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Abstract

The Pascal triangle and the corres-

ponding Sierpiński fractal are fairly

well-studied mathematical objects,

which both exhibit connections with

many different scientific areas. The

first is made of binomial coefficients

of integers that notably appear in com-

binatorics to tackle counting problems

(for instance, they provide the num-

ber of possible ways to choose a given

amount of elements from a set of ele-

ments). There exist multiple general-

izations of those binomial coefficients.

In this text, we focus on binomial co-

efficients of words, which count scat-

tered subwords.

The red thread of this thesis is

precisely the combination of the Pas-

cal triangle and binomial coefficients

of words.

The first part is dedicated to ex-

tensions of the Pascal triangle to var-

ious sets of words (languages) asso-

ciated with different numeration sys-

tems. We transport the existing link

between the Pascal triangle and the

Sierpiński gasket to this wider set-

ting.

Le triangle de Pascal et la fractale

de Sierpiński correspondante sont des

objets mathématiques relativement

bien étudiés et ont des liens avec de

nombreuses disciplines scientifiques.

Le premier est composé de coefficients

binomiaux d’entiers qui apparaissent

notamment en combinatoire pour s’at-

taquer à des problèmes de dénombre-

ment (par exemple, ils fournissent le

nombre de façons possibles de choisir

un certain nombre d’éléments parmi

un ensemble d’éléments). Il existe de

multiples généralisations de ces coef-

ficients binomiaux. Dans ce texte,

nous nous concentrons sur les coeffi-

cients binomiaux de mots qui, quant

à eux, comptent des sous-mots dits

éclatés.

Le fil conducteur de cette thèse

est précisément la combinaison du tri-

angle de Pascal et des coefficients bi-

nomiaux de mots.

La première partie est dédiée à

des extensions du triangle de Pascal

à divers ensembles de mots (langages)

associés à différents systèmes de

numération. Nous transportons le lien



The second part is concerned with

particular sequences extracted from

generalized Pascal triangles. They

count non-zeroes binomial coefficients

on each row of a given Pascal-like tri-

angle. We study their regularity and

their automaticity with respect to dif-

ferent numeration systems.

In the third and last part, we es-

tablish the asymptotics of the sum-

matory functions of the sequences con-

sidered previously. The most impor-

tant feature of this part might not

necessarily be the result itself, but

the underlying new method to achieve

it.

existant entre les triangles de Pascal

et de Sierpiński à ces contextes plus

généraux.

La seconde partie est consacrée à

des suites particulières extraites des

triangles de Pascal généralisés. Celles-

ci comptent le nombre de coefficients

strictement positifs sur chaque ligne

d’un triangle de Pascal généralisé

donné. Nous étudions leur régularité

et leur automaticité par rapport à

différents systèmes de numération.

Dans la troisième et dernière par-

tie, nous établissons le comportement

asymptotique des fonctions somma-

toires associées aux suites considérées

précédemment. Ici, l’aspect le plus

intéressant n’est pas nécessairement

le résultat en lui-même, mais plutôt

la nouvelle méthode sous-jacente pour

y parvenir.
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L’apport de Julien Leroy à ma formation durant ces quatre années est
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Mathonet et Jean–Éric Pin de me faire l’honneur d’être membres de mon

jury de thèse.
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Introduction

This doctoral dissertation is a contribution to combinatorics on words, which

is a relatively new branch of mathematics and theoretical computer sci-

ence [BP07], since it dates back to the beginning of the 20th century with the

work of A. Thue [Thu06]. Nevertheless, the research problems considered in

this text often cross the border of other mathematical fields such as fractal

theory, ergodic theory, number theory, and automata theory.

The starting point of this four-year work is the relation between the

Pascal triangle P, which is made of binomial coefficients of integers, and

the corresponding Sierpiński gasket. The former is named after the French

mathematician B. Pascal [Pas65] who lived during the 17th century, though

it appeared centuries before in different parts of the world [Coo49]. On its

side, the Sierpiński gasket takes its name from the Polish mathematician W.

Sierpiński who lived during the 20th century [Ste95]. Those two mathemat-

ical objects have been extensively studied through the ages and worldwide,

and the related literature is huge, to say the least. They have various connec-

tions with the topics of this thesis. They notably exhibit self-similarity, dy-

namical and fractal features [vHPS92, KL18, Ste95] and they can be obtained

via iterated function systems (IFS’s) [vHPS92, Ste95]. They can be studied

with automata-theoretic techniques [AB97, AB11] or be expressed using first

order formulas in an extension of the Presburger arithmetic [CLR15]. Finally,

they are linked to simple arithmetic, especially through the celebrated bino-

mial theorem and more generally the multinomial theorem, to enumerative

combinatorics [Sta97, BFST18] in order to tackle counting problems, and

also to p-adic topology and p-adic analysis [BCP89, PS14].

Let us briefly explain the link between the Pascal triangle and the Sierpiń-

ski gasket. For all n ∈ N, the first 2n rows and columns (
(
i
j

)
)0≤i,j<2n of the

Pascal triangle can be represented as a grid, at the intersection of N2 and

the square region [0, 2n]2. In the plane whose x-axis (resp., y-axis) points

iii
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rightwards (resp., downwards), each binomial coefficient
(
i
j

)
corresponds to a

unit square whose upper-left corner has coordinates (j, i). For the case n = 3,

the situation is depicted in the figure below, on the left. If we consider the

sequence (
(
i
j

)
)0≤i,j<2n modulo 2, we can color each unit square in black or

white depending on the parity of the corresponding binomial coefficient. We

thus obtain a region in N2 made of black and white squares. Below, the

figure on the right illustrates what happens for n = 3.
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If we normalize this region by a homothety of ratio 1/2n, we obtain a sequence

of sets in [0, 1]2. It is a folklore fact that it converges, with respect to the

Hausdorff distance, to the Sierpiński gasket (see below) when n tends to

infinity.

In a similar fashion, when the sequence (
(
i
j

)
)0≤i,j<pn is considered modulo ps

where p is a prime number and s is a positive integer, then it also converges,

with respect to the Hausdorff distance, to some limit object [vHPS92]. More

precisely, each unit square is colored in white or black depending on whether

the corresponding binomial coefficient is congruent to 0 modulo ps or not.
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For instance, the limit object obtained for p = 2 and s = 2 is depicted below

on the left, and the one for p = 2 and s = 3 is drawn on the right. Also note

that p = 2 and s = 1 yield the Sierpiński gasket. In [vHPS92], one can find

several geometrical and dynamical properties of the studied limit sets such

as their Hausdorff dimension.

Several generalizations and variations of the Pascal triangle do already

exist and for instance, they are studied with arithmetical and combinatorial

viewpoints [BNS16, BS14, DDGS18, Ném18, NP16], dynamical ones [JdlRV05,

vHPS92] or analytical ones [HKP18].

In this text, we define new extensions [LRS16, LRS17a, LRS17b, LRS18,

Sti19] by means of binomial coefficients of words, which expand the classical

notion of binomial coefficients of integers as explained below.

Let A be a finite alphabet, i.e., a finite set of characters or letters. A

word over A is simply a sequence of letters belonging to A, which can be

either finite or infinite. The binomial coefficient
(
u
v

)
of two finite words u

and v over A is the number of subsequences of u that exactly match v.

Observe that if a is a letter, then the binomial coefficient of an and ak,

which respectively represent n and k letters a glued together, is the number

of ways to select k letters a among n available letters a, which is exactly
(
n
k

)
.

Further information on binomial coefficients of words can be found in [Lot97,

Chapter 6]. There is a vast literature on the subject with applications in

formal language theory [Eil76, FK18, KKS15, KNS16], p-adic topology and

p-adic analysis [BCP89, PS14], combinatorics on words [DE04, RRS15], and

model-checking and verification [ABRS05].

This thesis is centered at the Pascal triangle, binomial coefficients, nu-

meration systems and related questions, and is articulated as follows.

The first chapter presents the necessary background to grasp the sub-
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stance of this text. We first define basics in combinatorics on words, which

are taken from [Lot97, Lot02, Rig14a], and we summarily discuss numera-

tion systems based on [BR10, Fra85, Lot02, Rig14b]. In particular, we define

numeration systems associated with Parry numbers, i.e., real numbers β > 1

for which the β-expansion of 1 is ultimately periodic (the precise definition

is given later on). Then we devote an entire section to the key notion of

binomial coefficients of words. Using them, we define a new analogue PL of

the Pascal triangle based on any genealogically ordered language L. There-

fore, it is natural to consider the case of languages occurring in the theory

of numeration systems. As already mentioned, the Pascal triangle P can be

seen as an infinite table whose rows and columns are indexed by non-negative

integers. This is also the case for its extended version PL. In the classical

version, the sequence (S(n))n≥0, which counts the number of positive inte-

gers on each row of P, satisfies S(n) = n + 1 for all n ≥ 0. However, in the

case of PL, the analogous sequence SL = (SL(n))n≥0, which counts the num-

ber of positive integers on each row of PL, has a much more complicated and

irregular behavior, reflecting some combinatorial properties of the language

L. As we will see further on, one of our goals is to study the properties and

the core structure of the sequences SL for some given languages L. There-

fore, we give a short introduction to automatic, synchronized and regular

sequences [AS92, AS03a, AST00, BR11, CM01]. We finish up the first chap-

ter with notions related to metrics and more precisely, the Hausdorff metric,

which turn out to be necessary in the second chapter of this thesis.

The second chapter aims at extending the bond between the Pascal tri-

angle and the Sierpiński gasket, which was explained in the beginning of this

introduction. The so-called Parry numeration systems, based on a Parry

number β > 1, form a well-known and widely studied class of numeration

systems containing the integer base numeration systems and the Zeckendorf

numeration system based on Fibonacci numbers. Within this rather gen-

eral setting, we study the corresponding Sierpiński gasket. The latter limit

object is precisely described in terms of a combinatorial condition on words

belonging to the considered numeration language and two maps, one being

a homethety of ratio 1/β as in the classical case of the Pascal triangle and

the other mapping (x, y) to (x, βy), i.e., multiplying the second component

by β. We show that the Sierpiński-like gasket is the closure of a union of

segments whose endpoints are well understood thanks to our combinatorial

condition. To simplify the discussion at first, we consider the language of
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binary expansions of integers, namely words made of 0’s and 1’s that begin

with 1. Some of our reasonings make use of Lucas’ theorem, and we can

therefore handle the case of a prime number of colors. The results presented

in this chapter are published in [LRS16, Sti19]. We close it with some open

questions and problems.

In the third chapter, we study the regularity of the sequences SL, which

were roughly defined above. If we want to compress the data found in the

generalized Pascal triangle PL, the sequence SL codes the amount of infor-

mation we have on each of its row. Below, the figure on the left displays the

positive values in the first rows of the generalized Pascal triangle associated

with the binary language, i.e., a black (resp., white) square corresponds to

a pair of binary words having a positive (resp., zero) binomial coefficient.

In the middle, one can find its compressed version, and on the right, the

corresponding sequence S2 = (S2(n))n≥0 is plotted.

In fact, the regularity we look at highly depends on the numeration system

that is considered, i.e., the definition of the regularity constantly involves

the specific numeration system whose numeration language is precisely L.

In rough words, if U = (U(n))n≥0 is a strictly increasing sequence of in-

tegers starting with 1, then the U -kernel of a sequence s = (s(n))n≥0 of

integers is the set of all subsequences of s of the form (s(iq(n)))n≥0, where

iq : N → N selects all the integers whose representations in the numera-

tion system based on (U(n))n≥0 end with the suffix q. Then a sequence

(s(n))n≥0 is said to be U -regular if its U -kernel is a finitely-generated Z-

module [AST00, RM02, Sha88] (the precise definitions are given in the first

and third chapters). As in the second chapter, for pedagogical reasons, we

first handle base-2 expansions [LRS17b] (in this case, U(n) = 2n) and the

corresponding sequence S2 = (S2(n))n≥0. We present a new method based

on trees to show that S2 is 2-regular and also related to the Stern–Brocot
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sequence, which is a typical example of a 2-regular sequence. The defini-

tion of these trees allows us to easily enumerate, and thus count, all sub-

sequences occurring in a given word. Indeed, it is a challenging problem

to determine what are the “best” data structures for reasoning with sub-

sequences [BDS16, KNS16]. Even if we are not aware of any relations to

extensions of the Stern–Brocot sequence, our general method allows us to

tackle the case of all integer base numeration systems [LRS18], and more

exotically, the Zeckendorf numeration system [LRS17b] (up to our knowl-

edge, our sequences are not related to already known regular sequences, so

the regularity property needs to be properly proved). It is worth noticing

that regular sequences in the Fibonacci framework are not so easy to find in

the literature, which endows a certain bonus to this work. As a matter of

fact, many questions remain unsolved in the theory of U -regular sequences,

e.g., a Cobham-like theorem, and it is therefore interesting to provide some

new natural instances of this type of sequences. Compared to the previous

chapter, replacing the Zeckendorf numeration system with an arbitrary Parry

numeration system is not obvious. For instance, the Tribonacci numeration

system, which naturally generalizes the Zeckendorf numeration system, is

not yet fully understood. This observation permits us to end the chapter

with some open questions and problems.

In the fourth chapter, we establish the asymptotic behaviors of the sum-

matory functions AL = (AL(n))n≥0 of the sequences SL for different lan-

guages L. Otherwise stated, AL(n) is the total amount of information found

on the first n rows in the generalized Pascal triangle PL. As in the previous

chapters, we first take care of the base 2 case [LRS17a], which helps us to

investigate the general integer case [LRS18]. As already mentioned above,

a nice property of the sequence Sb = (Sb(n))n≥0 associated with the base-

b numeration system is its b-regularity. Traditional methods to deal with

summatory functions of b-regular sequences are on an algebraic or analytic

side. They provide general asymptotic formulas usually involving an error

term. Our contribution to the study of asymptotic behaviors is to develop a

new systematic method to obtain such asymptotic estimates. Our method is

based on the construction of a convenient and exotic numeration system, as

roughly explained below. In particular, for integer base numeration systems,

it gives exact formulas with no error term. The idea is more or less to find

two sequences (R(n))n≥0 and (T (n))n≥0, each satisfying a linear recurrence

relation, such that AL(R(n)) = T (n) for all n ≥ 0. Then the asymptotic be-
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havior of AL depends on the dominant root of the characteristic polynomial

of the linear recurrence relation that defines (T (n))n≥0. In the context of

the theory of numeration systems, one interesting feature of our method is

to elaborate non-standard representations of AL(n) in terms of the sequence

(T (n))n≥0. In the aftermath of this original technique, we treat the case of

the Zeckendorf numeration system and the Fibonacci numbers [LRS17a]. In

this setting, we obtain a formula with an error term for the corresponding

summatory function. As in the third chapter, we naturally open the door to

applications to other numeration systems and related problems, so we again

conclude with some open questions.

As a final comment to this introduction, I would like to mention that the

present work is concerned with the sequences A000032, A000045, A000788,

A001590, A002487, A004601, A006356, A007306, A014417, A282714, A282715,

A282716, A282717, A282718, A282719, A282720, A282728, A282729, A282730,

A282731, A282732, A284441 and A284442 in [Slo]. In fact, some of the previ-

ous sequences were created from scratch in [Slo] after our work was published;

we are grateful to N. J. A. Sloane for uploading them in his encyclopedia.

To gather data and formulate conjectures prior to this work, mathematical

computations were done using the Mathematica and SageMath programs.

For the interested reader, I keep notebooks at their disposal.

During these four years of doctoral studies, I was also able to consider

other problems in combinatorics on words giving me the opportunity to

write four more papers: Nyldon words [CPS18], palindromic Ziv-Lempel

and Crochemore factorizations [JMnRS], Cobham’s theorem and automatic-

ity [MRSS18], and formal inverses of sequences [RS18]. For this disserta-

tion, I chose to present the content of the papers [LRS16, LRS17b, LRS17a,

LRS18, Sti19] to create a coherent whole.





Chapter 1

Preliminaries

This first chapter gives the necessary background to understand the content

of this text. In Section 1.2, we start with basic definitions from combina-

torics on words. The interested reader will find more information in [Lot97,

Lot02, Rig14a]. After, we briefly discuss numeration systems in Section 1.3.

This summary is built on [BR10, Chapter 2], [Fra85], [Lot02, Chapter 7]

and [Rig14b]. Then Section 1.4 is devoted to the core notion of binomial co-

efficients of words; see [Lot97, Chapter 6] for more details. Using those

binomial coefficients, we are able to define analogues of the well-known

Pascal triangle in Section 1.5. Emerging from them, we also define se-

quences of interest in Section 1.6. In Section 1.7, we write a short intro-

duction to automatic, synchronized and regular sequences based on different

texts [AS92, AS03a, AST00, BR11, CM01]. We finish up with notions related

to metrics in Section 1.8, which turn out to be useful in Chapter 2.
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1.1 Basic Notation

In this text, we let N (resp., N0) be the set of non-negative (resp., positive)

integers. Similarly, Z is the set of all integers, while Z0 contains all of them

but 0. We let R (resp., C) denote the set of all real (resp., complex) numbers.

For any K ∈ {N,Z,R,C}, any x ∈ K, and any � ∈ {<,≤, >,≥}, we let K�x
denote the set {y ∈ K | y � x}. If K ∈ {N,Z,R,C}, we let K[X] denote the

set of polynomials of indeterminate X and with coefficients in K.

We let d·e denote the ceiling function defined by dxe = inf{z ∈ Z | z ≥ x},
and b·c stands for the floor function defined by bxc = sup{z ∈ Z | z ≤ x} for

all x ∈ R. The fractional function {·} is defined for all x ∈ R by {x} = x−bxc
[GKP94]. For a real number x, dxe (resp., bxc; resp., {x}) is also called the

ceiling (resp., floor ; resp., fractional) part of x.

1.2 The Flexibility of CoW Tails in Curves

For more on combinatorics on words1, we refer the reader to [Lot97, Lot02,

Rig14a].

Definition 1.1. An alphabet is a non-empty finite set, whose elements are

called letters or characters. In our context, the alphabets are often finite

subsets of N. It is worth noticing that infinite alphabets do exist, but we will

not consider them unless otherwise specified.

A word over an alphabet A is a finite or infinite sequence of letters in A.

We let ε denote the empty word , i.e., the empty sequence. The length of a

finite word w, denoted by |w|, is the number of letters contained in w. If w

is a non-empty finite (resp., infinite) word, then we let wn denote its letters

for all n ∈ {0, 1, . . . , |w| − 1} (resp., n ∈ N). In the finite case, we write

w = w|w|−1w|w|−2 · · ·w0 or w = w0w1 · · ·w|w|−1 depending on the context. If

w is a word, we let wR denote its reversal or mirror obtained by writing w

from right to left, instead of from left to right.

The set of finite (resp., infinite) words over an alphabet A is denoted by

A∗ (resp., Aω or AN). Note that A∗ is countable whereas Aω and AN are

uncountable. For a unary alphabet {a}, we usually write a∗ instead of {a}∗.
1The title of this section is inspired by one of the sentences that my math teacher in

third grade of high school used to repeat a lot. He was incredibly funny and was one of

the first to arouse my mathematical curiosity.
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A language over an alphabet A is a subset of A∗.

Example 1.2. Let A = {0, 1} be the alphabet with the two letters 0 and 1.

Consider the finite word u = 101001 over A. The length of u is |u| = 6, and,

we write u = u0u1u2u3u4u5 with u0 = u2 = u5 = 1 and u1 = u3 = u4 = 0.

We also have uR = 100101. The language of words over A starting with 1 is

written 1{0, 1}∗.

Definition 1.3. If u and v are two finite words over an alphabet A, then

the concatenation of u and v, denoted by u · v (or simply uv if there is no

need to emphasize), is the finite word w of length |u|+ |v| defined by

wn =

{
un, if n ∈ {0, 1, . . . , |u| − 1};
vn−|u|, if n ∈ {|u|, |u|+ 1, . . . , |u|+ |v| − 1}.

In a similar way, we can concatenate a finite word u with an infinite word v.

For a finite word w over an alphabet A and a non-negative integer n,

we let wn denote the concatenation of n copies of w, which is defined by

induction by w0 = ε and wn+1 = wnw for all n ∈ N. We say that wn is the

nth power of w. In the same way, we let wω denote the concatenation of

infinitely many copies of w, which is defined by

(wω)n·|w|(w
ω)n·|w|+1 · · · (wω)(n+1)·|w|−1 = w

for all n ∈ N.

Similarly, we define fractional powers of words. Let w = w0w1 · · ·w|w|−1

be a finite word over A. Then its fractional power of exponent p/|w| is

the word wp/|w| = w`w0w1 · · ·wq−1 where ` and q satisfy p = `|w| + q with

0 < q ≤ |w|.
An infinite word w ∈ Aω is said to be ultimately periodic if there exist

finite words u, v ∈ A∗ such that w = uvω.

Example 1.4. Over the classical Latin alphabet, the concatenation of the

words humming and bird is the word hummingbird. Over the binary al-

phabet {0, 1}, the concatenation of the words 101 and 001 gives the word

101001 from the previous example.

Definition 1.5. Let L and M be two languages over the alphabet A. The

concatenation of L and M is the language LM = {uv | u ∈ L, v ∈ M}.
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For all n ∈ N, we let Ln denote the concatenation of n copies of L, which is

defined by L0 = {ε}, and for all n ∈ N0,

Ln = {u(1) · · ·u(n) | u(i) ∈ L for all i ∈ {1, 2, . . . , n}}.

For all n ∈ N, we define L≤n =
⋃n
i=0 L

i. The Kleene star of L is the language

L∗ =
⋃
n≥0 L

n. For a language L = {w} containing only one element w, we

usually write w∗ instead of {w}∗.
If L ⊂ A∗ is a language and u ∈ A∗ is a finite word, we let u−1L (resp.,

Lu−1) denote the set of words {v ∈ A∗ | uv ∈ L} (resp., {v ∈ A∗ | vu ∈ L}),
which contains the words over A that can be put after (resp., before) u to

build words in L.

In the following definition, we want to emphasize the distinction we make

between the terms “factor”, or “subword”, and “scattered subword”.

Definition 1.6. Let w be a word over an alphabet A. A factor or subword

of w is a finite word u such that there exist x ∈ A∗ and y ∈ A∗ ∪ Aω
satisfying w = xuy. More generally, a scattered subword of w is a subsequence

of w whose indices are not necessarily consecutive. In this case, the idea is

to delete letters in w to obtain a scattered subword. Thus, a factor of w is a

scattered subword of w whose indices are consecutive.

A prefix (resp., suffix ) of w is a word u (resp., v) such that there exists

v ∈ A∗ ∪ Aω (resp., u ∈ A∗) verifying w = uv. A prefix or a suffix of w is

strict if it is not equal to w.

Example 1.7. Let u = 101001 = u0u1 · · ·u5 ∈ {0, 1}∗. Then 0100 is a factor

of u corresponding to the subsequence (1, 2, 3, 4), while 111 is a scattered

subword of u corresponding to the subsequence (0, 2, 5), but not a factor of

u. Moreover, 101 (resp., 001) is a prefix (resp., suffix) of u.

If an alphabet A is endowed with a total order, then one can extend this

order to A∗ or to A∗ ∪Aω. In the following, we define two particular orders

on words.

Definition 1.8. Let (A,<) be a totally ordered alphabet. The order < on A

extends to an order on A∗ ∪Aω, called the lexicographical order, as follows.

If u and v are two finite words over A, then u is said to be lexicographically
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less than v, and we write u <lex v, either if u is a strict prefix of v, or if there

exist p, s, t ∈ A∗, and a, b ∈ A such that u = pas, v = pbt, and a < b.

Similarly, if u and v are two infinite words over A, then u is said to

be lexicographically less than v, and we also write u <lex v, if there exist

p ∈ A∗, s, t ∈ Aω, and a, b ∈ A such that u = pas, v = pbt, and a < b.

This definition extends to A∗ ∪Aω if every finite word z ∈ A∗ is replaced by

z♠ω ∈ (A∪{♠})ω, where the symbol ♠ does not belong to A and is assumed

to verify ♠ < a for all a ∈ A. Note that the first and the second definitions

coincide on finite words.

We write u ≤lex v for two words u and v satisfying either u <lex v

or u = v.

Note that the lexicographical order is commonly used in any language

dictionary.

Definition 1.9. Let (A,<) be a totally ordered alphabet. The order < on A

extends to an order on A∗, called the genealogical order, as follows. If u and

v are two finite words over A, then u is said to be genealogically less than v,

and we write u <gen v, if they satisfy either |u| = |v| and u <lex v, or |u| < |v|.
We write u ≤gen v for two finite words u and v satisfying either u <gen v

or u = v.

In the literature some authors call radix order what we call genealogical

order.

Example 1.10. Consider the alphabet {0, 1} totally ordered by 0 < 1. We

have 0011 <lex 010 <lex 0100 but 010 <gen 0011 <gen 0100.

We end this section by the concept of convergence of sequences of words.

Definition 1.11. Let x and y be two infinite words over the alphabet A. We

let Λ(x, y) denote the longest common prefix of x and y. Note that |Λ(x, y)|
is the smallest index where the two words x and y differ, i.e.,

|Λ(x, y)| = inf{i ∈ N | xi 6= yi}.

We define the map

d′ : Aω ×Aω → R≥0, (x, y) 7→ d′(x, y) = 2−|Λ(x,y)|.
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We also set d′(x, x) = 0 for all x ∈ Aω. It is not difficult to show that d′ is

an ultrametric distance.

A sequence (zn)n≥0 of infinite words over the alphabet A converges to

the infinite word x ∈ Aω if d′(zn, x) tends to 0 whenever n tends to +∞.

Similarly, we define the convergence of sequences of finite words. If the

symbol ♠ does not belong to the alphabet A, then the sets A∗ and (A∪{♠})ω
are in bijection via the map u ∈ A∗ 7→ u♠ω ∈ (A ∪ {♠})ω. We say that a

sequence (zn)n≥0 of finite words over A converges to the infinite word x ∈ Aω
if the sequence (zn♠ω)n≥0 of infinite words converges to x.

Example 1.12. The sequence ((101)n2ω)n≥0 of infinite words converges to

(101)ω. The sequence (10n)n≥0 of finite words converges to 10ω.

Let us build a word that is the limit of a sequence of finite words and

that is not periodic.

Definition 1.13. Let A,B be two alphabets. A morphism f : A∗ → B∗ is

a map satisfying f(uv) = f(u)f(v) for all words u, v ∈ A∗. In particular, we

get f(ε) = ε, and f is completely determined by the images of the letters in

the alphabet A.

Example 1.14. Consider the morphism

τ : {0, 1}∗ → {0, 1}∗, 0 7→ 01, 1 7→ 10.

The first few iterations of τ on 0 are

τ(0) = 01,

τ2(0) = 0110,

τ3(0) = 01101001,

τ4(0) = 0110100110010110.

Since |τ(0)| = |τ(1)| = 2, we have |τn(0)| = 2n for all n ≥ 0. It is not difficult

to show that τn(0) is a proper prefix of τn+1(0) for all n ≥ 0. Consequently,

the sequence (τn(0))n≥0 of finite words converges to the infinite word

t = lim
n→+∞

τn(0) = 01101001100101101001011001101001100101100110 · · · ,

which is called the Thue–Morse word or Thue–Morse sequence [Mor21, Thu12].

It is known that this word is not periodic (see, for instance, [AS99]).
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1.3 Numeration Systems

This section concerns various numeration systems, namely positional, real

base, linear, Parry, Bertrand and Perron numeration systems. At this stage,

we do not wish to go into deep details, so we refer the interested reader

to [BR10, Chapter 2], [Lot02, Chapter 7] or [Fra85, Rig14b]. With simple

words, a numeration system is a way to represent numbers with the use of

digits, or letters in N. A common property that the previous numeration

systems all share is that the digits belong to finite alphabets. It is worth

noticing that numeration systems with infinite alphabet do also exist, e.g.,

the factorial numeration system.

We start this section by defining positional numeration systems. As we

will see, they include the daily used decimal numeral system.

Definition 1.15. A positional numeration system is given by a strictly in-

creasing sequence U = (U(n))n≥0 of integers such that we have U(0) = 1

and CU = sup{dU(n + 1)/U(n)e | n ∈ N} is finite. If n is a positive inte-

ger, we let repU (n) denote its greedy U -expansion, which is the unique finite

word w = w|w|−1w|w|−2 · · ·w0 over the alphabet AU = {0, 1, . . . , CU − 1} not

beginning with 0 and satisfying

n =

|w|−1∑
i=0

wi U(i) and

t∑
i=0

wi U(i) < U(t+ 1) for all t ∈ {0, 1, . . . , |w| − 1}.

Moreover, we set repU (0) = ε. When the context is clear, the greedy U -

expansion is simply called U -expansion. The elements of AU are called the

digits. The set LU = repU (N) of all U -expansions is referred to as the

numeration language. If w = w|w|−1w|w|−2 · · ·w0 is a finite word over some

alphabet made of integers, then we let valU (w) denote its U -numerical value,

which is given by

valU (w) =

|w|−1∑
i=0

wi U(i).

If valU (w) = n, we say that the word w is a U -representation of n. In this

case, observe that w is not necessarily the greedy U -expansion of n.

The next proposition shows that the genealogical order coincides with

the classical order in N.
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Proposition 1.16. Let m and n be two non-negative integers. Then m < n

if and only if repU (m) <gen repU (n).

The following two examples are very important. The notation they in-

troduce will be used throughout the text. Note that, if there is no need to

emphasize, we usually make no distinction between the symbols 0, 1, 2, 3, . . .

and the integers they represent.

Example 1.17. Let b ≥ 2 be an integer. The integer base-b numeration

system is the positional numeration system built on the sequence

Ub = (bn)n≥0.

In this case, the alphabet is Ab = AUb = {0, 1, . . . , b−1}, and the numeration

language is

Lb = LUb = repUb(N) = {1, 2, . . . , b− 1}{0, 1, . . . , b− 1}∗ ∪ {ε}.

Observe that, if leading zeroes were allowed, then different words could rep-

resent the same integer. Within this particular numeration system, the

(greedy) Ub-expansion is also called base-b expansion. For the sake of sim-

plicity, we also set repb = repUb and valb = valUb .

When b = 10, we find back the common base-10 numeration system that

is used to represent numbers in everyday life. As another example, the case

b = 2 is often used in computer science.

Example 1.18. Consider the sequence F = (F (n))n≥0 = (1, 2, 3, 5, 8, 13, . . .)

of Fibonacci numbers (A000045 in [Slo]) defined by

F (0) = 1, F (1) = 2, and F (n+ 2) = F (n+ 1) + F (n) for all n ∈ N.

The Fibonacci numeration system, also called the Zeckendorf numeration

system, is the positional numeration system built on this sequence F . It

was proved in [Zec72] that we have AF = {0, 1}, and that the set of the

greedy F -expansions of non-negative integers, i.e., the numeration language,

is the set

LF = repF (N) = 1{0, 01}∗ ∪ {ε}
of the words over {0, 1} not containing the factor 11. The sequence A014417

in [Slo] gives the words in LF . For instance, we have repF (15) = 100010 and

valF (101001) = 13 + 5 + 1 = 19.
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In the last part of this section, we introduce the setting of the particular

numeration systems that are used later in this text: the Parry–Bertrand

numeration systems. First of all, we recall several definitions and results

about representations of real numbers.

Definition 1.19. Let β ∈ R>1 and let Aβ = {0, 1, . . . , dβe − 1}. Every real

number x ∈ [0, 1) can be written as a series

x =

+∞∑
j=1

cjβ
−j ,

where cj ∈ Aβ for all j ≥ 1. The infinite word c1c2 · · · is called a β-

representation or a representation in (the real) base β of x. Among all the

β-representations of x, we define the β-expansion dβ(x) of x obtained in a

greedy way, i.e., for all j ≥ 1, we have cjβ
−j + cj+1β

−j−1 + · · · < β−j+1.

Also note that, if a representation ends with infinitely many zeroes, then it

is sometimes convenient to omit the trailing zeroes, and the representation

is said to be finite.

We also make use of the following convention: if w = wn · · ·w0 is a finite

word (resp., w = w1w2 · · · is an infinite word) over Aβ, the notation 0.w has

to be understood as the real number

n∑
j=0

wjβ
j−n−1 (resp.,

+∞∑
j=1

wjβ
−j),

which actually corresponds to the value of the word w in base β.

In an analogous way, the β-expansion dβ(1) of 1 is the following infinite

word over Aβ

dβ(1) =

{
(β − 1)ω, if β ∈ N;

(dβe − 1) dβ

(
1− dβe−1

β

)
, otherwise.

In other words, if β is not an integer, the first digit of the β-expansion

of 1 is dβe − 1, and the other digits are derived from the β-expansion of

1− (dβe − 1)/β.

Let dβ(1) = (tn)n≥1 be the β-expansion of 1. Observe that t1 = dβe − 1.

The quasi-greedy β-expansion d∗β(1) of 1 is an infinite word defined as follows.

If dβ(1) = t1 · · · tm is finite, i.e., tm 6= 0 and tj = 0 for all j > m, then

d∗β(1) = (t1 · · · tm−1(tm − 1))ω. If dβ(1) is infinite, then d∗β(1) = dβ(1).
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This way of representing the real numbers in [0, 1] is called the numeration

system in (real) base β.

As in Proposition 1.16, the order between real numbers is given by the

lexicographic order between their greedy β-expansions.

Proposition 1.20. Let x and y be two real numbers in [0, 1). Then x < y

if and only if dβ(x) <lex dβ(y).

Example 1.21. Let ϕ = 1+
√

5
2 be the golden ratio. The greedy ϕ-expansion

of x = 3 −
√

5 is equal to 10010ω for we have x = 1/ϕ + 1/ϕ4, but other

ϕ-representations of x are given by 01110ω, or 100(01)ω. Using the equality

1 = 1/ϕ + 1/ϕ2, one can prove that the ϕ-expansion of 1 is dϕ(1) = 110ω,

while its quasi-greedy ϕ-expansion is d∗ϕ(1) = (10)ω.

We now define a class of numeration systems based on specific real num-

bers for which the expansion of 1 is ultimately periodic.

Definition 1.22. A real number β > 1 is a Parry number if dβ(1) is ulti-

mately periodic. If dβ(1) is finite, i.e., dβ(1) ends with 0ω, then β is called a

simple Parry number .

Examples of such numbers will be given later on, after Proposition 1.24.

In the special case of Parry numbers, this result gives an easy way to de-

cide with the use of automata if an infinite word is the β-expansion of a

real number. This proposition is a reformulation of the well-known Parry’s

theorem [Par60], which describes the admissible β-expansions.

Definition 1.23. A deterministic finite automaton (DFA) over an alphabet

A is given by a 5-tuple A = (Q, q0, A, δ, F ) where Q is a finite set of states,

q0 ∈ Q is the initial state, δ : Q × A → Q is the transition function, and

F ⊂ Q is the set of final states (graphically represented by two concentric

circles). The map δ can be extended to Q × A∗ by setting δ(q, ε) = q, and

δ(q, wa) = δ(δ(q, w), a) for all q ∈ Q, a ∈ A and w ∈ A∗. We also say that a

word w is accepted by the automaton if δ(q0, w) ∈ F .
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a0 a1 a2 am−2 am−1

0, . . . , t1 − 1

0, . . . , t2 − 1

. . . . . . . . .

0, . . . , t3 − 1

t1 t2 t3 tm−2 tm−1

0, . . . , tm − 1

(a) The case where dβ(1) is finite.

a0 a1 a2 am−2 am−1

amam+k−1

0, . . . , t1 − 1

0, . . . , t2 − 1

. . . . . . . . .

0, . . . , t3 − 1

t1 t2 t3 tm−2 tm−1

0, . . . , tm − 1

tm

. . .. . .. . . tm+1tm+k−1

0, . . . , tm+1 − 1

tm+k

0, . . . , tm+k − 1

(b) The case where dβ(1) is ultimately periodic but not finite.

Figure 1.1: The automaton Aβ as a function of the ultimately periodic word

dβ(1).

Proposition 1.24. Let β ∈ R>1 be a Parry number.

• Suppose that dβ(1) = t1 · · · tm is finite, i.e., tm 6= 0 and tj = 0 for

all j > m. Then an infinite word is the β-expansion of a real num-

ber in [0, 1) if and only if it is the label of a path in the automa-

ton Aβ = ({a0, . . . , am−1}, a0, Aβ, δ, {a0, . . . , am−1}) depicted in Fig-

ure 1.1a, where the transition function δ is defined as follows: for each

i ∈ {1, . . . ,m}, δ(ai−1, t) = a0 for all t ∈ {0, . . . , ti − 1}; and for every

i ∈ {1, . . . ,m− 1}, δ(ai−1, ti) = ai.

• Suppose that dβ(1) = t1 · · · tm(tm+1 · · · tm+k)
ω where m, k are taken to

be minimal. Then an infinite word is the β-expansion of a real num-
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ber in [0, 1) if and only if it is the label of a path in the automaton

Aβ = ({a0, . . . , am+k−1}, a0, Aβ, δ, {a0, . . . , am+k−1}) depicted in Fig-

ure 1.1b, where the transition function δ is defined as follows: for each

i ∈ {1, . . . ,m+ k}, δ(ai−1, t) = a0 for all t ∈ {0, . . . , ti − 1}; for every

i ∈ {1, . . . ,m+ k − 1}, δ(ai−1, ti) = ai, and δ(am+k−1, tm+k) = am.

It is worth observing that from any state in the automaton Aβ, one

can reach the initial state by reading a suitable sequence of zeroes, acting

as a reset sequence. Note that if ti = 0, then the set {0, . . . , ti − 1} is

empty, so several zeroes might actually be required to reach the initial state.

Now let us illustrate the previous proposition. For other examples, see, for

instance, [CRRW11].

Example 1.25. If β ∈ R>1 is an integer, then dβ(1) = d∗β(1) = (β − 1)ω by

definition, and β is a Parry number. The automaton Aβ consists of a single

initial and final state a0 with a loop of labels 0, 1, . . . , β − 1.

Consider the golden ratio ϕ. From Example 1.21, we already know that

ϕ is a (simple) Parry number. The automaton Aϕ is depicted in Figure 1.2a.

The square ϕ2 of the golden ratio is again a Parry number, but a non-simple

one. Using the equality

1 =
2

ϕ2
+

+∞∑
n=2

1

(ϕ2)n
,

we can show that dϕ2(1) = d∗ϕ2(1) = 21ω. The automaton Aϕ2 is depicted in

Figure 1.2b.

a0 a1

0
1

0

(a) Aϕ

a0 a1

0, 1 1
2

0

(b) Aϕ2

Figure 1.2: The automata respectively associated with the golden ratio and

its square.

With every Parry number is canonically associated a linear numeration

system. Let us recall the definition of such numeration systems.
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Definition 1.26. Let U = (U(n))n≥0 be a positional numeration system.

We say that U is a linear numeration system if U satisfies a linear recurrence

relation, i.e., there exist k ≥ 1 and b0, . . . , bk−1 ∈ Z such that

U(n+ k) = bk−1 U(n+ k − 1) + · · ·+ b0 U(n) for all n ≥ 0. (1.1)

Remark 1.27. Note that if two linear numeration systems are associated

with the same recurrence relation, then they only differ by the choice of the

initial values U(0), . . . , U(k − 1). This choice is sometimes crucial. See, for

instance, Example 1.34 below.

Example 1.28. It is not difficult to see that the integer base numeration

system from Example 1.17 and the Fibonacci numeration system from Ex-

ample 1.18 are linear.

Definition 1.29. Let β ∈ R>1 be a Parry number with d∗β(1) = (t′i)i≥1.

We define a particular linear numeration system Uβ = (Uβ(n))n≥0 associated

with β by Uβ(n) = t′1Uβ(n−1)+ · · ·+t′nUβ(0)+1 for all n ≥ 0. We call it the

Parry numeration system associated with β. In particular, if dβ(1) = t1 · · · tm
is finite (tm 6= 0), then Uβ(0) = 1,

Uβ(i) = t1Uβ(i− 1) + · · ·+ tiUβ(0) + 1 for all i ∈ {1, . . . ,m− 1},

and for all n ≥ m,

Uβ(n) = t1Uβ(n− 1) + · · ·+ tmUβ(n−m).

If dβ(1) = t1 · · · tm(tm+1 · · · tm+k)
ω (where m, k are minimal), then we have

Uβ(0) = 1,

Uβ(i) = t1Uβ(i− 1) + · · ·+ tiUβ(0) + 1 for all i ∈ {1, . . . ,m+ k − 1},

and for all n ≥ m+ k,

Uβ(n) = t1Uβ(n− 1) + · · ·+ tm+kUβ(n−m− k) + Uβ(n− k)

− t1Uβ(n− k − 1)− · · · − tmUβ(n− k −m).

Example 1.30. When β ∈ R>1 is an integer, then we know from Exam-

ple 1.25 that dβ(1) = (β − 1)ω. We are thus in the second case of Defini-

tion 1.29, and we have m = 0, k = 1, Uβ(0) = 1 and, for all n ≥ 1,

Uβ(n) = (β − 1)Uβ(n− 1) + Uβ(n− 1) = β Uβ(n− 1).
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This yields Uβ(n) = βn for all n ≥ 0. The Parry numeration system Uβ is

thus the usual integer base numeration system from Example 1.17.

For the golden ratio ϕ, we have dϕ(1) = 11 from Example 1.25, so we fall

into the first case of Definition 1.29. We find m = 2, Uϕ(0) = 1,

Uϕ(1) = 1 · Uϕ(0) + 1 = 2,

and, for all n ≥ 2,

Uϕ(n) = 1 · Uϕ(n− 1) + 1 · Uϕ(n− 2).

Consequently, the sequences (F (n))n≥0 and (Uϕ(n))n≥0 are equal, and the

Parry numeration system Uϕ is the Fibonacci numeration system from Ex-

ample 1.18. In particular, LUϕ = LF = 1{0, 01}∗ ∪ {ε}, repUϕ = repF and

valUϕ = valF .

The linear numeration system Uβ from Definition 1.29 has an interesting

property: we can add or delete trailing zeroes and still keep words in the

numeration language.

Definition 1.31. A linear numeration system U = (U(n))n≥0 is a Bertrand

numeration system if, for all w ∈ A+
U , w ∈ LU if and only if w0 ∈ LU .

A. Bertrand-Mathis proved in particular that the Parry numeration sys-

tem Uβ associated with the Parry number β from Definition 1.29 is also

a Bertrand numeration system; see [BM89] or [BR10, Chapter 2]. In that

case, the alphabet AUβ is the set {0, 1, . . . , dβe − 1}, and any word w in the

set 0∗LUβ of all Uβ-expansions where leading zeroes are allowed is the label

of a path in the automaton Aβ from Proposition 1.24. For instance, one

can easily be convinced that the Parry numeration systems highlighted in

Example 1.30 are indeed Bertrand. In the case of the golden ratio ϕ, the

valid Uϕ-expansions with leading zeroes can be deduced from the automaton

drawn in Figure 1.2a.

We end this section by defining other classes of real numbers, giving

additional properties to the numeration systems emerging from them.

Definition 1.32. A real number β > 1 is a Pisot number (resp., Perron

number) if it is an algebraic integer, i.e., a root of a monic polynomial in

Z[X], whose conjugates have modulus less than 1 (resp., β).
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Observe that any Pisot number is a Perron number, but the contrary

is false in general. For instance, (5 +
√

5)/2 and the dominant root of the

polynomial X4 − 3X3 − 2X2 − 3 are Perron, but not Pisot; see [Lot02,

Chapter 7]. Note that a Pisot number is a Parry number [Lot02, Chapter 7].

Numeration systems based on Perron numbers are defined below. They

have the property (1.2), which allows us to understand their growth rate.

Since every Parry number β ∈ R>1 is a Perron number [Lot02, Chapter 7],

the Parry numeration system Uβ also has this property, which will be of

interest later on.

Definition 1.33. Let U = (U(n))n≥0 be a linear numeration system. Con-

sider the characteristic polynomial of the recurrence (1.1) given by

P (X) = Xk − bk−1X
k−1 − · · · − b1X − b0.

If P is the minimal polynomial of a Perron number β ∈ R>1, we say that

U is a Perron numeration system. In this case, the polynomial P can be

factorized as

P (X) = (X − β)(X − α2) · · · (X − αk),
where the complex numbers α2, . . . , αk are the conjugates of β, and, for all

j ≥ 2, we have |αj | < β. Using a well-known fact regarding recurrence

relations, we have

U(n) = c1β
n + c2α

n
2 + · · ·+ ckα

n
k for all n ≥ 0,

where c1, . . . , ck are complex numbers depending on the initial values of U .

Since |αj | < β for all j ≥ 2, we have

lim
n→+∞

U(n)

βn
= c1. (1.2)

Example 1.34. It is not difficult to see that the usual integer base numer-

ation system from Example 1.17 is a Perron numeration system having the

Bertrand property of Definition 1.31.

