30 116</td>
</tr>
<tr>
<td>9</td>
<td>1169</td>
<td>2 6 -6 2 24 -24 6 30 30 131</td>
</tr>
<tr>
<td>10</td>
<td>2337</td>
<td>2 6 -6 2 24 -24 6 30 30 30 146</td>
</tr>
</tbody>
</table>

\[3\text{dec}(A_2(e_n(\alpha))) \xrightarrow{n \to +\infty} a_0(\alpha)a_1(\alpha)a_2(\alpha) \cdots\]
Step functions: \(\alpha \in [0, 1) \mapsto \phi_n(\alpha) = A_2(e_n(\alpha))/3^{\log_2(e_n(\alpha))} \)

\[
\phi_n(\alpha) = \begin{cases}
\frac{1}{3^{1+\{\log_2(e_n(\alpha))\}}} \sum_{i=0}^{n} \frac{a_i(e_n(\alpha))}{3^i} & \text{if } 0 \leq \alpha < \frac{1}{2} \\
\frac{1}{3^{\{\log_2(e_n(\alpha))\}}} \sum_{i=0}^{n+1} \frac{a_i(e_n(\alpha))}{3^i} & \text{if } \frac{1}{2} \leq \alpha < 1
\end{cases}
\]

\((\phi_n)_{n \geq 1}\) uniformly converges to the function

\[
\Phi_2(\alpha) = \begin{cases}
\frac{1}{3^{1+\log_2(\alpha+1)}} \sum_{i=0}^{+\infty} \frac{a_i(\alpha)}{3^i} & \text{if } 0 \leq \alpha < \frac{1}{2} \\
\frac{1}{3^{\log_2(\alpha+1)}} \sum_{i=0}^{+\infty} \frac{a_i(\alpha)}{3^i} & \text{if } \frac{1}{2} \leq \alpha < 1
\end{cases}
\]
• Φ_2 is continuous over $[0, 1)$ s.t. $\Phi_2(0) = 1$ and $\lim_{\alpha \to 1^-} \Phi_2(\alpha) = 1$.

• Define \mathcal{H}_2 with the help of Φ_2.

Then \mathcal{H}_2 is continuous and 1-periodic s.t. for all large enough n

$$A_2(n) = 3^{\log_2 n} \mathcal{H}_2(\log_2 n).$$
Theorem

There exists a continuous and 1-periodic function \mathcal{H}_b s.t. for all large enough n

$$A_b(n) = \sum_{j=0}^{n-1} S_b(j) = (2b - 1)^{\log_b n} \mathcal{H}_b(\log_b n).$$
Results in the Fibonacci case

Let \((B(n))_{n\geq 0}\) be defined by \(B(0) = 1\), \(B(1) = 3\), \(B(2) = 6\), and
\(B(n + 3) = 2B(n + 2) + B(n + 1) - B(n)\) for all \(n \geq 0\).

- For all \(n \geq 0\), \(A_\phi(F(n) - 1) = B(n)\).

- Recurrence relations for \(A_\phi\) involving \(B\).

If \(0 \leq r < F(\ell - 2)\), then

\[A_\phi(F(\ell) + r) = B(\ell) - B(\ell - 1) + A_\phi(F(\ell - 1) + r) + A_\phi(r). \]

If \(F(\ell - 2) \leq r < F(\ell - 1)\), then

\[A_\phi(F(\ell) + r) = 2B(\ell) - B(\ell - 1) - B(\ell - 2) + 2A_\phi(r). \]

- \(B\)-decomposition of \(A_\phi\): mixing the Fibonacci numeration system and the numeration system based on \(B\).
Theorem

Let λ be the dominant root of the characteristic polynomial $P_B(X) = X^3 - 2X^2 - X + 1$ of B.
Let c be a constant s.t. $\lim_{n \to +\infty} B(n)/\lambda^n = c$.

There exists a continuous and 1-periodic function G s.t., for all large enough n,

$$A_\varphi(n) = \sum_{j=0}^{n} S_\varphi(j) = c \lambda^{\log_F n} G(\log_F n) + o(\lambda^{\lfloor \log_F n \rfloor}).$$

Remark: There is an error term, but the method allows us to deal with generalized regular sequences.
Summary

Part I: Pascal triangle
- Generalization to Parry numeration systems
- Description of the limit set \mathcal{L}^β (segments, maps c and h)
- Works for $r \mod p$ (p prime)

Part II: Sequences counting scattered subwords
- b-regularity of S_b, Fibonacci-regularity of S_φ
- Method using tries of scattered subwords
- Matrix representations
- In base 2: link with the Farey tree

Part III: Summatory functions
- Asymptotics for A_b and A_φ
- Method mixing numeration systems (exotic decompositions)
Part I: Generalized Pascal triangles

- Extension to other numeration systems/languages (conditions)
- Other colorings (generalizations of Lucas’ theorem)
- Properties of L^β: Hausdorff dimension, Minkowski dimension, Hölder exponent, Lebesgue measure, etc.
- Iterated functions systems (IFS)
- Comparison/Classification of limit sets

Part II: Regularity of sequences counting scattered subwords

- Extension to other numeration systems/languages (conditions)
- b-regularity of $(S_\varphi(n))_{n \geq 0}$ (Cobham-like theorem)
- Extension of the relation between $(S_2(n))_{n \geq 0}$ and the Farey tree

Part III: Asymptotics of summatory functions

- Extension to other numeration systems/languages (conditions)
- Regularity of $(A_\beta(n))_{n \geq 0}$
- Differentiability of periodic fluctuations
- Comparison/Classification of periodic fluctuations