The golden ratio ϕ is a Perron, even Pisot, number whose minimal poly-

nomial is P (X) = X2 −X − 1. A Perron and Bertrand numeration system

associated with ϕ is the Fibonacci numeration system from Example 1.18 for

which there exists c ∈ C such that

lim
n→+∞

F (n)

ϕn
= c.
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Note that it is possible to determine the exact value of the constant c, but

it is not important at this step. Now, if we change the initial conditions and

set F ′(0) = 1, F ′(1) = 3, and F ′(n + 2) = F ′(n + 1) + F ′(n) for all n ∈ N,

then we again get a Perron numeration associated with ϕ, which is not a

Bertrand numeration system. Indeed, 2 is a greedy F ′-expansion, but not

20 because repF ′(valF ′(20)) = 102. In fact, the latter numeration system is

built on the Lucas numbers (A000032 in [Slo]).

1.4 Binomial Coefficients of Words

In this section, we introduce one of the main concepts used in this text: the

binomial coefficients of words. As we will see, they are a natural extension of

the well-known binomial coefficients of integers, which are even used in high

schools for multiple purposes (e.g., probabilistic and statistical problems).

For more on these binomial coefficients of words, see, for instance, [Lot97,

Chapter 6]. In the following definition, recall the difference between “factor”

(or “subword”) and “scattered subword” highlighted in Definition 1.6.

Definition 1.35. The binomial coefficient
(
u
v

)
of two finite words u and v

over the alphabet A is the number of times v occurs as a scattered subword

of u. More formally, if u = u0 · · ·um and v = v0 · · · vn where ui, vj are letters

in A for all i and j, then(
u

v

)
= #{(i0, . . . , in) | 0 ≤ i0 < · · · < in ≤ m and ui0 · · ·uin = v}.

It is worth noticing that for any finite word u, then
(
u
ε

)
= 1 for the only

occurrence of the empty word ε in u corresponds to the empty sequence.

There is a vast literature on binomial coefficients of words with applica-

tions in formal language theory (e.g., Parikh matrices, p-group languages, or

piecewise testable languages [Eil76, FK18, KKS15, KNS16]), p-adic topology

and p-adic analysis [BCP89, PS14], combinatorics on words (e.g., avoiding bi-

nomial repetitions [RRS15]), and model-checking and verification [ABRS05].

For instance, one combinatorial question that can naturally be asked about

this topic is to determine when it is possible to uniquely reconstruct a word

from some of its binomial coefficients; see, for instance, [DE04].
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Example 1.36. Take the binary alphabet A = {0, 1}, and consider the finite

words u = 101001 and v = 101 over A. Their binomial coefficient is(
101001

101

)
= 6.

Indeed, if we write u = u0u1 · · ·u5 = 101001, we have

u0u1u2 = u0u1u5 = u0u3u5 = u0u4u5 = u2u3u5 = u2u4u5 = 101 = v.

Remark 1.37. Let A be any alphabet, and take two words u, v ∈ A∗. If

|u| < |v|, then clearly there is no subsequence of u that matches v, so
(
u
v

)
= 0.

If |u| = |v|, then (
u

v

)
=

{
1, if u = v;

0, otherwise.

As mentioned before, the concept of binomial coefficients of words is a

natural generalization of the binomial coefficients of integers. For any letter

a in the alphabet A, we have(
am

an

)
=

(
m

n

)
for all m,n ∈ N, (1.3)

where am denotes the concatenation of m letters a (see Definition 1.3).

The following lemma helps us to compute the binomial coefficient of a

pair of words thanks to the binomial coefficients of pairs of shorter words.

For a proof, we refer the reader to [Lot97, Chapter 6].

Lemma 1.38. Let A be an alphabet. For any words u, v in A∗, and any

letters a, b in A, we have(
ua

vb

)
=

(
u

vb

)
+ δa,b

(
u

v

)
,

where δa,b is the Kronecker symbol that is equal to 1 if a = b, 0 otherwise.

For any three words s, t, w in A∗, we have(
sw

t

)
=

∑
u,v∈A∗
uv=t

(
s

u

)(
w

v

)
.

Implied by the previous result, the next useful lemma deals with binomial

coefficients of words ending with blocks of a given letter.
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Lemma 1.39. Let A be an alphabet containing the letter a. For all non-

empty words u, v ∈ A∗ and all k ∈ N, we have(
uak

vak

)
=

k∑
j=0

(
k

k − j

)(
u

vaj

)
=

k∑
j=0

(
k

j

)(
u

vaj

)
.

Let us also recall Lucas’ theorem linking classical binomial coefficients

modulo a prime p with base-p expansions. See [Luc78, p. 230] or [Fin47].

Note that in the following statement, if the base-p expansions of m and n

are not of the same length, then we pad the shortest with leading zeroes.

Theorem 1.40. Let m and n be two non-negative integers, and let p be a

prime. If

m = mkp
k +mk−1p

k−1 + · · ·+m1p+m0

and

n = nkp
k + nk−1p

k−1 + · · ·+ n1p+ n0

with mi, ni ∈ {0, 1, . . . , p−1} for all i, then the following congruence relation

holds (
m

n

)
≡

k∏
i=0

(
mi

ni

)
(mod p),

using the convention that
(
m
n

)
= 0 if m < n.

1.5 Generalized Pascal Triangles

The Pascal triangle and the corresponding2 Sierpiński gasket are well-studied

objects. They have connections with various topics in mathematics. They

notably exhibit self-similarity, dynamical and fractal features [vHPS92, KL18,

Ste95] and they can be obtained via iterated function systems (IFS’s) [vHPS92,

Ste95]. They can be studied with automata-theoretic techniques [AB97,

AB11] or be expressed using first order formulas in an extension of the Pres-

burger arithmetic [CLR15]. Finally, they are linked to simple arithmetic,

especially through the celebrated binomial theorem and more generally the

multinomial theorem, to enumerative combinatorics [Sta97, BFST18] in or-

der to tackle counting problems, and also to p-adic topology and p-adic

analysis [BCP89, PS14].

2See Chapter 2 for more details.



1.5. Generalized Pascal Triangles 19

Definition 1.41. The (classical) Pascal triangle P: N × N → N is repre-

sented as an infinite table and defined as follows. The entry P(m,n) on the

mth row and nth column of P is the integer
(
m
n

)
. The first few values in

the Pascal triangle P are given in Table 1.3. The construction of the Pascal

triangle is directed by the following relation(
m

n

)
=

(
m− 1

n− 1

)
+

(
m− 1

n

)
,

known as the Pascal rule.

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

2 1 2 1 0 0 0 0 0

3 1 3 3 1 0 0 0 0

4 1 4 6 4 1 0 0 0

5 1 5 10 10 5 1 0 0

6 1 6 15 20 15 6 1 0

7 1 7 21 35 35 21 7 1

Table 1.3: The first few values in the classical Pascal triangle P.

Warning. In this text, we choose to draw the Pascal triangle and related

pictures in the Cartesian coordinate system in two dimensions whose x-axis

points rightward, and the y-axis points downward. For instance, in the Pascal

triangle case, the rows (resp., columns) are depicted on the y-axis (resp.,

x-axis). This convention will be valid throughout this text, especially in

Chapter 2.

Several generalizations and variations of the Pascal triangle do already ex-

ist and are studied with arithmetical and combinatorial viewpoints [BNS16,

BS14, DDGS18, Ném18, NP16], dynamical ones [JdlRV05, vHPS92] or an-

alytical ones [HKP18]. On a combinatorics on words side, if A is a finite

alphabet, then one can find an analogue of the Pascal triangle indexed by all

the words in A∗; see [Lot97, Problem 6.3.3 in Chapter 6]. In this section, we
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will consider an extension of the classical Pascal triangle to binomial coeffi-

cients of words [LRS16]. To define such a triangular array, we will consider

all the words in an infinite language that is genealogically ordered.

Definition 1.42. Let (A,<) be a totally ordered alphabet, and let L ⊂ A∗
be an infinite language over A. We order the words in L by increasing

genealogical order, and we write L = {w0 <gen w1 <gen w2 <gen · · · } (this

corresponds to representations within an abstract numeration system based

on L [LR01], [BR10, Chapter 3]). The generalized Pascal triangle or Pascal-

like triangle PL : N × N → N associated with the language L is represented

as an infinite table and defined as follows. The entry3 PL(m,n) on the mth

row and nth column of PL is the integer
(
wm
wn

)
.

Using the first relation from Lemma 1.38, one can also derive a rule to

build PL, similar to the Pascal rule. Whereas the latter rule is local in the

sense that a specific coefficient can be obtained by adding two coefficients

located on the previous row, the gaps between the coefficients to be added

in Lemma 1.38 can become bigger and bigger.

For the sake of simplicity, when β > 1 is a Parry number and L = LUβ is

the numeration language of the Parry–Bertrand numeration associated with

β from Definition 1.29, we write Pβ instead of PLUβ . By Proposition 1.16,

wn = repUβ (n) for all n ∈ N.

Example 1.43. We consider the language L2 of the base-2 expansions of

integers. In L2, we have

ε <gen 1 <gen 10 <gen 11 <gen 100 <gen 101 <gen 110 <gen 111 <gen · · · ,

hence the first few values in the generalized Pascal triangle P2 are given in

Table 1.4. The sequence A282714 in [Slo] stores those values. For the base-3

case, see the sequence A284441 in [Slo].

Remark 1.44. Note that, from (1.3) on page 17, the usual Pascal triangle

is a “sub-array” of the extended triangle P2, and more generally of Pb for

any b ≥ 2. Indeed, Pb contains at least b − 1 copies of the classical Pascal

triangle by only considering words in the language a∗ with a ∈ Ab \ {0}. In

Table 1.4, the elements of the classical Pascal triangle P are written in bold.

3Using the notation
(
u
v

)
, the rows (resp., columns) of PL are indexed by the words u

(resp., v).
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ε 1 10 11 100 101 110 111

ε 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

10 1 1 1 0 0 0 0 0

11 1 2 0 1 0 0 0 0

100 1 1 2 0 1 0 0 0

101 1 2 1 1 0 1 0 0

110 1 2 2 1 0 0 1 0

111 1 3 0 3 0 0 0 1

Table 1.4: The first few values in the generalized Pascal triangle P2.

This is even the case for any Parry number β > 1 since a copy of the classical

Pascal triangle can be seen inside Pβ by limiting ourselves to words in the

language a0∗ for a ∈ AUβ \ {0}. For an example, see below.

We can also observe that the second column (
(

rep2(n)
1

)
)n≥0 of P2 is ex-

actly the sum-of-digits function (s2(n))n≥0 for base-2 expansions of inte-

gers [Del75]. Indeed, for a given integer n, s2(n) counts the number of 1’s

in the base-2 expansion of n. Thus, considering these values modulo 2, the

second column of P2 is exactly the well-known Thue–Morse word [AS03a].

Proceeding as in Example 1.43, we give the generalized Pascal triangle

Pϕ associated with the golden ratio ϕ.

Example 1.45. When β is the golden ratio ϕ, we know from Example 1.30

that the numeration language LUϕ is 1{0, 01}∗ ∪ {ε}. The first values in the

generalized Pascal triangle Pϕ are given in Table 1.5 (note that the sequence

of those values is the sequence A282716 in [Slo]). In this table, the elements

of the classical Pascal triangle P are again written in bold.

The following funny result was observed by J. Raskin during a compre-

hensible seminar, and states that the sum of the entries on the nth row of

P2 is exactly n + 1. Notice that it does not seem to be true for any other

integer base. A natural question would be to investigate the general case of

β-numeration systems.
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ε 1 10 100 101 1000 1001 1010

ε 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

10 1 1 1 0 0 0 0 0

100 1 1 2 1 0 0 0 0

101 1 2 1 0 1 0 0 0

1000 1 1 3 3 0 1 0 0

1001 1 2 2 1 2 0 1 0

1010 1 2 3 1 1 0 0 1

Table 1.5: The first few values in the generalized Pascal triangle Pϕ.

Proposition 1.46. For all n ≥ 0, we have∑
m∈N

(
rep2(n)

rep2(m)

)
= n+ 1.

Proof . For the sake of clarity, let us define S(n) =
∑

m∈N
( rep2(n)

rep2(m)

)
. To

prove the claim, we proceed by induction on n ≥ 0. Using Table 1.4, the

result is trivially true for n ∈ {0, . . . , 7}. Now assume that n ≥ 8 and write

rep2(n) = ua with u ∈ L2, |u| ≥ 3 and a ∈ {0, 1}. We only take care of the

case where a = 0 for the other is similar. Let L2,0 = L2 ∩ {0, 1}∗0 (resp.,

L2,1 = L2 ∩ {0, 1}∗1) be the set of base-2 expansions ending with 0 (resp.,

1). We have

S(n) =

(
u0

ε

)
+
∑
v∈L2,0

(
u0

v

)
+
∑
v∈L2,1

(
u0

v

)

= 1 +
∑

v∈L2\{ε}

(
u0

v0

)
+
∑
v∈L2

(
u0

v1

)
,

and by Lemma 1.38, we find

S(n) = 1 +
∑

v∈L2\{ε}

(
u

v0

)
+

∑
v∈L2\{ε}

(
u

v

)
+
∑
v∈L2

(
u

v1

)
.

Now observe that

{v0 | v ∈ L2 \ {ε}} ∪ {v1 | v ∈ L2} = L2,0 ∪ L2,1 = L2 \ {ε},
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so

S(n) =
∑
v∈L2

(
u

v

)
+

∑
v∈L2\{ε}

(
u

v

)
= 2

∑
v∈L2

(
u

v

)
− 1

since 1 =
(
u
ε

)
. Now rep2(n/2) = u, so we get

S(n) = 2S(n/2)− 1,

and the result follows by induction hypothesis.

1.6 Counting Non-Zero Binomial Coefficients

In this short section, with any language L and any row of the generalized

Pascal triangle PL, is associated a sequence that counts the number of non-

zero elements in PL. In Chapter 3, we study this particular sequence.

Definition 1.47. Let (A,<) be a totally ordered alphabet, and let L ⊂ A∗
be an infinite language over A. Write L = {w0 <gen w1 <gen w2 <gen · · · }.
We let SL = (SL(n))n≥0 denote the sequence whose nth term, for n ≥ 0, is

the number of non-zero elements in the nth row of PL. Otherwise stated, for

n ≥ 0, we define

SL(n) = #

{
v ∈ L |

(
wn
v

)
> 0

}
= #

{
m ∈ N |

(
wn
wm

)
> 0

}
.

As before, for the sake of simplicity, when β > 1 is a Parry number

and L = LUβ is the numeration language of the Parry–Bertrand numeration

system associated with β from Definition 1.29, we write Sβ instead of SLUβ .

In that case, for n ≥ 0, we have

Sβ(n) = #

{
v ∈ LUβ |

(
repUβ (n)

v

)
> 0

}
(1.4)

= #

{
m ∈ N |

(
repUβ (n)

repUβ (m)

)
> 0

}
.

Remark 1.48. Note that we can relate SL to Simon’s congruence for which

two finite words are equivalent if they share exactly the same set of scattered

subwords [Sim75]. More precisely, two words are ∼k-equivalent if they have

the same set of scattered subwords of length at most k. Observe that two

words of distinct length can be equivalent even if one of them has more
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scattered subwords than the other (simply take, for example, 11 ∼2 111).

For instance, in L2, 101 and 110 share the same scattered subwords of length

at most 2 (101 ∼2 110 if words are restricted to L2), and

S2(val2(101)) = 5 = S2(val2(110))

since there is only one length-3 word that is a scattered subword of 101 or

110 respectively.

Example 1.49. Let us work with the generalized Pascal triangle P2 from

Example 1.43. Its first few values are stored in Table 1.6 and correspond to

the words ε, 1, 10, 11, 100, 101, 110 and 111 in L2. Compared to Table 1.4,

we add two new columns: the non-negative integers on the left side of the

table, and the rightmost column is the sequence S2. Its first few terms are

1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, . . . .

n rep2(n) ε 1 10 11 100 101 110 111 S2(n)

0 ε 1 0 0 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0 2

2 10 1 1 1 0 0 0 0 0 3

3 11 1 2 0 1 0 0 0 0 3

4 100 1 1 2 0 1 0 0 0 4

5 101 1 2 1 1 0 1 0 0 5

6 110 1 2 2 1 0 0 1 0 5

7 111 1 3 0 3 0 0 0 1 4

Table 1.6: The first few values of S2 in the generalized Pascal triangle P2.

A visual representation is given in Figure 1.7 where we have represented

in black the positive values in P2 and a compressed version of the same figure

(the compressed representation is inspired by P. Dumas [Dum]). In fact, the

sequence obtained by adding an extra 1 as a prefix of S2 exactly matches the

sequence of denominators of the Farey tree (A007306 in [Slo]). This is a key

observation for later on; see Chapter 3.

Note that the case of the generalized Pascal triangle P3 can be handled

similarly, and the corresponding sequence S3 is tagged A282715 in [Slo].
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Figure 1.7: Positive values in the generalized Pascal triangle P2 (on the left)

and the compressed version (on the right).

Example 1.50. Let us consider the generalized Pascal triangle Pϕ from

Example 1.45. Corresponding to the words ε, 1, 10, 100, 101, 1000, 1001,

1010 and 10000 in LF = LUϕ (see Example 1.30), the first few values of Pϕ
are given in Table 1.8. Compared to Table 1.5, as in the previous example,

we add new columns, and the rightmost is Sϕ whose first few terms are

1, 2, 3, 4, 4, 5, 6, 6, 6, 8, 9, 8, 8, 7, 10, 12, 12, 12, 10, 12, 12, 8, 12, 15, 16, 16, . . . .

The full version is labeled A282717 in [Slo].

n repF (n) ε 1 10 100 101 1000 1001 1010 10000 Sϕ(n)

0 ε 1 0 0 0 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 2

2 10 1 1 1 0 0 0 0 0 0 3

3 100 1 1 2 1 0 0 0 0 0 4

4 101 1 2 1 0 1 0 0 0 0 4

5 1000 1 1 3 3 0 1 0 0 0 5

6 1001 1 2 2 1 2 0 1 0 0 6

7 1010 1 2 3 1 1 0 0 1 0 6

8 10000 1 1 4 6 0 4 0 0 1 6

Table 1.8: The first few values of Sϕ in the generalized Pascal triangle Pϕ
with words in LF .
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1.7 Automaticity, Synchronicity and Regularity

In this section, we introduce the notions of automatic, synchronized and

regular sequences. Here, the sequences we work with are all made of integers.

In some sense, the previous properties depend on the numeration system that

is considered to represent integers. The literature is vast, so we pick some

references to write this short summary [AS92, AS03a, AST00, BR11, CM01,

Eil74, RM02, Sha88].

There are different equivalent ways to define automatic sequences; see,

for instance, [AS03a]. As an example, they can be defined through automata

after which they are named. However, in this text, we choose to define them

relatively to their kernel [AS03a, Eil74] because we have in mind a larger

class of sequences, called regular (see Definition 1.54).

Definition 1.51. Let b ≥ 2 be an integer. The b-kernel of a sequence

s = (s(n))n≥0 is the set of (sub)sequences

Kb(s) = {(s(bin+ j))n≥0| i ≥ 0 and 0 ≤ j < bi}.

One characterization of b-automatic sequences is that their b-kernels are

finite; see [AS03a, Eil74].

Definition 1.52. Let b ≥ 2 be an integer. A sequence s = (s(n))n≥0 of

integers is b-automatic if its b-kernel Kb(s) is finite.

Lots of examples of automatic sequences can be found in [AS03a]. We

only give the following famous one.

Example 1.53. Let t = (tn)n≥0 = 01101001 · · · be the Thue–Morse word

introduced in Example 1.14. Note that there are different equivalent defi-

nitions of t; see, for instance, [AS03a]. For example, we have the following

recursive way to define it: t0 = 0, t2n = tn and t2n+1 = (tn + 1) mod 2 for all

n ≥ 0. Using this definition, its 2-kernel K2(t) contains exactly two elements,

namely t and t where the map · : 0 7→ 1, 1 7→ 0 exchanges letters. So t is

2-automatic.

Unbounded sequences, i.e., taking infinitely many integer values, are also

of interest but their b-kernels are clearly infinite. One way to try to handle
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such sequences is to introduce the definition of b-regularity [AS92, AS03a,

BR11]. In fact, the b-regularity of a sequence provides interesting structural

information about it. For instance, we get matrices to compute its nth term

in a number of steps proportional to logb(n).

Definition 1.54. Let b ≥ 2 be an integer. A sequence s = (s(n))n≥0 of

integers is b-regular if 〈Kb(s)〉 is a finitely-generated Z-module, i.e., there

exists a finite number of sequences t1 = (t1(n))n≥0, . . . , t` = (t`(n))n≥0 such

that every sequence in the Z-module generated by the b-kernel Kb(s) is a

Z-linear combination of the sequences t1, . . . , t`. Equivalently, for all i ≥ 0

and for all j ∈ {0, . . . , bi − 1}, there exist integers c1, . . . , c` such that

s(bin+ j) =
∑̀
r=1

cr tr(n) for all n ≥ 0.

Another useful characterization [AS03a, Theorem 16.2.3] is the following

one: a sequence s = (s(n))n≥0 of integers is b-regular if and only if it admits

a linear representation, i.e., there exist an integer k ≥ 1, a row vector r,

a column vector c and square matrices Γ0, . . . ,Γb−1 of size k such that, if

repb(n) = nj · · ·n0, then

s(n) = r Γn0Γn1 · · ·Γnj c.

Note that by transposing the previous product, one can get a linear repre-

sentation by reading repb(n) from left to right, i.e., starting with the most

significant digit.

Observe that, by definition, any b-automatic sequence is b-regular, but the

converse clearly does not hold. In fact, a sequence is b-regular and takes only

finitely many values if and only if it is b-automatic [AS03a]. In the following,

we give two 2-regular sequences that will be useful in Chapters 3 and 4. Many

examples of b-regular sequences may be found in [AS92, AS03a, AS03b].

A method to show that a sequence s is b-regular can be done in two steps.

First, the idea is to express the sequences (s(bin + j))n≥0 for a given i ≥ 0

and all residues 0 ≤ j < bi as linear combinations of sequences of the form

(s(bi
′
n+j′))n≥0 with 0 ≤ i′ < i and 0 ≤ j′ < bi

′
. Secondly, one can use those

combinations to express the sequences (s(bi
′′
n + j′′))n≥0 with i′′ > i and

0 ≤ j′′ < bi
′′

as linear combinations of sequences of the form (s(bi
′
n+ j′))n≥0

with 0 ≤ i′ < i and 0 ≤ j′ < bi
′
.
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Example 1.55. The Stern–Brocot sequence (SB(n))n≥0, which takes its

name from the Stern–Brocot tree (see Chapter 3), is defined by SB(0) = 0,

SB(1) = 1, SB(2n) = SB(n) and SB(2n+ 1) = SB(n) + SB(n+ 1) for all

n ≥ 1. This sequence is unbounded and tagged A002487 in [Slo].

The Z-module generated by its 2-kernel is simply generated by the se-

quence itself and the shifted sequence (SB(n + 1))n≥0; see [AS92, Example

7]. So the Stern–Brocot sequence is 2-regular. Using the relations in the

definition of the Stern–Brocot sequence, one has

SB(4n) = SB(2(2n)) = SB(2n) = SB(n);

SB(4n+ 1) = SB(2(2n) + 1) = SB(2n) + SB(2n+ 1)

= 2SB(n) + SB(n+ 1);

SB(4n+ 2) = SB(2(2n+ 1)) = SB(2n+ 1) = SB(n) + SB(n+ 1);

SB(4n+ 3) = SB(2(2n+ 1) + 1) = SB(2n+ 1) + SB(2n+ 2)

= SB(n) + 2SB(n+ 1).

Example 1.56. Let s2 = (s2(n))n≥0 denote the sum-of-digits function for

base-2 expansions of integers. For instance, the binary expansion of 6 is

rep2(6) = 101, so s2(6) = 1 + 0 + 1 = 2. The sequence s2 readily satisfies

s2(2n) = s2(n) and s2(2n+ 1) = 1 + s2(n)

for all n ≥ 0, which means that s2 is 2-regular. It also admits the linear

representation

r =
(

1 0
)
, Γ0 =

(
1 0

0 1

)
, Γ1 =

(
1 1

0 1

)
, c =

(
0

1

)
.

Let us also mention a result regarding asymptotic estimates for summa-

tory functions of b-regular sequences, which avoids error terms and will be

useful in Chapter 4. For instance, this result can be applied to study the

behavior of summatory functions of sum-of-digit functions; see [AS03a]. In

this result, if v belongs to Ck, then the notation ||v|| stands for the Euclidean

norm of v, defined by
(∑k

i=1 |vi|2
) 1

2
. Moreover, if M is a square matrix of

size k with entries in C, then we let ||M || denote the L2 norm of M , which

is the matrix norm associated with the usual Euclidean norm on Ck by the

formula ||M || = sup||x||=1 ||Mx||.
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Theorem 1.57. [AS03a, Theorem 3.5.1] Let b ≥ 2 be an integer. Suppose

there exist an integer k ≥ 1, a sequence (V (n))n≥0 of vectors in Ck defined

by

V (n) =


V1(n)

V2(n)
...

Vk(n)

 ,

and b square matrices Γ0,Γ1, . . . ,Γb−1 of size k such that

• V (bn+ r) = ΓrV (n) for all n ≥ 0 and all 0 ≤ r < b;

• ||V (n)|| = O(log n); and

• there exist a k × k matrix Λ and a constant c > 0 such that either

||Λ|| < c, or Λ is nilpotent with Γ = Γ0 + Γ1 + · · ·+ Γk−1 = cI + Λ.

The matrix Γ being clearly invertible, if ||Γ−1|| < 1, then there exists a

continuous function G : R→ Ck of period 1 such that∑
0≤n<N

V (n) = N logk c (I + c−1Λ)logk N G (logkN) .

First introduced in [CM01], the class of b-synchronized sequences is a

strict intermediate (with respect to the inclusion) between the classes of b-

automatic sequences and b-regular sequences. In [CM01], the authors show

that every b-synchronized sequence is b-regular, but the converse is not true

(an example is given in the latter paper). Moreover, they also prove that a

sequence is b-synchronized and takes on only finitely many values if and only

if it is b-automatic. Roughly speaking, a sequence (s(n))n≥0 is b-synchronized

if there exists a finite automaton accepting the pairs of base-b expansions of

n and s(n), as stated in Definition 1.58 below.

Definition 1.58. Let b ≥ 2 be an integer. For the purpose of this definition,

the map repb from Example 1.17 is extended to N × N as follows. For all

m,n ∈ N, we set

repb(m,n) =
(

0M−| repb(m)| repb(m), 0M−| repb(n)| repb(n)
)
,

where M = max{| repb(m)|, | repb(n)|}. The idea is that the shortest word is

padded with leading zeroes to get two words of the same length.
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A sequence (s(n))n≥0 of integers is said to be b-synchronized if the lan-

guage {repb(n, s(n)) | n ∈ N} is accepted by some finite automaton reading

pairs of digits.

As an example, it is proved in [GSS13] that if an infinite word is b-

automatic, then its factor complexity function, i.e., the map counting the

number of distinct factors of a given length, is b-synchronized.

As a final comment to this section, we will timely see that the notions of

automaticity and regularity may be extended to other numeration systems.

1.8 Metrics

The aim of this section is to introduce the notation about the metrics used

in this text, and more specifically the Hausdorff metric. For more on the

subject, see, for instance, [Fal86, Fal97].

In the following, we let d denote the Euclidean distance on R2. If S and

S′ are non-empty subsets of R2, we let d(S, S′) denote the quantity

d(S, S′) = inf{d(x, y) | x ∈ S, y ∈ S′}.

When S = {x} is reduced to a single point x and S′ is a non-empty subset

of R2, then we write d(x, S′) instead of d({x}, S′).
Let us insist on the fact that d does not define a proper distance between

non-empty subsets of R2. First, d(S, S′) may be equal to 0 even if the non-

empty subsets S, S′ ⊂ R2 are not equal (it suffices to consider non-disjoint

subsets). Moreover, the triangle inequality is not fulfilled. Also note that

if S and S′ are non-empty subsets of R2, there might not exist x ∈ S and

y ∈ S′ such that d(S, S′) = d(x, y). However, when S is a non-empty closed

set and S′ is a non-empty compact set, there always exist x ∈ S and y ∈ S′
such that d(S, S′) = d(x, y). By abuse of terminology, the quantity d(S, S′)

is sometimes referred to as the distance between S and S′.

To remedy this situation, one can consider the Hausdorff distance that

defines a proper distance between subsets. Thanks to this notion, we obtain

a way to measure how far two subsets of a metric space are from each other.

Informally, if two subsets are close with respect to the Hausdorff distance,

they should look alike. This distance is used in various mathematical fields

such as geometry or fractal theory, and even finds applications in digital

image processing and computer vision.
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Definition 1.59. If ε ∈ R>0 is a positive real number4 and x is a point in

R2, the open ball of radius ε centered at x is the set of points in R2 at a

distance at most ε of x, i.e.,

B(x, ε) = {y ∈ R2 | d(x, y) < ε}.

If S is a subset of R2, we let

[S]ε =
⋃
x∈S

B(x, ε)

denote the ε-fattening of S, that is the set of all points within ε of the set S.

The Hausdorff metric or Hausdorff distance dh induced by d is defined by

dh(S, S′) = inf{ε ∈ R>0 | S ⊂ [S′]ε and S′ ⊂ [S]ε} for all S, S′ ⊂ R2.

Equivalently, we have

dh(S, S′) = max{sup
x∈S

inf
y∈S′

d(x, y), sup
y∈S′

inf
x∈S

d(x, y)}.

We let (H(R2), dh) denote the space of the non-empty compact subsets of R2

equipped with the Hausdorff metric dh induced by d. It is well known that

(H(R2), dh) is complete [Fal86].

As an illustration, take S and S′ non-empty compact subsets of R2, and

assume that dh(S, S′) = η ∈ R≥0. In particular, S ⊂ [S′]η′ for all η′ > η.

Then, for all x ∈ S, there exists y ∈ S′ such that d(x, y) < η′. Consequently,

d(S, S′) ≤ d(x, y) < η′.

As a final point to this section, we show that an increasing nested se-

quence of compact sets whose union is bounded always converges with re-

spect to the Hausdorff distance. This result will turn out to be useful in

Chapter 2.

Proposition 1.60. Let (Kn)n≥0 be a sequence of compact subsets of R2 such

that Kn ⊂ Kn+1 for all n ≥ 0, and their union ∪n≥0Kn is bounded. Then

(Kn)n≥0 converges to ⋃
n≥0

Kn

with respect to the Hausdorff distance.

4In this text, there are two different kinds of epsilon: the rounded epsilon ε designates

the empty word whereas the moon-shaped epsilon ε stands for a real number.
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Proof . First, observe that
⋃
n≥0Kn is a compact set by hypothesis. To prove

the claim, we need to show that, for all ε ∈ R>0, there exists N ∈ N such

that, for all m ≥ N ,

dh

Km,
⋃
n≥0

Kn

 < ε.

By definition, we thus have to prove that for all ε ∈ R>0, there exists N ∈ N
such that, for all m ≥ N ,

Km ⊂

⋃
n≥0

Kn


ε

and
⋃
n≥0

Kn ⊂ [Km]ε.

The first inclusion is always satisfied, and since the compact sets are increas-

ingly nested by hypothesis, we must equivalently show that for all ε ∈ R>0,

there exists N ∈ N such that ⋃
n≥0

Kn ⊂ [KN ]ε.

Let ε ∈ R>0. For every point x ∈ ⋃n≥0Kn, the definition of the closure

implies that there exists y ∈ ⋃n≥0Kn such that d(x, y) < ε/2. We let

N(x) denote the smallest integer N ≥ 0 such that there exists y ∈ KN with

d(x, y) < ε/2, which exists by hypothesis.

By compactness, there exist points x1, . . . , xk ∈
⋃
n≥0Kn such that

⋃
n≥0

Kn ⊂
k⋃
i=1

B
(
xi,

ε

2

)
.

Let N = max{N(x1), . . . , N(xk)}. For all i ∈ {1, . . . , k}, there exists a point

yi ∈ KN(xi) ⊂ KN such that d(xi, yi) < ε/2.

To conclude, we show that, for all i ∈ {1, . . . , k}, B(xi, ε/2) ⊂ [KN ]ε,

which suffices. Let i ∈ {1, . . . , k}, and pick x ∈ B(xi, ε/2). Then

d(x, yi) ≤ d(x, xi) + d(xi, yi) < ε.

Since yi ∈ KN , then x ∈ [KN ]ε.

Remark 1.61. It is worth mentioning that the previous result holds for any

metric space (X, δ) if the Hausdorff distance is analogously defined in this

context. However, in this text, we focus on X = R2 and δ = d.



Chapter 2

Convergence of Generalized

Pascal Triangles

As already mentioned in the introduction of this dissertation and also in

Chapter 1, there is a connection between the Pascal triangle (see Defini-

tion 1.41) and the Sierpiński gasket. In what follows, we explain how from

the first we can obtain the second. Let us consider the intersection of the
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(a) Portion of P. (b) Colored portion of P. (c) The Sierpiński gasket.

Figure 2.1: Relation between the classical Pascal triangle P and the

Sierpiński gasket.

lattice N2 with the region [0, 2n]2 for n ∈ N. Then the first 2n rows and

columns (
(
i
j

)
mod 2)0≤i,j<2n of the Pascal triangle modulo 2 provide a color-

ing of this lattice. If we normalize this region by a homothety of ratio 1/2n,

it is a folklore fact that we get a sequence in [0, 1]2 converging, with respect

to the Hausdorff distance, to the Sierpiński gasket when n tends to infinity.

33
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In Figure 2.1a are depicted the first 23 rows and columns of the Pascal tri-

angle P (note that we have already applied the adequate homothety so that

roughly, all the objects have the same size). Then in Figure 2.1b, we color in

black (resp., white) the squares corresponding to odd (resp., even) binomial

coefficients. When powers of 2 grow, the corresponding limit object is the

Sierpiński gasket in Figure 2.1c.

In a similar fashion, when the sequence (
(
i
j

)
)0≤i,j<pn is considered mod-

ulo ps where p is a prime number and s is a positive integer, then it also

converges, with respect to the Hausdorff distance, to some well-defined limit

object [vHPS92]. More precisely, in an analogous construction, each unit

square is colored in white or black depending on whether the corresponding

binomial coefficient is congruent to 0 modulo ps or not. For instance, the

limit object obtained for p = 2 and s = 2 (resp., p = 2 and s = 3) is drawn

in Figure 2.2a (resp., Figure 2.2b). Also note that p = 2 and s = 1 yield

the Sierpiński gasket (see Figure 2.1c). In [vHPS92], one can find several

geometrical and dynamical properties of the studied limit sets such as their

Hausdorff dimension.

(a) p = 2 and s = 2 (b) p = 2 and s = 3

Figure 2.2: Generalized Sierpiński gaskets.

Given an infinite language L over an alphabet A, one can wonder whether

a similar phenomenon occurs in the context of the generalized Pascal triangle

PL from Definition 1.42. One of the objectives of this second chapter is to

understand when such phenomena happen and to obtain a description of the

limit objects.

In a first (pedagogical) approach, we discuss in detail the base-2 case, i.e.,

when L = L2 and PL = P2 as in Example 1.43, and binomial coefficients
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modulo a prime number. In Section 2.2, we jump to any Parry–Bertrand

numeration system. We finish up with some open questions. The material

of this chapter is taken from [LRS16, Sti19].
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2.1.4 The Sierpiński Counterpart . . . . . . . . . . . . 54

2.1.5 Extension Modulo p . . . . . . . . . . . . . . . . 61

2.2 Results for Parry–Bertrand Numeration Systems . . . . . 64

2.2.1 The Prettiest (?) . . . . . . . . . . . . . . . . . . 65

2.2.2 Compact Sets Again . . . . . . . . . . . . . . . . 74

2.2.3 The Analogue of the Sierpiński Gasket . . . . . . 80

2.3 Open Questions . . . . . . . . . . . . . . . . . . . . . . . 91

2.1 Results in Base 2

In this section, we focus on the base-2 case. For all n ∈ N, the generalized

Pascal triangle P2 limited to words in L≤n2 has 2n rows and columns. They

can be seen as a region of R2. Let us consider a grid of unit squares at the

intersection of N2 and the region [0, 2n]2. The first 2n rows and columns((
rep2(i)

rep2(j)

)
mod 2

)
0≤i,j<2n

of the generalized Pascal triangle P2 modulo 2 yield a coloring of this grid.

This construction leads to the definition of a sequence (T 2
n )n≥0 of subsets

of R2 (see Definition 2.2 and Figure 2.4 for a picture of the cases where

n ∈ {3, 4}). If we normalize each T 2
n by a homothety of ratio 1/2n, we will

define a sequence (U2
n)n≥0 in [0, 1]2 (see Definition 2.6 and Figure 2.7 for a

picture of the cases where n ∈ {3, 4, 9}). Further, we show that this particular

sequence converges to an analogue of the Sierpiński gasket, denoted by L2,

with respect to the Hausdorff distance. We also describe the limit object

L2 (see Figure 2.15) as the topological closure of a union of segments that

satisfy a simple combinatorial property. As we will see, those segments are
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well understood since we precisely know their endpoints (see Definition 2.11).

The limit set L2 convinces us that these extended Pascal triangles contain

many interesting combinatorial and dynamical questions to consider.

For the sake of simplicity, we will mostly describe the coloring modulo 2.

In Section 2.1.5, we shortly discuss colorings modulo a prime number p (see

Figure 2.19 for coefficients congruent to 2 modulo 3).

Remark 2.1. In our construction, at each step, we exactly take 2n words

and a scaling (or normalization) factor of 1/2n. For instance, in [BvH03], the

authors discussed which sequences can be used as scaling factors for objects

related to automatic sequences. In particular, the Pascal triangle P modulo

pd is shown to be p-automatic in [AB97], where p is prime, d is an integer, and

the scaling sequence has to be of the form (pkn+j)n≥0 with j = 0, . . . , p− 1.

See the first question in Section 2.3.

2.1.1 Black & White Special Compact Sets

In this section, we define a subset T 2
n of [0, 2n]2 associated with the parity

of the first 2n × 2n binomial coefficients of P2. Afterwards, we prove in

Proposition 2.5 that there are exactly 3n pairs of words in L≤n2 having a non-

zero binomial coefficient. Each set T 2
n is then normalized by a factor 1/2n to

give birth to the sequence (U2
n)n≥0 of subsets in [0, 1]2 (see Definition 2.6).

One of our goals is to show that the sequence (U2
n)n≥0 converges with respect

to the Hausdorff distance.

For the purpose of this chapter, the numerical value valU of Defini-

tion 1.15 is extended to pairs of words in A∗U : we let valU (w,w′) denote

the pair (valU (w), valU (w′)) for all w,w′ ∈ A∗U .

Definition 2.2. Consider the sequence (T 2
n )n≥0 of sets in R2 defined for all

n ≥ 0 by

T 2
n =

⋃
u,v∈L≤n2

(uv)≡1 (mod 2)

val2(v, u) + [0, 1]2.

Observe that each T 2
n is a compact subset of [0, 2n]2.

Warning. As already mentioned in Chapter 1, we choose to draw our pic-

tures in the Cartesian coordinate system in two dimensions whose x-axis
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points rightward, and the y-axis points downward. This choice corresponds

to the indexation of tables associated with Pascal triangles; see Defini-

tions 1.41 and 1.42.

With this convention, for all n ≥ 0 and all u, v ∈ L≤n2 having an odd

binomial coefficient, the upper-left corner of the square region val2(v, u) +

[0, 1]2 in T 2
n associated with the pair (u, v) has coordinates (val2(v), val2(u))

as shown in Figure 2.3.

u

v
0

2n

2nval2(v)

val2(u)

Figure 2.3: Visualization of a square region in T 2
n indexed by u, v.

In the following example, we depict some sets T 2
n .

Example 2.3. Let us draw T 2
n for n ∈ {3, 4}. First, we have

L≤3
2 = {ε, 1, 10, 11, 100, 101, 110, 111}.

Using Table 1.4 from Chapter 1, one can identify the odd binomial coefficients

among all displayed values. They correspond to square units in T 2
3 that are

colored in black on the left side of Figure 2.4. In the same spirit, one can do

the same for n = 4. In this case, one has to consider words of length up to 4

in L2. Both sets T 2
3 and T 2

4 are drawn in Figure 2.4. By definition, observe

that T 2
4 is four times bigger than T 2

3 , and T 2
3 is in fact the left top portion

of T 2
4 of size 8× 8.
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Figure 2.4: The sets T 2
3 and T 2

4 .

In Table 2.5, we count the number of unit squares in T 2
n for the first

few values of n, and we compare this quantity to the number of positive

binomial coefficients of pairs of words in L≤n2 . For instance, using Table 1.4

or Figure 2.4, the first number for n = 3 is 22 and the second is 27. In

Proposition 2.5, we show that the number of positive binomial coefficients of

pairs of words in L≤n2 is in fact 3n. Before proving it, a lemma is needed.

0 1 2 3 4 5 6 7 8 9

# unit squares 1 3 8 22 62 166 458 1258 3510 9838

# positive coefficients 1 3 9 27 81 243 729 2187 6561 19683

Table 2.5: Number of unit squares in T 2
n compared to the number of positive

binomial coefficients of pairs of words in L≤n2 , for n = 0, . . . , 9.

Lemma 2.4. For all n ∈ N0, the number of pairs (u, v) ∈ Ln2×L≤n2 of words

having a positive binomial coefficient is equal to 2 · 3n−1.

Proof . For each positive integer n, define

Vn =

{
(x, y) ∈ N× N | 2n−1 ≤ y < 2n, 0 ≤ x ≤ y and

(
rep2(y)

rep2(x)

)
> 0

}
.

If (x, y) ∈ Vn, then rep2(y) is a word of length exactly n, i.e., belongs to

(L≤n2 \ L≤n−1
2 ) = Ln2 , and rep2(x) is a word in L≤n2 . Thus, #Vn corresponds
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to the number of pairs of words in Ln2 × L≤n2 having a positive binomial

coefficient. We prove the claim by induction on n ≥ 1. To that aim, we first

obtain a partition (2.2) of the set Vn, and then we show how to write Vn+1

in terms of the images of Vn under four maps (see (2.5)).

For all integers n ≥ 1 and m ≥ 0, consider the set

Xm,n =


∅, if m > n;

Vn ∩ ({0} × N), if m = 0;

Vn ∩ ([2m−1, 2m)× N), otherwise.

Notice that for m ≥ 1,

Xm,n =

{
val2(v, u) | u ∈ Ln2 , v ∈ Lm2 and

(
u

v

)
> 0

}
. (2.1)

Indeed, if m > n, then Xm,n = ∅, and the left-hand side of (2.1) is also the

empty set since u ∈ Ln2 and v ∈ Lm2 imply that |u| = n < m = |v| and then(
u
v

)
= 0. If m ≤ n, then the result follows from the fact that x ∈ [2m−1, 2m)

implies that rep2(x) ∈ Lm2 . We thus have the following partition

Vn =

n⋃
m=0

Xm,n. (2.2)

For all n ≥ 1 and m ≥ 0, the set Xm+1,n+1 can be obtained under trans-

formations of the sets Xm,n, Xm+1,n as follows (see (2.3)). Let us define the

functions f1, f2, f3 and f4 by

f1 : (x, y) ∈ N× N 7→ (2x, 2y) ∈ N× N,
f2 : (x, y) ∈ N× N 7→ (2x+ 1, 2y + 1) ∈ N× N,
f3 : (x, y) ∈ N× N 7→ (x, 2y) ∈ N× N,
f4 : (x, y) ∈ N× N 7→ (x, 2y + 1) ∈ N× N.

Using Lemma 1.38, we show that for all n ≥ 1 and m ≥ 0,

Xm+1,n+1 = f1(Xm,n) ∪ f2(Xm,n) ∪ f3(Xm+1,n) ∪ f4(Xm+1,n). (2.3)

We show the first inclusion in (2.3) and suppose that (x, y) ∈ Xm+1,n+1.

Then we can write rep2(x) = vv0 and rep2(y) = uu0 with v ∈ Lm2 , u ∈ Ln2
and v0, u0 ∈ {0, 1}. By Lemma 1.38, we have(

rep2(y)

rep2(x)

)
=

(
uu0

vv0

)
=

(
u

vv0

)
+ δu0,v0

(
u

v

)
.
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Since
(rep2(y)

rep2(x)

)
> 0, we must have either

(
u
vv0

)
> 0 or

(
u
v

)
> 0. In the first

case, val2(vv0, u) ∈ Xm+1,n, so

(x, y) = val2(vv0, uu0) ∈ f3(Xm+1,n) ∪ f4(Xm+1,n).

Proceeding similarly, if
(
u
v

)
> 0, then val2(v, u) ∈ Xm,n, so

(x, y) = val2(vv0, uu0) ∈ f1(Xm,n) ∪ f2(Xm,n).

We show the other inclusion in (2.3). Assume that (x, y) ∈ Xm,n. In par-

ticular, rep2(x) ∈ Lm2 and rep2(y) ∈ Ln2 . We have
(rep2(y)

rep2(x)

)
> 0, and by

Lemma 1.38, we deduce that for a ∈ {0, 1}(
rep2(2y + a)

rep2(2x+ a)

)
=

(
rep2(y)a

rep2(y)a

)
=

(
rep2(y)

rep2(x)a

)
+ δa,a

(
rep2(y)

rep2(x)

)
> 0,

implying that (2x, 2y) = f1(x, y) and (2x+1, 2y+1) = f2(x, y) both belong to

Xm+1,n+1. Finally, suppose that (x, y) ∈ Xm+1,n. Let us write rep2(x) = vb

with v ∈ Lm2 and b ∈ {0, 1}, and rep2(y) = v ∈ Ln2 . We have
(
u
vb

)
> 0, and

by Lemma 1.38, we get for a ∈ {0, 1}(
rep2(2y + a)

rep2(x)

)
=

(
ua

vb

)
=

(
u

vb

)
+ δa,b

(
u

v

)
> 0,

showing that (x, 2y) = f3(x, y) and (x, 2y+1) = f4(x, y) are both inXm+1,n+1.

In a similar fashion, one can prove that for all n ≥ 0

X0,n+1 = {0} × ([2n, 2n+1) ∩ N) = f3(X0,n) ∪ f4(X0,n). (2.4)

In the following, we establish that the set Vn+1 is the union of the sets

fi(Vn) for i ∈ {1, 2, 3, 4}. From the partition highlighted in (2.2), we get for

all n ≥ 1

Vn+1 =

n+1⋃
m=0

Xm,n+1 = X0,n+1 ∪
n+1⋃
m=1

Xm,n+1

= X0,n+1 ∪
n⋃

m=0

Xm+1,n+1.
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From (2.3) and (2.4), we thus obtain

Vn+1 = f3(X0,n) ∪ f4(X0,n)

∪
(

n⋃
m=0

f1(Xm,n) ∪ f2(Xm,n) ∪ f3(Xm+1,n) ∪ f4(Xm+1,n)

)

= f3(X0,n) ∪ f4(X0,n) ∪
(

n⋃
m=0

f1(Xm,n)

)
∪
(

n⋃
m=0

f2(Xm,n)

)

∪
(

n⋃
m=0

f3(Xm+1,n)

)
∪
(

n⋃
m=0

f4(Xm+1,n)

)
.

From (2.2) and for i ∈ {1, 2} , we know that

n⋃
m=0

fi(Xm,n) = fi

(
n⋃

m=0

Xm,n

)
= fi(Vn).

Recall that Xn+1,n = ∅, so for i ∈ {3, 4}, we find

n⋃
m=0

fi(Xm+1,n) = fi

(
n⋃

m=0

Xm+1,n

)
= fi

(
n+1⋃
m=1

Xm,n

)
= fi

(
n⋃

m=1

Xm,n

)
.

Putting everything together, we finally get

Vn+1 =f3(X0,n) ∪ f4(X0,n) ∪ f1(Vn) ∪ f2(Vn)

∪ f3

(
n⋃

m=1

Xm,n

)
∪ f4

(
n⋃

m=1

Xm,n

)

=f1(Vn) ∪ f2(Vn) ∪ f3

(
n⋃

m=0

Xm,n

)
∪ f4

(
n⋃

m=0

Xm,n

)
=f1(Vn) ∪ f2(Vn) ∪ f3(Vn) ∪ f4(Vn), (2.5)

where (2.2) is used in the last equality.

We now prove that #Vn = 2 · 3n−1 by induction on n ≥ 1. The result is

clear for n = 1 since V1 = {(0, 1), (1, 1)}. Let us suppose it holds up to n ≥ 1,

and let us prove it for n+ 1. First, observe that f1(Vn) ∩ f2(Vn) = ∅ (resp.,

f3(Vn) ∩ f4(Vn) = ∅) for the second component of pairs in f1(Vn) (resp.,

f3(Vn)) is even, and the second component of pairs in f2(Vn) (resp., f4(Vn))

is odd. Furthermore, if (x, y) ∈ Vn, then exactly one of the two elements

f3(x, y) and f4(x, y) belongs to f1(Vn) ∪ f2(Vn). Indeed, suppose that (x, y)
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belongs to Vn. If x ∈ {0, 1}, then (bx/2c, y) = (0, y) also belongs to Vn.

Hence, f1(0, y) = (0, 2y) and f2(0, y) = (1, 2y + 1) are in f1(Vn) ∪ f2(Vn). If

x > 1, write rep2(y) = u, rep2(x) = vb with u, v ∈ L2 and b ∈ {0, 1}. We

have rep2(bx/2c) = v, thus if vb is a scattered subword of u, so is v. This

shows that (bx/2c, y) also belongs to Vn. Finally, exactly one of the following

two equalities is satisfied (depending on the parity of x):

f3(x, y) = f1(bx/2c, y) or f4(x, y) = f2(bx/2c, y).

From (2.5), we thus get

#Vn+1 =#(f1(Vn) ∪ f2(Vn)) + #(f3(Vn) ∪ f4(Vn))

−#((f1(Vn) ∪ f2(Vn)) ∩ (f3(Vn) ∪ f4(Vn)))

=
4∑
i=0

#fi(Vn)−#Vn =
4∑
i=0

#Vn −#Vn

=3#Vn = 2 · 3n,

where the last equality comes from the induction hypothesis.

Proposition 2.5. For all n ∈ N, the number of pairs of words in L≤n2 having

a positive binomial coefficient is equal to 3n.

Proof . For n = 0, we have L≤n2 = {ε}, and since
(
ε
ε

)
= 1, the result holds.

As in the proof of Lemma 2.4, define for all i ≥ 1

Vi =

{
(x, y) ∈ N× N | 2i−1 ≤ y < 2i, 0 ≤ x ≤ y and

(
rep2(y)

rep2(x)

)
> 0

}
,

and set V0 = {(0, 0)}. The number of positive binomial coefficients of pairs

of words in L≤n2 is then

n∑
i=0

#Vi = #V0 +
n∑
i=1

#Vi.

By Lemma 2.4, this gives

n∑
i=0

#Vi = 1 +
n∑
i=1

2 · 3i−1 = 1 + 2 ·
n−1∑
i=0

3i = 1 + 2 · 3n − 1

3− 1
= 3n,

as expected.
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In the following definition, we normalize each set T 2
n by a factor 1/2n to

obtain a sequence of compact subsets in [0, 1]2.

Definition 2.6. Let (U2
n)n≥0 be the sequence of compact sets in [0, 1]2 de-

fined for all n ≥ 0 by

U2
n =

1

2n
T 2
n .

By Definition 2.2, each pair (u, v) of words of length at most n with an

odd binomial coefficient gives rise to a square region in T 2
n , so it does in

U2
n too. More accurately, we have the following situation. Let n ≥ 0 and

u, v ∈ L≤n2 such that
(
u
v

)
≡ 1 (mod 2). We have

val2(v, u) + [0, 1]2 ⊂ T 2
n

implying

1

2n
val2(v, u) +

[
0,

1

2n

]2

= (0.0n−|v|v, 0.0n−|u|u) +

[
0,

1

2n

]2

⊂ U2
n

as depicted in Figure 2.6. Recall that if w = wn · · ·w0 is a finite word

over {0, 1}, the notation 0.w has to be understood as the real number∑n
j=0wj2

j−n−1 (see Definition 1.19 with β = 2).

u

v
0

1

10.0n−|v|v

0.0n−|u|u

Figure 2.6: Visualization of a square region in U2
n.

In Figure 2.7, we have depicted the sets U2
3 , U2

4 and U2
9 . Notice that

segments of slopes 1, 2, 22, . . . seem to appear in U2
9 . This is a key observation

for our discussion.
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Figure 2.7: The sets U2
3 , U2

4 and U2
9 .

Our aim is to prove that the sequence (U2
n)n≥0 of compact subsets of

[0, 1]2 converges with respect to the Hausdorff distance, and to provide a

description of the limit set L2. This description will be referred to as the

(?) condition, which is at the heart of our reasonings. Notice that it will be

generalized in Section 2.1.5 to take into account the situation modulo p.

2.1.2 Twinkle, Twinkle Little (?)

Let us roughly describe the basic idea behind the (?) condition. Some pairs

of words (u, v) ∈ L2 × L2 have the property that not only
(
u
v

)
≡ 1 (mod 2)

but also
(
uw
vw

)
≡ 1 (mod 2) for all words w ∈ {0, 1}∗. As an obvious example,

take u = v ∈ L2; less trivial examples can be found in Example 2.8. Such a

property creates a particular pattern occurring in U2
n for all n ≥ |u|, as we

will see further on.

Definition 2.7. Let (u, v) ∈ L2 × L2. We say that (u, v) satisfies the (?)

condition or simply (?) if (u, v) 6= (ε, ε),(
u

v

)
≡ 1 (mod 2),

(
u

v0

)
= 0 and

(
u

v1

)
= 0.

Note that if (u, v) satisfies (?), then |v| ≤ |u|, and(
u

vw

)
= 0

for all non-empty words w.

Example 2.8. In Table 2.8, one can find some pairs (u, v) ∈ L2 × L2 satis-

fying (?).



2.1. Results in Base 2 45

u 1 101 1001 1101 1110

v 1 11 11 111 10

Table 2.8: Some pairs of words in L2 satisfying (?).

The following lemma shows that if a pair of words satisfies (?), then

adding the same letter at the end of both words creates a pair that also

satisfies (?). To the contrary, adding distinct letters gives a zero binomial

coefficient.

Lemma 2.9. If (u, v) ∈ L2×L2 satisfies (?), then both (u0, v0) and (u1, v1)

satisfy (?). Furthermore, the binomial coefficients of the pairs (u0, v1) and

(u0, v1) are equal to 0.

Proof . For the first part of the statement, we only treat (u0, v0) ∈ L2 × L2

since the other case is similar. First, the fact that
(
u0
v0

)
≡ 1 (mod 2) directly

follows from Lemma 1.38 and from the hypothesis. Now we proceed by

contradiction. If
(
u0
v00

)
> 0 or

(
u0
v01

)
> 0, then v00 or v01 is a scattered

subword of u0. In both cases, we conclude that v0 must appear as a scattered

subword of u, contradicting the assumption.

The second part of the statement follows by Lemma 1.38 and by the fact

that (u, v) satisfies (?).

The previous lemma implies that a particular pattern occurs in U2
n for all

n sufficiently large.

Remark 2.10. Let (u, v) be a pair of words in L2 satisfying (?) such that

0 ≤ |v| ≤ |u| = `. Then (0.0`−|v|v, 0.u) + [0, 1/2`]2 ⊂ U2
` . As a consequence

of Lemma 2.9, (u, v), (u0, v0) and (u1, v1) have an odd binomial coefficient

and thus correspond to square regions in U2
`+1, i.e.,

{(0.0`+1−|v|v, 0.0u), (0.0`−|v|v0, 0.u0), (0.0`−|v|v1, 0.u1)}+

[
0,

1

2`+1

]2

⊂ U2
`+1.

Note that (u0, v1) and (u1, v0) do not give any square region in U2
`+1 since

their binomial coefficients are equal to 0 by Lemma 2.9. Iterating this argu-
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ment yields, for all n ≥ 0,

⋃
w∈{0,1}≤n

(0.0`+n−|w|−|v|vw, 0.0n−|w|uw) +

[
0,

1

2`+n

]2

⊂ U2
`+n.

Again, observe that the pair (uw, vw′) with w,w′ ∈ {0, 1}≤n, w 6= w′ and

|w| = |w′| has a zero binomial coefficient. Indeed, let us proceed by induction

on |w| = |w′| to prove the claim. If w and w′ are distinct letters, then it

is true by Lemma 2.9. If w = ta and w′ = t′b with a 6= b in {0, 1} and

if
(
uw
vw′

)
=
(
ut
vt′b

)
> 0, then there would exist a letter c ∈ {0, 1} such that

vc is a scattered subword of u, contradicting the (?) condition. If w = ta

and w′ = t′a with t, t′ ∈ {0, 1}∗, t 6= t′ and |t| = |t′| and a ∈ {0, 1}, then(
uw
vw′

)
=
(
ut
vt′a

)
+
(
ut
vt′

)
> 0. The first binomial coefficient is 0 otherwise it

violates the (?) condition, and the second is 0 by induction hypothesis. As a

consequence, the considered pair (uw, vw′) does not induce a square region

in U2
`+n.

As an example, consider the pair (101, 11) satisfying (?) (see Table 2.8).

The associated square region in U2
3 is of size 1/8 and its upper-left corner has

coordinates (val2(11)/23, val2(101)/23) = (3/8, 5/8). This one black square

is divided into two black squares of size 1/16 in U2
4 , and then four black

squares of size 1/32 in U2
5 . The corresponding squares in U2

3 , U2
4 and U2

5 are

showed in Figure 2.9.

Figure 2.9: The pair (101, 11) satisfying (?) in U2
3 ,U2

4 ,U2
5 .

At this stage, observe that the sequence of squares

⋃
w∈{0,1}n

(0.0`−|v|vw, 0.uw) +

[
0,

1

2`+n

]2

⊂ U2
`+n
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roughly tends to the diagonal of the initial square (0.0`−|v|v, 0.u) + [0, 1/2`]2

with respect to the Hausdorff distance (see, for instance, what happens in

Figure 2.9). This particular pattern will be used in the next section, where

we build another sequence of compact sets.

2.1.3 New Compact Sets

Inspired by the previous remark, we first define a closed segment associated

with a pair of words, and then an initial compact set A2
0; see Definitions 2.11

and 2.12. Roughly, this compact set contains segments of slope 1, some of

which notably appear in U2
9 in Figure 2.7. Modifying A2

0 with the help of

two maps leads to the definition of a sequence (A2
n)n≥0 of compact sets; see

Definition 2.15. Again, the idea behind this construction is that A2
n contains

segments of slopes 1, 2, 22, . . . , 2n, some of which are particularly depicted in

U2
9 in Figure 2.7.

Definition 2.11. Let (u, v) in L2×L2 be such that 1 ≤ |v| ≤ |u|. We define

a closed segment Su,v of slope 1 and of length
√

2 · 2−|u| in [0, 1] × [1/2, 1].

The endpoints of Su,v are given by

Au,v = (0.0|u|−|v|v, 0.u) and Bu,v = (0.0|u|−|v|v + 2−|u|, 0.u+ 2−|u|).

Note that if we allow infinite binary expansions ending with ones, we have

Bu,v = (0.0|u|−|v|v111 · · · , 0.u111 · · · ).

Observe that Su,v is included in [1/2|u|−|v|+1, 1/2|u|−|v|]× [1/2, 1].

Definition 2.12. We let A2
0 be the following compact set⋃

(u,v)
satisfying(?)

Su,v,

which is the closure of a countable union of segments of slope 1.

Notice that Definition 2.11 implies that A2
0 ⊂ [0, 1]×[1/2, 1]. Also observe

that the union is not disjoint as some segments are included in others. For in-

stance, S10,10 ⊂ S1,1 since A1,1 = (1/2, 1/2), B1,1 = (1, 1), A10,10 = (1/2, 1/2)

and B10,10 = (3/4, 3/4).
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Example 2.13. In Figure 2.10, each segment Su,v is represented for all pairs

(u, v) of words satisfying (?) with |u| ≤ 6. For instance, the segment of origin

(1/2, 1/2) and length
√

2/2 comes from the pair of words (1, 1) satisfying

(?). Now consider the pair (1101, 111) satisfying (?). Its associated segment

S1101,111 is depicted in red: it has origin (7/16, 13/16) ' (0.4375, 0.8125) and

length
√

2/16.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2.10: An approximation of A2
0 computed with words of length ≤ 6.

Remark 2.14. In the definition of A2
0, we take the closure of a union to

ensure the compactness of the set. In the following, we build a limit point

that does not belong to the union of segments but to the closure A2
0.

First, the point (1/32, 1/2) does not belong to the union of segments. Let

us proceed by contradiction, and suppose there exist words u, v, w in {0, 1}∗
such that (u, v) satisfies (?), 1/2 = 0.uw, and 1/32 = 0.0|u|−|v|vw. Then u, v

both belong to 10∗, but the (?) condition implies u = v. This is impossible.

For all n ≥ 0 and all r ∈ {0, 1, . . . , 7}, the pair (108n+4+r1, 108n+r1)
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satisfies (?) if and only if 0 ≤ r ≤ 3. Indeed, observe that(
108n+4+r1

108n+r1

)
=

(
8n+ 4 + r

8n+ r

)
.

First assume that 0 ≤ r ≤ 3, and let rep2(n) = nk · · ·n0 and val2(r1r0) = r

with r0, r1 ∈ {0, 1}. Then we have rep2(8n + 4 + r) = nk · · ·n01r1r0 and

rep2(8n+ r) = nk · · ·n00r1r0. From Theorem 1.40, we find(
8n+ 4 + r

8n+ r

)
≡
(
nk
nk

)
· · ·
(
n0

n0

)(
1

0

)(
r1

r1

)(
r0

r0

)
(mod 2) ≡ 1 (mod 2).

It is also easy to see that(
108n+4+r1

108n+r10

)
= 0 and

(
108n+4+r1

108n+r11

)
= 0.

Now, if 4 ≤ r ≤ 7, then

rep2(r) ∈ {100, 101, 110, 111} and rep2(4 + r) ∈ {1000, 1001, 1010, 1011}.

When applying Theorem 1.40, the corresponding product contains a factor(
0
1

)
, which is equal to 0, and the result is thus even.

For all n ≥ 0 and all r ∈ {0, 1, 2, 3}, define m = 8n + 6 + r ≥ 6, and set

um = 10m−21 and vm = 10m−61. We know that the pair (um, vm) satisfies

(?). The origin Aum,vm of the associated segment Sum,vm is equal to

Aum,vm = (0.04vm, 0.um) = (0.0410m−61, 0.10m−21)

= (1/32 + 1/2m, 1/2 + 1/2m).

We have at our hand a sequence of segments Sum,vm in A2
0 with one endpoint

being of the form (1/32 + 1/2m, 1/2 + 1/2m, ) with m ≥ 6. Thus, the point

(1/32, 1/2) is an accumulation point of A2
0, as desired.

In what follows, we illustrate the previous reasoning. For n ∈ {0, 1} and

r ∈ {0, 1, 2, 3}, we have m ∈ {6, 7, 8, 9, 14, 15, 16, 17}, and the coordinates

of the origin Aum,vm of Sum,vm are displayed in Table 2.11. In Figure 2.12,

we have represented the segments corresponding to those values. Note that,

as m increases, the length of um also increases and the segments become

shorter.

In the following, we transform A2
0 under iterations of two maps to create

a new sequence of nested compact sets.
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m 6 7 8 9

Aum,vm ( 3
64 ,

33
64) ( 5

128 ,
65
128) ( 9

256 ,
129
256) ( 17

512 ,
257
512)

m 14 15 16 17

Aum,vm ( 513
16384 ,

8193
16384) ( 1025

32768 ,
16385
32768) ( 2049

65536 ,
32769
65536) ( 4097

131072 ,
65537
131072)

Table 2.11: Origins of the segments Sum,vm for m ∈ {6, 7, 8, 9, 14, 15, 16, 17}.

Definition 2.15. We let c denote the homothety of center (0, 0) and ratio

1/2, and we consider the map h : (x, y) 7→ (x, 2y). For all n ≥ 0, we define

the compact set

A2
n =

⋃
0≤i≤n
0≤j≤i

hj(ci(A2
0)).

Observe that the application of the map c to a segment does not change its

slope whereas h multiplies it by 2. Consequently, since A2
0 contains segments

of slope 1, A2
n then contains segments of slopes 1, 2, 22, . . . , 2n for all n ≥ 0.

Also note that, by definition, the sequence (A2
n)n≥0 is increasingly nested,

i.e., it satisfies

A2
0 ⊂ A2

1 ⊂ A2
2 ⊂ · · · .

Example 2.16. Recall that A2
0 ⊂ [0, 1]× [1/2, 1]. In Figure 2.13, the region

R = [0, 1] × [1/2, 1] containing A2
0 is depicted in gray. Then we apply c

and h ◦ c to R, respectively giving the two regions [0, 1/2] × [1/4, 1/2] and

[0, 1/2]× [1/2, 1] in red. The union of the gray and red regions contains A2
1.

Finally, we apply c2, h ◦ c2 and h2 ◦ c2 to R to draw the three blue regions.

The compact set A2
2 lies into the union of the gray, red and blue regions.

Let us now take a more precise example. In Figure 2.14, we have depicted

two original segments in A2
0 (in black), then one application of c possibly

followed by h (in red), then a second application of c followed by at most 2

applications of h (in blue).

With the help of Figure 2.13, it is not too difficult to see that

A2
m ∩ ([1/2m+1, 1]× [0, 1]) = A2

n ∩ ([1/2m+1, 1]× [0, 1]) (2.6)

for all m,n ∈ N with m ≤ n. Roughly, the region [1/2m+1, 1] × [0, 1] gets
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Figure 2.12: A zoom on A2
0 in [17/29, 1/24] × [257/29, 17/25] and in the

smaller area [4097/217, 257/213]× [65537/217, 4097/213].



52 Chapter 2. Convergence of Generalized Pascal Triangles

0

1

1

A2
0

c(A2
0)

h(c(A2
0))

c2(A2
0)

h
(c

2
(A

2 0
))

h
2
(c

2
(A

2 0
))

h

c

c

Figure 2.13: Two applications of c and h from A2
0.

11
2

1
4

1
8

- 1
2

- 3
4

-1

Figure 2.14: A subset of A2
2.

stabilized in A2
n as soon as n ≥ m. For our needs, we show that a particular

segment is in the sequence (A2
n)n≥0.

Lemma 2.17. For all n ≥ 0, the segment with endpoints (1/22n+1, 1/2n+1)

and (1/2n, 1) is included in A2
2n.
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Proof . Since the pair (1, 1) ∈ L2 × L2 satisfies (?), the segment S1,1 with

endpoints A1,1 = (1/2, 1/2) and B1,1 = (1, 1) is included in A2
0. By def-

inition, the segment hn(cn+i(S1,1)) with endpoints (1/2n+i+1, 1/2i+1) and

(1/2n+i, 1/2i) is in A2
n+i for all n ≥ 0 and all i ≥ 0 (note that applying hn

after cn+i annihilates the division by 2n on the second component). Since

A2
n ⊂ · · · ⊂ A2

2n, the union of segments

S =
n⋃
i=0

hn(cn+i(S1,1))

is included in A2
2n. Observe that

hn(cn+i(A1,1)) = (1/2n+i+1, 1/2i+1) = hn(cn+i+1(B1,1))

for all i ∈ {0, . . . , n−1}, so S is in fact a continuous segment with endpoints

(1/22n+1, 1/2n+1) and (1/2n, 1) that is inside A2
2n.

Applying Proposition 1.60 to the sequence (A2
n)n≥0 gives the following

definition1.

Definition 2.18. We let L2 =
⋃
n≥0A2

n denote the compact limit of the

sequence (A2
n)n≥0 of compact sets.

In particular, observe that each A2
n is a subset of L2. In the following

example, we draw an approximation of L2.

Example 2.19. We take all the pairs of words in L2 of length at most

8. Among them, those satisfying (?) create 1369 different segments in A2
0.

By definition, their length is at least
√

2/28, so we are missing segments of

length ≤
√

2/29. Afterwards, we apply the maps hj(ci(·)) to those segments

for 0 ≤ j ≤ i ≤ 4 in order to obtain an approximation of A2
4 in Figure 2.15.

Consequently, except the segments of length ≤
√

2/29, their images and

accumulation points, we have an exact image of L2 inside [1/32, 1] × [0, 1]

(recall the stabilization from (2.6)).

1In [LRS16], we showed in a different way that this definition makes sense: we proved

that (A2
n)n≥0 is a Cauchy sequence, which always converges in a complete metric space.
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1
0

-1

Figure 2.15: An approximation of the limit set L2.

2.1.4 The Sierpiński Counterpart

Now we will show that the sequence (U2
n)n≥0 of compact subsets of [0, 1]2

converges to L2 with respect to the Hausdorff distance, i.e., the Hausdorff

distance between U2
n and L2 tends to 0 as n goes to infinity. This is done in

two parts. The first is to show that, when ε is a positive real number, then

U2
n ⊂ [L2]ε for all sufficiently large n ∈ N. Secondly, we will need to prove

that L2 ⊂ [U2
n]ε for all sufficiently big n ∈ N. Putting these two arguments

together gives dh(U2
n,L2) < ε for all large enough n ∈ N.

Lemma 2.20. Let ε > 0. For all big enough n ∈ N, we have U2
n ⊂ [L2]ε.

Proof . Let ε > 0, choose n ∈ N, and pick (x, y) ∈ U2
n. To prove the claim,

we exhibit a point B ∈ L2 such that d((x, y), B) < ε if n is large enough.



2.1. Results in Base 2 55

By definition, there exists (u, v) ∈ L2 × L2 such that
(
u
v

)
≡ 1 (mod 2),

|u| ≤ n and (x, y) ∈ A + [0, 1/2n]2, where A = (0.0n−|v|v, 0.0n−|u|u) is the

upper-left corner of the previous square region in U2
n. In particular, observe

that d((x, y), A) ≤
√

2 · 2−n.

Assume first that (u, v) satisfies (?). By Definition 2.12, the segment

Su,v is in A2
0. Now apply n − |u| times the homothety c to it. By Defini-

tion 2.15, the segment cn−|u|(Su,v) is in A2
n−|u|, thus also in L2 by definition.

In particular, A = cn−|u|(Au,v) ∈ L2 and

d((x, y), A) ≤
√

2 · 2−n < ε,

if n is big enough. We can choose B = A.

Now assume that (u, v) does not satisfy (?). Since
(
u
v

)
is odd, either u

and v are non-empty words, or u is non-empty and v = ε, or they are both

empty.

First, assume that u is non-empty and v = ε. The point A is on the

vertical line of equation x = 0 and its y-coordinate varies in [1/2n, 1]. By

Lemma 2.17, the segment S with endpoints (1/22n+1, 1/2n+1) and (1/2n, 1)

is inside A2
2n, and also in L2. Since the segment S passes through the square

A + [0, 1/2n]2, there exists a point B ∈ S ⊂ L2 that also belongs to the

square A+ [0, 1/2n]2 such that d((x, y), B) ≤
√

2 · 2−n. Thus, we can choose

n sufficiently big such that d((x, y), B) < ε.

As a second case, if u = ε = v, then A = (0, 0), and a reasoning similar

to the one developed above allows us to conclude.

Finally, suppose that u and v are non-empty. The idea is to find k ∈ N
such that the pair (u02k1, v02k1) of words satisfies (?), and then apply the

argument of the first part of the proof. Let
(
u
v

)
= r. For each occurrence of v

in u, we count the total number of zeroes after it. We thus define a sequence

of non-negative integer indices

|u| − |v| ≥ i1 ≥ i2 ≥ · · · ≥ ir ≥ 0

corresponding to the number of zeroes following the first, the second, ..., the

rth occurrence of v in u. In Table 2.16, we illustrate the argument with

u = 100010 and v = 10 for which r = 5 (note that on the first row of the

table, the occurrence of v in u that is considered is written in bold).

Now let k be a non-negative integer such that 2k > |u|. We get(
u02k1

v02k1

)
=

r∑
`=1

(
2k + i`

2k

)
.
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100010 100010 100010 100010 100010

` 1 2 3 4 5

i` 3 2 1 0 0

Table 2.16: Number of zeroes after each occurrence of v = 10 in u = 100010.

Indeed, for each ` ∈ {1, . . . , r}, write u = pw where the last letter of p is

the last letter of v and |w|0 = i`. With the `th occurrence of v, we obtain

occurrences of v02k1 in u02k1 by choosing 2k zeroes among the 2k + i` zeroes

available in w02k1. Moreover, since 2k > |u|, it is not possible to have any

other occurrence of v02k1 in u02k1. From Theorem 1.40,(
2k + i`

2k

)
≡ 1 (mod 2)

for all ` ∈ {1, . . . , r}, so since r is odd, we get(
u02k1

v02k1

)
≡ 1 (mod 2).

It is easy to check that the pair (uk, vk) = (u02k1, v02k1) of words satisfies

(?): the first two conditions of (?) are already fulfilled, while the last two

follow from the fact that the block of zeroes is of length 2k > |u|. As in

the first part of the proof, the segment Suk,vk is inside A2
0, so the segment

cn−|u|(Suk,vk) of origin A′uk,vk = cn−|u|(Auk,vk) is in A2
n−|u| ⊂ L2. Hence

d((x, y), A′uk,vk) ≤ d((x, y), A) + d(A,A′uk,vk) ≤
√

2 · 2−n +
d(Au,v, Auk,vk)

2n−|u|
.

Since d(Au,v, Auk,vk) =
√

2 · 2−|u|−2k−1, we find

d((x, y), A′uk,vk) ≤
√

2 · 2−n+1 < ε,

if n is large enough. In this case, we may choose B = A′uk,vk .

Given ε > 0, it remains to show that L2 ⊂ [U2
n]ε for all sufficiently large

n ∈ N. Before getting to this result, an extra lemma is needed, whose main

idea is that if
(
u
vb

)
is odd for a letter b, then we can find a letter a such

that
(
ua
vb

)
is also odd (this observation turns out to be useful in the proof of

Lemma 2.22).
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v v0 v1

u 0 0 0

u0 0 0

u1 0 0

v v0 v1

u 0 0 1

u0 0 1

u1 0 1

v v0 v1

u 0 1 0

u0 1 0

u1 1 0

v v0 v1

u 0 1 1

u0 1 1

u1 1 1

v v0 v1

u 1 0 0

u0 1 0

u1 0 1

v v0 v1

u 1 0 1

u0 1 1

u1 0 0

v v0 v1

u 1 1 0

u0 0 0

u1 1 1

v v0 v1

u 1 1 1

u0 0 1

u1 1 0

Table 2.17: Residues modulo 2 of
(
ua
vb

)
as a function of the residues modulo

2 of
(
u
v

)
and

(
u
vb

)
.

Lemma 2.21. Let u, v be words in L2. If
(
u
vb

)
≡ 1 (mod 2) for a letter

b ∈ {0, 1}, then there exists a letter a ∈ {0, 1} such that
(
ua
vb

)
≡ 1 (mod 2).

Proof . This result follows from Lemma 1.38 and Table 2.17 that displays the

values modulo 2 of the binomial coefficients
(
ua
vb

)
for all a, b ∈ {0, 1} when

the values modulo 2 of the binomial coefficients
(
u
v

)
and

(
u
vb

)
with b ∈ {0, 1}

are known.

In the following lemma, we show that the distance between a given point

of L2 and terms of the sequence (U2
n)n≥0 of large indices can get as small

as one wants. Recall that our goal is in fact to prove that L2 ⊂ [U2
n]ε for

all sufficiently large n ∈ N. Thus, afterwards, we will need to permute the

quantifiers to show that the Hausdorff distance between L2 and U2
n is small

when n gets big. This will be possible by using the compactness of L2; see

the proof of Theorem 2.24.

Lemma 2.22. Let ε > 0. For all (x, y) ∈ L2, there exists N such that for

all n ≥ N , d((x, y),U2
n) < ε.

Proof . Let ε > 0 and let (x, y) ∈ L2. Since (A2
n)n≥0 converges to L2 with

respect to the Hausdorff distance, there exist N1 ∈ N and (x′, y′) ∈ A2
N1

such

that,

d((x, y), (x′, y′)) < ε/4.
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By definition of A2
N1

, there exist integers i, j such that 0 ≤ j ≤ i ≤ N1 and

(x′0, y
′
0) ∈ A2

0 such that

hj(ci((x′0, y
′
0))) = (x′, y′).

By definition of A2
0, there exist a pair (u, v) ∈ L2 × L2 satisfying (?) and

(x′′0, y
′′
0) ∈ Su,v such that

d((x′0, y
′
0), (x′′0, y

′′
0)) < ε/4.

Since j ≤ i, we have

d((x′, y′), hj(ci((x′′0, y
′′
0)))) = d(hj(ci((x′0, y

′
0))), hj(ci((x′′0, y

′′
0))))

≤ d((x′0, y
′
0), (x′′0, y

′′
0))

< ε/4.

Consequently, we get that

d((x, y), hj(ci((x′′0, y
′′
0)))) ≤ d((x, y), (x′, y′)) + d((x′, y′), hj(ci((x′′0, y

′′
0))))

< ε/2. (2.7)

In the second part of the proof, we will show that

d(hj(ci((x′′0, y
′′
0))),U2

n) < ε/2

for all sufficiently large n. We will make use of the constants i, j and words

u, v given above.

Let n ≥ 0. Since (u, v) ∈ L2 × L2 satisfies (?), iteratively applying

Lemma 2.9 shows that the pair (uw, vw) satisfies (?) for all words w ∈ {0, 1}∗
of length n, . . . , n + i. Those pairs correspond to square regions in U2

n+i+|u|
located on the segments c`(Su,v) for 0 ≤ ` ≤ i; this can be seen in Figure 2.18

(to draw this picture, we choose i = 2). In particular, for a word w of length

n, then
(
uw
vw

)
≡ 1 (mod 2), and by Lemma 2.21, at least one of the two

binomial coefficients
(
uw0
vw

)
,
(
uw1
vw

)
is odd (roughly, in Table 2.17, under a

value 1, there is always at least a value 1). Iterating this argument j times,

we conclude that at least one of the 2j binomial coefficients of the form
(
uwz
vw

)
,

with z ∈ {0, 1}j , is odd for all 0 ≤ j ≤ i. In other words, at least one of the

square regions

(0.0i+|u|−|v|vw, 0.0i−juwz)+

[
0,

1

2n+i+|u|

]2

, 0 ≤ j ≤ i and z ∈ {0, 1}j , (2.8)
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is a subset of U2
n+i+|u| (recall |vw| ≤ |uwz| = |u|+ n+ j ≤ |u|+ n+ i). We

observe that each of the square regions of the form (2.8) is intersected by

hj(ci(Su,v)). Indeed, the latter segment has slope 2j and

(0.0i+|u|−|v|v, 0.0i−ju) and (0.0i+|u|−|v|v111 · · · , 0.0i−ju111 · · · )

as endpoints. This can be visualized in Figure 2.18 where each rectangular

gray region contains at least one square region from U2
n+i+|u|. Consequently,

every point of hj(ci(Su,v)) is at distance at most 2j/2n+i+|u| from a point

in U2
n+i+|u|. In particular, this holds for hj(ci((x′′0, y

′′
0))). We now choose N2

such that 2j/2N2+i+|u| < ε/2. Hence, for all n ≥ N2 + i+ |u|,

d(hj(ci((x′′0, y
′′
0))),U2

n) < ε/2. (2.9)

To conclude the proof, for all n ≥ N2 + i + |u|, we have d((x, y),U2
n) < ε

from (2.7) and (2.9).

u0n
v0n

u0n+1

v0n+1

u0n+2

v0n+2

u1n+2

v1n+2

u1n+1

v1n+1

u1n

v1n

Su,v

0
1

1

2−(n+i+|u|)

c(Su,v)

h(c(Su,v))

c2(Su,v)

h(c2(Su,v))

h2(c2(Su,v))

Figure 2.18: Situation occurring in the proof of Lemma 2.22.

The next result follows with no difficulty.
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Corollary 2.23. Let (u, v) ∈ L2 × L2 satisfying (?) and let 0 ≤ j ≤ i.

For every point (f, g) of the segment hj(ci(Su,v)), there exists a sequence

((fn, gn))n≥0 converging to (f, g) such that (fn, gn) ∈ U2
n for all n ≥ 0.

Proof . Let (f, g) be a point of the segment hj(ci(Su,v)). By definition, this

point belongs to L2. Let ε > 0. From Lemma 2.22, we have

d((f, g),U2
m) < ε

for all sufficiently large m. When m is big enough, pick (fm, gm) ∈ U2
m

such that d((f, g), (fm, gm)) < ε. Consequently, we can build a sequence

((fn, gn))n≥0 converging to (f, g) such that (fn, gn) ∈ U2
n for all n ≥ 0.

We are ready to prove the main result of this section.

Theorem 2.24. The sequence (U2
n)n≥0 converges to L2 with respect to the

Hausdorff distance.

Proof . Let ε > 0. From Lemma 2.20, it suffices to show that L2 ⊂ [U2
n]ε for

all sufficiently large n ≥ 0. For all (x, y) ∈ L2, using Corollary 2.23, there

exists a (Cauchy) sequence ((fi(x, y), gi(x, y))i≥0 such that (fi(x, y), gi(x, y))

belongs to U2
i for all i, and there exists N(x,y) such that, for all i, j ≥ N(x,y),

d((fi(x, y), gi(x, y)), (fj(x, y), gj(x, y))) < ε/2 (2.10)

and

d((fi(x, y), gi(x, y)), (x, y)) < ε/2. (2.11)

From (2.11), we trivially have

L2 ⊂
⋃

(x,y)∈L2
B((fN(x,y)

(x, y), gN(x,y)
(x, y)), ε/2).

Since L2 is compact, we can extract a finite covering: there exist a positive

integer k and (x1, y1), . . . , (xk, yk) in L2 such that

L2 ⊂
k⋃
j=1

B((fN(xj,yj)
(xj , yj), gN(xj,yj)

(xj , yj)), ε/2).

Let N = maxj=1,...,kN(xj ,yj). For all j ∈ {1, . . . , k} and all n ≥ N , we deduce

from (2.10) that

B((fN(xj,yj)
(xj , yj), gN(xj,yj)

(xj , yj)), ε/2) ⊂ B((fn(xj , yj), gn(xj , yj), ε),
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and therefore

L2 ⊂
k⋃
j=1

B((fn(xj , yj), gn(xj , yj)), ε) ⊂ [U2
n]ε,

as expected.

2.1.5 Extension Modulo p

In Section 2.1.4, similarly to the construction of the Sierpiński gasket, we

proved that colored sub-blocks (U2
n)n≥0 of the generalized Pascal triangle

P2 tends to L2 with respect to the Hausdorff distance (see Theorem 2.24).

For the sake of simplicity, the presentation was restricted to the case of odd

binomial coefficients. Nevertheless, the reasonings, constructions and results

can be adapted to the more general setting of congruences modulo a prime

p. Note that since we make use of Lucas’ theorem (that is, Theorem 1.40),

we limit ourselves to congruences modulo a prime. In this section, we briefly

sketch the main differences with the case p = 2.

First, we can extend Definition 2.2, and introduce the corresponding sets

U2
n,p,r as in Definition 2.6.

Definition 2.25. Let p be a fixed prime number, and let r ∈ {1, . . . , p− 1}
be a positive residue. Consider the sequence (T 2

n,p,r)n≥0 of sets in R2 defined

for all n ≥ 0 by

T 2
n,p,r =

⋃
u,v∈L≤n2

(uv)≡r (mod p)

val2(v, u) + [0, 1]2.

As before, each T 2
n,p,r is a compact subset of [0, 2n]2. Let (U2

n,p,r)n≥0 be the

sequence of compact sets in [0, 1]2 defined for all n ≥ 0 by

U2
n,p,r =

1

2n
T 2
n,p,r.

In Figure 2.19, we consider the case p = 3 and r = 2, and the set U2
7,3,2 is

depicted on the left (note that the right side of this figure will become clear

in a moment). Then the (?) condition of Definition 2.7 becomes (?)p,r.
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Figure 2.19: The set U2
7,3,2 and an approximation of the corresponding set

L2
3,2.

Definition 2.26. Let (u, v) ∈ L2×L2. We say that (u, v) satisfies the (?)p,r
condition or simply (?)p,r if (u, v) 6= (ε, ε),(

u

v

)
≡ r (mod p),

(
u

v0

)
= 0 and

(
u

v1

)
= 0.

Note that the pairs (u, v) satisfying this condition depend on the choice of

p and r. For example, the pairs (110, 10) and (11010110, 11110) both satisfy

(?)3,2 but not (?)3,1.

Notice that Lemma 2.9 still holds, so does Remark 2.10. The sequence

(A2
n,p,r)n≥0 of sets is defined similarly as in Definitions 2.12 and 2.15, and (2.6)

is still valid.

Remark 2.27. The pair (1, 1) satisfies (?)p,r if and only if r = 1. Thus,

Lemma 2.17 is true only if r = 1.
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We may again apply Proposition 1.60 to the sequence (A2
n,p,r)n≥0, and

we let L2
p,r =

⋃
n≥0A2

n,p,r denote its compact limit.

Example 2.28. In Figure 2.19, we have represented the set U2
7,3,2 when con-

sidering binomial coefficients congruent to 2 modulo 3 and an approximation

of the limit set L2
3,2 proceeding as in Example 2.19. Similarly, in Figure 2.20,

we have depicted the superimposition of approximations of the limit sets L2
3,1

in orange and L2
3,2 in black. Note that the sets L2

3,1 ∪L2
3,2 and L2

2,1 = L2 are

different.

Figure 2.20: The superimposition of approximations of the limit set L2
3,1 in

orange and the limit set L2
3,2 in black.

The proof of the analogue of Lemma 2.20 follows the same lines. We

simply have to replace the word u02k1 (resp., v02k1) with u0p
k
1 (resp., v0p

k
1),

and then we apply Lucas’ theorem with base-p expansions. Also notice that

the some cases of that proof can be forgotten if r 6= 1.

Analogously to Lemma 2.21, one can observe that if
(
u
vb

)
≡ r (mod p)

for b ∈ {0, 1}, then there exists a ∈ {0, 1} such that
(
ua
vb

)
≡ r (mod p). This

observation is useful to adapt the proof of Lemma 2.22.
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Finally, gathering all these extended results allows us to obtain the fol-

lowing theorem.

Theorem 2.29. Let p be a prime and r ∈ {1, . . . , p−1} be a positive residue.

When considering binomial coefficients congruent to r (mod p), the sequence

(U2
n,p,r)n≥0 converges to L2

p,r with respect to the Hausdorff distance.

2.2 Results for Parry–Bertrand Numeration Sys-

tems

As mentioned in the introduction of this chapter, the idea is now to adapt the

results from Section 2.1 to the more general framework of Parry–Bertrand

numeration systems. Compared to the base-2 case (and more generally to the

integer base case), new technicalities have to be taken into account to gener-

alize the convergence of Pascal-like triangles to this larger class of numeration

systems. However, we will sometimes omit details that are similar to both

cases. A noteworthy difference with the base-2 case is that in this section,

empty words are allowed in the corresponding combinatorial (?) condition.

The particular setting of this section is the following one: we let β ∈ R>1

be a Parry number, and we constantly use the special Parry–Bertrand nu-

meration Uβ from Definition 1.29. Recall from Section 1.3 that the alphabet

AUβ of the system of numeration Uβ is the set {0, 1, . . . , dβe − 1}, and its

numeration language LUβ ⊂ A∗Uβ can be derived from the automaton Aβ in

Proposition 1.24. Another essential property of this particular numeration

system is the Bertrand condition, which allows us to delete or add trailing

zeroes to valid representations. The object we study in this section is the

generalized Pascal triangle Pβ from Definition 1.42.

Let us consider a grid of unit squares at the intersection of N2 and

[0, Uβ(n)]2 for all n ∈ N. The first Uβ(n) rows and columns((
repUβ (i)

repUβ (j)

)
mod 2

)
0≤i,j<Uβ(n)

of the generalized Pascal triangle Pβ modulo 2 give a coloring of this grid,

regarding the parity of the corresponding binomial coefficients. As before,

this construction defines a sequence of compact subsets of R2. If we normalize

these sets respectively by a homothety of ratio 1/Uβ(n), we define a sequence
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(Uβn )n≥0 of subsets of [0, 1]2 (see Definition 2.30). We show that it converges,

with respect to the Hausdorff distance, to a limit set described using a simple

combinatorial property extending the one from Definition 2.7.

2.2.1 The Prettiest (?)

As for the base-2 case with Definition 2.6, we consider a sequence of compact

sets that are built on sub-blocks of the generalized Pascal triangle Pβ. Recall

that valUβ was extended to take into account pairs of words at the beginning

of Section 2.1.1.

Definition 2.30. We consider the sequence (Uβn )n≥0 of compact subsets of

[0, 1]2 defined for all n ≥ 0 by

Uβn =
1

Uβ(n)


⋃

u,v∈L≤nUβ
(uv)≡1 (mod 2)

valUβ (v, u) + [0, 1]2

 .

As in the base-2 case, each pair (u, v) ∈ LUβ ×LUβ of words of length at

most n with an odd binomial coefficient gives rise to a square region in Uβn
as depicted in Figure 2.21.

u

v
0

1

1
valUβ (v)

Uβ(n)

valUβ (u)

Uβ(n)

Figure 2.21: Visualization of a square region in Uβn .
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Example 2.31. When β is the golden ratio ϕ, the first values in the gen-

eralized Pascal triangle Pϕ were given in Table 1.5. In this table, one can

identify the odd binomial coefficients among all displayed values, which cor-

respond to square units in some sets Uϕn . For instance, the sets Uϕ3 , Uϕ4 , Uϕ5
and Uϕ9 are depicted in Figure 2.22. Note that, for the sake of clarity, in Uϕ9 ,

we do not draw the grid nor the corresponding words. By definition, also

observe that we find Uϕ3 as a smaller left top portion of Uϕ4 . This observation

is general.

ε

1

10

100

101

ε 1 10 100 101

phantom

(a) The set Uϕ3 .

ε

1

10

100

101

1000

1001

1010

ε 1 10 10
0

10
1

10
00

10
01

10
10

(b) The set Uϕ4 .

ε
1
10
100
101
1000
1001
1010
10000
10001
10010
10100
10101

ε 1 10 10
0
10

1
10

00
10

01
10

10
10

00
0

10
00

1

10
01

0

10
10

0

10
10

1

(c) The set Uϕ5 . (d) The set Uϕ9 .

Figure 2.22: The sets Uϕ3 , Uϕ4 , Uϕ5 and Uϕ9 when β is the golden ratio ϕ.

Our aim is to show that the sequence (Uβn )n≥0 of compact subsets of

[0, 1]2 is converging and to provide a description of its limit set. The idea

behind this description is the following one.

Let (u, v) be a pair of words in LUβ having an odd binomial coefficient.

Some of those pairs are such that
(
ua
va

)
≡ 0 (mod 2) for all letters a such that
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ua, va ∈ LUβ . In fact, they create a black square region in Uβ|u| while the

corresponding square region in Uβ|u|+1 is white. As an example, take β = ϕ,

u = 1010 and v = 101. The only authorized letter is a = 0, and we have(
u0
v0

)
= 2 (see Figure 2.22).

To the contrary, some of those pairs create a more stable pattern, i.e.,(
uw
vw

)
≡ 1 (mod 2) for all words w such that uw, vw ∈ LUβ . Roughly, they

create a diagonal of square regions in (Uβn )n≥0. For instance, take β = ϕ,

u = 101 and v = 10. In this case,
(
uw
vw

)
≡ 1 (mod 2) for all admissible words

w. In particular, the pairs (u, v), (u0, v0),(u00, v00) and (u01, v01) have odd

binomial coefficients (in Figure 2.22, they are highlighted in orange), and

create a diagonal of square regions. This is exactly what happened in the

base-2 case; recall Remark 2.10.

With the second type of pairs of words, we define a new sequence (Aβn)n≥0

of compact subsets of [0, 1]2, which converges to a well-understood limit

set Lβ with respect to the Hausdorff distance (see Definition 2.49). Then

we show that the first sequence (Uβn )n≥0 of compact sets also converges to

this limit set with respect to the Hausdorff distance (see Theorem 2.59).

The remaining of this chapter is dedicated to formalize and prove those

statements.

To reach this goal, for all non-empty words u, v ∈ LUβ , we first define

the least integer p such that u0pw, v0pw belong to LUβ for all words w in

0∗LUβ . In other terms, any word w can be read after u0p and v0p in the

automaton Aβ from Proposition 1.24. Then we prove that some pairs of

words (u, v) ∈ LUβ × LUβ have the property that not only
(
u
v

)
≡ 1 (mod 2)

but also
(
u0pw
v0pw

)
≡ 1 (mod 2) for all words w ∈ 0∗LUβ ; see Corollary 2.41. As

shown in Remark 2.43, such a property creates a particular pattern occurring

in Uβn for all sufficiently large n.

Proposition 2.32. For all non-empty words u, v ∈ LUβ , there exists p ≥ 0

such that

(u0p)−1LUβ = (v0p)−1LUβ = 0∗LUβ . (2.12)

Proof . Using Proposition 1.24, take p such that δ(a0, u0p) = a0 = δ(a0, v0p).

For each w ∈ {u, v}, (w0p)−1LUβ is the set of the words accepted by Aβ (from

the initial state), i.e., (w0p)−1LUβ = 0∗LUβ , as desired.
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Definition 2.33. For all non-empty words u, v ∈ LUβ , we let p(u, v) denote

the least non-negative integer p(u, v) such that (2.12) holds.

When u = v = ε, Proposition 1.24 shows that δ(a0, ε) = a0. Thus, we

have p(ε, ε) = 0 and (ε0p(ε,ε))−1LUβ = LUβ .

Example 2.34. We make use of Example 1.25. If β > 1 is an integer, then

p(u, v) = 0 for all u, v ∈ LUβ . If β is the golden ratio ϕ, then p(u, v) = 0 if

and only if u and v end with 0 or u = v = ε, otherwise p(u, v) = 1.

The integer of Definition 2.33 can be greater than 1 as illustrated in the

following example.

Example 2.35. Let β be the dominant root of the polynomial P (X) =

X4− 2X3−X2− 1. Then β ≈ 2.47098 is a Parry number with dβ(1) = 2101

and d∗β(1) = (2100)ω. The automaton Aβ is depicted in Figure 2.23. For

instance, p(101, 21) = 2. Observe that p(u, v) ≤ 2 for all words u, v ∈ LUβ .

a0 a1 a2 a3

0, 1
2

0

1 0

0

Figure 2.23: The automaton Aβ for the dominant root β of the polynomial

P (X) = X4 − 2X3 −X2 − 1.

Definition 2.36. Let (u, v) ∈ LUβ × LUβ . We say that (u, v) satisfies the

(?) condition or simply (?) if either u = v = ε, or |u| ≥ |v| > 0 and(
u0p(u,v)

v0p(u,v)

)
≡ 1 (mod 2) and

(
u0p(u,v)

v0p(u,v)a

)
= 0 for all a ∈ AUβ ,

where p(u, v) comes from Definition 2.33.

Remark 2.37. When β = 2, the (?) condition from Definition 2.7 is slightly

different from the (?) condition defined above. Indeed, in the previous def-

inition, we allow u and v to be empty words at the same time2. In this

2The reader might be puzzled by this slight difference. In a first attempt to understand
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particular case, p(u, v) = 0 and v0p(u,v)a ∈ LUβ for all a ∈ AUβ \ {0}. Now if

v 6= ε, then v0p(u,v)a ∈ LUβ for all a ∈ AUβ . It is also worth noticing that if

only one of the two words u or v is empty, then the pair (u, v) never satisfies

(?).

The next easy lemma shows that all diagonal elements of Uβn satisfy (?).

Lemma 2.38. For any word u ∈ LUβ , the pair (u, u) satisfies (?).

Proof . If u = ε, the result is clear using Definition 2.36. Suppose u is non-

empty, and let p = p(u, u). Then we get
(
u0p

u0p

)
= 1 ≡ 1 (mod 2), and for all

a ∈ AUβ ,
(
u0p

u0pa

)
= 0 for we have |u0pa| > |u0p|.

If a pair of words satisfies (?), it has the following two properties. First, as

stated in Proposition 2.39, its binomial coefficient is odd. Secondly, it creates

a special pattern in Uβn for all large enough n; see Proposition 2.40, Corol-

lary 2.41 and Remark 2.43. These are the extended versions of Lemma 2.9

and Remark 2.10.

Proposition 2.39. Let (u, v) ∈ LUβ ×LUβ be a pair of words satisfying (?).

Then
(
u
v

)
≡ 1 (mod 2).

Proof . If u = v = ε, the result is clear by definition. Suppose that u and

v are non-empty. Let us proceed by contradiction and suppose that
(
u
v

)
is

even. For the sake of clarity, let us set p = p(u, v). On the one hand, by

Definition 2.36, we know that
(
u0p

v0p

)
≡ 1 (mod 2), and on the other hand,

Lemma 1.39 states that(
u0p

v0p

)
=

p∑
j=0

(
p

j

)(
u

v0j

)
=

p∑
j=1

(
p

j

)(
u

v0j

)
+

(
u

v

)
.

Consequently, we have
p∑
j=1

(
p

j

)(
u

v0j

)
≡ 1 (mod 2) > 0,

the convergence in the base-2 case in 2015 [LRS16], we restricted ourselves to non-empty

words because it was easier to compare associated segments. Later, when the question

of generalizations to β-numeration systems arose in 2018 [Sti19], we realized that this

restriction was superfluous. In this text, I chose to stay faithful to both papers, and thus

stick to both definitions.
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and there must exist i ∈ {1, . . . , p} such that
(
u
v0i

)
> 0. Using Lemma 1.39

again, we also have(
u0p

v0p0

)
=

p∑
j=0

(
p

j

)(
u

v00j

)
=

p+1∑
j=1

(
p

j − 1

)(
u

v0j

)
≥
(

p

i− 1

)(
u

v0i

)
> 0,

which contradicts Definition 2.36.

Proposition 2.40. Let (u, v) be a pair of non-empty words in LUβ satisfying

(?). For any letter a ∈ AUβ , the pair (u0p(u,v)a, v0p(u,v)a) of words in LUβ
satisfies (?). Furthermore, for any distinct letters a, b ∈ AUβ , the binomial

coefficient of the pair (u0p(u,v)a, v0p(u,v)b) of words in LUβ is equal to 0.

Proof . Set p = p(u, v). By definition of p, observe that the words u0pa, v0pa

belong to LUβ for any letter a ∈ AUβ . Let a be a letter in AUβ , and also set

p′ = p(u0pa, v0pa). By combining Lemmas 1.38 and 1.39, we find(
u0pa0p

′

v0pa0p′

)
=

p′∑
j=0

(
p′

j

)(
u0pa

v0pa0j

)

=

p′∑
j=1

(
p′

j

)(
u0pa

v0pa0j

)
+

(
u0pa

v0pa

)

=

p′∑
j=1

(
p′

j

)(
u0pa

v0pa0j

)
+

(
u0p

v0pa

)
+

(
u0p

v0p

)
.

Since (u, v) satisfies (?),
(
u0p

v0pa

)
= 0. We now show that all the coefficients(

u0pa
v0pa0j

)
, for j = 1, . . . , p′, are also 0. Let 1 ≤ j ≤ p′. From Lemma 1.38, we

know that (
u0pa

v0pa0j

)
=

(
u0p

v0pa0j

)
+ δa,0

(
u0p

v0pa0j−1

)
.

Clearly, the first term
(

u0p

v0pa0j

)
must be 0. Indeed, otherwise it means that the

word v0pa appears as a scattered subword of the word u0p, which contradicts

(?). The second term
(

u0p

v0pa0j−1

)
only appears if a = 0. In that case, this term

becomes
(
u0p

v0p0j

)
= 0, for otherwise there is an occurrence of the word v0p0

in u0p, contradicting (?). Consequently, using Definition 2.36, we get(
u0pa0p

′

v0pa0p′

)
=

(
u0p

v0p

)
≡ 1 (mod 2).
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Using the same type of argument, for any letter b ∈ AUβ , we also have(
u0pa0p

′

v0pa0p′b

)
= 0.

Thus, (u0pa, v0pa) satisfies (?), as claimed.

The second part of the statement follows by Lemma 1.38 and by the fact

that (u, v) satisfies (?).

Corollary 2.41. Let u, v ∈ LUβ be two non-empty words such that (u, v)

satisfies (?). Then(
u0p(u,v)w

v0p(u,v)w

)
≡ 1 (mod 2) and

(
u0p(u,v)w

v0p(u,v)w′

)
= 0

for all w,w′ ∈ 0∗LUβ with |w| = |w′| and w′ 6= w.

Proof . Set p = p(u, v). From Proposition 2.32, u0pw, v0pw belong to LUβ
for any word w ∈ 0∗LUβ .

Let us prove the first part by induction on the length of w ∈ 0∗LUβ .

If |w| = 0, then w = ε is the empty word, and the statement is true us-

ing Definition 2.36. If |w| = 1, then w = a is a letter belonging to AUβ .

By Proposition 2.40, we know that (u0pa, v0pa) satisfies (?), and Proposi-

tion 2.39 implies that
(
u0pa
v0pa

)
≡ 1 (mod 2). Now suppose that |w| ≥ 2 and

write w = atb where a, b are letters. From Lemma 1.38, we deduce that(
u0pw

v0pw

)
=

(
u0pat

v0patb

)
+

(
u0pat

v0pat

)
.

By induction hypothesis,
(
u0pat
v0pat

)
≡ 1 (mod 2) since at ∈ 0∗LUβ and also

|at| < |w|. Furthermore,
(
u0pat
v0patb

)
must be 0, otherwise it means that the

word v0pa occurs as a scattered subword of the word u0p, which contradicts

the fact that (u, v) satisfies (?). In conclusion, (u0pw, v0pw) has an odd

binomial coefficient, as desired.

Let us now prove the second part of the statement by induction on the

length of w,w′ ∈ 0∗LUβ . If |w| = |w′| = 1, then w = a and w′ = b are

distinct letters belonging to AUβ . The result follows from Proposition 2.40.

Now suppose that |w| = |w′| ≥ 2, and assume that the result holds for shorter

words taken as in the statement. As a first case, suppose that w = sa and
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w′ = s′b with a, b ∈ AUβ and a 6= b. From Lemma 1.38,(
u0pw

v0pw′

)
=

(
u0psa

v0ps′b

)
=

(
u0ps

v0ps′b

)
= 0.

Indeed, if the latter coefficient were positive, then it means that v0ps′b is a

scattered subword of u0ps. In this case, if we let c ∈ AUβ denote the first

letter of s′, then v0pc is a scattered subword of u0p, which contradicts the

fact that (u, v) satisfies (?). As a second case, suppose that w = sa and

w′ = s′a with a ∈ AUβ , s, s′ ∈ 0∗LUβ and s 6= s′. From Lemma 1.38,(
u0pw

v0pw′

)
=

(
u0psa

v0ps′a

)
=

(
u0ps

v0ps′a

)
+

(
u0ps

v0ps′

)
.

By induction hypothesis,
(
u0ps
v0ps′

)
= 0 since |s| = |s′| < |w| = |w′|. By

a reasoning similar to the one developed above,
(
u0ps
v0ps′a

)
= 0, otherwise it

violates the fact that (u, v) satisfies (?). All in all, we have just showed that

(u0pw, v0pw′) has a binomial coefficient equal to 0. This ends the proof.

The next lemma is useful to characterize the pattern created in Uβn , for

all sufficiently large n, by pairs of words satisfying (?); see Remark 2.43

below. In the following statement, we make use of the convention given

in Definition 1.19. Note that, in the base-2 case, and more generally in the

integer base case, this result is easy because dividing by a term of Uβ roughly

shifts the values or the words to the right.

Lemma 2.42. Let (u, v) ∈ LUβ × LUβ satisfying (?).

• The sequence(
1

Uβ(|u|+ p(u, v) + n)
valUβ (v0p(u,v)+n, u0p(u,v)+n)

)
n≥0

converges to the pair of real numbers (0.0|u|−|v|v, 0.u).

• For all n ≥ 0, let dn denote the length-n prefix of d∗β(1). Then the

sequence(
1

Uβ(|u|+ p(u, v) + n)
valUβ (v0p(u,v)dn, u0p(u,v)dn)

)
n≥0

converges to the pair of real numbers

(0.0|u|−|v|v0p(u,v)d∗β(1), 0.u0p(u,v)d∗β(1)).
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Proof . Let (u, v) ∈ LUβ × LUβ satisfying (?) and set p = p(u, v). Note that

0 ≤ |v| ≤ |u|. We prove the first item as the proof of the second one is

similar. The result is true if u = v = ε. Suppose that u and v are non-empty

words. Let us write u = u|u|−1u|u|−2 · · ·u0 where ui ∈ AUβ for all 0 ≤ i < |u|.
By definition, we have

valUβ (u0p+n)

Uβ(|u|+ p+ n)
=

|u|−1∑
i=0

ui
Uβ(i+ p+ n)

Uβ(|u|+ p+ n)
.

Using (1.2) on page 15, Uβ(i+ p+ n)/Uβ(|u|+ p+ n) tends to βi/β|u| when

n tends to infinity. Consequently,

lim
n→+∞

valUβ (u0p+n)

Uβ(|u|+ p+ n)
=

|u|−1∑
i=0

uiβ
i−|u| = 0.u.

Using the same reasoning on the word v, we conclude that the sequence((
valUβ (v0p(u,v)+n)

Uβ(|u|+ p(u, v) + n)
,

valUβ (u0p(u,v)+n)

Uβ(|u|+ p(u, v) + n)

))
n≥0

converges to the pair of real numbers (0.0|u|−|v|v, 0.u).

Remark 2.43. Let (u, v) ∈ LUβ × LUβ satisfying (?) and set p = p(u, v).

Suppose that u and v are non-empty (the case where u = v = ε is similar:

in the following, replace 0∗LUβ by LUβ where needed). Using Corollary 2.41,

the pair of words (u0pw, v0pw) has an odd binomial coefficient for any word

w ∈ 0∗LUβ . In particular, the pair of words (u0pw, v0pw) corresponds to

a square region in Uβ|u|+p+n for all w ∈ 0∗LUβ such that |w| = n ≥ 0. By

definition, this region is

1

Uβ(|u|+ p+ n)
valUβ (v0pw, u0pw) +

[
0,

1

Uβ(|u|+ p+ n)

]2

⊂ Uβ|u|+p+n.

Using Lemma 2.42, when w = 0n (the smallest word of length n in 0∗LUβ ),

the sequence (
1

Uβ(|u|+ p+ n)
valUβ (v0p+n, u0p+n)

)
n≥0

converges to the pair of real numbers (0.0|u|−|v|v, 0.u). This point will be

the first endpoint of a segment associated with u and v. See Definition 2.45.



74 Chapter 2. Convergence of Generalized Pascal Triangles

Analogously, using Lemma 2.42, when w = dn is the length-n prefix of d∗β(1)

(the greatest word of length n in 0∗LUβ ), then the sequence(
1

Uβ(|u|+ p+ n)
valUβ (v0pdn, u0pdn)

)
n≥0

converges to the pair of real numbers (0.0|u|−|v|v0pd∗β(1), 0.u0pd∗β(1)). This

point will be the second endpoint of the same segment associated with u and

v. See again Definition 2.45. As a consequence, the sequence of sets whose

nth term is defined by⋃
w∈(0∗LUβ )n

1

Uβ(|u|+ p+ n)

(
valUβ (v0pw, u0pw) + [0, 1]2

)
(2.13)

(in which we allow all length-n words in 0∗LUβ ) converges, with respect to

the Hausdorff distance, to the diagonal of the square

Q = (0.0|u|−|v|v, 0.u) +

[
0,

1

β|u|+p

]2

.

As a final comment, let us mention that Corollary 2.41 also implies that

the pair of words (u0pw, v0pw′) does not correspond to a square region in

Uβ|u|+p+n for words w,w′ ∈ 0∗LUβ such that |w| = |w′| = n ≥ 0 and w 6= w′.

In other words, the only square regions of (Uβ|u|+p+n)n≥0 in Q are located on

the diagonal.

The reasoning of the previous remark is illustrated in the next example.

Example 2.44. As a first example, when β = 2, we find back the construc-

tion in Remark 2.10. As a second example, let us take β to be the golden

ratio ϕ. Let u = 101 and v = 10 (resp., u′ = 100 = v′). Then p(u, v) = 1

(resp., p(u′, v′) = 0); see Example 2.34. Those pairs of words satisfy (?).

The first few terms of the sequence of sets (2.13) are respectively depicted

in Figure 2.24 and Figure 2.25. Observe that when n tends to infinity, the

union of those black squares in Uϕn+4 (resp., Uϕn+3) converges to the diagonal

of (0.0v, 0.u) + [0, 1/ϕ4]2 (resp., (0.v′, 0.u′) + [0, 1/ϕ3]2).

2.2.2 Compact Sets Again

The observation made in Remark 2.43 leads to the definition of an initial set

Aβ0 . The same technique is applied in Section 2.1.3. At first, let us define a
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u

v

Uϕ3

(a) A subset of Uϕ3 .

u0

v0

Uϕ4

(b) The element n = 0 of (2.13).

u00

u01

v00 v01

Uϕ5

(c) The element n = 1 of (2.13).

u000

u001

u010

v000v001v010

Uϕ6

(d) The element n = 2 of (2.13).

u0000
u0001
u0010
u0100
u0101

v0
00

0

v0
00

1

v0
01

0

v0
10

0

v0
10

1

Uϕ7

(e) The element n = 3 of (2.13). (f) What globally occurs in Uϕ7 .

Figure 2.24: The first few terms of the sequence of sets (2.13) converging to

the diagonal of the square (0.0v, 0.u) + [0, 1/ϕ4]2 for u = 101 and v = 10.
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u′

v′

Uϕ3

(a) The element n = 0 of (2.13).

u′0

u′1

v′0 v′1

Uϕ4

(b) The element n = 1 of (2.13).

u′00

u′01

u′10

v′00 v′01 v′10

Uϕ5

(c) The element n = 2 of (2.13).

u′000

u′001

u′010

u′100

u′101

v
′ 00

0
v
′ 00

1
v
′ 01

0
v
′ 10

0
v
′ 10

1

Uϕ6

(d) The element n = 3 of (2.13).

(e) What globally happens in Uϕ6 .

Figure 2.25: The first few terms of the sequence of sets (2.13) converging to

the diagonal of the square (0.v′, 0.u′) + [0, 1/ϕ3]2 for u′ = 100 and v′ = 100.
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segment associated with a pair of words as in Definition 2.113.

Definition 2.45. Let (u, v) in LUβ × LUβ such that 1 ≤ |v| ≤ |u| or u

and v are both empty. We define a closed segment Su,v of slope 1 and

of length
√

2 · β−|u|−p(u,v) in [0, 1]2. The endpoints of Su,v are given by

Au,v = (0.0|u|−|v|v, 0.u) and

Bu,v = Au,v + (β−|u|−p(u,v), β−|u|−p(u,v))

= (0.0|u|−|v|v0p(u,v)d∗β(1), 0.u0p(u,v)d∗β(1)).

Observe that, if u = v = ε, the associated segment of slope 1 has endpoints

(0, 0) and (1, 1). Otherwise, the segment Su,v lies in [0, 1]× [1/β, 1].

We now give the generalization of Definition 2.12.

Definition 2.46. Let us define the following compact set

Aβ0 =
⋃

(u,v)
satisfying(?)

Su,v,

which is the closure of a countable union of segments of slope 1.

Definition 2.45 implies that Aβ0 ⊂ [0, 1]2. More accurately, we actually

have Aβ0 \ Sε,ε ⊂ [0, 1] × [1/β, 1]. Furthermore, observe that we take the

closure of a union to ensure the compactness of the set. As for the base-

2 case, accumulation points do exist in Aβ0 . It is not difficult to adapt the

reasoning of Remark 2.14. Finally, as it was the case in the base-2 setting, the

union of segments is not disjoint since some of them are included in others.

For instance, for all u ∈ LUβ , the pair (u, u) satisfies (?) by Lemma 2.38, and

Su,u ⊂ Sε,ε.

Example 2.47. Let β = ϕ. In Figure 2.26, the segment Su,v is drawn for

all pairs (u, v) ∈ LUϕ × LUϕ satisfying (?) and such that 0 ≤ |v| ≤ |u| ≤ 10.

We thus obtain an approximation of Aϕ0 .

3As in the footnote on page 68, there is a slim difference between Definitions 2.11

and 2.45. As already justified, u and v can simultaneously be empty words in the present

section.
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2.26: An approximation of Aϕ0 computed with words of length ≤ 10.

Analogously to Definition 2.15, we introduce another sequence of compact

sets obtained by transforming the initial set Aβ0 under iterations of two maps.

As we will see, this new sequence allows us to properly define a limit set Lβ.

Definition 2.48. We let c denote the homothety of center (0, 0) and ratio

1/β, and we consider the map h : (x, y) 7→ (x, βy). We define a sequence of

compact sets by setting, for all n ≥ 0,

Aβn =
⋃

0≤i≤n
0≤j≤i

hj(ci(Aβ0 )).

When the map c is applied to a segment, it does not change its slope

while h multiplies it by β. As a consequence, since Aβ0 contains segments of

slope 1, then Aβn contains segments of slopes 1, β, β2, . . . , βn for all n ≥ 0.

Also note that by definition the sequence (Aβn)n≥0 is increasingly nested, i.e.,

Aβ0 ⊂ Aβ1 ⊂ Aβ2 ⊂ · · · .

As in Figure 2.13 that describes what happens in base 2, we apply c and h

at most twice from Aβ0 \ Sε,ε in Figure 2.27. Using this figure, if m,n ∈ N
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satisfy m ≤ n, observe that

Aβm ∩ ([1/βm+1, 1]× [0, 1]) = Aβn ∩ ([1/βm+1, 1]× [0, 1]). (2.14)

0 1

1

Aβ0 \ Sε,ε

c(Aβ0 \ Sε,ε)

h(c(Aβ0 \ Sε,ε))

c2(Aβ0 \ Sε,ε)

h(c2(Aβ0 \ Sε,ε))

h2(c(Aβ0 \ Sε,ε))

c

c

h

1
β

1
β2

1
β3

1
β

1
β2

Figure 2.27: Two applications of c and h from Aβ0 \ Sε,ε.

Applying Proposition 1.60 to the sequence (Aβn)n≥0 gives the following

definition4.

Definition 2.49. We let Lβ =
⋃
n≥0A

β
n denote the compact limit set of the

sequence (Aβn)n≥0.

We proceed as in Example 2.19 to find an approximation of Lϕ.

Example 2.50. Let ϕ be the golden ratio. We have represented in Fig-

ure 2.28 all the segments of Aϕ0 for words of length at most 10, and we have

applied the maps hj(ci(·)) to this set of segments for 0 ≤ j ≤ i ≤ 4. Thus,

we have an approximation of Aϕ4 , and even of Lϕ (recall the stabilization

from (2.14)).

4In [Sti19], as it was the case in [LRS16], this definition made sense because we showed

that (Aβ
n)n≥0 is a Cauchy sequence.
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Figure 2.28: An approximation of the limit set Lϕ.

2.2.3 The Analogue of the Sierpiński Gasket

In this section, similarly to the sequence (Aβn)n≥0, we show that the sequence

(Uβn )n≥0 of compact subsets of [0, 1]2 also converges to Lβ with respect to the

Hausdorff distance. The strategy is analogous to the one developed in the

base-2 case: for ε ∈ R>0 and for all sufficiently large n ∈ N, we first prove that

Uβn ⊂ [Lβ]ε (that is, Lemma 2.51), and secondly, we show that Lβ ⊂ [Uβn ]ε
(which follows from Lemma 2.57, Corollary 2.58 and the compactness of the

set Lβ). The proofs of Lemmas 2.51 and 2.57, which extend Lemmas 2.20

and 2.22 respectively, are essentially the same, so we highlight the main

differences.

Lemma 2.51. Let ε > 0. For all sufficiently large n ∈ N, we have

Uβn ⊂ [Lβ]ε.
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Proof . The proof is very similar to the one of Lemma 2.20. Let ε > 0. Take

n ∈ N, and let (x, y) ∈ Uβn . In the following, we find a point B ∈ Lβ such

that d((x, y), B) < ε if n is sufficiently big, which suffices.

By definition, there exists (u, v) ∈ LUβ ×LUβ such that
(
u
v

)
≡ 1 (mod 2),

0 ≤ |v| ≤ |u| ≤ n, and the point (x, y) belongs to the square region

1

Uβ(n)
valUβ (v, u) +

[
0,

1

Uβ(n)

]2

⊂ Uβn . (2.15)

Let us set A = valUβ (v, u)/Uβ(n) to be the upper-left corner of the square

region (2.15) in Uβn . In particular, note that d((x, y), A) ≤
√

2/Uβ(n).

Assume first that (u, v) satisfies (?). By Definitions 2.46 and 2.48, the

segment Su,v is in Aβ0 and cn−|u|(Su,v) is a segment of origin A′ = cn−|u|(Au,v)

in Aβn−|u|. In particular, A′ belongs to Lβ by definition. Using (1.2) (the

reasoning is similar to the one developed in the proof of Lemma 2.42), there

exists N ∈ N such that, for all n ≥ N , d(A,A′) < ε/2. Hence, for all n ≥ N
such that

√
2/Uβ(n) < ε/2, we have

d((x, y), A′) ≤ d((x, y), A) + d(A,A′) <
√

2/Uβ(n) + ε/2 < ε.

Thus, we may choose B = A′.

Now assume that (u, v) does not satisfy (?). Since
(
u
v

)
≡ 1 (mod 2), then

either u and v are non-empty words, or u is non-empty and v = ε (recall

that, if they are both empty, they satisfy (?)).

First, assume that u is non-empty and v = ε. In this case, the point

A is on the vertical line of equation x = 0. Since Aβ0 contains the segment

Sε,ε by Definition 2.46, then Aβn contains the segment hn(cn(Sε,ε)) of slope

βn with endpoints (0, 0) and (1/βn, 1). Since hn(cn(Sε,ε)) is in Lβ and since

this segment passes through the square A+ [0, 1/Uβ(n)]2, we may choose n

sufficiently large in order to find a point B ∈ hn(cn(Sε,ε)) ⊂ Lβ that also

belongs to this square and satisfies d((x, y), B) < ε.

Finally, suppose that u and v are non-empty. Let k be a non-negative

integer such that 2k > max{|u|, p(u, v)}. By definition of p(u, v), the words

u02k1 and v02k1 both belong to LUβ . As in the proof of Lemma 2.20 that

uses Theorem 1.40, we have(
u02k1

v02k1

)
≡ 1 (mod 2).
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Using this result and Lemma 1.39 in particular, it is then easy to check that

the pair of words (u02k1, v02k1) satisfies (?). Finally, proceed as in the first

part of the proof (namely replace u by u02k1 and v by v02k1, and apply cn−|u|

to Suk,vk).

In Lemma 2.57, we show that each point of Lβ is in [Un]ε for ε > 0 and

all sufficiently large n ∈ N. To that aim, we need to control the number of

consecutive words ending with 0 in LUβ (genealogically ordered). In other

words, we bound the number of consecutive integers whose Uβ-expansion

ends with 0.

Definition 2.52. We let Cβ = max{n ∈ N | 0n is a factor of d∗β(1)} denote

the maximal number of consecutive zeroes in d∗β(1).

Before giving examples, the next proposition shows that the maximal

number of consecutive words in LUβ ending with 0 is Cβ + 1.

Proposition 2.53. There are at most Cβ + 1 consecutive non-negative in-

tegers whose Uβ-expansion ends with 0.

The proof of Proposition 2.53 requires a lemma, so we postpone it just

after.

Lemma 2.54. Let n ≥ 0 be an integer with repUβ (n) = c`−1 · · · c0 ∈ LUβ ,

and let i denote the length of the longest suffix of repUβ (n) that is also a

prefix of d∗β(1). The following assertions are true.

• The word repUβ (n+ 1) ∈ LUβ ends with 0i.

• If i = 0, then repUβ (n+ 1) = c`−1 · · · c1(c0 + 1).

• If i = `, then repUβ (n+ 1) = 10`.

Proof . Recall that the prefixes of d∗β(1) are the maximal words of different

lengths in LUβ and are also the labels of the maximal paths in the automaton

Aβ. The result now follows from Proposition 1.24.

Proof of Proposition 2.53. Let n ≥ 0 be an integer such that repUβ (n) ends

with 0, and let ` = | repUβ (n)|. Observe that ` ≥ 2. We can also assume that

repUβ (n− 1) does not end with 0.
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To prove the claim, we show that there exists an integer 0 < t ≤ Cβ + 1

such that the word repUβ (n + t) ends with 1, which suffices. For all k ≥ 0,

we let ik denote the length of the longest suffix of repUβ (n + k) that is also

a prefix of d∗β(1).

Step 0. If i0 = 0, then Lemma 2.54 implies that the word repUβ (n+ 1)

ends with 1. Thus, we can take t = 1, and we are done since Cβ ≥ 0.

Suppose that i0 > 0. By Lemma 2.54, we know that repUβ (n + 1) ends

with 0i0 . By hypothesis, 0 is a suffix of repUβ (n) but cannot be a prefix of

d∗β(1). Thus, we must necessarily have i0 ≥ 2. Furthermore, Cβ ≥ 1 since

we have found a prefix of d∗β(1) that ends with 0.

Step 1. We examine the word repUβ (n+ 1), and we divide the reasoning

into two cases as before.

If i1 = 0, then repUβ (n + 2) ends with 1 by Lemma 2.54. Note that

we have 2 ≤ Cβ + 1 (since Cβ ≥ 1), so we can take t = 2, which ends the

procedure.

If i1 > 0, then Lemma 2.54 shows that repUβ (n+2) ends with 0i1 . Recall

that repUβ (n+ 1) ends with the prefix of d∗β(1) of length i1 but also with 0i0 .

In particular, this prefix has the suffix 0i0 . Consequently, we obtain i1 > i0
and Cβ ≥ i0 ≥ 2.

Step 2. We have to consider the word repUβ (n + 2), and we divide the

reasoning into two cases as before. On the one hand, if i2 = 0, then we can

take t = 3 thanks to Lemma 2.54, and the conclusion follows. On the other

hand, if i2 > 0, then a reasoning using Lemma 2.54 and similar to what was

done in the previous paragraph leads to establish that repUβ (n+3) ends with

0i2 , i2 > i1 and Cβ ≥ i1 ≥ 3. Afterwards, we need to consider repUβ (n + 3)

and repeat the procedure.

We claim that this process halts after at most Cβ + 1 steps. Indeed, at

each new step j with j ≥ 0, either ij = 0 and we stop (in this case, we can

take t = j + 1), or ij > 0 and in this case, we have Cβ ≥ j + 1. The second

case is no longer accessible as soon as j ≥ Cβ.

Let us illustrate the previous proposition.

Example 2.55. Let ϕ be the golden ratio. From Example 1.21, Cϕ = 1

since d∗ϕ(1) = (10)ω. The first few words in LUϕ = LF are

ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, 10010, 10100, 10101, . . . .
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The maximal number of consecutive words in LUϕ ending with 0 is 2, which

corresponds to Cϕ + 1.

Example 2.56. Let β ≈ 1.38028 be the dominant root of the polynomial

P (X) = X4 − X3 − 1. Then β is a Parry number with dβ(1) = 1001 and

d∗β(1) = (1000)ω. The automaton Aβ is depicted in Figure 2.29. In this

example, Cβ = 3. The first few words in LUβ are

ε, 1,10,100,1000,10000, 10001, 100000, 100001, 100010, 1000000, 1000001,

1000010, 1000100, 10000000, 10000001,10000010,10000100,10001000,

100000000, 100000001,100000010,100000100,100001000,100010000,

100010001, 1000000000, . . . .

The maximal number of consecutive words in LUβ ending with 0 is 4, which

is equal to Cβ+1. Observe that 10, 100, 1000 are prefixes of d∗β(1), but 10000

is not.

a0 a1 a2 a3

0

1 0 0

0

Figure 2.29: The automaton Aβ for the dominant root β of the polynomial

P (X) = X4 −X3 − 1.

In the view of Definition 1.29 with dβ(1) = 1001 = t1t2t3t4, the sequence

Uβ is defined by Uβ(0) = 1,

Uβ(1) = t1Uβ(0) + 1 = 2,

Uβ(2) = t1Uβ(1) + t2Uβ(0) + 1 = 3,

Uβ(3) = t1Uβ(2) + t2Uβ(1) + t3Uβ(0) + 1 = 4,

and for all n ≥ 4,

Uβ(n) = t1Uβ(n− 1) + t2Uβ(n− 2) + t3Uβ(n− 3) + t4Uβ(n− 4)

= Uβ(n− 1) + Uβ(n− 4).

Thus, its first few terms are 1, 2, 3, 4, 5, 7, 10, 14. For all k ∈ N, the number

of length-k words in 0∗LUβ is Uβ(k). This observation is general and reveals

its usefulness in the proof of the next lemma.
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As in the base-2 case, the compactness of Lβ allows us to permute the

quantifiers in the next lemma.

Lemma 2.57. Let ε > 0. For all (x, y) ∈ Lβ, d((x, y),Uβn ) < ε for all

sufficiently large n.

Proof . Let ε > 0 and let (x, y) ∈ Lβ. As in the proof of Lemma 2.22

with (2.7), there exist non-negative integers N1, i, j with 0 ≤ j ≤ i ≤ N1, a

pair of words (u, v) ∈ LUβ ×LUβ satisfying (?), and (x0, y0) ∈ Su,v such that

d((x, y), hj(ci((x0, y0)))) < ε/2.

Now we will show that

d(hj(ci((x0, y0))),Uβn ) < ε/2

for all sufficiently large n, which completes the proof when using the triangle

inequality. We intensively use the constants i, j, the words u, v given above,

and the integer p = p(u, v). Set

Lu,v =

{
LUβ , if u = v = ε;

0∗LUβ , otherwise.

Since (u, v) ∈ LUβ ×LUβ satisfies (?), the pair of words (u0pw, v0pw) has an

odd binomial coefficient, for all words w ∈ Lu,v: if u = v = ε, then
(
w
w

)
= 1,

otherwise use Corollary 2.41. In particular, this is the case when w ∈ Lu,v
is of length n ≥ 0. We can choose n sufficiently large such that there are

at least 2(Cβ + 1) + 2 words of length n in Lu,v. Using Proposition 2.53,

there exist at least two words w ∈ Lu,v with |w| = n and not ending with 0.

Furthermore, as soon as w does not end with 0, Lemma 1.38 shows that(
u0pw0k

v0pw

)
=

(
u0pw

v0pw

)
≡ 1 (mod 2) for all k ≥ 0.

By definition of the sequence Uβ, for all k ≥ 0, we also have

#{z ∈ 0∗LUβ | u0pwz ∈ LUβ and |z| = k} ≤ Uβ(k).

In fact, the number of length-k words in 0∗LUβ is Uβ(k). For all 0 ≤ j ≤ i,

at least one of the Uβ(j) binomial coefficients of the form
(
u0pwz
v0pw

)
with w
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not ending with 0, z ∈ 0∗LUβ and |z| = j is odd (indeed, choose z = 0j for

instance). In other terms, at least one of the square regions

1

Uβ(n+ i+ |u|+ p)
valUβ (v0pw, u0pwz) +

[
0,

1

Uβ(n+ i+ |u|+ p)

]2

,

(2.16)

with 0 ≤ j ≤ i, z ∈ 0∗LUβ and |z| = j,

is a subset of Uβn+i+|u|+p, since |v0pw|, |u0pwz| ≤ n+ i+ |u|+ p. This can be

visualized in Figure 2.30. For this, we took the special setting of the golden

ratio ϕ and the Zeckendorf numeration system (see Example 1.18).

Now observe that, for any word w ∈ Lu,v, each square region of the

form (2.16) is intersected by hj(ci(Su,v)). Indeed, the latter segment has

A = (0.0i+|u|−|v|v, 0.0i−ju) and B = (0.0i+|u|−|v|v0pd∗β(1), 0.0i−ju0pd∗β(1)) as

endpoints and slope βj . Using (1.2) on page 15, if n is sufficiently large, the

points

1

Uβ(n+ i+ |u|+ p)
valUβ (v0p0n, u0p0n+j)(

resp.,
1

Uβ(n+ i+ |u|+ p)
valUβ (v0pdn, u0pdn+j)

)
and A (resp., B) are close for all 0 ≤ j ≤ i, where we let dn denote the length-

n prefix of d∗β(1) for all n ≥ 0. When u and v are non-empty, this can be

seen in Figure 2.31 where each rectangular gray region contains at least one

square region from Uβn+i+|u|+p (to draw this picture, we take the particular

case of the golden ratio ϕ, and i = 2). When u = v = ε, Figure 2.31 is

modified in the following way: simply replace each word of the forms u0`,

v0` by ε.

As a consequence, every point of hj(ci(Su,v)) is at distance at most

2 · (Cβ + 2) · Uβ(j)

Uβ(n+ i+ |u|+ p)

from a point in Uβn+i+|u|+p when n is sufficiently large. Indeed, there are

two cases to consider: either the point falls into a gray region from Fig-

ure 2.31, or it does not. In the first case, then the point is at distance at

most Uβ(j)/Uβ(n + i + |u| + p) from a square region in Uβn+i+|u|+p; see also

Figure 2.30. Recall that this square region is of the form (2.16) where w
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u0pwj = 0

v0pw

j = 1 u0pw0

...

≤ Uβ(1)

j = 2 u0pw00

... ≤ Uβ(2)

j = 3 u0pw000

...

≤ Uβ(3)

Uβn+i+|u|+p

Figure 2.30: If w does not end with 0 and is of length n, then
(
u0pw0j

v0pw

)
being

odd creates a square region in Uβn+i+|u|+p.
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0 1

1

Uβn+2+|u|+pc2(Su,v)

h(c2(Su,v))

h2(c2(Su,v))

c(Su,v)

h(c(Su,v)) Su,v

v0p0n v0pdn

v0p0n+1 v0pdn+1

v0p0n+2 v0pdn+2

u0p0n

u0pdn

u0p0n+1

u0pdn+1

u0p0n+2

u0pdn+2

1
Un+2+|u|+p

Figure 2.31: The situation occurring in the proof of Lemma 2.57, where we

choose β to be the golden ratio, and i = 2.

does not end with 0. In the second case, the point falls into a (white) square

region of the form

1

Uβ(n+ i+ |u|+ p)
valUβ (v0pw′, u0pw′z) +

[
0,

1

Uβ(n+ i+ |u|+ p)

]2

,

with |w| = |w′| = n,w′ ∈ Lu,v, 0 ≤ j ≤ i, z ∈ 0∗LUβ and |z| = j.

Since n is large enough, there exists a word w′′ not ending with 0 with

|w′′| = n, which is within a distance of 2(Cβ + 2) of w′. Then applying the
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argument from the previous case proves the statement.

In particular, the result holds for the point hj(ci((x0, y0))) belonging to

hj(ci(Su,v)). Hence, for all sufficiently large n, d(hj(ci((x0, y0))),Uβn ) < ε/2,

and the conclusion follows.

From the previous lemma, we deduce the following result which is the

analogue of Corollary 2.23 and whose proof is identical.

Corollary 2.58. Let (u, v) ∈ LUβ × LUβ satisfying (?) and let 0 ≤ j ≤ i.

For every point (f, g) of the segment hj(ci(Su,v)), there exists a sequence

((fn, gn))n≥0 converging to (f, g) and such that (fn, gn) ∈ Uβn for all n ≥ 0.

The proof of the following theorem is the same as the one of Theorem 2.24,

so we omit it. It uses the compactness of the set Lβ, Lemmas 2.51 and 2.57,

and Corollary 2.58.

Theorem 2.59. The sequence (Uβn )n≥0 converges to Lβ with respect to the

Hausdorff distance.

In the next example, we give an approximation of the limit object Lβ for

different values of β.

Example 2.60. Let us define several Parry numbers. Let β1 ≈ 2.47098 be

the dominant root of the polynomial P (X) = X4 − 2X3 − X2 − 1, which

is a Parry and Pisot number; see Example 2.35. Let β2 ≈ 1.38028 be the

dominant root of the polynomial P (X) = X4−X3−1, which is a Parry and

Pisot number; see Example 2.56. Let β3 ≈ 2.80399 be the dominant root

of the polynomial P (X) = X4 − 2X3 − 2X2 − 2. We can show that β3 is a

Parry number, but not a Pisot number. Let β4 ≈ 1.32472 be the dominant

root of the polynomial P (X) = X5−X4−1. We can show that β4 is a Parry

number and also the smallest Pisot number [BR10, Example 2.3.54]. In

Figure 2.32, we depict an approximation of Lβ for β in {3, ϕ2, β1, β2, β3, β4}.
For instance, the sets Lβ2 and Lβ4 more or less look alike. This might be

due to the fact that the associated polynomials are not so different. More

generally, a challenging angle of research is to examine the similarities and

the differences between limit objects, as stated among the open questions in

the next section.



90 Chapter 2. Convergence of Generalized Pascal Triangles

(a) An approximation of L3. (b) An approximation of Lϕ2

.

(c) An approximation of Lβ1 . (d) An approximation of Lβ2 .

(e) An approximation of Lβ3 . (f) An approximation of Lβ4 .

Figure 2.32: An approximation of the limit object Lβ for different values of

β.
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As a final comment, let us mention that the extension to any prime

number holds: one simply has to adapt all the results, as in Section 2.1.5.

The notation used in the following example is taken from that section.

Example 2.61. Let us consider the case where β is the golden ratio ϕ. We

have represented Uϕ9,3,2 in Figure 2.33 when considering binomial coefficients

congruent to 2 modulo 3 (instead of odd coefficients) and an approximation

of the corresponding limit set Lϕ3,2, proceeding as in Example 2.50.

Figure 2.33: The set Uϕ9,3,2 (on the left) and an approximation of the corre-

sponding limit set Lϕ3,2 (on the right).

2.3 Open Questions

In the last section of this chapter, we leave some open questions that seem

natural to us, or that were asked during different scientific meetings.

For a given numeration system associated with a Parry number β > 1, we

cut the generalized Pascal triangle Pβ after terms of the sequence (Uβ(n))n≥0,

i.e., we consider the first Uβ(n) rows and columns of Pβ at each step (see

Definition 2.30). For this reason, (Uβ(n))n≥0 is called a cutting sequence.

In [AB97], authors discuss which cutting sequences lead to a sequence of sub-

blocks of the classical Pascal triangle that converges to some limit object.

Inspired by this paper, the next question naturally follows.

Question 1. Are there other cutting sequences of interest for our particular

matter? What do they look like, i.e., would it be possible to characterize

them?
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In the same vein, the colorings presented in this chapter are influenced

by Lucas’ theorem (that is, Theorem 1.40), i.e., we take care of colorings

modulo prime numbers. In [vHPS92], authors examine colorings modulo

prime powers in the framework of the classical Pascal triangle. Having in

mind generalizations of Lucas’ theorem (see [AS08, Row11] for instance), we

raise the following question.

Question 2. Could other colorings be considered for generalized Pascal tri-

angles Pβ introduced in Section 1.5?

The construction developed in this chapter highly depends on the manner

in which the words are ordered in the considered languages, i.e., the enu-

meration of the languages. As a consequence, another enumeration would

certainly influence the limit object, as well as considering other languages.

Question 3. What happens if we change the order of the words in LUβ ,

or if we focus on other languages, not specifically derived from numeration

systems? Is it still possible to prove a convergence result? Similarly, with

other possible extensions of the Pascal triangle (see the list after the definition

of the Pascal triangle in Section 1.5), can we adapt the convergence results

of the present chapter?

Without diving into technical definitions, we were often asked the follow-

ing questions that are still open. Note that some bounds for the Hausdorff

dimension can be deduced from already known results on the classical Pascal

triangle.

Question 4. For a fixed Parry number β > 1, what is the Hausdorff dimen-

sion of the limit set Lβ? And its Minkowski dimension? Could the method

in [Neu18] be helpful? What is its Hölder exponent? Could we look at its

Lebesgue measure?

A famous method to construct fractals is to use iterated function sys-

tems (IFS’s); see, for instance, [Bar93, Fal97]. Formally, an IFS is a finite

set of contracting mappings on a complete metric space. For instance, the

Sierpiński gasket can be obtained via IFS’s [vHPS92, Ste95].
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Question 5. For a given Parry number β > 1, would it be possible to find

IFS’s that generate Lβ?

Another interesting direction of investigation is to compare different limit

objects.

Question 6. Can we compare two limit sets, e.g., Lβ and Lβ′ for two distinct

Parry numbers β, β′ > 1? Can we compare limit objects obtained with

different congruences, but for the same numeration system? More generally,

can we classify the limit objects?

In [AB97], authors study the block complexity of the classical Pascal tri-

angle, i.e., the bidimensionnal factor complexity which counts the number

of rectangular blocks of a fixed size. The following question ensues.

Question 7. Could we compute the bidimensionnal factor complexity of

Pascal-like triangles Pβ?





Chapter 3

Counting Scattered Subwords

In this chapter, we count the number of distinct scattered subwords occurring

in a given word. More precisely, we study the sequences Sβ, which were

defined in Section 1.6, for different real numbers β > 1. In particular, these

sequences summarize all the information we have on each row of generalized

Pascal triangles. When sketching those sequences, some symmetries seem to

appear, which makes us think that they are regular in some sense. One of the

objectives of this chapter is to establish this regularity by means of specific

graph structures which also allow us to easily count scattered subwords.

In Section 3.1, we consider the base-2 case as it was done in the previ-

ous chapter, i.e., we work with the generalized Pascal triangle P2 and the

sequence (S2(n))n≥0 counting the number of positive entries on each row of

P2; see Chapter 1 for formal definitions. By introducing a convenient and

new tree structure, we provide a recurrence relation for (S2(n))n≥0. This

leads to a connection with the 2-regular Stern–Brocot sequence and the se-

quence of denominators occurring in the Farey tree, yielding the 2-regularity

of S2. Leaving the world of known regular sequences, our method first pro-

vides similar results in the general case of integer bases in Section 3.2. Then,

in Section 3.3, we extend our construction to the Zeckendorf numeration sys-

tem, so we deal with Pϕ where ϕ is the golden ratio. Again the tree structure

permits us to obtain recurrence relations for the corresponding sequence and

deduce its Fibonacci-regularity. We conclude the chapter with various re-

marks and open questions. Its content is taken from [LRS17b, LRS18].

95
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3.1 What Happens in Base 2

In this section, we work with the generalized Pascal triangle P2 from Ex-

ample 1.43 and the sequence (S2(n))n≥0 from Example 1.49. Observe that

on a one-letter alphabet, i.e., for the classical Pascal triangle, the analo-

gous sequence (S(n))n≥0 satisfies S(n) = n + 1 for all n ≥ 0 since
(
n
m

)
> 0

for all m ∈ {0, . . . , n} and
(
n
m

)
= 0 for all m ≥ n + 1. It is not diffi-

cult to prove that (S(n))n≥0 is 2-regular but not 2-automatic. As we can

see in Figure 3.1, the sequence (S2(n))n≥0 has a much more chaotic behav-

ior. However, Figure 3.1 shares some similarities with the sequences studied

in [PRRV15] and independently in [Gre15] about the 2-abelian complexity

of the Thue–Morse word and other infinite words. For instance, we may ob-

serve a palindromic structure over each interval of the form [2n, 2n+1). This

particular structure suggests that (S2(n))n≥0, as well as the Stern–Brocot

sequence of Example 1.55, should be 2-regular. The aim of this section is to

study the regularity of (S2(n))n≥0; see Section 3.1.4.
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Figure 3.1: The sequence (S2(n))n≥0 in the interval [0, 256].

3.1.1 Give it a Trie (of Scattered Subwords)

In [FGK+15], an automaton with multiplicities accepting exactly the scat-

tered subwords v of a given word u is presented, whose number of accepting

paths is exactly
(
u
v

)
. As mentioned in [KNS16], it is an important problem to

determine what are the “best” data structures for reasoning with subwords;

see also [BDS16].

For our particular needs, we first introduce a convenient tree structure

whose nodes correspond to the scattered subwords of a given word and which

permits us to easily count them. This tree not only leads to a recurrence

relation to compute S2(n) directly from rep2(n), but is also generalized to

larger alphabets in Section 3.2 and to the Fibonacci case in Section 3.3.

If w ∈ A∗ is a finite word over the alphabet A, then the language of its

scattered subwords is factorial , i.e., if xyz is a scattered subword of w, then

so is y. Thus the following definition makes sense.

Definition 3.1. Let A be an alphabet, and let w be a finite word over A.

With w is associated the trie of its scattered subwords denoted by TA(w) and

built as follows. The root is ε, and if u and ua are two scattered subwords

of w with a ∈ A, then ua is a child of u. This trie is also called prefix tree or

radix tree in the sense that all successors of a node have a common prefix.

If we are interested in words and scattered subwords belonging to a spe-
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cific factorial language L ⊂ A∗, we only consider the part of TA(w) that is a

subtree of the tree limited to words in L. This subtree is denoted by TA,L(w).

Note that, if the alphabet is clear from the context, we omit it and we

respectively write T (w) and TL(w).

Remark 3.2. For any word w ∈ L ⊂ A∗, an easy induction shows that

the number of nodes on level ` ≥ 0 in TA,L(w) is the number of distinct

scattered subwords of length ` in L occurring in w. In particular, the number

of nodes of the trie TAUβ ,LUβ (repUβ (n)) is exactly Sβ(n) for all n ≥ 0; see

Definition 1.47.

Section 3.1 deals with the base-2 case, so we are interested in words

and scattered subwords belonging to L2. We will thus consider the tree

T{0,1},L2
(w) for w ∈ L2. This means that in T{0,1}(w) we will only consider

the child 1 of the root ε. For the sake of simplicity, in the following, we write

T (w) (resp., TL2(w)) instead of T{0,1}(w) (resp., T{0,1},L2
(w)).

Example 3.3. In Figure 3.2, we have depicted the tree TL2(11001110) (the

dashed lines and the subtrees T`, ` ∈ {0, . . . , 3}, will become clear with

Definition 3.4 below). The word w = 11001110 is highlighted as the leftmost

branch. In fact, it is more visual if we do not use the convention that the

left child of u is u0 and the right child of u is u1. The edge between u and

its child u0 (resp., u1) is represented in gray (resp., black).

T0T1T2T3

0

0

0

1

1

1

1

1

Figure 3.2: The trie TL2(11001110).
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Since we are dealing with scattered subwords of w ∈ L2, the tree TL2(w)

has a particular structure that will be helpful to count the number of distinct

scattered subwords occurring in w. We now describe this structure, which

permits us to construct TL2(w) starting with a linear tree and proceeding

bottom-up (see Example 3.8).

Definition 3.4. Each non-empty word w in L2 is factorized into consecutive

maximal blocks of letters 1 and blocks of letters 0 of the form

w = 1n1︸︷︷︸
u1

0n2︸︷︷︸
u2

1n3︸︷︷︸
u3

0n4︸︷︷︸
u4

· · · 1n2j−1︸ ︷︷ ︸
u2j−1

0n2j︸︷︷︸
u2j

(3.1)

with j ≥ 1, n1, . . . , n2j−1 ≥ 1 and n2j ≥ 0.

Let M = Mw be such that w = u1u2 · · ·uM where uM is the last non-

empty block of zeroes or ones. For every ` ∈ {0, . . . ,M−1}, we let T` denote

the subtree of TL2(w) whose root is the node{
u1 · · ·u`1, if ` is even;

u1 · · ·u`0, if ` is odd;

(if ` = 0, then u1 · · ·u` = ε). Observe that TM−1 is a linear tree with nM
nodes. For convenience (Corollary 3.9), we also set TM to be an empty tree

with no node. Roughly speaking, we have a root of a new subtree T` for each

new alternation of digits in w. Also observe that if w does not contain any

letter 0, then the tree TL2(w) is linear. In particular, only the trees T0 and

TM = T1 do exist.

Example 3.5. For the word w = 11001110 ∈ L2 of Example 3.3, the fac-

torization of Definition 3.4 is w = u1u2u3u4 with u1 = 12, u2 = 02, u3 = 13

and u4 = 01, so we have M = 4. In Figure 3.2, we have represented the

trees T0, . . . , T3. By definition, the root of T0 (resp., T1; resp., T2) is 1 (resp.,

u10 = 110; resp., u1u21 = 11001). Finally, T3 is limited to a single node and

its root is u1u2u30 = 11001110 = w. Indeed, by definition, the number of

nodes of TM−1 is nM , which is equal to 1 in this example.

In the following result, for a non-empty word w ∈ L2, we study the

structure of the tree TL2(w) in relations with the subtrees T` defined previ-

ously. Since we are considering scattered subwords of w, its proof is not hard.
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Note that if w ∈ 1∗ ∪ 10∗, then TL2(w) is linear, and no further interesting

information can be brought out.

Proposition 3.6. Let w be a non-empty word in L2. If the tree TL2(w) is

not linear, it has the following properties.

• Assume that 2 ≤ 2k < M . For every j ∈ {0, . . . , n2k − 1}, the node

of label x = u1 · · ·u2k−10j has two children x0 and x1. The node x1 is

the root of a tree isomorphic to T2k.

• Assume that 3 ≤ 2k + 1 < M . For every j ∈ {0, . . . , n2k+1 − 1}, the

node of label x = u1 · · ·u2k1
j has two children x0 and x1. The node x0

is the root of a tree isomorphic to T2k+1.

• For every j ∈ {1, . . . , n1− 1}, the node of label x = 1j has two children

x0 and x1. The node x0 is the root of a tree isomorphic to T1.

Example 3.7. Let us pursue Examples 3.3 and 3.5. Recall that M = 4. We

illustrate each item of the previous proposition.

First, suppose that k = 1. Then n2k = n2 = 2. We observe in Figure 3.2

that the node of label x = u1 = 11 (resp., x = u10 = 110) has two children

x0 and x1, and the child x1 is the root of a copy of T2.

Now, n2k+1 = n3 = 3. We see in Figure 3.2 that the node of label

x = u1u2 = 1100 (resp., x = u1u21 = 11001; resp., x = u1u211 = 110011)

has two children x0 and x1, and the child x0 is the root of a copy of T3.

Finally, n1 = 2. From Figure 3.2, we find that the node of label 1 has

two children 11 and 10, and the child 10 is the root of a copy of T1. In this

case, the result cannot be extended to 10 = ε for otherwise we would consider

words not in L2.

As depicted in Figure 3.3, Proposition 3.6 permits us to reconstruct the

tree TL2(w) from w. We now explain how.

Example 3.8. We continue Examples 3.3 and 3.5. Recall that we have

w = 11001110 = 12︸︷︷︸
u1

02︸︷︷︸
u2

13︸︷︷︸
u3

01︸︷︷︸
u4

.

In Figure 3.3, we show how to build TL2(11001110) in four steps. To do so,

we start with a linear tree corresponding to the word w (it is depicted on the
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left in Figure 3.3). We proceed from the bottom of the tree, we progressively

add copies of the subtrees T`, and we use Proposition 3.6 to guide us at each

step.

First, the tree T3 is the linear subtree consisting in the last n4 = 1

node. We add a copy of T3 to each node of the form u1u21j = 11001j for

j ∈ {0, . . . , n3 − 1} = {0, 1, 2} (second picture).

Then we consider the subtree T2 whose root is the node u1u21 = 11001.

Thanks to Proposition 3.6, we add a copy of it to each node of the form

u10j = 110j for j ∈ {0, . . . , n2 − 1} = {0, 1} (third picture).

Finally, we consider the subtree T1 whose root is the node u10 = 110.

We add a copy of it to the node 1j for j ∈ {1, . . . , n1 − 1} = {1} (picture at

the bottom). Note that if u1 = 1k, we should add a copy of T1 to each node

of the form 1j for j ∈ {1, . . . , k− 1} (if k = 1, then no copy of T1 is added).

T1

T2

T2T3

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.3: Bottom-up construction of TL2(11001110).
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In the next statement, we count the number of nodes of each subtree T`,

eventually yielding the total number of nodes of the original tree TL2(w).

For this result, recall from Definition 3.4 that TM is an empty tree. If T is a

tree, we let #T denote the number of nodes in T . Corollary 3.9 will actually

give a recurrence relation to compute S2(n) directly from rep2(n).

Corollary 3.9. Let w be a non-empty word in L2. The number of nodes in

TM (resp., TM−1) is 0 (resp., nM ). For ` ∈ {0, . . . ,M − 2}, the number of

nodes in T` is given by

#T` = n`+1(#T`+1 + 1) + #T`+2.

In particular, the number of distinct scattered subwords of w in L2 is given

by 1 + #T0.

Proof . Let w be a non-empty word in L2 factorized as in Definition 3.4.

The idea is the same as the one developed in Example 3.8 above and

uses Proposition 3.6. Start with a linear tree labeled by w and add, with a

bottom-up approach, all the possible subtrees given by Proposition 3.6: first,

possible copies of TM−1, then copies of TM−2, . . . , T1.

Let ` ∈ {0, . . . ,M − 2}. By Definition 3.4, T` is the subtree of TL2(w)

whose root is the node u1 · · ·u`a with a ∈ {0, 1} depending on the parity

of ` (notice that u`+1 ∈ a∗). By Proposition 3.6, we know that, for all

j ∈ {1, . . . , n`+1 − 1}, u1 · · ·u`ajb is the root of a tree isomorphic to T`+1

with b = 1−a ∈ {0, 1}. This is also the case when j = n`+1 by Definition 3.4,

i.e., u1 · · ·u`an`+1b = u1 · · ·u`u`+1b is the root of a tree isomorphic to T`+1.

Again by Proposition 3.6, u1 · · ·u`u`+1b
0a is the root of a tree isomorphic to

T`+2. The formula follows.

By Definition 3.4, T0 is the subtree of TL2(w) whose root is the node

ε · 1 = 1, so the number of distinct scattered subwords of w in L2 is given by

the total number of nodes in TL2(w), namely 1 + #T0.

Remark 3.10. If we were interested in the number of distinct scattered

subwords of w in {0, 1}∗ (not only those in L2), we must add the node 0

which will be the root of a subtree isomorphic to T1. Thus, the total number

of distinct scattered subwords occurring in w is 1 + #T0 + #T1.

We end this section by illustrating the previous corollary.
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Example 3.11. We carry forward Examples 3.3 and 3.5. For the word

w = 11001110, we have #T4 = 0, n4 = 1 and #T3 = 1. Thus, since n3 = 3,

n2 = 2 and n1 = 2, we find

#T2 = 3(1 + 1) + 0 = 6,

#T1 = 2(6 + 1) + 1 = 15,

#T0 = 2(15 + 1) + 6 = 38.

The number of distinct scattered subwords of w in L2 is then 1 + #T0 = 39,

and since val2(11001110) = 206, we obtain S2(206) = 39. Moreover, the

total number of distinct scattered subwords of 11001110 is 39 + 15 = 54.

3.1.2 A Singular Relation

Thanks to tries of scattered subwords introduced in the previous section,

we collect several results about the number of words occurring as scattered

subwords of words with a prescribed form; see Lemmas 3.12, 3.13 and 3.14.

They lead to a recurrence relation satisfied by (S2(n))n≥0 in Proposition 3.15.

For the following result, if w is a finite or infinite word over {0, 1}, we let

w denote the word obtained by replacing in w every 0 by 1 and every 1 by

0 (see also Example 1.53).

Lemma 3.12. Let u be a word in {0, 1}∗. Then

#

{
v ∈ L2 |

(
1u

v

)
> 0

}
= #

{
v ∈ L2 |

(
1u

v

)
> 0

}
.

In particular, it means that S2(2` + r) = S2(2`+1 − r − 1) with 0 ≤ r < 2`,

i.e., S2 has a local palindromic structure.

Proof . Since the trie of scattered subwords of a word exactly counts the

number of distinct scattered subwords of this word, it is enough for the first

part to observe that the trees TL2(1u) and TL2(1u) are isomorphic. Each node

of the form 1x in the first tree corresponds to the node 1x in the second one,

and conversely.

For the special case, let 0 ≤ r < 2`, and write rep2(2` + r) = 1z with

z ∈ {0, 1}`. Since val2(z) + val2(z) = val2(1`) = 2` − 1, we have

rep2(2`+1 − r − 1) = 1z.
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Using (1.4) on page 23, we obtain

S2(2` + r) = #

{
v ∈ L2 |

(
1z

v

)
> 0

}
= #

{
v ∈ L2 |

(
1z

v

)
> 0

}
= S2(2`+1 − r − 1).

Lemma 3.13. Let u be a word in {0, 1}∗. Then

#

{
v ∈ L2 |

(
100u

v

)
> 0

}
=2 ·#

{
v ∈ L2 |

(
10u

v

)
> 0

}
−#

{
v ∈ L2 |

(
1u

v

)
> 0

}
.

Proof . Our reasoning is again based on the structure of the trees. Recall

that the left-hand part of the claimed formula is #TL2(100u) while the first

(resp., second) term of its right-hand part is #TL2(10u) (resp., #TL2(1u)).

Assume first that u has no 1, then u = 0n with n ≥ 0. The tree TL2(1u)

has n+ 2 nodes, TL2(10u) has n+ 3 nodes, and TL2(100u) has n+ 4 nodes.

Thus the formula is true.

Now assume that u contains at least a letter 1. First, observe that the

subtree S of TL2(1u) with root 1 is equal to the subtree of TL2(10u) with root

10 and also to the subtree of TL2(100u) with root 100. Consider the shortest

R

R

R

R

S

S

S

0

0

0

1

1 1 1

Figure 3.4: Structure of the trees TL2(1u), TL2(10u) and TL2(100u).

prefix of 1u of the form 10r1 with r ≥ 0, i.e., we stop after reading the first

1 in u. Let R be the subtree of TL2(1u) with root 10r1. By definition of the

prefix 10r1, the subtree of TL2(10u) with root 11 is R. Similarly, TL2(100u)

contains two copies of R: the subtrees of roots 11 and 101. The situation is
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depicted in Figure 3.4, and the following formula holds:

#TL2(100u) = 3 + #S + 2#R = 2(2 + #S + #R)− (1 + #S)

= 2#TL2(10u)−#TL2(1u),

as expected.

Lemma 3.14. Let u be a word in {0, 1}∗. Then

#

{
v ∈ L2 |

(
101u

v

)
> 0

}
=#

{
v ∈ L2 |

(
1u

v

)
> 0

}
+ #

{
v ∈ L2 |

(
11u

v

)
> 0

}
.

Proof . The reasoning is similar to the one of the previous proof. Recall that

the left-hand part of the claimed formula is #TL2(101u) while the first (resp.,

second) term of its right-hand part is #TL2(1u) (resp., #TL2(11u)).

If u = 1n with n ≥ 0, then TL2(101u) has 2n+ 5 nodes, and TL2(1u) and

TL2(11u) have respectively n+ 2 and n+ 3 nodes, so the formula holds.

If u has at least a letter 0, then consider the shortest prefix of 1u of the

form 1r0 with r ≥ 1. Let S be the subtree of TL2(1u) with root 1, and

R be its subtree with root 1r0. The tree TL2(101u) (resp., TL2(1u); resp.,

TL2(11u)) has 3 + 2#S + #R (resp., 1 + #S; resp., 2 + #S + #R) nodes, so

#TL2(101u) = 3 + 2#S + #R = (1 + #S) + (2 + #S + #R)

= TL2(1u) + TL2(11u).

We now obtain a recurrence relation for (S2(n))n≥0. As we will see in

Section 3.1.3, it also induces a link between the latter sequence and the

sequence of denominators of the Farey tree (A007306 [Slo]), and also the

Stern–Brocot sequence (SB(n))n≥0 (A002487 [Slo]).

Proposition 3.15. The sequence (S2(n))n≥0 satisfies S2(0) = 1, S2(1) = 2,

and for all ` ≥ 1 and 0 ≤ r < 2`,

S2(2` + r) =

{
S2(2`−1 + r) + S2(r), if 0 ≤ r < 2`−1;

S2(2`+1 − r − 1), if 2`−1 ≤ r < 2`.

Proof . Consider some integers ` and r with ` ≥ 1 and 0 ≤ r < 2`.
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If 2`−1 ≤ r < 2`, the equality S2(2`+r) = S2(2`+1−r−1) directly follows

from Lemma 3.12. Also note that 0 ≤ 2` − r − 1 < 2`−1.

So let us suppose 0 ≤ r < 2`−1. We proceed by induction on `. The case

` = 1 is easily checked by hand. Let us suppose ` ≥ 2. By definition, we

have

S2(2` + r) = #

{
v ∈ L2 |

(
rep2(2` + r)

v

)
> 0

}
.

Since r < 2`−1, we have rep2(2` + r) = 10u for a word u ∈ {0, 1}∗ of length

` − 1 verifying r = val2(u). We consider two cases depending on the first

letter occurring in u.

If u ∈ 0{0, 1}∗, then r = val2(u) ≤ 2`−2 − 1, and we deduce from

Lemma 3.13 that S2(2` + r) = 2S2(2`−1 + r) − S2(2`−2 + r). The proof

is complete after using the induction hypothesis twice

S2(2` + r) = 2(S2(2`−2 + r) + S2(r))− S2(2`−2 + r)

= S2(2`−2 + r) + S2(r) + S2(r)

= S2(2`−1 + r) + S2(r).

If u = 1u′ for u′ ∈ {0, 1}∗, then val2(101u′) = val2(10u) = 2` + r,

val2(1u′) = val2(u) = r and val2(11u′) = 2`−1 +r. From Lemma 3.14 applied

to u′, we deduce that S2(2` + r) = S2(r) + S2(2`−1 + r), which finishes the

proof.

Remark 3.16. If 2`−1 ≤ r < 2`, then 0 ≤ 2`− r− 1 < 2`−1 and using twice

the previous result gives

S2(2` + r) = S2(2`+1 − r − 1) = S2(2`−1 + 2` − r − 1) + S2(2` − r − 1).

This allows to decrease the involved powers of 2.

We have rough upper bounds for the terms of the sequence (S2(n))n≥0,

which will turn out to be useful in Chapter 4.

Corollary 3.17. For all n ≥ 1, we have S2(n) ≤ 2n.

Proof . We proceed by induction on n ≥ 1. The case n = 1 is easy since

S2(1) = 2 (see Example 1.49). Let n ≥ 2, and let us write n = 2` + r

for ` ≥ 1 and 0 ≤ r < 2`. If r = 0, then S2(n) = S2(2`) = ` + 2 since
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the scattered subwords of rep2(n) = rep2(2`) = 10` are ε and 10j for all

0 ≤ j ≤ `. We have S2(n) = S2(2`) = ` + 2 ≤ 2 · 2` = 2n. If 0 < r < 2`−1,

then

S2(n) = S2(2` + r) = S2(2`−1 + r) + S2(r)

by Proposition 3.15. By induction hypothesis,

S2(n) = S2(2` + r) ≤ 2 · (2`−1 + r) + 2r ≤ 2`+1 + 2r = 2n.

If 2`−1 ≤ r < 2`, then first by Proposition 3.15 and then by induction

hypothesis, we find

S2(n) = S2(2` + r) = S2(2`+1 − r − 1) ≤ 2 · (2`+1 − r − 1).

Observe that 2`+1 − r − 1 = 2` + 2` − r − 1 < 2` + r, so we finally have

S2(n) ≤ 2n.

3.1.3 The Farey and Stern–Brocot Trees

Plugging in the first few terms of (S2(n))n≥0 in Sloane’s On-Line Encyclope-

dia of Integer Sequences [Slo], it seems to be a shifted version of the sequence

A007306 of the denominators occurring in the Farey tree (the left subtree of

the full Stern–Brocot tree, or the Stern–Brocot subtree in the range [0, 1]),

which contains every (reduced) positive rational less than 1 exactly once.

Many papers deal with both trees, but the second has been recently restudied

for its link with physical chemistry; see, for instance, [Bat14, BBT10, Gla11].

The Farey tree is an infinite binary tree made up of mediants. Given two

reduced fractions a
b and c

d , with a, b, c, d ∈ N, their mediant is the fraction
a
b ⊕ c

d = a+c
b+d . This operation is known as the child’s addition. Observe that

for all a
b , c

d with a
b <

c
d , we have a

b <
a
b ⊕ c

d <
c
d .

Definition 3.18. Starting from the fractions 0
1 and 1

1 , the Farey tree is the

infinite tree defined as follows.

• The set of nodes is partitioned into levels indexed by N.

• The level 0 consists in {0
1 ,

1
1}.

• The level 1 consists in {1
2}. The node 1

2 is the only one with two

parents, which are 0
1 and 1

1 .
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• For each n ≥ 2, the level n consists in the children of the nodes of

vertices in the level n− 1. For each node a
b of level n− 1, we define

Left
(a
b

)
= max

{
e

f
| level

(
e

f

)
< n− 1 and

e

f
<
a

b

}
,

and

Right
(a
b

)
= min

{
e

f
| level

(
e

f

)
< n− 1 and

e

f
>
a

b

}
.

It means that Left
(
a
b

)
(resp., Right

(
a
b

)
) is the greatest (resp., smallest)

fraction that is located in levels before the level of a
b and that is also

smaller (resp., greater) than a
b . Now, the left and right children of a

b

are respectively a
b ⊕ Left

(
a
b

)
and a

b ⊕ Right
(
a
b

)
.

The first five levels of the Farey tree can be found in Figure 3.5. For

instance, the fraction a
b = 2

5 is located on level 3. The fractions on levels 0,

1 and 2 are 0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1 . We have 0

1 ,
1
3 <

2
5 and 1

2 ,
2
3 ,

1
1 >

2
5 , so

Left

(
2

5

)
=

1

3
and Right

(
2

5

)
=

1

2
.

Consequently, the left (resp., right) child of 2
5 is 2

5 ⊕ Left
(

2
5

)
= 2

5 ⊕ 1
3 = 3

8

(resp., 2
5 ⊕ Right

(
2
5

)
= 2

5 ⊕ 1
2 = 3

7).

0
1

1
1Level 0

Level 1

Level 2

Level 3

Level 4

1
2

1
3

1
4

1
5

2
7

2
5

3
8

3
7

2
3

3
5

4
7

5
8

3
4

5
7

4
5

Figure 3.5: The first levels of the Farey tree.
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Reading the denominators in Figure 3.5 level-by-level, then from left to

right, i.e., conducting a breadth-first traversal of the tree, we obtain the first

few terms of the sequence (S2(n))n≥0, if we drop the second denominator 1.

Have a look at Example 1.49.

If we assume that a branch to the left (resp., right) corresponds to 0

(resp., 1), then with every node a
b (except 1

1) is associated a unique path

from 0
1 to a

b of label u ∈ 1{0, 1}∗ ∪ {ε}. If val2(u) = 2k + r with k ≥ 0

and 0 ≤ r < 2k, then we will show that a = S2(r) and b = S2(2k + r) (see

Propositions 3.19 and 3.20). For instance, 3
7 corresponds to the path of label

1011 = rep2(11) = rep2(23 + 3) and, S2(3) = 3, S2(11) = 7.

Given an integer n ≥ 0, we let D(n) (resp., N(n)) be the denominator

(resp., numerator) of the fraction corresponding to the node reached in the

Farey tree from 0
1 using the path of label rep2(n). The sequence (D(n))n≥0 is

called the sequence of denominators of the Farey tree fractions and is indexed

by A007306 in [Slo]. Similarly, the sequence (N(n))n≥0 is the sequence of

numerators of the Farey tree fractions.

Proposition 3.19. The sequence (D(n))n≥0 of denominators of the Farey

tree fractions coincides with (S2(n))n≥0.

Proof . From the definition of the Farey tree, it follows that, for all ` ≥ 1

and u ∈ {0, 1}∗,

D(val2(u10`)) = D(val2(u10`−1)) +D(val2(u))

and

D(val2(u01`)) = D(val2(u01`−1)) +D(val2(u)).

Otherwise stated, if n = 2k+r ≥ 1 with 0 ≤ r < 2k, we have two possibilities:

either there exists ` ≥ 1 such that

D(n) =

{
D(n/2) +D(0), if rep2(n) = 10`;

D((n− 1)/2) +D(0), if rep2(n) = 1`;

or there exists ` ≥ 1 such that

D(n) =

{
D(n/2) +D((n− 2`)/2`+1), if rep2(r) ∈ {0, 1}∗10`;

D((n− 1)/2) +D((n− 2` + 1)/2`+1), if rep2(r) ∈ {0, 1}∗01`.
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We show by induction that the sequences (D(n))n≥0 and (S2(n))n≥0 are

equal. A direct inspection shows that S2(n) = D(n) for 0 ≤ n ≤ 3. For the

induction step, we assume that n ≥ 4, and we show that S2(n) satisfies the

same formulas as D(n), i.e., if n = 2k + r ≥ 1 with 0 ≤ r < 2k, we have for

some ` ≥ 1

S2(n) =

{
S2(n/2) + S2(0), if rep2(n) = 10`;

S2((n− 1)/2) + S2(0), if rep2(n) = 1`;

or

S2(n) =

{
S2(n/2) + S2((n− 2`)/2`+1), if rep2(r) ∈ {0, 1}∗10`;

S2((n− 1)/2) + S2((n− 2` + 1)/2`+1), if rep2(r) ∈ {0, 1}∗01`.

Let us write n = 2k + r with k ≥ 2 and 0 ≤ r < 2k. We establish the

first relations. If r = 0 (resp., r = 2k − 1), then S2(n) = k + 2 since the

scattered subwords of rep2(n) = 10k (resp., rep2(n) = 1k+1) are ε and 10j

for 0 ≤ j ≤ k (resp., ε and 1j for 1 ≤ j ≤ k + 1). The formula holds since

S2(n/2) = k + 1 (resp., S2((n− 1)/2) = k + 1) and S2(0) = 1. Now we may

assume that r /∈ {0, 2k−1}. In the view of Proposition 3.15, we consider four

cases, depending on whether 0 ≤ r < 2k−1 or 2k−1 ≤ r < 2k, and whether

rep2(r) has a suffix consisting of zeroes or of ones. However, we only give

the proof for the case 0 ≤ r < 2k−1 with rep2(r) ∈ {0, 1}∗10`, ` ≥ 1, for the

other ones are similar. By Proposition 3.15, we first have

S2(n) = S2(2k−1 + r) + S2(r),

and then by induction hypothesis, we find

S2(n) =S2((2k−1 + r)/2) + S2((2k−1 + r − 2`)/2`+1)

+ S2(r/2) + S2((r − 2`)/2`+1).

Using Proposition 3.15 again, we finally get

S2(n) =S2(2k−1 + r/2) + S2((2k + r − 2`)/2`+1)

=S2(n/2) + S2((n− 2`)/2`+1).

In fact, we have a stronger result.
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Proposition 3.20. Let w ∈ 1{0, 1}∗ be a finite word such that val2(w) =

2k + r with k ≥ 0 and r ∈ {0, . . . , 2k − 1}. Then the fraction in the Farey

tree corresponding to the node reached at the end of the path labeled by w is

S2(r)/S2(2k + r).

Proof . By definition of the Farey tree, if n = 2k + r ≥ 1 with 0 ≤ r < 2k, we

have for some ` ≥ 1

N(n) =

{
N(n/2) +N(0) = 1, if rep2(n) = 10`;

N((n− 1)/2) + 1 = `, if rep2(n) = 1`;

or

N(n) =

{
N(n/2) +N((n− 2`)/2`+1), if rep2(r) ∈ {0, 1}∗10`;

N((n− 1)/2) +N((n− 2` + 1)/2`+1), if rep2(r) ∈ {0, 1}∗01`;

as it was the case for the sequence (D(n))n≥0 of denominators.

We show that, if n = 2k + r ≥ 1 with 0 ≤ r < 2k, then N(n) = S2(r).

We proceed by induction on n ≥ 1. The result holds for 1 ≤ n ≤ 3 by

looking at the Farey tree. Now suppose that n = 2k + r ≥ 4. If r = 0,

then S2(r) = 1 and the formula is true. If r = 2k − 1, then rep2(r) = 1k, so

S2(r) = k + 1. The formula holds since rep2(n) = 1k+1 and N(n) = k + 1.

Now we may suppose that r /∈ {0, 2k − 1}. Again, we have to consider four

cases, depending on whether 0 ≤ r < 2k−1 or 2k−1 ≤ r < 2k, and whether

rep2(r) has a suffix consisting of zeroes or of ones. However, we only give

the proof for the case 0 ≤ r < 2k−1 with rep2(r) ∈ {0, 1}∗10`, ` ≥ 1, since

the other ones are similar. Using the previous formulas and the induction

hypothesis, we find

N(n) = N(n/2) +N((n− 2`)/2`+1)

= S2(r/2) + S2((r − 2`)/2`+1).

The idea is to use the relations satisfied by (S2(n))n≥0 that were highlighted

in the proof of the previous proposition. As a first case, suppose that the

base-2 expansion of r contains at least a letter 1 before the block 10`, i.e.,

rep2(r) ∈ 1{0, 1}∗10`. Then

N(n) = S2(r/2) + S2((r − 2`)/2`+1) = S2(r),
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where the last equality comes from the proof of Proposition 3.19. As a second

case, suppose that rep2(r) ∈ 0∗10`, i.e., r = 2`. Then

N(n) = S2(2`−1) + S2(0) = `+ 2 = S2(2`) = S2(r).

Now, the main result follows. Indeed, let w ∈ 1{0, 1}∗ be a finite word

such that val2(w) = 2k + r with k ≥ 0 and r ∈ {0, . . . , 2k−1}. By definition,

the fraction in the Farey tree corresponding to the node reached at the end

of the path labeled by w is N(2k + r)/D(2k + r). By the first part of the

proof and by Proposition 3.19, this fraction is equal to S2(r)/S2(2k + r), as

desired.

Remark 3.21. It is a folklore fact that the sum of the denominators of the

fractions on level k (with k ≥ 1) in the Farey tree is equal to 2 · 3k−1, i.e.,

2k−1−1∑
r=0

D(2k−1 + r) = 2 · 3k−1,

and is equal to 1 if we only consider the denominator D(0). Thus, the sum∑2n−1
i=1 D(i) of the denominators of the fractions on the levels 1 to n is equal

to 3n − 1 (or 3n if we add the denominator D(0) on level 0). Using (1.4)

on page 23, we observe that
∑2n−1

i=0 S2(i) is the number of pairs of words

in L≤n2 having a positive binomial coefficient. This is yet another proof of

Proposition 2.5.

Recall the Stern–Brocot sequence from Example 1.55. Then the equality

D(n) = SB(2n+ 1) and Proposition 3.19 imply the following.

Corollary 3.22. The sequence (S2(n))n≥0 satisfies S2(n) = SB(2n+ 1) for

all n ∈ N.

Remark 3.23. In [CW98], it is shown that the nth Stern–Brocot value

SB(n) is equal to the number of times words of the form v ∈ 1(01)∗ occur as

scattered subwords of the binary expansion of n. This result is different from

the one obtained here because the form of the scattered subwords is fixed.

In [CS11], the authors give a way to build the sequence (SB(n))n≥0 using

occurrences of words appearing in the base-2 expansions of positive integers.

It is known that the Stern–Brocot tree and the Stern–Brocot sequence

both have connections with continued fractions (see, for instance, [Nor10]),
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and continued fractions are deeply bonded with Christoffel words (see, for

instance, [BLRS09]). All in all, it implies that the sequence (S2(n))n≥0 and

Christoffel words are linked together. It is worth mentioning that the Farey

tree is also related to the notion of frieze patterns [MGOT15], giving yet

another way to think about the sequence (S2(n))n≥0. In [ÇS18], it is proved

that there exists a bijection between the perfect matchings of snake graphs

and the denominators of fractions in the Stern–Brocot tree, so this bijection

also extends to the sequence (S2(n))n≥0. Numerous discussions with E. Gu-

nawan let us think that the material developed here, namely the sequence

(S2(n))n≥0 and more especially tries of scattered subwords, could be a way to

study cluster algebras and help to count order ideals of a specific poset [BG].

3.1.4 2-Regularity

From the 2-regularity of the Stern–Brocot sequence in Example 1.55, Corol-

lary 3.22 and the robustness result [AS03a, Theorem 16.2.2] (which states

that if (s(n))n≥0 is b-regular, then so is the sequence (s(kn+r))n≥0 for k ≥ 1

and r ≥ 0), one can immediately deduce that (S2(n))n≥0 is also 2-regular. In

fact, many properties of (S2(n))n≥0 can be deduced from the corresponding

properties of the Stern–Brocot sequence. Nevertheless, this section proposes

an alternative proof of the 2-regularity property because we have in mind

extensions to other numeration systems; see Sections 3.2 and 3.3.

Theorem 3.24. The sequence (S2(n))n≥0 satisfies, for all n ≥ 0,

S2(2n+ 1) = 3S2(n)− S2(2n),

S2(4n) = 2S2(2n)− S2(n),

S2(4n+ 2) = 4S2(n)− S2(2n).

In particular, (S2(n))n≥0 is 2-regular.

Proof . To prove those relations, we proceed by induction on n ≥ 0. It can

be checked by hand that the result holds for n ∈ {0, 1}. Thus consider n > 1,

and suppose that the relations hold for all m < n. We write n = 2` + r with

` ≥ 1 and 0 ≤ r < 2`. For each relation to prove, we divide the proof in two

parts according to the position of r inside the interval [0, 2`).

We first prove S2(2n+ 1) + S2(2n) = 3S2(n). If 0 ≤ r < 2`−1, we get by
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Proposition 3.15

S2(2n+ 1) + S2(2n) = S2(2`+1 + 2r + 1) + S2(2`+1 + 2r)

= S2(2` + 2r + 1) + S2(2r + 1) + S2(2` + 2r) + S2(2r).

By induction hypothesis and then by Proposition 3.15 again, we have

S2(2n+ 1) + S2(2n) = 3S2(2`−1 + r) + 3S2(r) = 3S2(n).

If 2`−1 ≤ r < 2`, we obtain by Proposition 3.15

S2(2n+ 1) + S2(2n) = S2(2`+1 + 2r + 1) + S2(2`+1 + 2r)

= S2(2`+2 − 2r − 2) + S2(2`+2 − 2r − 1).

By induction hypothesis and then by Proposition 3.15 again, we find

S2(2n+ 1) + S2(2n) = 3S2(2`+1 − r − 1) = 3S2(n),

as desired.

Let us prove S2(4n) = 2S2(2n) − S2(n). If 0 ≤ r < 2`−1, we get from

Proposition 3.15

S2(4n) = S2(2`+2 + 4r) = S2(2`+1 + 4r) + S2(4r).

By induction hypothesis and then by Proposition 3.15 again, we obtain

S2(4n) = 2S2(2` + 2r)− S2(2`−1 + r) + 2S2(2r)− S2(r) = 2S2(2n)− S2(n).

If 2`−1 ≤ r < 2`, we have by Proposition 3.15

S2(4n) = S2(2`+2 + 4r) = S2(2`+3 − 4r − 1).

Observe that the integer 2`+3 − 4r − 1 is odd, so from the first relation, we

deduce

S2(4n) = 3S2(2`+2 − 2r − 1)− S2(2`+3 − 4r − 2),

and by Proposition 3.15, we in fact have

S2(4n) = 3S2(2n)− S2(2`+3 − 4(r + 1) + 2).

By induction hypothesis and then by Proposition 3.15 again, we deduce

S2(4n) = 3S2(2n)− 4S2(2`+1 − r − 1) + S2(2`+2 − 2r − 2)

= 3S2(2n)− 4S2(n) + S2(2n+ 1).
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Lastly, using the first relation, we prove

S2(4n) = 2S2(2n)− S2(n),

as expected.

Finally, let us show S2(4n + 2) = 4S2(n) − S2(2n). If 0 ≤ r < 2`−1, we

get by Proposition 3.15

S2(4n+ 2) = S2(2`+2 + 4r + 2) = S2(2`+1 + 4r + 2) + S2(4r + 2).

By induction hypothesis and then by Proposition 3.15 again, we find

S2(4n+2) = 4S2(2`−1 +r)−S2(2`+2r)+4S2(r)−S2(2r) = 4S2(n)−S2(2n).

If 2`−1 ≤ r < 2`, we get by Proposition 3.15

S2(4n+ 2) = S2(2`+2 + 4r + 2) = S2(2`+3 − 4r − 3).

Observe that the integer 2`+3−4r−3 is odd, so using the first relation leads

to

S2(4n+ 2) = 3S2(2`+2 − 2r − 2)− S2(2`+3 − 4r − 4),

which implies by Proposition 3.15 that

S2(4n+ 2) = 3S2(2n+ 1)− S2(2`+3 − 4(r + 1)).

By induction hypothesis and then by Proposition 3.15 again, we get

S2(4n+ 2) = 3S2(2n+ 1)− 2S2(2`+2 − 2r − 2) + S2(2`+1 − r − 1)

= 3S2(2n+ 1)− 2S2(2n+ 1) + S2(n).

Using the first relation one last time, we have

S2(4n+ 2) = 4S2(n)− S2(2n),

as stated.

To finish the proof, observe that the Z-module 〈K2(S2)〉 is finitely gener-

ated: a choice of generators is (S2(n))n≥0 and (S2(2n))n≥0.

If a sequence is b-regular, then its nth term can be obtained by mul-

tiplying some matrices, and the length of this product is proportional to

logb(n); see, for instance, [AS92], [AS03a, Theorem 16.1.3]. In our situation,

we will consider products of square matrices of size 2. Observe that due to

Corollary 3.22, other matrices can be derived from a linear representation of

(SB(n))n≥0 (see, for instance, [BC18]).
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Corollary 3.25. For all n ≥ 0, let

V2(n) =

(
S2(n)

S2(2n)

)
.

Consider the matrix-valued map µ2 : {0, 1}∗ → Z2
2 defined by

µ2(0) =

(
0 1

−1 2

)
, µ2(1) =

(
3 −1

4 −1

)
.

Then V2(2n+ r) = µ2(r)V2(n) for all r ∈ {0, 1} and n ≥ 0. Consequently, if

rep2(n) = ck · · · c0, then

S2(n) =
(

1 0
)
µ2(c0) · · ·µ2(ck)

(
1

1

)
.

Proof . Thanks to Theorem 3.24, we have

V2(2n) =

(
S2(2n)

S2(4n)

)
=

(
0 1

−1 2

)(
S2(n)

S2(2n)

)
= µ2(0)V2(n),

and

V2(2n+ 1) =

(
S2(2n+ 1)

S2(4n+ 2)

)
=

(
3 −1

4 −1

)(
S2(n)

S2(2n)

)
= µ2(1)V2(n)

for all n ≥ 0. Let r =
∑`−1

i=0 ri 2i. Then the word r`−1 · · · r0 is a representation

of r in base 2 possibly with leading zeroes. By induction, we can show that

V2(2`m+ r) = µ2(r0 · · · r`−1)V2(m) (3.2)

for all m ∈ N.

Now let n ≥ 2. Then there exist ` ≥ 1 and r ∈ {0, . . . , 2` − 1} such that

n = 2` + r. Let r`−1 · · · r0 be a representation of r in base 2 possibly with

leading zeroes. Using (3.2) and the fact that V2(1) = µ2(1)V2(0), we get

V2(n) = µ2(r0 · · · r`−1)V2(1) = µ2(r0 · · · r`−11)V2(0) = µ2((rep2(n))R)V2(0),

where uR is the reversal of the word u. Note that the previous equality also

holds for n ∈ {0, 1}. In particular, we have the following equality

S2(n) =
(

1 0
)
µ2((rep2(n))R)

(
1

1

)
for all n ∈ N since the components of V2(0) are both S2(0) = 1.
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3.1.5 Non 2-Synchronicity

Recall that, among the unbounded 2-regular sequences, the 2-synchronized

sequences are those that can be “computed” with a finite automaton; see

Section 1.7 and Definition 1.58. In the present section, we shortly discuss

the fact that (S2(n))n≥0 fails to be 2-synchronized for which we give two

independent proofs. As a consequence, (S2(n))n≥0 is not 2-automatic.

Proposition 3.26. The sequence (S2(n))n≥0 is not 2-synchronized.

Proof . Proceed by contradiction, and suppose that there is a deterministic k-

state automaton that accepts exactly the language {rep2(n, S2(n)) | n ∈ N}.
Note that for all ` ≥ 0, S2(2`) = ` + 2 using (1.4) on page 23. Consider an

integer ` such that `− dlog2(`+ 2)e > k + 1. Then we have

rep2(2`, `+ 2) = (10`, 0k+2u) (3.3)

for a word u ∈ {0, 1}∗ of length `− k − 1 and such that val2(u) = `+ 2. Let

(q0, q1, . . . , q`+2) be the path in the automaton starting in the initial state

q0 and whose label is rep2(2`, `+ 2). Since rep2(2`, `+ 2) is accepted by the

automaton, note that the state q`+2 is an accepting state. We start by reading

(10k+1, 0k+2). As the automaton has k states, there exist 1 ≤ i < j ≤ k + 2

such that qi = qj by the pigeonhole principle. By choice of ` (also recall (3.3)),

there is a path (even a loop) from qi to qj whose label is (0j−i, 0j−i). Thus, the

pair of words (10`+j−i, 0k+2+j−iu) is accepted by the automaton. However,

we have

S2(val2(10`+j−i)) = S2(2`+j−i) = `+ j − i+ 2 6= `+ 2 = val2(0k+2+j−iu),

which is a contradiction.

The fact that the sequence (S2(n))n≥0 is not 2-synchronized also follows

from the next result.

Lemma 3.27. [SS16, Lemma 4] If s = (s(n))n≥0 is a b-synchronized se-

quence and s 6= O(1), then there exists a constant C > 0 such that s(n) ≥ Cn
infinitely often.

The joint spectral radius [BKPW08] of a b-regular sequence is a good

indication of its growth rate [Dum13]. One can numerically estimate that
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the joint spectral radius ρ of the matrices µ2(0) and µ2(1) is between 1.61 and

1.71 (for instance, using the SageMath program, one can choose the length

of the interval in which the joint spectral radius falls, i.e., one can decide

the precision of the estimation; in our case, a rough estimate is enough). For

bounds, we refer the reader to [The05]. Since, for all n ≥ 0, S2(n) can be

computed by multiplying those matrices, and the number of multiplications

is proportional to log2(n) (see Corollary 3.25), it follows that the growth rate

of S2(n) cannot be greater than ρlog2(n) = nlog2(ρ) multiplied by a constant.

By Lemma 3.27, the sequence (S2(n))n≥0 cannot be 2-synchronized. Note

that we can also make use of the growth order of the Stern–Brocot sequence.

In fact, its joint spectral radius is exactly the golden ratio [BC18].

3.2 The General Case of Integer Bases

In this section, we fix an integer b ≥ 2, and we investigate the general case

of the base-b numeration system of Example 1.17. We consider the gener-

alized Pascal triangle Pb from Definition 1.42 and the sequence (Sb(n))n≥0

from Definition 1.47. Recall that the 2-regularity of (S2(n))n≥0 particu-

larly follows from its link to the Stern–Brocot sequence (see the beginning

of Section 3.1.4). In the general integer base case, (Sb(n))n≥0 is not known

to be related to already existing regular sequences, so the technique devel-

oped previously acquires real meaning here. More precisely, we use tries of

scattered subwords defined in Section 3.1.1 for this larger context in order to

obtain results similar to Proposition 3.6, Corollary 3.9 and more importantly

Proposition 3.15. The corresponding results are stated in Propositions 3.29

and 3.32, and Corollary 3.34. Note that the relations in Proposition 3.29

startlingly reduce to three forms. We also show that the sequence (Sb(n))n≥0

is palindromic over intervals of the form [(b− 1)b`, b`+1] in Proposition 3.44.

Afterwards, as for the case b = 2, we show in Section 3.2.2 that (Sb(n))n≥0

is b-regular, but not b-synchronized. Moreover, we obtain a linear represen-

tation of the sequence with square matrices of size b.

Example 3.28. If b = 3, then we consider P3 and the sequence (S3(n))n≥0

which starts with

1, 2, 2, 3, 3, 4, 3, 4, 3, 4, 5, 6, 5, 4, 6, 7, 7, 6, 4, 6, 5, 7, 6, 7, 5, 6, 4, 5, 7, 8, 8, 7, . . . ,

and which is depicted in Figure 3.6 (observe the similarity with Figure 3.1).



3.2. The General Case of Integer Bases 119

They are respectively indexed by A284441 and A282715 in [Slo]. For in-

stance, the scattered subwords of the word 121 are ε, 1, 2, 11, 12, 21, 121.

Thus, S3(val3(121)) = S3(16) = 7.

50 100 150 200

5

10

15

20

25

Figure 3.6: The sequence (S3(n))n≥0 in the interval [0, 35].

Most of the results in this section are proved by induction, and the base

case usually takes into account the values of Sb(n) for 0 ≤ n < b2. They are

easily obtained from Definition 1.47 and summarized in Table 3.7.

repb(n) ε x x0 xx xy x00 x0x x0y

Sb(n) 1 2 3 3 4 4 5 6

repb(n) xx0 xxx xxy xy0 xyx xyy xyz

Sb(n) 5 4 6 7 7 6 8

Table 3.7: The first few values of Sb(n) for 0 ≤ n < b3, with pairwise distinct

x, y, z ∈ {1, . . . , b− 1}.

3.2.1 A General Recurrence Relation

The aim of this section is to exhibit recurrence relations satisfied by the

sequence (Sb(n))n≥0. They also turn out to be useful to prove results related
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to summatory functions in Chapter 4. Observe that we divide the following

statement into different cases depending on the first letters of the base-b

expansion of integers.

Proposition 3.29. The sequence (Sb(n))n≥0 satisfies Sb(0) = 1,

Sb(1) = · · · = Sb(b− 1) = 2,

and, for all x, y ∈ {1, . . . , b − 1} with x and y distinct, all ` ≥ 1 and all

r ∈ {0, . . . , b`−1 − 1},

Sb(xb
` + r) = Sb(xb

`−1 + r) + Sb(r), (3.4)

Sb(xb
` + xb`−1 + r) = 2Sb(xb

`−1 + r)− Sb(r), (3.5)

Sb(xb
` + yb`−1 + r) = Sb(xb

`−1 + r) + 2Sb(yb
`−1 + r)− 2Sb(r). (3.6)

To prove Proposition 3.29 (and the b-regularity of the sequence (Sb(n))n≥0

as we will see later on), we use tries of scattered subwords, which is a tool

introduced in Section 3.1.1, and more precisely the tree TAb,Lb(w) = TLb(w)

for w ∈ Lb. Definition 3.4 is adapted in the following way.

Definition 3.30. For each non-empty word w ∈ Lb, we consider a factoriza-

tion of w into maximal blocks of consecutively distinct letters (i.e., ai 6= ai+1

for all i) of the form

w = an1
1 · · · anMM ,

with n` ≥ 1 for all `. Note that for k−i ≥ 2, one could possibly have ak = ai.

For each ` ∈ {0, . . . ,M − 1}, we consider the subtree T` of TLb(w) whose

root is the node an1
1 · · · an`` a`+1. Once again, we conveniently set TM to be

an empty tree with no node. Roughly speaking, we have a root of a new

subtree T` for each new alternation of digits in w.

For each ` ∈ {0, . . . ,M − 1}, we let Alph(`) denote the set of letters

occurring in a`+1 · · · aM . Then for each letter a ∈ Alph(`), we let j(a, `)

denote the smallest index i in {` + 1, . . . ,M} such that ai = a. Differently

put, j(a, `) denotes the first occurrence of a in a`+1 · · · aM .

Example 3.31. In this example, we take b = 3 and w = 22000112 ∈ L3.

The tree TL3(22000112) is depicted in Figure 3.8. We use three different

colors to represent the letters 0, 1, 2: green for 0, black for 1 and gray for
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2. Using the previous notation, we have M = 4, a1 = 2, n1 = 2, a2 = 0,

n2 = 3, a3 = 1, n3 = 2, a4 = 2 and n4 = 1. The tree T0 (resp., T1; resp., T2;

resp., T3) is the subtree of TL3(w) with root 2 (resp., 220; resp., 22031; resp.,

2203122). These subtrees are represented in Figure 3.8 using dashed lines.

The tree T3 is limited to a single node since the number of nodes of TM−1 is

nM , which is equal to 1 in this example.

T0T1T2T3

0

0

0

1

1

2

2

2

Figure 3.8: The trie TL3(22000112).

The sets Alph(`) and the corresponding indices j(a, `) are given in Ta-

ble 3.9. To determine j(2, 0), we have to look at the indices i ∈ {1, 2, 3, 4}
such that ai = 2. Since i = 1 and i = 4 both do the job, we have j(2, 0) = 1.

` Alph(`) j(a, `) with a ∈ Alph(`)

0 {0, 1, 2} j(0, 0) = 2, j(1, 0) = 3, j(2, 0) = 1

1 {0, 1, 2} j(0, 1) = 2, j(1, 1) = 3, j(2, 1) = 4

2 {1, 2} j(1, 2) = 3, j(2, 2) = 4

3 {2} j(2, 3) = 4

Table 3.9: The sets Alph(`) and the corresponding indices j(a, `) for the

word w = 22000112 ∈ L3.

The next result describes the structure of the tree TLb(w) for w ∈ Lb. It
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follows from Definition 3.30 and generalizes Proposition 3.6.

Proposition 3.32. Let w be a non-empty word in Lb. The tree TLb(w) has

the following properties.

• Every letter a ∈ Alph(0) \ {0} is a child of the node of label ε. This

particular node has thus #(Alph(0)) − 1 children. Each child a is the

root of a tree isomorphic Tj(a,0)−1.

• For each ` ∈ {0, . . . ,M − 1} and each i ∈ {0, . . . , n`+1 − 1} such that

(`, i) 6= (0, 0), the node of label x = an1
1 · · · an`` ai`+1 has #(Alph(`))

children that are xa for a ∈ Alph(`). Each child xa with a 6= a`+1 is

the root of a tree isomorphic to Tj(a,`)−1.

Example 3.33. From Example 3.31, we see that the node of label ε has two

children a ∈ Alph(0)\{0} = {1, 2}. Its child 1 (resp., 2) is the root of a copy

of Tj(1,0)−1 = T2 (resp., Tj(2,0)−1 = T0). Let us illustrate the second part of

the statement with ` = 0. For 0 < i ≤ n1 − 1 = 1, the node of label ai1 = 2i

has #(Alph(0)) = 3 children, which are 2ia for a ∈ {0, 1, 2}. Observe that

this is not true if i = 0, which corresponds to the node of label ε that cannot

have 0 as a child. For i = 1, the child 210 (resp., 211) is the root of a copy

of Tj(0,0)−1 = T1 (resp., Tj(1,0)−1 = T2).

The next result, which extends Corollary 3.9, permits us to compute the

number of nodes of T` for all ` ∈ {0, . . . ,M}.

Corollary 3.34. Let w be a non-empty word in Lb. The number of nodes

in TM−1 (resp., TM ) is nM (resp., 0). For ` ∈ {0, . . . ,M − 2}, the number

of nodes in T` is given by1

#T` = n`+1

1 +
∑

a∈Alph(`+1)
a6=a`+1

#Tj(a,`+1)−1

+ #Tj(a`+1,`+1)−1.

The number of distinct scattered subwords of w in Lb is given by

1 + #T0 +
∑

a∈Alph(0)
a6=0,a1

#Tj(a,0)−1 = 1 +
∑

a∈Alph(0)
a6=0

#Tj(a,0)−1.

1If j < 0, then Tj is set to be an empty tree.
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Remark 3.35. As for the base-2 case, if we were interested in the total

number of distinct scattered subwords of w (not only those in Lb), we should

add the node 0, which will be the root of a subtree isomorphic to Tj(0,0)−1.

Thus, the total number of distinct scattered subwords occurring in w is

1 + #T0 +
∑

a∈Alph(0)
a6=a1

#Tj(a,0)−1 = 1 +
∑

a∈Alph(0)

#Tj(a,0)−1.

Example 3.36. Let us continue Examples 3.31 and 3.33. We have #T4 = 0

and #T3 = n4 = 1. Using Corollary 3.34, since n3 = 2 and j(2, 3) = 4, we

get #T2 = 2(1 + #T3) + 0 = 4. Since n2 = 3, j(1, 2) = 3 and j(2, 2) = 4, we

have

#T1 = 3(1 + #T2 + #T3) + 0 = 18.

Similarly, since n1 = 2, j(0, 1) = 2, j(1, 1) = 3 and j(2, 1) = 4, we find

#T0 = 2(1 + #T1 + #T2) + #T3 = 47.

Finally, the only letter a ∈ Alph(0) \ {0, 2} is 1 for which j(1, 0) = 3. The

number of distinct scattered subwords of w in L3 is then

1 + #T0 + #T2 = 52,

and since val3(22000112) = 5846, S3(5846) = 52. Moreover, the total number

of distinct scattered subwords of w is

(1 + #T0 + #T2) + #T1 = 52 + 18 = 70

because we simply have to add #Tj(0,0)−1, which is #T1 in this example.

Using tries of scattered subwords, we prove the following five lemmas,

echoing Lemmas 3.13 and 3.14. Their proofs are essentially the same, so we

only prove two of them. They particularly lead to a proof of Proposition 3.29.

Lemma 3.37. For each letter x ∈ {1, . . . , b−1} and each finite word u over

{0, . . . , b− 1}, we have

#

{
v ∈ Lb |

(
x00u

v

)
> 0

}
=2 ·#

{
v ∈ Lb |

(
x0u

v

)
> 0

}
−#

{
v ∈ Lb |

(
xu

v

)
> 0

}
.
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Proof . From Remark 3.2, we need to prove that

#TLb(x00u) = 2#TLb(x0u)−#TLb(xu).

Assume first that u is of the form u = 0n with n ≥ 0. The tree TLb(xu)

is linear and has n+ 2 nodes, TLb(x0u) has n+ 3 nodes, and TLb(x00u) has

n+ 4 nodes. The formula holds.

Now suppose that u contains letters other than 0. We let a1, . . . , am de-

note all the pairwise distinct letters of u different from 0. They are implicitly

ordered with respect to their first appearance in u. If x ∈ {a1, . . . , am}, we let

ix ∈ {1, . . . ,m} denote the index such that aix = x. For all i ∈ {1, . . . ,m},
we let uiai denote the prefix of u that ends with the first occurrence of the

letter ai in u, and we let Ri denote the subtree of TLb(xu) with root xuiai.

First, observe that the subtree T of TLb(xu) with root x is equal to the

subtree of TLb(x0u) with root x0 and also to the subtree of TLb(x00u) with

root x00.

Secondly, for all i ∈ {1, . . . ,m}, the subtree of TLb(x0u) with root xai is

Ri. Similarly, TLb(x00u) contains two copies of Ri: the subtrees of roots xai
and x0ai.

Finally, for all i ∈ {1, . . . ,m} with i 6= ix, the subtree of TLb(x0u) with

root ai is Ri, and the subtree of TLb(x00u) with root ai is Ri.

The situation is depicted in Figure 3.10 where we put a unique edge for

several indices when necessary, e.g., the edge labeled by ai stands for m edges

labeled by a1, . . . , am. The claimed formula holds since

2 ·

2 + #T + 2
∑

1≤i≤m
i 6=ix

#Ri + #Rix

−
1 + #T +

∑
1≤i≤m
i 6=ix

#Ri


= 3 + #T + 3

∑
1≤i≤m
i 6=ix

#Ri + 2#Rix .

Lemma 3.38. For each letter x ∈ {1, . . . , b−1} and each finite word u over

{0, . . . , b− 1}, we have

#

{
v ∈ Lb |

(
xx0u

v

)
> 0

}
=#

{
v ∈ Lb |

(
x0u

v

)
> 0

}
+ #

{
v ∈ Lb |

(
xu

v

)
> 0

}
.
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Proof . The proof is analogous to the proof of Lemma 3.37.

x

0

T

Ri

Ri

ai, i 6= ix

ai

(a) The tree T (x0u).

x

0

0

a1

a2

T

R1

R2

Ri

ai, i 6= ix

(b) The tree T (xu).

x

0

0

T

Ri

Ri

Ri

ai, i 6= ix

ai

ai

(c) The tree T (x00u).

Figure 3.10: Schematic structure of the trees T (x0u), T (xu) and T (x00u).

Lemma 3.39. For all letters x, y ∈ {1, . . . , b − 1} and each finite word u

over {0, . . . , b− 1}, we have

#

{
v ∈ Lb |

(
x0yu

v

)
> 0

}
=#

{
v ∈ Lb |

(
xyu

v

)
> 0

}
+ #

{
v ∈ Lb |

(
yu

v

)
> 0

}
.

Proof . The proof is similar to the proof of Lemma 3.37. Observe that one

needs to divide the proof into two cases according to whether x is equal to

y or not. As a first case, also consider u = yn with n ≥ 0 instead of u = 0n

with n ≥ 0.
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Lemma 3.40. For all letters x, y ∈ {1, . . . , b − 1} and each finite word u

over {0, . . . , b− 1}, we have

#

{
v ∈ Lb |

(
xxyu

v

)
> 0

}
=2 ·#

{
v ∈ Lb |

(
xyu

v

)
> 0

}
−#

{
v ∈ Lb |

(
yu

v

)
> 0

}
.

Proof . The proof is akin to the proof of Lemma 3.39.

The next lemma has a slightly more technical proof, so we present it.

Lemma 3.41. For all pairwise distinct letters x, y ∈ {1, . . . , b − 1}, each

letter z ∈ {0, . . . , b − 1} and each finite word u over {0, . . . , b − 1}, the

following equality holds

#

{
v ∈ Lb |

(
xyzu

v

)
> 0

}
=#

{
v ∈ Lb |

(
xzu

v

)
> 0

}
+ 2 ·#

{
v ∈ Lb |

(
yzu

v

)
> 0

}
− 2 ·#

{
v ∈ Lb |

(
repb(valb(zu))

v

)
> 0

}
.

Proof . Let x, y ∈ {1, . . . , b − 1} with x 6= y, z ∈ {0, . . . , b − 1}, and let

u ∈ {0, . . . , b − 1}∗. Our reasoning is again based on the structure of the

associated trees TLb(xyzu), TLb(xzu), TLb(yzu) and TLb(repb(valb(zu))). The

proof is divided into two cases depending on whether z = 0 or not.

• As a first case, suppose that z 6= 0. Then repb(valb(zu)) = zu. Now

we consider two subcases according to whether u is only made of letters z or

not.

Assume that u is of the form u = zn with n ≥ 0.

If x 6= z and y 6= z, the tree TLb(zu) is linear and has n + 2 nodes,

TLb(xzu) and TLb(yzu) have 2(n + 2) nodes, and TLb(xyzu) has 4(n + 2)

nodes. The claimed formula holds.

If x 6= z and y = z, the tree TLb(zu) is linear and has n + 2 nodes,

TLb(xzu) has 2(n + 2) nodes, TLb(yzu) has n + 3 nodes, and TLb(xyzu) has

2(n+ 3) nodes. Again, the announced formula holds.

If x = z and y 6= z, the tree TLb(zu) is linear and has n + 2 nodes,

TLb(xzu) has n + 3 nodes, TLb(yzu) has 2(n + 2) nodes, and TLb(xyzu) has
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3(n+ 2) + 1 nodes. The desired formula holds too.

Now suppose that u contains letters other than z. We let a1, . . . , am de-

note all the pairwise distinct letters of u different from z. They are implicitly

ordered with respect to their first appearance in u. If x, y, 0 ∈ {a1, . . . , am},
we let ix, iy, i0 ∈ {1, . . . ,m} respectively denote the indices such that aix = x,

aiy = y and ai0 = 0. For all i ∈ {1, . . . ,m}, we let uiai denote the prefix of u

that ends with the first occurrence of the letter ai in u, and we let Ri denote

the subtree of TLb(zu) with root zuiai.

First, observe that the subtree T of TLb(zu) with root z is equal to the

subtree of TLb(xzu) with root xz, to the subtree of TLb(yzu) with root yz

and also to the subtree of TLb(xyzu) with root xyz.

Suppose that x 6= z and y 6= z. Using the same reasoning as in the proof of

Lemma 3.37, the situation is depicted in Figure 3.11. For all i ∈ {1, . . . ,m},
the subtree of TLb(xzu) with root xai is Ri. Similarly, the subtree of TLb(yzu)

with root yai is Ri. The tree TLb(xyzu) contains two copies of Ri: the

subtrees of roots yai and xyai. Furthermore, for all i ∈ {1, . . . ,m} such that

i 6= i0 (resp., i /∈ {ix, i0}; resp., i /∈ {iy, i0}; resp., i /∈ {ix, iy, i0}), the subtree

of TLb(zu) (resp., TLb(xzu); resp., TLb(yzu); resp., TLb(xyzu)) with root ai
is Ri. The expected formula holds since

2 + 2#T + 2
∑

1≤i≤m
i 6=ix,iy ,i0

#Ri + #Rix + 2#Riy + #Ri0



+ 2 ·

2 + 2#T + 2
∑

1≤i≤m
i 6=ix,iy ,i0

#Ri + 2#Rix + #Riy + #Ri0



− 2 ·

1 + #T +
∑

1≤i≤m
i 6=ix,iy ,i0

#Ri + #Rix + #Riy


= 4 + 4#T + 4

∑
1≤i≤m
i 6=ix,iy ,i0

#Ri + 3#Rix + 2#Riy + 3#Ri0 .

Suppose that x 6= z and y = z. The situation is depicted in Figure 3.12.
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The requested formula holds since2 + 2#T + 2
∑

1≤i≤m
i 6=ix,i0

#Ri + #Rix + #Ri0



+ 2 ·

2 + #T + 2
∑

1≤i≤m
i 6=ix,i0

#Ri + 2#Rix + #Ri0



− 2 ·

1 + #T +
∑

1≤i≤m
i 6=ix,i0

#Ri + #Rix


= 4 + 2#T + 4

∑
1≤i≤m
i 6=ix,i0

#Ri + 3#Rix + 3#Ri0 .

Suppose that x = z and y 6= z. The situation is depicted in Figure 3.13.

The sought formula holds since2 + #T + 2
∑

1≤i≤m
i 6=iy ,i0

#Ri + 2#Riy + #Ri0



+ 2 ·

2 + 2#T + 2
∑

1≤i≤m
i 6=iy ,i0

#Ri + #Riy + #Ri0



− 2 ·

1 + #T +
∑

1≤i≤m
i 6=iy ,i0

#Ri + #Riy


= 4 + 3#T + 4

∑
1≤i≤m
i 6=iy ,i0

#Ri + 2#Riy + 3#Ri0 .

• As a second case, suppose that z = 0. It is useful to note that

repb(valb(·)) : {0, . . . , b − 1}∗ → Lb plays a normalization role in the sense

that it removes leading zeroes. Consequently, repb(valb(zu)) = repb(valb(u)).
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In this case, we must prove that the following formula holds

#

{
v ∈ Lb |

(
xy0u

v

)
> 0

}
=#

{
v ∈ Lb |

(
x0u

v

)
> 0

}
+ 2 ·#

{
v ∈ Lb |

(
y0u

v

)
> 0

}
− 2 ·#

{
v ∈ Lb |

(
repb(valb(u))

v

)
> 0

}
.

If u = 0n with n ≥ 0, repb(valb(u)) = ε, and the tree TLb(repb(valb(u)))

has only one node. The trees TLb(x0u) and TLb(y0u) both have n+ 3 nodes

whereas the tree TLb(xy0u) has 3(n+2)+1 nodes. The wished formula holds.

Now suppose that u contains letters other than 0. We let a1, . . . , am de-

note all the pairwise distinct letters of u different from 0. They are implicitly

ordered with respect to their first appearance in u. If x, y ∈ {a1, . . . , am}, we

let ix, iy ∈ {1, . . . ,m} respectively denote the indices such that aix = x and

aiy = y. For all i ∈ {1, . . . ,m}, we let u′iai denote the prefix of repb(valb(u))

that ends with the first occurrence of the letter ai in repb(valb(u)), and we

let Ri denote the subtree of TLb(repb(valb(u))) with root u′iai.

The situation is depicted in Figure 3.14. Observe that the subtree T of

TLb(x0u) with root x0 is equal to the subtree of TLb(y0u) with root y0 and

to the subtree of TLb(xy0u) with root xy0. The required formula holds since2 + #T + 2
∑

1≤i≤m
i 6=ix,iy

#Ri + #Rix + 2#Riy



+ 2 ·

2 + #T + 2
∑

1≤i≤m
i 6=ix,iy

#Ri + 2#Rix + #Riy



− 2 ·

1 +
∑

1≤i≤m
i 6=ix,iy

#Ri + #Rix + #Riy


= 4 + 3#T + 4

∑
1≤i≤m
i 6=ix,iy

#Ri + 3#Rix + 2#Riy .
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(a) The tree T (xzu).
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(b) The tree T (yzu).
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(d) The tree T (xyzu).

Figure 3.11: Schematic structure of the trees T (xzu), T (yzu), T (zu) and

T (xyzu) when x 6= z, y 6= z and z 6= 0.



3.2. The General Case of Integer Bases 131

x

z

T

Ri

ai, i 6= ix, i0z

T

Ri

ai

(a) The tree T (xzu).
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(d) The tree T (xyzu).

Figure 3.12: Schematic structure of the trees T (xzu), T (yzu), T (zu) and

T (xyzu) when x 6= z, y = z and z 6= 0.
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Figure 3.13: Schematic structure of the trees T (xzu), T (yzu), T (zu) and

T (xyzu) when x = z, y 6= z and z 6= 0.
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Figure 3.14: Schematic structure of the trees T (x0u), T (y0u),

T (repb(valb(u))) and T (xy0u).
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Those five lemmas can be translated into recurrence relations satisfied by

the sequence (Sb(n))n≥0 using Definition 1.47. This proves Proposition 3.29.

Proof of Proposition 3.29. The first part is clear using Table 3.7. Let us take

x, y ∈ {1, . . . , b− 1} with x 6= y, and proceed by induction on ` ≥ 1.

Let us first prove (3.4). If ` = 1, then r = 0, and the result ensues from

Table 3.7. Indeed, we have Sb(xb
1 + 0) = 3, Sb(xb

0 + 0) = 2 and Sb(0) = 1.

Now suppose that ` ≥ 2, and assume that (3.4) holds for all `′ < `. Let

r ∈ {0, . . . , b`−1− 1}, and let u be a word in {0, . . . , b− 1}∗ such that |u| ≥ 1

and repb(xb
` + r) = x0u. The proof is divided into two parts according to

the first letter of u. If u = 0u′ with u′ ∈ {0, . . . , b− 1}∗, by Lemma 3.37 and

using the induction hypothesis twice, we find

Sb(xb
` + r) = 2Sb(xb

`−1 + r)− Sb(xb`−2 + r)

= 2(Sb(xb
`−2 + r) + Sb(r))− Sb(xb`−2 + r)

= Sb(xb
`−2 + r) + Sb(r) + Sb(r)

= Sb(xb
`−1 + r) + Sb(r).

Now if u = zu′ with z ∈ {1, . . . , b − 1} and u′ ∈ {0, . . . , b − 1}∗, then (3.4)

follows from Definition 1.47 and Lemma 3.39.

Let us prove (3.5). If ` = 1, then r = 0, and the claimed formula follows

from Table 3.7. Indeed, Sb(xb
1 +xb0 +0) = 3, Sb(xb

0 +0) = 2 and Sb(0) = 1.

Now suppose that ` ≥ 2, and assume that (3.5) holds for all `′ < `. Let

r ∈ {0, . . . , b`−1− 1}, and let u be a word in {0, . . . , b− 1}∗ such that |u| ≥ 1

and repb(xb
` + xb`−1 + r) = xxu. The proof is again divided into two parts

according to the first letter of u. If u = 0u′ with u′ ∈ {0, . . . , b − 1}∗, then

applying first Lemma 3.38 and then (3.4) twice leads to

Sb(xb
` + xb`−1 + r) = Sb(xb

`−1 + r) + Sb(xb
`−2 + r)

= Sb(xb
`−2 + r) + Sb(r) + Sb(xb

`−2 + r)

= 2(Sb(xb
`−2 + r) + Sb(r))− Sb(r)

= 2Sb(xb
`−1 + r)− Sb(r).

Now if u = zu′ with z ∈ {1, . . . , b − 1} and u′ ∈ {0, . . . , b − 1}∗, then (3.5)

follows from Definition 1.47 and Lemma 3.40.

Let us finally prove (3.6). If ` = 1, then r = 0, and the result is true by

Table 3.7. Indeed, Sb(xb
1 + yb0 + 0) = 4, Sb(xb

0 + 0) = 2, Sb(yb
0 + 0) = 2

and Sb(0) = 1. Now suppose that ` ≥ 2, and assume that (3.6) holds for all



3.2. The General Case of Integer Bases 135

`′ < `. Let r ∈ {0, . . . , b`−1 − 1}, let z be a letter in {0, . . . , b− 1}, and let u

be a word in {0, . . . , b − 1}∗ such that repb(xb
` + yb`−1 + r) = xyzu. Using

Definition 1.47 and Lemma 3.41, we have

Sb(xb
` + yb`−1 + r) = Sb(xb

`−1 + r) + 2Sb(yb
`−1 + r)− 2Sb(r)

since repb(r) = repb(valb(zu)).

Example 3.42. When b = 2, Proposition 3.29 gives recurrence relations

that are slightly different from those of Proposition 3.15. In fact, the second

relation in Proposition 3.15 reflects a palindromic structure in the sequence

(S2(n))n≥0. As we will see with Proposition 3.44 below, this property is

general.

Example 3.43. When b = 3, Proposition 3.29 yields the following six rela-

tions. The sequence (S3(n))n≥0 satisfies S3(0) = 1, S3(1) = S3(2) = 2 and,

for all ` ≥ 1 and all 0 ≤ r < 3`−1,

S3(3` + r) = S3(3`−1 + r) + S3(r),

S3(2 · 3` + r) = S3(2 · 3`−1 + r) + S3(r),

S3(3` + 3`−1 + r) = 2S3(3`−1 + r)− S3(r),

S3(2 · 3` + 2 · 3`−1 + r) = 2S3(2 · 3`−1 + r)− S3(r),

S3(3` + 2 · 3`−1 + r) = S3(3`−1 + r) + 2S3(2 · 3`−1 + r)− 2S3(r),

S3(2 · 3` + 3`−1 + r) = S3(2 · 3`−1 + r) + 2S3(3`−1 + r)− 2S3(r).

To conclude this section, the following result shows that the sequence

(Sb(n))n≥0 has a local palindromic structure as the sequence (S2(n))n≥0; see

Lemma 3.12 and Proposition 3.15. For instance, the sequence (S3(n))n≥0

is depicted in Figure 3.15 inside the interval [2 · 34, 35]. As before, if w

is a finite or infinite word over {0, 1, . . . , b − 1}, we let w denote the word

obtained by replacing in w every letter a ∈ {0, 1, . . . , b − 1} by the letter

a = (b− 1)− a ∈ {0, 1, . . . , b− 1}.

Proposition 3.44. Let u be a word in {0, 1, . . . , b− 1}∗. Then

#

{
v ∈ Lb |

(
(b− 1)u

v

)
> 0

}
= #

{
v ∈ Lb |

(
(b− 1)u

v

)
> 0

}
.
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Figure 3.15: The sequence (S3(n))n≥0 inside the interval [2 · 34, 35].

In particular, Sb((b − 1) · b` + r) = Sb((b − 1) · b` + b` − r − 1) for all ` ≥ 0

and all 0 ≤ r < b`, i.e., there exists a palindromic substructure inside the

sequence (Sb(n))n≥0.

Proof . The trees TLb((b− 1)u) and TLb((b− 1)u) are isomorphic. Indeed, on

the one hand, each node of the form (b − 1)x in the first tree corresponds

to the node (b− 1)x in the second one, and conversely. On the other hand,

if there exist letters a ∈ {1, . . . , b − 2} in the word (b − 1)u, the position

of the first letter a in this word is equal to the position of the first letter

a = (b − 1) − a in the word (b − 1)u, and conversely. Consequently, the

node of the form ax in the first tree corresponds to the node of the form

ax = ((b− 1)− a)x in the second tree, and conversely.

For the special case, let ` ≥ 0 and 0 ≤ r < b`, and write

repb((b− 1) · b` + r) = (b− 1)z

with z ∈ {0, . . . , b− 1}`. Since valb(z) + valb(z) = b` − 1, we have

repb((b− 1) · b` + b` − 1− r) = (b− 1)z.

The desired result follows from (1.4) on page 23.

3.2.2 b-Regularity and Non-b-Synchronicity

In the base-2 case, the sequence (S2(n))n≥0 is 2-regular (see Theorem 3.24)

but not 2-synchronized (see Proposition 3.26). In this section, we extend

those results. As a consequence, we get matrices to compute Sb(n) and the
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number of matrix multiplications is proportional to logb(n). To prove the

b-regularity, we first need a lemma involving some matrix manipulations.

Lemma 3.45. Let I and 0 respectively be the identity matrix of size b2× b2
and the zero matrix of size b2× b2. Let Mb be the block-matrix of size b3× b3

Mb =



I I 2I · · · · · · · · · 2I

2I 3I 3I 4I · · · · · · 4I
...

... 4I
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . . 4I

...
...

...
. . . 3I

2I 3I 4I · · · · · · · · · 4I


.

More accurately, the matrix Mb is the block-matrix (Bi,j)1≤i,j≤b, where Bi,j
is the matrix of size b2 × b2 defined by

Bij =


I, if i = 1 and j ∈ {1, 2};
2I, if (i = 1 and j ≥ 3) or (j = 1 and i ≥ 2);

3I, if (j = 2 and i ≥ 2) or (j = i+ 1 ≥ 3);

4I, otherwise.

This matrix is invertible, and its inverse is given by

M−1
b =



3I 2I · · · · · · 2I −(2b− 3)I

−2I 0 · · · · · · 0 I

0 −I . . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

...

0 · · · · · · 0 −I I


.

More precisely, the matrix M−1
b is the block-matrix (Ci,j)1≤i,j≤b, where Ci,j
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is the matrix of size b2 × b2 such that

Cij =



3I, if i = j = 1;

−(2b− 3)I, if i = 1 and j = b;

2I, if i = 1 and 2 ≤ j < b;

−2I, if i = 2 and j = 1;

I, if j = b and i ≥ 2;

−I, if i = j + 1 ≥ 3;

0, otherwise.

For the proof of the previous lemma, simply proceed to the multiplication

of the matrices Mb and M−1
b . Using this lemma, we prove that the sequence

(Sb(n))n≥0 is b-regular.

Theorem 3.46. For all r ∈ {0, . . . , b2 − 1}, we have

Sb(nb
2 + r) = arSb(n) +

b−2∑
s=0

cr,sSb(nb+ s) for all n ≥ 0, (3.7)

where the coefficients ar and cr,s are unambiguously determined by Sb(0),

Sb(1), . . . , Sb(b
3 − 1) and s in Tables 3.16, 3.17 and 3.18. In particular,

the sequence (Sb(n))n≥0 is b-regular. Furthermore, a set of generators for

〈Kb(s)〉 is given by the b sequences (Sb(n))n≥0, (Sb(bn))n≥0, (Sb(bn+ 1))n≥0,

. . . , (Sb(bn+ b− 2))n≥0.

Proof . We proceed by induction on n ≥ 0. For the base case 0 ≤ n ≤ b2− 1,

we first compute the coefficients ar and cr,s using the values of Sb(nb
2 + r)

for n ∈ {0, . . . , b− 1} and r ∈ {0, . . . , b2 − 1}. Then we show that (3.7) also

holds with these coefficients for n ∈ {b, . . . , b2 − 1}.
Base case. Let I denote the identity matrix of size b2× b2. The system

of b3 equations (3.7) when n ∈ {0, . . . , b− 1} and r ∈ {0, . . . , b2 − 1} can be

written as MX = V where the matrix M ∈ Zb3b3 is equal to
Sb(0)I Sb(0)I Sb(1)I · · · Sb(b− 2)I

Sb(1)I Sb(b)I Sb(b+ 1)I · · · Sb(b+ b− 2)I
...

...
...

...
...

Sb(b− 1)I Sb(b(b− 1))I Sb(b(b− 1) + 1)I · · · Sb(b(b− 1) + b− 2)I


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and the vectors X,V ∈ Zb3 are respectively given by

XT =
(
a0 · · · ab2−1 c0,0 · · · cb2−1,0 · · · c0,b−2 · · · cb2−1,b−2

)
,

V T =
(
Sb(0) Sb(1) · · · Sb(b

3 − 1)
)
.

Each block-row of M corresponds to one value of 0 ≤ n ≤ b−1. For instance,

when n = 0, then the right-hand side of (3.7) contains the terms Sb(0) and

Sb(s) for s ∈ {0, . . . , b− 2}. This allows us to build to first block-row of M .

When n = 1, then we find the terms Sb(1) and Sb(b+s) for s ∈ {0, . . . , b−2}
in the right-hand side of (3.7), which permits us to construct the second

blow-row of M . Also note that in the vector X, the coefficients cr,s are first

sorted by s, then by r.

Using Table 3.7, the matrix M is equal to the matrix Mb of Lemma 3.45.

Let us explain why. Let (Mi,j)1≤i,j≤b denote the blocks of the block-matrix

M . If i = 1 and j ∈ {1, 2}, then Mi,j = Sb(0)I = I by Table 3.7. If i = 1 and

j ≥ 3, or j = 1 and i ≥ 2, then Mi,j = Sb(m)I = 2I with m ∈ {1, . . . , b− 1}.
If j = 2 and i ≥ 2, then Mi,j = Sb(m)I = 3I since repb(m) is of the form

x0. If j = i + 1 ≥ 3, then Mi,j = Sb(m)I = 3I since repb(m) is of the

form xx. In the remaining cases, Mi,j = Sb(m)I = 4I since repb(m) is of

the form xy with x 6= y. By this lemma, the previous system admits the

unique solution X = M−1
b V . Consequently, for all r ∈ {0, . . . , b2 − 1} and

all s ∈ {1, . . . , b− 2}, we have

ar = 3Sb(r) + 2
b−2∑
j=1

Sb(jb
2 + r)− (2b− 3)Sb((b− 1)b2 + r),

cr,0 = −2Sb(r) + Sb((b− 1)b2 + r),

cr,s = −Sb(sb2 + r) + Sb((b− 1)b2 + r).

The values of those coefficients can be computed without difficulty using

Table 3.7, and are stored in Tables 3.16, 3.17 and 3.18. Note that they are

unambiguously determined by Sb(0), Sb(1), . . . , Sb(b
3 − 1) and the value of

s, as desired.

For n ∈ {b, . . . , b2 − 1}, the values of Sb(nb
2 + r) are given in Ta-

bles 3.19, 3.20 and 3.21 according to whether repb(n) is of the form x0,

xx or xy with x 6= y, x 6= 0 and y 6= 0.

The proof that (3.7) holds for each n ∈ {b, . . . , b2 − 1} only requires

easy (but long) computations that are left to the reader. To illustrate the
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repb(r) ε x b− 1 x0 (b− 1)0 xx

ar −1 −2 2b− 3 −2 4b− 4 −1

repb(r) (b− 1)(b− 1) xy (b− 1)x x(b− 1)

ar 4b− 3 −2 4b− 4 2b− 3

Table 3.16: Values of ar for 0 ≤ r < b2 with x, y ∈ {1, . . . , b− 2} and x 6= y.

repb(r) ε x b− 1 x0 (b− 1)0 xx

cr,0 2 2 1 1 −1 0

repb(r) (b− 1)(b− 1) xy (b− 1)x x(b− 1)

cr,0 −2 0 −2 −1

Table 3.17: Values of cr,0 for 0 ≤ r < b2 with x, y ∈ {1, . . . , b− 2} and x 6= y.

repb(r) ε x b− 1 x0 (b− 1)0 xx

s z x z z x z z x z

cr,s 0 1 0 −1 2 0 −2 2 0

repb(r) (b− 1)(b− 1) xy x(b− 1) (b− 1)x

s z x y z x z x z

cr,s −2 2 1 0 1 −1 −1 −2

Table 3.18: Values of cr,s for 0 ≤ r < b2 and 1 ≤ s ≤ b − 2 with x, y, z

pairwise distinct letters in {1, . . . , b− 2}.

repb(r) ε x y x0 y0 xx yy xy yx yz

Sb(nb
2 + r) 5 7 8 8 10 7 9 10 11 12

Table 3.19: Values of Sb(nb
2 + r) for b ≤ n < b2 with repb(n) = x0 and

x, y, z ∈ {1, . . . , b− 1} pairwise distinct.

reasoning, we only treat the case where repb(n) = x0 with x ∈ {1, . . . , b− 1}
and r = 0 (note that we first need to consider three cases according to the

form of repb(n), and inside each case, we divide the argument into three cases
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repb(r) ε x y x0 y0 xx yy xy yx yz

Sb(nb
2 + r) 7 8 10 7 11 5 9 8 10 12

Table 3.20: Values of Sb(nb
2 + r) for b ≤ n < b2 with repb(n) = xx and

x, y, z ∈ {1, . . . , b− 1} pairwise distinct.

repb(r) ε x y z x0 y0 z0 xx yy

Sb(nb
2 + r) 10 13 12 14 13 11 15 10 8

repb(r) zz xy xz yx yz zx zy zt

Sb(nb
2 + r) 12 12 14 11 12 15 14 16

Table 3.21: Values of Sb(nb
2 + r) for b ≤ n < b2 with repb(n) = xy and

x, y, z, t ∈ {1, . . . , b− 1} pairwise distinct.

according to whether repb(r) is of length 0, 1 or 2). By Table 3.19, we know

that Sb(nb
2 + r) = 5. Let us compute the right-hand side of (3.7). Using

Table 3.7, observe that Sb(n) = 3 (recall that the scattered subwords of x0

are ε, x, x0), and for all s ∈ {0, . . . , b− 1},

Sb(nb+ s) =


4, if s = 0;

5, if x = s;

6, if x 6= s.

Using Tables 3.16, 3.17 and 3.18, the right-hand side of (3.7) is equal to

a0Sb(n) + c0,0Sb(nb) +

b−2∑
s=1

c0,sSb(nb+ s) = −1 · 3 + 2 · 4 + 0 = 5,

as expected.

Inductive step. Consider n ≥ b2, and suppose that the relation (3.7)

holds for all m < n. We show that it still holds for n. We have | repb(n)| ≥ 3.

As for the base case, we need to consider several cases according to the form

of the base-b expansion of n. More precisely, we have to look at the following

five forms, where u ∈ {0, . . . , b − 1}∗, x, y, z ∈ {1, . . . , b − 1}, x 6= z, and

t ∈ {0, . . . , b− 1}:

x00u or x0yu or xx0u or xxyu or xztu.
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Let us focus on the first one since the same reasoning can be applied for

the other ones. Assume that repb(n) = x00u where x ∈ {1, . . . , b − 1} and

u ∈ {0, . . . , b−1}∗. For all r ∈ {0, . . . , b2−1}, there exist r1, r2 ∈ {0, . . . , b−1}
such that valb(r1r2) = r. Using Lemma 3.37, we find

Sb(nb
2 + r) = Sb(valb(x00ur1r2))

= 2Sb(valb(x0ur1r2))− Sb(valb(xur1r2)).

Then by the induction hypothesis, we obtain

Sb(nb
2 + r) = ar 2Sb(valb(x0u)) +

b−2∑
s=0

cr,s 2Sb(valb(x0us))

−arSb(valb(xu))−
b−2∑
s=0

cr,sSb(valb(xus)).

The proof is complete by using Lemma 3.37 again for we have

Sb(nb
2 + r) = arSb(valb(x00u)) +

b−2∑
s=0

cr,sSb(valb(x00us))

= arSb(n) +
b−2∑
s=0

cr,sSb(nb+ s),

which proves (3.7).

b-regularity. From the first part of the statement, we deduce that

the Z-module 〈Kb(Sb)〉 is generated by the (b + 1) sequences (Sb(n))n≥0,

(Sb(bn))n≥0, (Sb(bn+1))n≥0, . . ., (Sb(bn+b−2))n≥0 and (Sb(bn+b−1))n≥0.

We now show that we can reduce the number of generators. To that aim, we

prove that for all n ≥ 0,

Sb(nb+ b− 1) = (2b− 1)Sb(n)−
b−2∑
s=0

Sb(nb+ s). (3.8)

Once again, we proceed by induction on n ≥ 0. As a base case, the proof

that (3.8) holds for each n ∈ {0, . . . , b2 − 1} only requires easy (but long)

computations using Table 3.7 that are left to the reader. In fact, the reason-

ing is divided into three cases according to the length of repb(n). To illustrate

the argument, we show that (3.8) holds for n = 0, i.e., | repb(n)| = 0. On

the one hand, using Table 3.7, we have

Sb(nb+ b− 1) = Sb(b− 1) = 2,
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and on the other hand, we have

(2b− 1)Sb(n)−
b−2∑
s=0

Sb(nb+ s) = (2b− 1)Sb(0)−
b−2∑
s=0

Sb(s)

= (2b− 1) · 1− (1 + 2 · (b− 2)) = 2

again using Table 3.7.

Now consider n ≥ b2 and suppose that the relation (3.8) holds for all

integers m < n. We prove it is still true for n. Note that | repb(n)| ≥ 3.

Mimicking the first induction step of this proof, we need to consider the

same five cases according to the form of the base-b expansion of n. As

previously, let us concentrate on the first form of repb(n) since the same

reasoning can be applied for the other ones. Assume that repb(n) = x00u

where x ∈ {1, . . . , b− 1} and u ∈ {0, . . . , b− 1}∗. Using Lemma 3.37 first, we

know that

Sb(nb+ b− 1) = Sb(valb(x00u(b− 1)))

= 2Sb(valb(x0u(b− 1)))− Sb(valb(xu(b− 1))).

The induction hypothesis yields

Sb(valb(x0u(b− 1))) = (2b− 1)Sb(valb(x0u))−
b−2∑
s=0

Sb(valb(x0us))

and

Sb(valb(xu(b− 1))) = (2b− 1)Sb(valb(xu))−
b−2∑
s=0

Sb(valb(xus)),

which in turn gives

Sb(nb+ b− 1) = (2b− 1) (2Sb(valb(x0u))− Sb(valb(xu)))

−
b−2∑
s=0

(2Sb(valb(x0us))− Sb(valb(xus))).

The application of Lemma 3.37 then leads to

Sb(nb+ b− 1) = (2b− 1)Sb(valb(x00u))−
b−2∑
s=0

Sb(valb(x00us))

= (2b− 1)Sb(n)−
b−2∑
s=0

Sb(nb+ s),
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which proves (3.8). Consequently, the Z-module 〈Kb(Sb)〉 is generated by the

b sequences

(Sb(n))n≥0, (Sb(bn))n≥0, (Sb(bn+ 1))n≥0, . . . , (Sb(bn+ b− 2))n≥0.

For example, if one wants to generate the sequence (Sb(b
3n+1))n≥0 belonging

to 〈Kb(Sb)〉, one may use (3.7) twice that gives

Sb(nb
3 + 1) = a1Sb(nb) +

b−2∑
s=0

c1,sSb(nb
2 + s)

= a1Sb(nb) +
b−2∑
s=0

c1,s

(
asSb(n) +

b−2∑
t=0

cs,tSb(nb+ t)

)

for all n ≥ 0.

Let us illustrate the previous theorem.

Example 3.47. Let b = 2. Using Tables 3.16, 3.17 and 3.18, we find that

a0 = −1, a1 = 1, a2 = 4, a3 = 5, c0,0 = 2, c1,0 = 1, c2,0 = −1, and c3,0 = −2.

In this particular case, there are no cr,s with s > 0. Applying Theorem 3.46

and from (3.8), we get

S2(2n+ 1) = 3S2(n)− S2(2n),

S2(4n) = −S2(n) + 2S2(2n),

S2(4n+ 1) = S2(n) + S2(2n),

S2(4n+ 2) = 4S2(n)− S2(2n),

S2(4n+ 3) = 5S2(n)− 2S2(2n)

for all n ≥ 0. This result is a rewriting of Theorem 3.24. Observe that the

third and the fifth identities are superfluous: they follow from the other ones.

Example 3.48. Take b = 3. Using Tables 3.16, 3.17 and 3.18, the values

of the coefficients ar, cr,0 and cr,1 can be found in Table 3.22. Applying
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Theorem 3.46 and from (3.8), we get

S3(3n+ 2) = 5S3(n)− S3(3n)− S3(3n+ 1),

S3(9n) = −S3(n) + 2S3(3n),

S3(9n+ 1) = −2S3(n) + 2S3(3n) + S3(3n+ 1),

S3(9n+ 2) = 3S3(n) + S3(3n)− S3(3n+ 1),

S3(9n+ 3) = −2S3(n) + S3(3n) + 2S3(3n+ 1),

S3(9n+ 4) = −S3(n) + 2S3(3n+ 1),

S3(9n+ 5) = 3S3(n)− S3(3n) + S3(3n+ 1),

S3(9n+ 6) = 8S3(n)− S3(3n)− 2S3(3n+ 1),

S3(9n+ 7) = 8S3(n)− 2S3(3n)− S3(3n+ 1),

S3(9n+ 8) = 9S3(n)− 2S3(3n)− 2S3(3n+ 1)

for all n ≥ 0. Note that this result proves [LRS17b, Conjecture 26]. Also

observe that the fourth, the seventh and the tenth identities are redundant.

r 0 1 2 3 4 5 6 7 8

ar −1 −2 3 −2 −1 3 8 8 9

cr,0 2 2 1 1 0 −1 −1 −2 −2

cr,1 0 1 −1 2 2 1 −2 −1 −2

Table 3.22: The values of ar, cr,0, cr,1 when b = 3 and r ∈ {0, . . . , 8}.

As can be seen in the previous examples, some relations are unnecessary.

The following remark establishes this as a general fact.

Remark 3.49. Combining (3.7) and (3.8) yields b2 +1 identities to generate

the Z-module 〈Kb(Sb)〉. However, as illustrated in Examples 3.47 and 3.48,

only b2−b+1 identities are useful: the relations established for the sequences

(Sb(b
2n+ br + b− 1))n≥0, with r ∈ {0, . . . , b− 1}, can be deduced from the

other identities. For r ∈ {0, . . . , b− 1}, (3.7) gives

Sb(b
2n+ br + b− 1) = abr+b−1Sb(n) +

b−2∑
s=0

cbr+b−1,sSb(nb+ s) (3.9)
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for all n ≥ 0. Let us show how we can find back those relations by using the

others. Thanks to (3.8) and then (3.7), we can also write

Sb(b
2n+ br + b− 1) =Sb(b(bn+ r) + b− 1)

=(2b− 1)Sb(bn+ r)−
b−2∑
s=0

Sb(b
2n+ br + s)

=(2b− 1)Sb(bn+ r)−
b−2∑
s=0

abr+sSb(n)

−
b−2∑
s′=0

b−2∑
s=0

cbr+s,s′Sb(nb+ s′)

for all n ≥ 0. Using Tables 3.16, 3.17 and 3.18, it is not difficult to compute

the quantities

T1(r) =
b−2∑
s=0

abr+s and T2(r) =
b−2∑
s=0

cbr+s,s′

for all values of r ∈ {0, . . . , b − 1} and s′ ∈ {0, . . . , b − 2}, which afterwards

gives back (3.9).

As in Corollary 3.25, one can build a matrix representation of (Sb(n))n≥0.

Remark 3.50. Using Theorem 3.46 and (3.8), we already know that the

Z-module 〈Kb(Sb)〉 is generated by the following set of b generators

{(Sb(n))n≥0, (Sb(bn))n≥0, (Sb(bn+ 1))n≥0, . . . , (Sb(bn+ b− 2))n≥0},

so we get matrices to compute Sb(n) in a number of steps proportional to

logb(n). For all n ≥ 0, let

Vb(n) =


Sb(n)

Sb(bn)

Sb(bn+ 1)
...

Sb(bn+ b− 2)

 ∈ Zb.

Consider the matrix-valued map µb : {0, 1, . . . , b − 1}∗ → Zb×b defined as

follows. If s ∈ {0, . . . , b− 2}, then we set

µb(s) =
(
A(s) C0(s) · · · Cs−1(s) Cs(s) Cs+1(s) · · · Cb−2(s)

)
,



3.2. The General Case of Integer Bases 147

where the vectors A(s), C0(s), . . . , Cb−2(s) ∈ Zb are given by

A(s)T =
(

0 abs abs+1 · · · abs+b−2

)
,

Ci(s)
T =

(
0 cbs,i cbs+1,i · · · cbs+b−2,i

)
for all 0 ≤ i ≤ b− 2, i 6= s,

Cs(s)
T =

(
1 cbs,s cbs+1,s · · · cbs+b−2,s

)
.

The matrix µb(b− 1) is also set to be
(2b− 1) −1 −1 · · · −1

ab(b−1) cb(b−1),0 cb(b−1),1 · · · cb(b−1),b−2

ab(b−1)+1 cb(b−1)+1,0 cb(b−1)+1,1 · · · cb(b−1)+1,b−2
...

...
...

...

ab(b−1)+b−2 cb(b−1)+b−2,0 cb(b−1)+b−2,1 · · · cb(b−1)+b−2,b−2

 .

Observe that the number of generators of 〈Kb(Sb)〉 explains the size of the

matrices above. For each s ∈ {0, . . . , b − 2}, exactly b − 1 identities from

Theorem 3.46 are used to define the matrix µb(s). If s, s′ ∈ {0, . . . , b − 2}
are such that s 6= s′, then the relations used to define the matrices µb(s) and

µb(s
′) are pairwise distinct. The first row of the matrix µb(b − 1) is (3.8),

and the other rows are b−1 identities from Theorem 3.46, which are distinct

from the previous relations. Consequently, (b − 1)(b − 1) + b = b2 − b + 1

identities are used, which corroborates Remark 3.49.

Using the definition of the map µb, we can show that

Vb(bn+ s) = µb(s)Vb(n)

for all s ∈ {0, . . . , b − 1} and n ≥ 0. Consequently, if repb(n) = nk · · ·n0,

then proceeding as in the proof of Corollary 3.25 gives

Sb(n) =
(

1 0 · · · 0
)
µb(n0) · · ·µb(nk)Vb(0).

with

Vb(0)T =
(

1 1 2 · · · 2
)
.

For example, when b = 2, the matrices µ2(0) and µ2(1) are those given
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in Corollary 3.25. When b = 3, we get

µ3(0) =

 0 1 0

−1 2 0

−2 2 1

 , µ3(1) =

 0 0 1

−2 1 2

−1 0 2

 ,

µ3(2) =

 5 −1 −1

8 −1 −2

8 −2 −1

 .

To build the matrix µ3(0) (resp., µ3(1); resp., µ3(2)), one may look at the first

and second columns (resp., the fourth and fifth columns; resp., the seventh

and eighth columns) of Table 3.22.

Finally, the sequence (Sb(n))n≥0 is not b-synchronized, which can be

proved in the same fashion as Proposition 3.26, and thus also not b-automatic.

Proposition 3.51. The sequence (Sb(n))n≥0 is neither b-synchronized, nor

b-automatic.

Remark 3.52. Since the sequence (S2(n))n≥0 is intimately bonded with the

Stern–Brocot sequence (see Section 3.1.3), the present generalization to any

integer base gives a motivation to study further extensions of the Farey and

Stern–Brocot trees, and associated sequences. Some of them already exist,

e.g., [Aiy17, CW98, Gar13, GLR+18, MGOT15], but can one reasonably de-

fine a tree structure, or some other combinatorial structure, in which the se-

quence (Sb(n))n≥0 naturally appears, extending Propositions 3.19 and 3.20?

Observe that Proposition 3.20 gives a natural way to build new trees asso-

ciated with the sequences (Sb(n))n≥0, which are worth studying. The mul-

tidimensional Farey graphs in [GLR+18] make us think that this question

might lead to interesting combinatorial structures that would be intrinsically

linked to the sequences (Sb(n))n≥0.

3.3 Dealing with the Fibonacci Numeration Sys-

tem

In this section, we consider the generalized Pascal triangle Pϕ from Exam-

ple 1.45 and the sequence (Sϕ(n))n≥0 from Example 1.50 in the Zeckendorf
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numeration system. In Figure 3.23, the latter sequence is depicted in the

interval [0, F (11)]; see the resemblance with Figures 3.1 and 3.6. One of

the main differences in this section is that we leave the classical setting of

b-regular sequences to look at Fibonacci-regular sequences, or F -regular se-

quences for short. In Section 3.3.1, we start by precisely defining this new

concept. Then we adapt and study the tries of scattered subwords in our

particular framework. Using them, we prove that (Sϕ(n))n≥0 is F -regular in

Theorem 3.63. As an easy corollary, Sϕ(n) can be computed by multiplying

square matrices of size 2, and the number of multiplications is proportional

to logϕ(n) (see Corollary 3.64). In Section 3.3.2, we get a recurrence relation

similar to the case of integer bases with Propositions 3.15 and 3.29. Finally,

we build a convenient arrangement of the terms of the sequence (Sϕ(n))n≥0 in

Proposition 3.68 that might turn out to be useful for further generalizations.

50 100 150 200

20

40

60

80

Figure 3.23: The sequence (Sϕ(n))n≥0 in the interval [0, F (11)].

3.3.1 F -Regularity

The notions of automaticity and regularity introduced in Section 1.7 of Chap-

ter 1 can be widened to take into account a larger class of numeration sys-

tems [AST00, RM02, Sha88]. Observe that in Definition 1.51, to obtain one

specific element of the kernel Kb(s) of an integer sequence s = (s(n))n≥0,

it is equivalent to consider a word q ∈ {0, . . . , b − 1}∗ and evaluate s at all

the integers whose base-b expansion (possibly with some leading zeroes) ends

with the suffix q. As an example, (s(23n + 1))n≥0 corresponds to the word
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q = 001 (in base 2). It means that, among all the words in L2, we select

those (padded with leading zeroes if necessary) that end with q = 001, and

then we evaluate s at the values in base 2 of those words. For instance,

we select the words 1, 1001, 10001 whose values in base 2 are respectively

1 = 23 · 0 + 1, 9 = 23 · 1 + 1, 17 = 23 · 2 + 1. In what follows, we formalize

this idea.

Definition 3.53. For each q in {0, 1}∗, we define the map

iq : X ⊂ N 7→ iq(X) ⊂ N,

where iq(X) = valF (0∗ repF (X) ∩ {0, 1}∗q).

In other words, for a given subset X ⊂ N, iq selects elements in X whose

F -expansion (padded with leading zeroes) ends with q. In particular, iq(X)

is a subset of X, and iq(X) = iq(N)∩X. Observe that iq(X) might be empty

even if X is a non-empty subset of N. For instance, no F -expansions (padded

with leading zeroes) end with 11, thus i11(X) = ∅ for any subset X of N. If

iq(X) is non-empty, it is naturally ordered

iq(X) = {xq,0 < xq,1 < xq,2 < · · · },

and by abuse of notation, we set iq(n) = xq,n for all 0 ≤ n < #iq(X).

Example 3.54. Recall that the first pairs (n, repF (n)) for n ∈ N are

(0, ε), (1, 1), (2, 10), (3, 100), (4, 101), (5, 1000), (6, 1001),

(7, 1010), (8, 10000), (9, 10001).

The F -expansions of 0, 2, 3, 5, 7, 8 (resp., 1, 4, 6, 9) (with leading zeroes) all

end with 0 (resp., 1), so the first values in i0(N) (resp., i1(N)) are 0, 2, 3, 5, 7, 8

(resp., 1, 4, 6, 9). In particular, i0(0) = 0, i0(1) = 2, . . . , i0(5) = 8. The first

values in i10(N) are 2, 7.

Remark 3.55. One might be tempted to replace the definition of the map

iq by the following: for each q in {0, 1}∗,

i′q : N→ N, n 7→ i′q(n),

where i′q(n) is the nth element of the set valF (0∗ repF (N) ∩ {0, 1}∗q). Then,

for a given subset X ⊂ N, we let i′q(X) denote the set {i′q(n) | n ∈ X}.
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However, the two definitions are different. For instance, ifX = {0, 1, 3, 5},
then i0(X) = {0, 3, 5} since

repF (0) = ε, repF (1) = 1, repF (3) = 100 and repF (5) = 1000,

and we have to discard 1. To build i′0(X), recall that the first words in LF
that, when padded with leading zeroes, end with 0 are ε, 10, 100, 1000, 1010

and 10000. Now we have to select the 0th, the first, the third and the fifth

among these words, so

i′0(X) = {valF (ε), valF (10), valF (1000), valF (10000)} = {0, 2, 5, 8}.

The second part of the next lemma is particularly important when consid-

ering elements of the F -kernel (see Theorem 3.63). Note that repF (ip(N))q

means that we concatenate each word in the language repF (ip(N)) with the

suffix q.

Lemma 3.56. We have ipq(N) ⊆ iq(N) and ipq(N) = ipq(iq(N)). Moreover,

if pq ∈ 0∗LF , then

repF (ip(N))q = repF (ipq(N)),

i.e., if up ∈ 0∗LF is such that valF (up) = ip(n), then valF (upq) = ipq(n).

Proof . The first inclusion is easy because x ∈ ipq(N) implies that the words

in 0∗ repF (x) end with pq, so with q in particular.

The set iq(N) contains all the integers x such that the words in 0∗ repF (x)

end with q. Among those integers, ipq selects those whose F -expansion (with

leading zeroes) ends with pq. Hence the equality.

On the one hand, repF (ipq(N)) contains all the F -expansions ending with

pq, which is an authorized suffix since pq ∈ 0∗LF . On the other hand,

w ∈ repF (ip(N))q if and only if w = uq with u ∈ repF (ip(N)). In other

words, w is the F -expansion of an integer and ends with pq.

Let us illustrate the second part of Lemma 3.56 in Table 3.24 with p = 0

and q = 1 such that pq = 01 ∈ 0∗LF . We can directly determine the nth

word ending with 01 in the language LF from the nth word ending with 0

by simply adding a suffix 1.

Remark 3.57. The second part of Lemma 3.56 holds because the words in

LF are defined by avoiding the factor 11 (see Example 1.18). Indeed, since
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11 has length 2, we have 0∗LF p
−1 = 0∗LF (pq)−1 when pq ∈ 0∗LF and p 6= ε

(recall the notation from Chapter 1 in Definition 1.5 on page 3). In this

particular case, it is enough to look at the first letter of p. For instance,

examine Table 3.24: the words in the second column obtained by removing

the suffix 0 are the words in the third column obtained by deleting the suffix

01.

i0(N) repF (i0(N)) repF (i01(N)) i01(N)

0 = i0(0) ε 1 i01(0) = 1

2 = i0(1) 10 101 i01(1) = 4

3 = i0(2) 100 1001 i01(2) = 6

5 = i0(3) 1000 10001 i01(3) = 9

7 = i0(4) 1010 10101 i01(4) = 12

8 = i0(5) 10000 100001 i01(5) = 14

Table 3.24: Illustration of Lemma 3.56.

This does not always hold, notably when there are longer forbidden fac-

tors in the language of the numeration.

Let us take the example of the Tribonacci numeration system. Con-

sider the sequence T = (T (n))n≥0 = (1, 2, 4, 7, 13, 24, 44, 81, . . .) of Tribonacci

numbers (A001590 in [Slo]) defined by T (0) = 1, T (1) = 2, T (3) = 4, and

for all n ≥ 0

T (n+ 3) = T (n+ 2) + T (n+ 1) + T (n).

The Tribonacci numeration system is the positional numeration system built

on this sequence T (see also the Fibonacci numeration system in Exam-

ple 1.18 that is highly similar). In this case, the alphabet is AT = {0, 1},
and the numeration language LT is the set of the words over {0, 1} not

containing the factor 111. As for the Fibonacci numeration system in Ex-

ample 1.30, it can be shown that the Tribonacci numeration system is also

a Parry–Bertrand numeration system; see, for instance, [Rig14a, Rig14b].

Let us now come back to our matter. For the language LT , we have

1 ∈ 0∗LT 1−1 but 1 /∈ 0∗LT (11)−1 even if 11 ∈ LT . As a consequence, the

languages repT (i1(N))1 and repT (i11(N)) are different: 111 ∈ repT (i1(N))1

while 111 is not a valid Tribonacci-expansion.
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Definitions 1.51, 1.52 and 1.54 are replaced for the Fibonacci numeration

system by the following notions where the subsequences of a given sequence

are selected by suffixes of F -expansions. This extension was first introduced

in [AST00, Sha88]. Note that, for each new concept, several equivalent def-

initions exist, as it is the case for their classical version, but we again focus

on the ones emerging from the kernels.

Definition 3.58. Let q be a word in {0, 1}∗ such that iq(N) 6= ∅, and let

s = (s(n))n≥0 be a sequence of integers.

The subsequence of s defined by n 7→ s(iq(n)) is called the subsequence

of s with least significant digits equal to q.

The set of all these subsequences, for q ∈ {0, 1}∗ such that iq(N) 6= ∅,
is called the Fibonacci-kernel or F -kernel of the sequence s. We let KF (s)

denote it.

The sequence s is Fibonacci-automatic or F -automatic if KF (s) is fi-

nite. We say that s is Fibonacci-regular or F -regular if 〈KF (s)〉 is a finitely-

generated Z-module.

For instance, if s ∈ {0, 1}N is the characteristic sequence of Fibonacci

numbers, i.e., s(n) = 1 if and only if n is a Fibonacci number, then s is

Fibonacci-automatic [Sha88]. Without giving a lot of details, one could ex-

tend the notion of Fibonacci-automaticity to Tribonacci-automaticy using

the numeration system from Remark 3.57. In this case, the abelian com-

plexity of the Tribonacci word is shown to be T -automatic [Tur15]. Other

generalized automatic or regular sequences may be found in [Sha88, RM02].

The aim is now to show that (Sϕ(n))n≥0 is F -regular, which is a nice addition

to the existing zoology of F -regular sequences. First, we establish a formula,

depending on the form of the word u ∈ LF , to count the number of distinct

scattered subwords of u in LF .

Proposition 3.59. Let u be a non-empty word in LF of the form

10nk10nk−1 · · · 10n210n1

with n1 ≥ 0 and n2, . . . , nk > 0. Then

#

{
v ∈ LF |

(
u

v

)
> 0

}
= (n1 + 2) ·

k∏
j=2

(nj + 1).
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To prove this result, we reuse the notion of tries of scattered subwords

from Definition 3.1 but restricted to LF . For a word w ∈ LF , the tree TLF (w)

is given in Definition 3.1. The factorization (3.1) (on page 99) of words in

LF has a very particular form because there is no factor 11. To refer to the

same subtrees as in Definition 3.4, we stick to the notation of (3.1), even

though the blocks of letters 1 are limited to a single digit

w = 1︸︷︷︸
u1

0n2︸︷︷︸
u2

1︸︷︷︸
u3

0n4︸︷︷︸
u4

· · · 1︸︷︷︸
u2j−1

0n2j︸︷︷︸
u2j

with j ≥ 1, n2, . . . , n2j−2 ≥ 1 and n2j ≥ 0. We let M = Mw be such that

w = u1u2 · · ·uM , where uM is the last non-empty block of zeroes or the last

one. The trees T` for ` ∈ {0, . . . ,M} are similar to those of Definition 3.4.

Example 3.60. Consider the word w = 101000100 ∈ LF . With the above

notation, the factorization (3.1) of w is w = u1u2u3u4u5u6 with u1 = 1,

u2 = 01, u3 = 1, u4 = 03, u5 = 1 and u6 = 02, soM = 6. In Figure 3.25 (to be

compared with Figure 3.2), we have represented the trie TLF (w) of scattered

subwords in LF and the subtrees T0, . . . , T5. The roots of these subtrees

correspond to a prefix of w ending with 1 or 10: for ` ∈ {0, 2, 4} (resp.,

{1, 3, 5}), the tree T` has the root u1 · · ·u`1 (resp., u1 · · ·u`0 = u1 · · ·u`−110).

T0

T1

T2

T3

T4

T5

0

0

0

0

0

0

1

1

1

Figure 3.25: The trie TLF (101000100).

Since we are considering the language LF , the analogue of Proposition 3.6
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becomes the following. The main difference is that the factor 11 is forbidden.

Proposition 3.61. Let w be a non-empty word in LF . If the tree TLF (w)

is not linear, it has the following properties.

• Assume that 2 ≤ 2k < M . For every j ∈ {1, . . . , n2k − 1}, the node

of label x = u1 · · ·u2k−10j has two children x0 and x1. The node x1 is

the root of a tree isomorphic to T2k. Moreover, x = u1 · · ·u2k−1 has a

single child x0.

• Assume that 3 ≤ 2k+ 1 < M . The node of label x = u1 · · ·u2k has two

children x0 and x1. The node x0 is the root of a tree isomorphic to

T2k+1.

• The node of label x = ε has only one child x1, which is the root of

a tree isomorphic to T0. The node of label x = 1 has only one child,

namely x0, which is the root of a tree isomorphic to T1.

Example 3.62. Let us continue Example 3.60. As in Example 3.8, Fig-

ure 3.26 illustrates the previous proposition in which we see how the subtrees

are connected to the “initial” linear subtree labeled by w.

First, the tree T5 is the linear subtree consisting in the last n6 = 2 nodes.

By Proposition 3.61, we add a copy of T5 to the node u1u2u3u40 = 1010000.

Then we consider the subtree T4 whose root is u1u2u3u41 = 1010001.

We add a copy of it to each node of the form u1u2u30j1 = 1010j1 for all

j ∈ {1, . . . , n4 − 1} = {1, 2}.
Afterwards, we examine the subtree T3 with the root u1u2u30 = 1010.

We add a copy of it to the node u1u20 = 100.

The root of the tree T2 is u1u21. In this case, n2 = 1, so no copy of T2 is

actually added.

Finally, we consider the subtree T1 (resp., T0) with root u10 = 10 (resp.,

1). In the present context, no copy of T1 nor T0 is added.

The proof of Proposition 3.59 is similar to the proof of Corollary 3.9.

Proof of Proposition 3.59. Let u = 10nk10nk−1 · · · 10n210n1 be a non-empty

word in LF with n1 ≥ 0 and n2, . . . , nk > 0. We proceed by induction on
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T3

T4

T4

T5

0

0

0

0

0

0

1

1

1

Figure 3.26: The trie TLF (101000100) and the connected subtrees T0, . . . , T5.

the number k of blocks of zeroes in u. If k = 0, then u = 1, and

#

{
v ∈ LF |

(
u

v

)
> 0

}
= #{ε, 1} = 0 + 2,

as expected. If k = 1, then u = 10n1 with n1 > 0, and

#

{
v ∈ LF |

(
u

v

)
> 0

}
= #{ε, 1, 10, 102, . . . , 10n1} = n1 + 2,

as desired. Now suppose that k ≥ 2, and define u′ = 10nk−110nk−2 · · · 10n210n1

such that u = 10nku′. By induction hypothesis, we know that

#TLF (u′) = #

{
v ∈ LF |

(
u′

v

)
> 0

}
= (n1 + 2) ·

k−1∏
j=2

(nj + 1).

We now count the number of nodes of TLF (u), giving exactly the quantity

#
{
v ∈ LF |

(
u
v

)
> 0
}

. Observe that its subtree of root 10nk is TLF (u′). By

definition, the subtree of TLF (u′) of root 1 (resp., 10) is T0 (resp., T1). So,

the subtree of TLF (u) of root 10nk1 (resp., 10nk10) is T0 (resp., T1). To build

TLF (u) from TLF (u′) using Proposition 3.61, we have to add the nodes ε and

10i for i ∈ {0, . . . , nk}, then a copy of T0 to each node of the form 10i1 with

i ∈ {1, . . . , nk − 1}, and also a copy of T1 to the node 10nk0. Thus, we have

#TLF (u) = #TLF (u′) + #T1 + (nk − 1)(#T0 + 1) + 2.
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Since #T0 + 1 = #TLF (u′) and #T1 + 2 = #TLF (u′) = #T0 + 1, we get

#TLF (u) = (nk + 1)#TLF (u′) = (nk + 1) · (n1 + 2) ·
k−1∏
j=2

(nj + 1)

= (n1 + 2) ·
k∏
j=2

(nj + 1),

using the induction hypothesis in the second equality.

We now prove that (Sϕ(n))n≥0 is F -regular. Other sequences exhibiting

this F -regularity can be found in [Ber01, DMR+17, DMSS16].

Theorem 3.63. The sequence (Sϕ(n))n≥0 satisfies, for all n ≥ 0,

Sϕ(i00(n)) = 2Sϕ(i0(n))− Sϕ(iε(n)),

Sϕ(i01(n)) = 2Sϕ(iε(n)),

Sϕ(i10(n)) = 3Sϕ(iε(n)).

In particular, (Sϕ(n))n≥0 is F -regular.

Proof . Let q ∈ {0, 1}∗ be a word such that iq(N) 6= ∅. From (1.4) on page 23,

recall that, for all n ≥ 0,

Sϕ(iq(n)) = #

{
v ∈ LF |

(
repF (iq(n))

v

)
> 0

}
.

In order to prove the claim, the idea is to use Proposition 3.59.

Let us show that the first relation holds. Let u be a non-empty word

in LF written as 10nk10nk−1 · · · 10n1 with n1 ≥ 0 and n2, . . . , nk > 0. By

Proposition 3.59 we have

#

{
v ∈ LF |

(
u

v

)
> 0

}
= (n1 + 2) ·

k∏
j=2

(nj + 1),

#

{
v ∈ LF |

(
u0

v

)
> 0

}
= (n1 + 3) ·

k∏
j=2

(nj + 1),

and

#

{
v ∈ LF |

(
u00

v

)
> 0

}
= (n1 + 4) ·

k∏
j=2

(nj + 1).
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Hence, we get

2 ·#
{
v ∈ LF |

(
u0

v

)
> 0

}
−#

{
v ∈ LF |

(
u

v

)
> 0

}
= #

{
v ∈ LF |

(
u00

v

)
> 0

}
.

This leads to the expected relation. If n = 0, then iε(0) = 0 = i0(0) = i00(0),

so

Sϕ(i00(0)) = 2Sϕ(i0(0))− Sϕ(iε(0))

is obviously true. Now if n > 0, then repF (n) is a non-empty word in LF ,

and valF (repF (n)ε) = n = iε(n). Thus, by the second part of Lemma 3.56,

we have

valF (repF (n)0) = i0(n) and valF (repF (n)00) = i00(n).

The last two relations are obtained using the same reasoning. One has to

simply use Proposition 3.59 with words of the form u, u01 and u010 where

u is a non-empty word in LF . We derive that

#

{
v ∈ LF |

(
u01

v

)
> 0

}
= 2 ·#

{
v ∈ LF |

(
u

v

)
> 0

}
,

and

#

{
v ∈ LF |

(
u010

v

)
> 0

}
= 3 ·#

{
v ∈ LF |

(
u

v

)
> 0

}
.

Note that, to establish the third relation of the statement, we have to use

the fact that any word in 0∗LF ending with 10 must end with 010. In other

words, we have i010(n) = i10(n) for all n ≥ 0.

The F -regularity of the sequence itself follows: the Z-module generated

by the F -kernel of Sϕ is generated by (Sϕ(iε(n)))n≥0 = (Sϕ(n))n≥0 and

(Sϕ(i0(n)))n≥0. As an example, for all n ≥ 0,

Sϕ(i1001(n)) = 2Sϕ(i10(n)) = 6Sϕ(iε(n)) = 6Sϕ(n).

Corollary 3.25 and Remark 3.50 are replaced by the following result stat-

ing that any term of Sϕ can be obtained as a product of matrices. The length

of this product is proportional to logϕ(n). Here, we get square matrices of

size 2 thanks to Theorem 3.63. However, one of them is defined on a block

of letters rather than on one letter; see Remark 3.65 for matrices specifically

defined on letters.
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Corollary 3.64. Consider the matrix-valued map µUϕ : {0, 01}∗ → Z2
2 de-

fined by

µUϕ(0) =

(
0 1

−1 2

)
, µUϕ(01) =

(
2 0

3 0

)
.

For all n ≥ 0, if the F -expansion of n with a leading 0 is factorized into blocks

0 and 01, i.e., 0 repF (n) = uk · · ·u1 where ui ∈ {0, 01} for all i ∈ {1, . . . , k},
then

Sϕ(n) =
(

1 0
)
µUϕ(u1) · · ·µUϕ(uk)

(
1

1

)
.

Proof . For convenience, let

VUϕ(0) =

(
Sϕ(iε(0))

Sϕ(i0(0))

)
=

(
1

1

)
. (3.10)

We proceed by induction on the number k of different blocks in the factor-

ization 0 repF (n) = uk · · ·u1 with ui ∈ {0, 01} for all i. One can observe that

the result is true for k ∈ {1, 2} and 0 repF (n) ∈ {0, 01, 00, 001, 010, 0101}.
For example, if k = 2 and 0 repF (n) = 0101, then n = 4 and

Sϕ(4) = 4 =
(

1 0
)( 4 0

6 0

)(
1

1

)
=
(

1 0
)
µUϕ(01)µUϕ(01)VUϕ(0).

Assume now that 0 repF (n) = uk · · ·u1 with k ≥ 3. We only consider the

case u2 = 0, the other case where u2 = 01 being similar.

If u1 = 0, then 0 repF (n) ends with 00, so n = i00(m) for an integer

m ≥ 0. By Theorem 3.63, we get

Sϕ(n) = Sϕ(i00(m)) = 2Sϕ(i0(m))− Sϕ(iε(m)).

By Lemma 3.56, i0(m) = valF (uk · · ·u2) and iε(m) = valF (uk · · ·u3). This,

together with the induction hypothesis, leads to

Sϕ(n) = 2Sϕ(valF (uk · · ·u2))− Sϕ(valF (uk · · ·u3))

=
(

1 0
)

(2µUϕ(0)− I)µUϕ(u3) · · ·µUϕ(uk)VUϕ(0).

The desired equality follows by observing that

(2µUϕ(0)− I) = µUϕ(0)2 = µUϕ(u1)µUϕ(u2).
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Similarly, if u1 = 01, then n = i01(m) for an integer m ≥ 0. By Theo-

rem 3.63, we find

Sϕ(n) = Sϕ(i01(m)) = 2Sϕ(iε(m)).

Lemma 3.56 tells us that iε(m) = valF (uk · · ·u2), so with the induction

hypothesis, we have

Sϕ(n) = 2Sϕ(valF (uk · · ·u2))

= 2
(

1 0
)
µUϕ(u2) · · ·µUϕ(uk)VUϕ(0).

The expected equality holds after observing that

2
(

1 0
)

=
(

1 0
)
µUϕ(01) =

(
1 0

)
µUϕ(u1).

Remark 3.65. In the previous corollary, the second matrix is not defined

on a letter, but on a block of two letters. Discussions with É. Charlier lead

to find other square matrices that not only compute (Sϕ(n))n≥0, but are also

associated with 0 and 1 (and not 0 and 01). Let us define the matrix-valued

map µ′Uϕ : {0, 1}∗ → Z2
2 by

µ′Uϕ(0) =

(
0 1

−1 2

)
= µUϕ(0), µ′Uϕ(1) =

(
4 −2

6 −3

)
.

Then we have

µUϕ(01) = µ′Uϕ(1)µ′Uϕ(0).

Now from Corollary 3.64 and with (3.10), if 0 repF (n) = uk · · ·u1 where

ui ∈ {0, 01} for all i ∈ {1, . . . , k}, then

Sϕ(n) =
(

1 0
)
µUϕ(u1) · · ·µUϕ(uk)VUϕ(0)

=
(

1 0
)
µ′Uϕ((repF (n))R)µ′Uϕ(0)VUϕ(0)

=
(

1 0
)
µ′Uϕ((repF (n))R)VUϕ(0).

However, it is not clear how to interpret the matrix µ′Uϕ(1) in terms of

relations between sequences of the F -kernel of (Sϕ(n))n≥0, while the matrices

µUϕ(0) and µUϕ(01) symbolize the relations of Theorem 3.63.
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3.3.2 The Holy Grail

We obtain a recurrence relation satisfied by (Sϕ(n))n≥0, which is similar to

Propositions 3.15 and 3.29.

Proposition 3.66. We have Sϕ(0) = 1, Sϕ(1) = 2, and for all ` ≥ 1 and

all 0 ≤ r < F (`− 1), we have

Sϕ(F (`) + r) =

{
Sϕ(F (`− 1) + r) + Sϕ(r), if 0 ≤ r < F (`− 2);

2Sϕ(r), if F (`− 2) ≤ r < F (`− 1).

Proof . We make use of the previous corollary. Assume that n = F (`) + r

with ` ≥ 1 and 0 ≤ r < F (` − 1). We have 0 repF (n) = uk · · ·u1 for k ≥ 2,

with ui ∈ {0, 01} for all i. In particular, uk = 01.

If F (` − 2) ≤ r < F (` − 1), then uk−1 = 01 and 0 repF (r) = uk−1 · · ·u1.

By Corollary 3.64 and with (3.10), we get

Sϕ(F (`) + r) =
(

1 0
)
µUϕ(u1) · · ·µUϕ(uk−2)µUϕ(uk−1)µUϕ(uk)VUϕ(0)

=
(

1 0
)
µUϕ(u1) · · ·µUϕ(uk−2)µUϕ(01)µUϕ(01)VUϕ(0)

and

Sϕ(r) =
(

1 0
)
µUϕ(u1) · · ·µUϕ(uk−2)µUϕ(uk−1)VUϕ(0)

=
(

1 0
)
µUϕ(u1) · · ·µUϕ(uk−2)µUϕ(01)VUϕ(0).

Since (µUϕ(01))2 = 2µUϕ(01), the claimed equality Sϕ(F (`) + r) = 2Sϕ(r)

holds.

If 0 ≤ r < F (`−2), then uk−1 = 0. Let m < k−1 be the greatest integer

such that um = 01 (we set m = 0 if ui = 0 for all i ≤ k− 1). In this case, we

have

0 repF (F (`) + r) = uk0
k−m−1um · · ·u1,

0 repF (F (`− 1) + r) = 010k−m−2um · · ·u1,

0 repF (r) = um · · ·u1.

By Corollary 3.64 with (3.10), we get

Sϕ(F (`) + r) =
(

1 0
)
µUϕ(u1) · · ·µUϕ(um)µUϕ(0)k−m−1µUϕ(01)VUϕ(0),
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Sϕ(F (`− 1) + r) =
(

1 0
)
µUϕ(u1) · · ·µUϕ(um)µUϕ(0)k−m−2

µUϕ(01)VUϕ(0),

and

Sϕ(r) =
(

1 0
)
µUϕ(u1) · · ·µUϕ(um)VUϕ(0).

Now, it is not difficult to show by induction that, for all j ≥ 0,

µUϕ(0)jµUϕ(01) =

(
j + 2 0

j + 3 0

)
.

If we let I denote the identity matrix of size 2, the previous result gives

(µUϕ(0)k−m−2µUϕ(01) + I)VUϕ(0) = µUϕ(0)k−m−1µUϕ(01)VUϕ(0).

This proves that Sϕ(F (`)+r) = Sϕ(F (`−1)+r)+Sϕ(r) holds, as desired.

As for Corollary 3.17, one can proceed by induction and use Proposi-

tion 3.66 to bound the terms of (Sϕ(n))n≥0. This result will prove its utility

in Chapter 4.

Corollary 3.67. We have Sϕ(1) = Sϕ(F (0)) ≤ 21, and for all ` ≥ 1 and all

0 ≤ r < F (`− 1), we also have Sϕ(F (`) + r) ≤ 2`+1.

Using Proposition 3.66, there is a convenient way to arrange the terms of

the sequence (Sϕ(n))n≥0, which is given in Table 3.27. The 0th (resp., first)

row of this table contains the element Sϕ(0) (resp., Sϕ(1)) of the sequence.

Then for all n ≥ 2, the nth row contains the elements

(Sϕ(i))F (n−1)≤i≤F (n)−1,

and thus has F (n − 2) elements. For example, the second (resp., third)

row contains Sϕ(F (1)) (resp., Sϕ(F (2)) and Sϕ(F (2) + 1)). Using Proposi-

tion 3.66, for n ≥ 4, the first F (n − 3) elements in the nth row are derived

from the previous row: in other words, the difference of two consecutive

rows is a prefix of (Sϕ(n))n≥0. For instance, when n = 7, with the help of

Table 3.27, the first F (7 − 3) = F (4) = 8 elements in the seventh row are

8, 12, 15, 16, 16, 15, 18, 18, and their difference with the first eight elements in

the sixth row gives 1, 2, 3, 4, 4, 5, 6, 6, which is a prefix of (Sϕ(n))n≥0. The

last F (n− 4) elements in the nth row are twice the elements in the (n− 2)th
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row

0 1

1 2

2 3

3 4 4

4 5 6 6

5 6 8 9 8 8

6 7 10 12 12 12 10 12 12

7 8 12 15 16 16 15 18 18 12 16 18 16 16

Table 3.27: Arrangement of the first few terms of (Sϕ(n))n≥0.

row. Continuing the same example, the last F (7−4) = F (3) = 5 elements in

the seventh row are 12, 16, 18, 16, 16, which are the five elements in the fifth

row multiplied by 2. For n ≥ 1, also observe that the first element in the

nth row is equal to Sϕ(F (n− 1)), which is easily computed since from (1.4)

on page 23, we have

Sϕ(F (n− 1)) = #

{
v ∈ LF |

(
repF (F (n− 1))

v

)
> 0

}
= #

{
v ∈ LF |

(
10n−1

v

)
> 0

}
= n+ 1.

Proposition 3.68 (“Knights of Ni”). The number of occurrences of each

integer i ≥ 1 in Sϕ is finite. If ni denotes the position of the last occurrence

of i in Sϕ, then ni = F (i − 2) for all i ≥ 5. In particular, the sequence

(ni)i≥1 satisfies the same linear relation as the Fibonacci sequence if i ≥ 5.

Proof . First of all, the definition itself of Sϕ implies that

Sϕ(n) > 1 = Sϕ(0) for all n ≥ 1. (3.11)

Then for all ` ≥ 0, using (1.4) and the fact that repF (F (`)) = 10`, we have

Sϕ(F (`)) = `+ 2. (3.12)

Now we prove the following result: for all ` ≥ 3 and all 0 < r < F (`− 1),

Sϕ(F (`)) < Sϕ(F (`) + r). (3.13)
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We show this by induction on `. If ` ∈ {3, 4}, then the fourth and fifth rows

of Table 3.27 give the result. We assume that ` ≥ 5, and we suppose the

result holds up to `−1, and we show it also holds for `. For 0 < r < F (`−2),

we have by Proposition 3.66

Sϕ(F (`) + r) = Sϕ(F (`− 1) + r) + Sϕ(r),

but by induction hypothesis and by (3.11), we find

Sϕ(F (`) + r) > Sϕ(F (`− 1)) + Sϕ(0),

which in turn gives Sϕ(F (`) + r) > Sϕ(F (`)) by Proposition 3.66. Now, for

F (`−2) ≤ r < F (`−1), we have Sϕ(F (`)+r) = 2Sϕ(r) by Proposition 3.66.

There exists 0 ≤ r′ < F (` − 3) such that r = F (` − 2) + r′. By induction

hypothesis (note that r′ = 0 forces the equality), we get

Sϕ(F (`) + r) = 2Sϕ(F (`− 2) + r′) ≥ 2Sϕ(F (`− 2)).

By (3.12) twice and since ` ≥ 5, we have

Sϕ(F (`) + r) ≥ 2` > `+ 2 = Sϕ(F (`)).

This ends the proof of the intermediate result.

In fact, we can say a little more. If ` ≥ 3, we also have

Sϕ(F (`)) < Sϕ(n) (3.14)

for all n > F (`). Indeed, it suffices to use (3.13) and the fact that for m ≥ 1,

Sϕ(F (`)) = `+ 2 < `+m+ 2 = Sϕ(F (`+m)),

which follows from (3.12).

For all i ≥ 1, it is not difficult to conclude that the number of occurrences

of i in (Sϕ(n))n≥0 is finite. The sequence (ni)i≥1 is thus well defined. We also

get that ni = F (i−2) for all i ≥ 5. Indeed, from (3.12) first and then (3.14),

i = Sϕ(F (i− 2)) < Sϕ(n)

for all n > F (i− 2). The last part of the statement easily follows.



3.4. Concluding Remarks 165

3.4 Concluding Remarks

After having considered the numeration language Lb of base-b expansions,

then the numeration language LF of Fibonacci expansions, one can naturally

wonder whether similar properties can be observed for an arbitrary initial

language L (because Pascal-like triangles may be defined in this general

setting; see Definition 1.42). As already observed in Remark 3.57, what seems

to be important for further generalizations is that the numeration language

L is the set of words not starting with 0 and not containing occurrences of a

set of words of length 2. For the Fibonacci numeration system, the language

of the numeration is obtained by avoiding the factor 11.

A first generalization of the Fibonacci case would be to consider the m-

bonacci case where the corresponding numeration language is made of the

words over {0, 1} avoiding the factor 1m (the Fibonacci case is m = 2, and

the Tribonacci case m = 3 has been considered in Remark 3.57).

Example 3.69. For m = 3, the analogue (SβT (n))n≥0 (A282719 in [Slo]) of

the sequence (Sϕ(n))n≥0 counting admissible scattered subwords associated

with the Tribonacci numeration system starts with

1, 2, 3, 3, 4, 5, 5, 5, 7, 8, 6, 7, 7, 6, 9, 11, 9, 11, 12, 10, 9, 11, 11, 9, 7, 11, 14, 12, . . . .

Due to Remark 3.57 that easily extends to m-bonacci numeration lan-

guages for m > 3, Lemma 3.56 does not hold for the m-bonacci numeration

system as soon as m ≥ 3. Consequently, it is not clear whether the sequence

(SβT (n))n≥0 is T -regular or the analogue sequence for the general m-bonacci

case is m-bonacci-regular. Nevertheless, the sequence SβT seems to partially

satisfy a relation similar to the first part of Proposition 3.66. To build a table

similar to the arrangement found in Table 3.27, numerical observations lead

to the following conjecture: if ni denotes the position of the last occurrence

of i in SβT (assuming that ni is thus well defined, which is the case for the

Fibonacci case, as shown by Proposition 3.68 above), then

SβT (ni + r) = SβT (ni−1 + r) + SβT (r)

for 0 ≤ r < ni − ni−1 and i ≥ 5 (see Table 3.28). Observe that combin-

ing Propositions 3.66 and 3.68 gives the same result in the Fibonacci case.

Moreover, the sequence (ni)i≥1 (A282718 in [Slo])

(ni)i≥1 = 0, 1, 3, 4, 7, 13, 24, 44, 81, 149, 274, 504, . . .



166 Chapter 3. Counting Scattered Subwords

satisfies the same linear relation as the Tribonacci sequence when i ≥ 4,

which was also the case for the Fibonacci numeration system in Proposi-

tion 3.68. However, it is not clear that one can determine a “simple” rela-

tion for SβT (ni + r) when ni − ni−1 ≤ r < ni+1 − ni (corresponding to the

second part of Proposition 3.66), and thus derive a possible regularity of the

sequence SβT . Again, one can also try with larger values of the parameter

m, and imagine partial relations of the same form.

row

0 1

1 2 3

2 3

3 4 5 5

4 5 7 8 6 7 7

5 6 9 11 9 11 12 10 9 11 11 9

6 7 11 14 12 15 17 15 14 18 19 15 14 14 11 15 . . .

7 8 13 17 15 19 22 . . .

Table 3.28: Arrangement of the first few terms in (SβT (n))n≥0.

As a second generalization, for a Parry number β > 1, one could con-

sider the sequence (Sβ(n))n≥0 from Definition 1.47 for the Parry–Bertrand

numeration system Uβ associated with β from Definition 1.29. In this ex-

tended context, can we provide recurrence relations verified by (Sβ(n))n≥0,

and is the sequence regular with respect to the numeration system Uβ?

Question 1. Can we extend the results of Chapter 3 to other numeration

systems? What are the precise conditions on the numeration systems to

obtain regular sequences? See in particular [Sha88, AST00]. If we consider

other possible extensions of the Pascal triangle (see the list after the definition

of the Pascal triangle in Section 1.5), would it be possible to deduce similar

results?

A famous theorem due to A. Cobham allows us to compare automatic

sequences: if a and b are multiplicatively independent integers, i.e., am 6= bn

for all m,n ∈ N>0, then a sequence that is both a- and b-automatic is ulti-
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mately periodic [Cob69]. In the context of regular sequences, J. Bell obtained

a similar result [Bel07]: if a and b are multiplicatively independent integers,

then a sequence that is both a- and b-regular satisfies a linear recurrence

relation. This leads to the following question.

Question 2. Would it be possible to show that the sequence (Sϕ(n))n≥0

is not b-regular for any integer b ≥ 2? More generally, would it possible to

establish a Cobham-like theorem for sequences that present a regularity with

respect to (abstract) numeration systems that are sufficiently different?

Recall that the sequence (S2(n))n≥0 is bonded with the Stern–Brocot

sequence (see Propositions 3.19 and 3.20), and its 2-regularity, which is one

of the main results of this chapter, naturally ensues from the 2-regularity

of the Stern–Brocot sequence. As the sequence (Sβ(n))n≥0 generalizes the

sequence (S2(n))n≥0, one can ask the following question, which was already

raised in Remark 3.52.

Question 3. Echoing Remark 3.52, can one reasonably define some com-

binatorial structure, e.g., a tree in the base-2 case, in which the sequence

(Sβ(n))n≥0 naturally appears? What would be the analogue of the Stern–

Brocot sequence for (Sβ(n))n≥0?

In Remark 3.65, a linear representation of the sequence (Sϕ(n))n≥0 was

made of matrices associated with 0 and 1. However, the matrix associated

with 1 does not reflect any relations between sequences of the F -kernel of

(Sϕ(n))n≥0.

Question 4. Would it be possible to find a linear representation of the

sequence (Sϕ(n))n≥0 made of matrices associated with 0 and 1 such that

both can be interpreted in terms of relations between sequences of the F -

kernel of (Sϕ(n))n≥0? More generally, is the series
∑

n≥0 Sβ(n) repUβ (n) N-

or Z-recognizable? What is its rank?





Chapter 4

Asymptotics Through Exotic

Numerations

In a general sense, digital functions have a definition that depends on the dig-

its in some representation of the integers [BR10, Chapter 9]. Many of them,

e.g., the sum of the output labels of a finite transducer reading base-b ex-

pansions of integers [HKP15], have been extensively studied in the literature

and exhibit an interesting behavior that usually involves some periodic fluc-

tuation [BR10, Del75, Dum13, Dum14, GH05, GR03, GT00, HKP18, HK18].

Such functions are commonly studied using techniques from analytic number

theory or linear algebra. For instance, consider the archetypal sum-of-digits

function (s2(n))n≥0 for base-2 expansions of integers [Tro68]. Its summatory

function A : N → N, n 7→ ∑n−1
j=0 s2(j) counts the total number of ones oc-

curring in the base-2 expansion of the first n integers, i.e., the sum of the

sums of digits of the first n integers in base 2. In [Del75], it is showed that

there exists a continuous nowhere differentiable periodic function G of period

1 such that

A(n)

n
=

1

n

n−1∑
j=0

s2(j) =
1

2
log2 n+ G(log2 n), (4.1)

which gives an exact formula for the summatory function of s2. For an

account on this result, see, for instance, [AS03a, Theorem 3.5.4]. As observed

in Example 1.56, s2 has a specific internal structure: it is 2-regular. Based

on linear algebra techniques, general asymptotic estimates for summatory

functions of b-regular sequences can be provided [Dum13, Dum14] and are

similar to (4.1), although an error term usually appears. Comparable results

169



170 Chapter 4. Asymptotics Through Exotic Numerations

are also discussed in [BR10, Theorem 9.2.15] and [AS03a].

In this chapter, we expose a new method based on exotic numeration

systems to tackle the behavior of the summatory function As = (As(n))n≥0

of a digital sequence s = (s(n))n≥0. Roughly, the idea is to find two sequences

r = (r(n))n≥0 and t = (t(n))n≥0, each satisfying a linear recurrence relation,

such that As(r(n)) = t(n) for all n ≥ 0. From a recurrence relation satisfied

by s, we deduce a recurrence relation for As in which t is involved. This

allows us to find relevant representations of As in some exotic numeration

system associated with the sequence t. The adjective “exotic” means that we

have a decomposition of particular integers as a linear combination of terms

of the sequence t possibly with unbounded coefficients. Then the behavior

of As depends on the dominant root of the characteristic polynomial of the

linear recurrence relation that defines t. We present this method on examples

inspired by the study of generalized Pascal triangles and binomial coefficients

of words, and we obtain behaviors similar to (4.1).

In Section 4.1, the first example is the summatory function of (S2(n))n≥0.

Since the latter sequence is 2-regular (see Chapter 3), the asymptotics of its

summatory function can be studied via classical techniques [Dum13, Dum14].

Anyway, our method provides an exact behavior for this summatory function.

Then Section 4.2 extends the results to integer bases. More importantly, the

approach also allows us to deal with sequences that do not present any b-

regular structure (up to our knowledge), as illustrated by the example taken

in Section 4.3, which is Fibonacci-regular. In the last section of this chapter,

we present some open problems and conjectures in a more general context.

The results presented in this chapter come from [LRS17a, LRS18].
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4.1 Combining Base 2 and Base 3

In this section, we work with the sequence (S2(n))n≥0 from Example 1.49

and its summatory function defined below.

Definition 4.1. We let A2 = (A2(n))n≥0 denote the summatory function of

the sequence (S2(n))n≥0 defined by

A2(n) =

n−1∑
j=0

S2(j)

for all n ≥ 0. Its first few terms are

0, 1, 3, 6, 9, 13, 18, 23, 27, 32, 39, 47, 54, 61, 69, 76, 81, 87, 96, 107, 117, . . .

(see A282720 in [Slo]). The quantity A2(n) counts the total number of base-

2 expansions occurring as scattered subwords in the base-2 expansion of

integers less than n (the same scattered subword is counted k times if it

occurs in the base-b expansion of k distinct integers).

We immediately know that A2 is 2-regular. Note that it is possible to

obtain a linear representation of the summatory function (A2(n))n≥0 using

the one of (S2(n))n≥0 stated in Corollary 3.25 (see Remark 4.3 below).

Proposition 4.2. The sequence (A2(n))n≥0 is 2-regular.

Proof . This is a direct consequence of Theorem 3.24 and of the fact that the

summatory function of a 2-regular sequence is also 2-regular; see [AS03a,

Theorem 16.4.1].

Remark 4.3. From a linear representation with matrices of size k associated

with a b-regular sequence, one can derive a linear representation with matri-

ces of size 2k associated with its summatory function; see [Dum13, Lemma 1].

Corollary 3.25 yields the following linear representation of (S2(n))n≥0

r =
(

1 0
)
, c = V2(0) =

(
1

1

)
,

Γ0 = µ2(0) =

(
0 1

−1 2

)
, Γ1 = µ2(1) =

(
3 −1

4 −1

)
.
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Thus, a linear representation of (A2(n))n≥0 is given by

rA2 =
(
r 0 0

)
=
(

1 0 0 0
)
, cA2 =

(
c

c

)
=


1

1

1

1

 ,

ΓA2,0 =

(
Γ0 + Γ1 −Γ1

0 Γ0

)
, ΓA2,1 =

(
Γ0 + Γ1 0

0 Γ1

)
.

The sequence (S2(n))n≥0 being 2-regular, asymptotic estimates of the se-

quence (A2(n))n≥0 could be deduced from [Dum13]. However, as already

mentioned, such estimates usually contain an error term. Applying our

method, we get an exact formula for A2(n) given by Theorem 4.4 below1.

It is worth noticing that the sequences (S2(n))n≥0 and (A2(n))n≥0 fail to

satisfy the hypotheses of the stronger result [AS03a, Theorem 3.5.1] (see

Theorem 1.57 in Chapter 1), which gives yet an exact behavior. Let us

show why we cannot directly make use of this result. Using the notation of

Theorem 1.57 and Remark 4.3 above, we have

V2(n) =

(
S2(n)

S2(2n)

)
, Γ = Γ0 + Γ1, and Γ−1 =

(
1
3 0

−1 1

)
.

A direct computation shows that the eigenvalues of Γ−1 are 1/3 and 1. For

any matrix norm || · ||a compatible with a vector norm || · ||b on C2, i.e., they

verify ||Mx||b ≤ ||M ||a ||x||b for all x ∈ C2 and all M ∈ C2
2, if x is an eigenvector

of M associated with the eigenvalue λ of M , we have

|λ| ||x||b = ||Mx||b ≤ ||M ||a ||x||b.
For any compatible norm, we thus obtain ||Γ−1|| ≥ 1, which violates the last

hypothesis of Theorem 1.57.

Theorem 4.4. There exists a continuous and periodic function H2 of period

1 such that, for all large enough n,

A2(n) =
n−1∑
j=0

S2(j) = 3log2 n H2(log2 n).

1The classical results on asymptotics of summatory functions of regular sequences are

often stated in the same way [AS03a, BR10, Dum13, Dum14]. Theorem 4.4, and later

Theorems 4.39 and 4.43, are no exceptions and are stated in this manner.
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To derive this result, we make an extensive use of a particular decomposi-

tion of A2(n), with n ≥ 0, based on powers of 3 that we call 3-decomposition.

These occurrences of powers of 3 come from the following lemma, which is

in fact a rewriting of Proposition 2.5.

Lemma 4.5. For all n ∈ N, we have A2(2n) = 3n.

For the sake of presentation, we introduce the relative position relpos2(x)

of a positive real number x inside the interval [2blog2 xc, 2blog2 xc+1), i.e.,

relpos2(x) =
x− 2blog2 xc

2blog2 xc
= 2{log2 x} − 1 ∈ [0, 1),

where {·} denotes the fractional function (see Section 1.1). In Figure 4.1, the

map blog2(·)c + relpos2(·) (in orange) is compared with log2(·) (the dashed

line). Observe that both functions take the same value at powers of 2, and

the first one is affine between two consecutive powers of 2.

8 16 32 64 128 256

3

4

5

6

7

8

Figure 4.1: The map blog2(·)c+ relpos2(·) compared with log2(·).

In the remaining of the section, we prove an equivalent version of Theo-

rem 4.4 when considering the functionH2 defined byH2(x) = Φ2(relpos2(2x)).

Theorem 4.6. There exists a continuous function Φ2 over [0, 1) such that

Φ2(0) = 1, limα→1− Φ2(α) = 1, and the sequence (A2(n))n≥0 satisfies, for all

n ≥ 1,

A2(n) = 3log2 n Φ2(relpos2(n)) = nlog2 3 Φ2(relpos2(n)).

The graph of Φ2 is depicted in Figure 4.2. We will show in Lemma 4.24

that Φ2 can be computed on a dense subset of [0, 1).
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Figure 4.2: The graph of Φ2.

Particularly giving recurrences for S2, Proposition 3.15 also permits us

to derive two convenient relations for A2 where powers of 3 appear. This is

the starting point of the 3-decompositions mentioned above.

Lemma 4.7. Let ` ≥ 1. If 0 ≤ r ≤ 2`−1, then

A2(2` + r) = 2 · 3`−1 +A2(2`−1 + r) +A2(r).

If 2`−1 < r < 2`, then

A2(2` + r) = 4 · 3` − 2 · 3`−1 −A2(2`−1 + r′)−A2(r′) where r′ = 2` − r.

Proof . Let us start with the first case. If r = 0, the result follows from

Lemma 4.5. Now assume that 0 < r ≤ 2`−1. Applying Proposition 3.15 and

Lemma 4.5 twice, we get

A2(2` + r) =

2`+r−1∑
j=0

S2(j)

= A2(2`) +
r−1∑
j=0

S2(2` + j)

= 3` +

r−1∑
j=0

S2(2`−1 + j) +

r−1∑
j=0

S2(j)

= 3` +A2(2`−1 + r)−A2(2`−1) +A2(r)

= 2 · 3`−1 +A2(2`−1 + r) +A2(r).
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Let us proceed to the second case with 2`−1 < r < 2` and r′ = 2` − r.
Notice that 0 < r′ < 2`−1. From Lemma 4.5, we obtain

A2(2` + r) = A2(2`+1 − r′) = A2(2`+1)−
r′∑
j=1

S2(2`+1 − j)

= 3`+1 −
r′∑
j=1

S2(2` + 2` − j).

Applying Proposition 3.15 and then Lemma 4.5 again, we find

A2(2` + r) = 3`+1 −
r′∑
j=1

S2(2` + j − 1)

= 3`+1 −A2(2` + r′) +A2(2`)

= 4 · 3` −A2(2` + r′).

We may apply the first part of this lemma with r′ and thus get

A2(2` + r) = 4 · 3` − 2 · 3`−1 −A2(2`−1 + r′)−A2(r′).

Remark 4.8. If it were authorized, plugging r = 2`−1 in the second formula

of Lemma 4.7 would give A2(2` + 2`−1) = 2 · 3`, which is equal to the value

given by the first formula of Lemma 4.7.

The values taken by the summatory function A2 at multiples of 2 are

multiples of 3, as demonstrated below.

Corollary 4.9. For all n ≥ 0, A2(2n) = 3A2(n).

Proof . Let us proceed by induction on n ≥ 0. The result holds for n ∈ {0, 1}
since A2(0) = 0, A2(1) = 1 and A2(2) = 3. Thus consider n ≥ 2, and suppose

that the result holds for all m < n. Let us write n = 2` + r with ` ≥ 1 and

0 ≤ r < 2`. Let us first assume that 0 ≤ r ≤ 2`−1. Then, by Lemma 4.7, we

have

3A2(n)−A2(2n) = 2·3`+3A2(2`−1+r)+3A2(r)−2·3`−A2(2`+2r)−A2(2r).

We conclude this case by using the induction hypothesis. Now suppose that
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2`−1 < r < 2`. Lemma 4.7 leads to

3A2(n)−A2(2n) =4 · 3`+1 − 2 · 3` − 3A2(2`−1 + r′)− 3A2(r′)

− 4 · 3`+1 + 2 · 3` +A2(2` + 2r′) +A2(2r′),

where r′ = 2` − r. The result follows from the induction hypothesis.

4.1.1 Special 3-Decompositions

Let us consider two examples to understand the forthcoming notion of 3-

decompositions. The idea is to iteratively apply Lemma 4.7 in order to derive

a decomposition of A2(n), for n ≥ 0, as a particular linear combination of

powers of 3. Indeed, each application of Lemma 4.7 provides a “leading”

term of the form 2 ·3`−1 or 4 ·3`−2 ·3`−1, plus terms where smaller powers of

3 occur. To be precise, the special case of A2(2`+2`−1) gives, when applying

the lemma twice, a term 2 ·3`−1 +2 ·3`−1 = 4 ·3`−1, plus terms where smaller

powers of 3 occur. Note that Lemma 4.7 only applies to integers greater

than 1, so we choose to set A2(0) = 0 · 30 and A2(1) = 1 · 30 (this last

decomposition in terms of 3-powers is coherent with Lemma 4.5).

Example 4.10. To compute A2(42), four applications of Lemma 4.7 yield

A2(42) = A2(25 + 10) = 2 · 34 +A2(24 + 10) +A2(23 + 2),

A2(24 + 10) = 4 · 34 − 2 · 33 −A2(23 + 6)−A2(22 + 2),

A2(23 + 2) = 2 · 32 +A2(22 + 2) +A2(2),

A2(2) = A2(21) = 2 · 30 +A2(1) +A2(0) = 3 · 30.

We thus get

A2(42) = 6 · 34 − 2 · 33 −A2(23 + 6) + 2 · 32 + 3 · 30.

At this stage, we already know that, in the next applications of the lemma,

no other term in 34 can occur because we are left with the decomposition of

A2(23 + 6). Applying again Lemma 4.7 yields

A2(23 + 6) = 4 · 33 − 2 · 32 −A2(22 + 2)−A2(2),

A2(22 + 2) = 2 · 3 +A2(2 + 2) +A2(2),

A2(4) = A2(22) = 2 · 3 +A2(2) +A2(0).
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So we have A2(4) = 2 · 3 + 3 · 30, A2(22 + 2) = 4 · 3 + 6 · 30 and thus also

A2(23 + 6) = 4 · 33 − 2 · 32 − 4 · 3− 9 · 30. Finally2,

A2(42) = 6 · 34 − 6 · 33 + 4 · 32 + 4 · 3 + 12 · 30. (4.2)

Proceeding similarly with A2(84), we have

A2(84) = A2(26 + 20) = 2 · 35 +A2(25 + 20) +A2(24 + 4),

A2(25 + 20) = 4 · 35 − 2 · 34 −A2(24 + 12)−A2(23 + 4),

A2(24 + 4) = 2 · 33 +A2(23 + 4) +A2(4)

= 2 · 33 +A2(23 + 4) + 2 · 3 + 3 · 30.

We thus get

A2(84) = 6 · 35 − 2 · 34 −A2(24 + 12) + 2 · 33 + 2 · 3 + 3 · 30,

and

A2(24 + 12) = 4 · 34 − 2 · 33 −A2(23 + 4)−A2(4),

A2(23 + 4) = 2 · 32 +A2(22 + 4) +A2(4),

A2(22 + 4) = A2(23) = 2 · 32 +A2(22) +A2(0),

A2(4) = 2 · 3 + 3 · 30.

Since A2(23 + 4) = 4 · 32 + 4 · 3 + 6 · 30, we lastly find

A2(84) = 6 · 35 − 6 · 34 + 4 · 33 + 4 · 32 + 8 · 3 + 12 · 30. (4.3)

If we compare (4.2) and (4.3), we may already notice that the same leading

coefficients 6,−6, 4 and 4 occur in front of dominating powers of 3.

Definition 4.11 (3-decomposition). We have A2(0) = 0 · 30 (resp., A2(1) =

1 · 30), so we say that the single-letter word

3dec(A2(0)) = 0 (resp., 3dec(A2(1)) = 1)

is the 3-decomposition of A2(0) (resp., A2(1)).

For n ≥ 2, we write n = 2blog2 nc + r, and we define

`2(n) =

{
blog2 nc − 1, if 0 ≤ r ≤ 2blog2 nc−1;

blog2 nc, if 2blog2 nc−1 < r < 2blog2 nc.

2The Ultimate Question of Life, the Universe and Everything.
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Iteratively applying Lemma 4.7 provides a decomposition of the form

A2(n) =

`2(n)∑
i=0

ai(n) 3`2(n)−i,

where ai(n)’s are integer coefficients and a0(n) 6= 0. We say that the word

3dec(A2(n)) = a0(n) · · · a`2(n)(n)

is the 3-decomposition of A2(n).

When the integer n is clear from the context, we simply write ai instead

of ai(n). For the sake of clarity, we will also write (a0(n), . . . , a`2(n)(n)).

As an example, we have `2(84) = 5 and, using (4.3), the 3-decomposition

of A2(84) is (6,−6, 4, 4, 8, 12). In Table 4.3, we compute the 3-decomposition

of A2(n) for 0 ≤ n ≤ 20 (see also A282728 in [Slo]). Notice that the no-

tion of 3-decomposition is only valid when the values taken by the sequence

(A2(n))n≥0 are concerned. For instance, the 3-decomposition of 5 is not

defined because 5 is not in {A2(n) | n ∈ N}.

Remark 4.12. Assume that we want to develop A2(n) using Lemma 4.7

only, i.e., to get the 3-decomposition of A2(n). Several cases may occur.

• If rep2(n) = 10u, with u ∈ {0, 1}∗ possibly starting with 0, then we

apply the first part of Lemma 4.7, and we are left with evaluations

of A2 at integers whose base-2 expansions are shorter and given by

1u and rep2(val2(u)). Note that rep2(val2(u)) removes the possible

leading zeroes in front of u.

• If rep2(n) = 11u, with u ∈ {0, 1}∗ \ 0∗, i.e., u contains at least one

letter 1, then we apply the second part of Lemma 4.7. We are thus

are left with evaluations of A2 at integers whose base-2 expansions are

shorter and given by 1u′ and rep2(val2(u′)) with

u′ ∈ {0, 1}∗, |u′| = |u| and val2(u′) = val2(u) + 1,

where · is the involutory morphism exchanging 0 and 1. Indeed, in

this case, we have r = val2(1u) and thus val2(u′) = r′ is equal to

2|u|+1− r = 2|u|−val2(u) = (2|u|−1−val2(u))+1 = val2(u)+1. As an

example, if u = 01011000, then u = 10100111 and u′ = 10101000. In
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n a0(n) a1(n) a2(n) a3(n) A2(n)

0 0 0× 1 = 0

1 1 1× 1 = 1

2 3 3× 1 = 3

3 6 6× 1 = 6

4 2 3 2× 3 + 3× 1 = 9

5 2 7 2× 3 + 7× 1 = 13

6 4 6 4× 3 + 6× 1 = 18

7 4 −2 −7 4× 32 − 2× 3− 7× 1 = 23

8 2 2 3
...

9 2 2 8

10 2 4 9

11 6 −2 −1

12 4 4 6

13 4 −6 2 1
...

14 4 −2 −4 −9

15 4 −2 −2 −8

16 2 2 2 3

17 2 2 2 9

18 2 2 4 12

19 2 6 −2 5

20 2 4 6 9
...

Table 4.3: The 3-decomposition of A2(0), A2(1), . . . , A2(20).

fact, if we mark the last occurrence of 1 in u (such an occurrence always

exists by assumption), i.e., u = v10n for some n ≥ 0, then u′ = v10n.

• If rep2(n) = 110k with k ≥ 0, then we will apply the first part of

Lemma 4.7, and we are left with evaluations of A2 at integers whose

base-2 expansions are given by 10k+1 and 10k. This situation seems

not so nice: we are left with the word 10k+1 of the same length as

the original one 110k. However, the next application of Lemma 4.7

provides the word 10k, and the computation easily ends with a total

number of calls to this lemma equal to k+ 1, namely the computations



180 Chapter 4. Asymptotics Through Exotic Numerations

of

A2(2k+1), A2(2k), . . . , A2(20), A2(0)

are needed. This situation is not so bad since the numbers of calls to

Lemma 4.7 to evaluate A2 at integers with base-2 expansions of the

same length can be equal. For instance, the computation of A2(12)

requires the computations of A2(8), A2(4), A2(2), A2(1), A2(0) (and we

have rep2(12) = 1100 for which k = 2), and the one of A2(14) needs

those of A2(6), A2(4), A2(2), A2(1), A2(0).

As already observed with (4.2) and (4.3), the 3-decompositions of A2(42)

and A2(84) share the same first digits. This is a general fact as stated in the

next lemma. Roughly speaking, if the base-2 expansions of two integers m

and n have a long common prefix, then the most significant coefficients in

the corresponding 3-decompositions of A2(m) and A2(n) are the same.

Lemma 4.13. Let u ∈ {0, 1}∗ be a finite word of length at least 2. For all

finite words v, v′ ∈ {0, 1}∗ \ 0∗, the 3-decompositions of A2(val2(1uv)) and

A2(val2(1uv′)) share the same coefficients a0, . . . , a|u|−2, i.e., their first |u|−1

coefficients are equal.

Proof . It is a consequence of Lemma 4.7. Proceed by induction on the length

of the words. The word u is of the form 0n110n21 · · · 10nk with k ≥ 1 and

n1, . . . , nk ≥ 0. If n1 > 0, due to Lemma 4.7, A2(val2(1uv)) is decomposed

as

2 · 3|u|+|v|−1 +A2(val2(10n1−110n21 · · · 10nkv)) +A2(val2(10n21 · · · 10nkv)).

Proceeding similarly, A2(val2(1uv′)) is decomposed as

2 · 3|u|+|v′|−1 +A2(val2(10n1−110n21 · · · 10nkv′)) +A2(val2(10n21 · · · 10nkv′)).

The first term in these two expressions will equally contribute to the coeffi-

cient a0 in the two 3-decompositions. For the last two terms, we may apply

the induction hypothesis. If n1 = 0, then

1uv = 110n21 · · · 10nkv = 110n21 · · · 10nkx10t,

where v = x10t with x ∈ {0, 1}∗ and t ≥ 0 by hypothesis. Recall the second
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case of Remark 4.12. Applying Lemma 4.7 to A2(val2(1uv)) gives

4 · 3|u|+|v| − 2 · 3|u|+|v|−1 +A2(val2(11n20 · · · 01nkx10t))

+A2(val2(1ni01ni+10 · · · 01nkx10t)),

where i is the smallest index in {2, . . . , k} such that ni > 0. We can conclude

in the same way as in the first case.

Example 4.14. Take

rep2(745) = 1(01110)1001 = 1uv and rep2(5904) = 1(01110)0010000 = 1uv′

with u = 01110, |u| = 5, v = 1001 and v′ = 0010000. If we compare the

3-decompositions of A2(745) and A2(5904) in Table 4.4, they share the same

first four coefficients.

n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

745 6 2 −4 −12 12 −42 −10 32 121

5904 6 2 −4 −12 −16 14 14 28 60 60 60 90

Table 4.4: The 3-decomposition of A2(745) and A2(5904).

Now we show that the assumption that v 6∈ 0∗ is important. Consider

rep2(448) = 111000000 and rep2(449) = 111000001.

Even though these two words have the same prefix of length 8, the third coef-

ficients of the 3-decompositions of A2(448) and A2(449) differ. See Table 4.5.

n a0 a1 a2 a3 a4 a5 a6 a7 a8

448 4 −2 −4 −6 −6 −6 −6 −6 −9

449 4 −2 −6 −6 6 6 6 6 31

Table 4.5: The 3-decomposition of A2(448) and A2(449).
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The idea in the next three definitions is that to a real number α corre-

sponds the relative position of an integer between two consecutive powers of

2. We also define an infinite word a(α) based on 3-decompositions of specific

integers.

Definition 4.15. Let α be a real number in [0, 1). Define the sequence

(wn(α))n≥1 of finite words where for all n ≥ 1

wn(α) = rep2 (2n + bα2nc) 1.

Roughly, wn(α) is a word of length n+2, and its relative position among the

words of length n + 2 in 1{0, 1}∗ is given by an approximation of α (more

accurately, it is given by 2bα2nc; see Definition 4.17 below).

Remark 4.16. As a first observation, we add an extra 1 as least significant

digit for convenience (i.e., to avoid the third case of Remark 4.12, and to use

Lemma 4.13).

Let d2(α) = (di)i≥1 be the infinite word over {0, 1} that is the 2-expansion

of α (see Definition 1.19). In particular, we have

α =
∑
i≥1

di2
−i,

and the digits di are not all eventually equal to 1. Then for all n ≥ 1, we

find

wn(α) = 1d1 · · · dn1

since we have α2n = d12n−1 +d22n−2 + · · ·+dn20 +
∑

i≥n+1 di2
n−i. Recalling

Definition 1.11, it is easy to see that the sequence (wn(α))n≥1 of finite words

converges to the infinite word 1(di)i≥1 = 1d2(α). In particular, we may apply

Lemma 4.13 to

wn(α) = 1d1 · · · dn1 and wn+1(α) = 1d1 · · · dndn+11

with u = d1 · · · dn, |u| = n, v = 1 and v′ = dn+11. Consequently, for all

n ≥ 2, the 3-decompositions of A2(val2(wn(α))) and A2(val2(wn+1(α))) have

the same first n− 1 coefficients.

Definition 4.17. Let α be a real number in [0, 1). Define the sequence

(en(α))n≥1 of integers where for all n ≥ 1

en(α) = val2(wn(α)) = 2n+1 + 2bα2nc+ 1.
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Note that en(α) only takes odd integer values in [2n+1 + 1, 2n+2 − 1], and

relpos2(en(α)) =
en(α)− 2n+1

2n+1
=
bα2nc

2n
+

1

2n+1
→ α

as n tends to infinity. This echoes the observation made in Definition 4.15.

Definition 4.18. Let α be a real number in [0, 1). We consider the sequence

(3dec(A2(en(α))))n≥1 of finite words. As already mentioned in Remark 4.16,

thanks to Lemma 4.13, this sequence of finite words converges to an infinite

sequence of integers denoted by

a(α) = a0(α) a1(α) · · · .

Example 4.19. Take α = π − 3. The sequence (wn(α))n≥1 converges to

1d2(α) = 10010010000111111011 · · ·

(see A004601 in [Slo], which is the expansion of π in base 2). Computing

the sequence (en(α))n≥1 leads to the second column of Table 4.6 (also given

by A282730 in [Slo]). In this table, we also find the 3-decomposition of

A2(en(α)). By looking at the different rows, we deduce that the first terms

of the sequence a(α) are 2, 6, −6, 2, 24, −24, 6, 30 (see A282729 in [Slo]).

At each step, all coefficients in the 3-decomposition are fixed except for the

last two ones (thanks to Lemma 4.13).

4.1.2 To Infinity, and Beyond!

In order to prove Theorem 4.4, as already noticed in Theorem 4.6, we in-

troduce an auxiliary function Φ2(α), for α ∈ [0, 1), defined as the limit

of a converging sequence of step functions built on the 3-decomposition of

A2(en(α)). For all n ≥ 1, let φn be the function defined by

φn(α) =
A2(en(α))

3log2(en(α))
for α ∈ [0, 1).

Note that the proof of the next result will come in due time, after Re-

mark 4.23.
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n en(α) a0 a1 a2 a3 · · ·
1 5 2 7

2 9 2 2 8

3 19 2 6 −2 5

4 37 2 6 −6 6 15

5 73 2 6 −6 2 8 31

6 147 2 6 −6 2 24 −8 14

7 293 2 6 −6 2 24 −24 22 53

8 585 2 6 −6 2 24 −24 6 30 116

9 1169 2 6 −6 2 24 −24 6 30 30 131

10 2337 2 6 −6 2 24 −24 6 30 30 30 146

Table 4.6: The 3-decomposition of A2(en(α)) for α = π − 3.

Proposition 4.20. The sequence (φn)n≥1 uniformly converges to the func-

tion Φ2 defined, for α ∈ [0, 1), by

Φ2(α) =


1

31+log2(α+1)

+∞∑
i=0

ai(α)

3i
, if α < 1/2;

1

3log2(α+1)

+∞∑
i=0

ai(α)

3i
, if α ≥ 1/2.

Remark 4.21. If the reader is puzzled by the difference between the expo-

nents in the definition of Φ2, observe that, if α tends to (1/2)+, then one

can prove that the 3-decomposition of A2(en(α)) converges to the infinite

word (zn)n≥0 = 4,−6,−2, 4, 4, 4, . . ., and
∑+∞

i=0 (zi/3
i) = 2. If α tends to

(1/2)−, then one can show that the 3-decomposition of A2(en(α)) converges

to the infinite word (z′n)n≥0 = 6, 2,−4,−4,−4, . . ., and
∑+∞

i=0 (z′i/3
i) = 6.

The continuity of Φ2 will be discussed in the proof of Theorem 4.6.

To visualize the uniform convergence stated in Proposition 4.20, we have

depicted the first functions φ2, . . . , φ9 in Figure 4.7. Observe that if the 2-

expansions of α and γ share a long common prefix, then the words wn(α)

and wn(γ) are equal by definition (recall Remark 4.16) if n is sufficiently

small. Then we have en(α) = en(γ), implying that φn(α) = φn(γ) for all

sufficiently small n. This explains why φn is a step function. One could
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wonder how many steps there are in a given φn. Since wn(α) is a word

of length n + 2 starting and ending with 1 for all α, there are 2n choices

left for the remaining n letters in wn(α), in turn giving 2n different odd

integers en(α). For instance, we have w2(α) ∈ {1001, 1011, 1101, 1111} and

thus e2(α) ∈ {9, 11, 13, 15}, explaining the four subintervals defining the step

function φ2.
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Figure 4.7: Representation of φ2, . . . , φ9 in [0, 1].

To ensure the convergence of the series that we will encounter, we need

some very rough estimate on the coefficients occurring in 3-decompositions.

Lemma 4.22. For all n ≥ 2 and for 0 ≤ i ≤ `2(n), we have |ai(n)| ≤ 10 ·2i.
In particular, for all α ∈ [0, 1) and all i ≥ 0, we have |ai(α)| ≤ 10 · 2i.

Proof . Take n = 2` + r with ` ≥ 1 and 0 ≤ r < 2`. Using Definition 4.11,

let us write

A2(n) =

`2(n)∑
j=0

aj(n) 3`2(n)−j ,
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where aj(n)’s are integers, a0(n) 6= 0. Observe that we have `2(n) ∈ {`, `−1}.
Let us fix i ∈ {0, . . . , `2(n)}. By Lemma 4.7, terms of the form

A2(2`2(n)−i+1 + r′) where r′ ∈ {0, . . . , 2`2(n)−i+1 − 1}, or

A2(2`2(n)−i + r′′) where r′′ ∈ {2`2(n)−i−1 + 1, . . . , 2`2(n)−i − 1} (4.4)

are the only ones possibly contributing to ai(n). Those of the first (resp.,

second) form yield 2 · 3`2(n)−i (resp., 4 · 3`2(n)−i) in modulus. Observe that

for a term A2(2`2(n)−i+1 +r′) of the first form with 2`2(n)−i−1 < r′ < 2`2(n)−i,

a second application of Lemma 4.7 gives, in addition to 2 · 3`2(n)−i, the term

A2(2`2(n)−i + r′), which is of the second form. Together, these terms give

6 · 3`2(n)−i. Similarly, if r′ = 2`2(n)−i, a second application of Lemma 4.7

gives a contribution equal to 4 · 3`2(n)−i. Finally, if 2`2(n)−i < r′ < 2`2(n)−i+1,

then we get a contribution equal to either 2 ·3`2(n)−i or 6 ·3`2(n)−i in modulus.

Our aim is now to understand, starting from A2(2`+r), how the successive

applications of Lemma 4.7 lead to terms of the form (4.4). Notice that the

successive applications of the lemma can give terms of the form A2(2p + r′)

where r′ can take several values for a given value of p (see, for instance,

Example 4.10 with A2(23 + 2) and A2(23 + 6)). This is the reason why we

consider a second index q in the sum below.

Let us describe a transformation process starting from a linear combina-

tion of the form ∑
0≤p≤k
0≤q≤sp

xp,qA2(2p + rp,q),

where k > `2(n) − i + 1 and, for all p and q, sp ∈ N is a counter, xp,q ∈ Z
and rp,q ∈ {0, 1, . . . , 2p − 1}.

First, applying Lemma 4.7 to every term of the form A2(2p + rp,q) with

p < `2(n)− i will provide terms of the form A2(2p
′
+ r′) with p′ ≤ p and r′ <

2p
′
. Hence, these terms are not of the form (4.4), and will never contribute

to ai(n).

Secondly, applying the lemma to every term of the form A2(2p + rp,q)

with p > `2(n) − i + 1 gives a linear combination of 3p and 3p−1, together

with a linear combination of the form x1A2(2p1 + r1) + x2A2(2p2 + r2) with

p1 < p2 ≤ p and x1, x2 ∈ {−1, 1}. Observe that p2 = p if and only if

rp,q = 2p−1. In this case, we get p1 = p − 1, r1 = r2 = 0, and the terms

A2(2p) = 3p and A2(2p−1) = 3p−1 (by Lemma 4.5).
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Therefore, applying Lemma 4.7 to all terms of the form A2(2p+rp,q) with

p > `2(n)− i+ 1 gives a linear combination of the form

k∑
j=`2(n)−i+1

yj3
j +

∑
0≤p<k
0≤q≤tp

yp,qA2(2p + r′p,q),

where for all j, we have yj ∈ Z, and for all p and q, tp ∈ N is a counter,

yp,q ∈ Z, r′p,q ∈ {0, 1, . . . , 2p − 1}, and where∑
0≤p<k
0≤q≤tp

|yp,q| ≤ 2
∑

0≤p≤k
0≤q≤sp

|xp,q|.

Note that p < k in the right term of the new linear combination because a

zero residue gives powers of 3 that are already included in the left term. So

we get some information about how behave the coefficients when applying

the transformation process once.

Starting from the particular combination 1 · A2(2` + r) and iterating

this process ` − `2(n) + i − 1 times (i.e., for k = `, k = ` − 1, . . . , and

k = ` − (` − `2(n) + i − 1) + 1 = `2(n) − i + 2), we thus obtain a linear

combination of the form

`2(n)∑
j=`2(n)−i+1

yj3
j +

∑
0≤p≤`2(n)−i+1

0≤q≤tp

yp,qA2(2p + r′p,q),

where ∑
0≤p≤`2(n)−i+1

0≤q≤tp

|yp,q| ≤ 2`−`2(n)+i−1 · 1 ≤ 2i.

Using what was previously said, we conclude by observing that

|ai(n)| ≤ 6
∑

0≤q≤t`2(n)−i+1

|y`2(n)−i+1,q|+ 4
∑

0≤q≤t`2(n)−i

|y`2(n)−i,q| ≤ 10 · 2i,

as desired. The particular case follows from the definition of a(α).

Remark 4.23. With a deeper analysis, one could probably refine the above

lemma (even though this is not required for what follows). Computer exper-

iments suggest that |ai(α)| ≤ 6F (i− 1) for all α ∈ [0, 1) and all i ≥ 1, where
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(F (n))n≥0 is the Fibonacci sequence (see Example 1.18). The equality holds

for α = 1/3. In this particular case, the sequence (wn(α))n≥1 converges to

1d2(1/3) = (10)ω (observe that
∑

j≥1 1/22j = 1/3).

We are now ready to prove Proposition 4.20.

Proof of Proposition 4.20. Using the 3-decomposition ofA2(en(α)) from Def-

inition 4.11, we have

φn(α) =
1

3log2(en(α))

`2(en(α))∑
i=0

ai(en(α)) 3`2(en(α))−i.

We now simplify the previous formula by studying the values of log2(en(α))

and `2(en(α)).

From Definition 4.17, note that log2(en(α)) = n+1+{log2(en(α))} since

en(α) ∈ [2n+1, 2n+2). Moreover, if we write en(α) = 2n+1 + r, then by

Definition 4.11, we have

`2(en(α)) =

{
n, if 0 ≤ r ≤ 2n;

n+ 1, if 2n < r < 2n+1.

Using Definition 4.17, if α < 1/2, then en(α) = 2n+1 + r with r ≤ 2n− 1.

If α ≥ 1/2, then en(α) = 2n+1 + r with 2n + 1 ≤ r < 2n+1. Consequently, if

α < 1/2, we have

φn(α) =
1

31+{log2(en(α))}

n∑
i=0

ai(en(α))

3i
, (4.5)

and if α ≥ 1/2, we get

φn(α) =
1

3{log2(en(α))}

n+1∑
i=0

ai(en(α))

3i
. (4.6)

First, in both expressions, both sums are converging when n tends to

infinity to the series
+∞∑
i=0

ai(α)

3i
.

Indeed, thanks to Lemma 4.13, the sequence (3dec(A2(en(α))))n≥1 of finite

words converges to a(α) (see Definition 4.18). Moreover, due to Lemma 4.22,

the sequence of partial sums uniformly converges to the series.
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Secondly, by Definition 4.17, we get∣∣∣∣en(α)

2n+1
− (α+ 1)

∣∣∣∣ =

∣∣∣∣2bα2nc+ 1

2n+1
− α

∣∣∣∣ ≤ 3

2n+1
.

Thus, the sequence (en(α)/2n+1)n≥1 of functions (whose variable is α) uni-

formly converges to (α+ 1). Since the function log2 is uniformly continuous

on [1,+∞[, the sequence (log2(en(α)/2n+1))n≥1 also uniformly converges to

log2(α+ 1). Now observe that

log2

(
en(α)

2n+1

)
= log2(en(α))− (n+ 1)

= blog2(en(α))c+ {log2(en(α))} − n− 1

= {log2(en(α))}.

This shows that the sequence ({log2(en(α))})n≥1 uniformly converges to

log2(α+ 1).

To end the proof, let ε > 0. For all α ≥ 1/2, we observe, using (4.6), that

|φn(α)− Φ2(α)| ≤
∣∣∣∣∣
n+1∑
i=0

ai(en(α))

3i

∣∣∣∣∣ ·
∣∣∣∣ 1

3{log2(en(α))} −
1

3log2(α+1)

∣∣∣∣
+

∣∣∣∣ 1

3log2(α+1)

∣∣∣∣ ·
∣∣∣∣∣
n+1∑
i=0

ai(en(α))

3i
−

+∞∑
i=0

ai(α)

3i

∣∣∣∣∣ .
We claim that |φn(α)− Φ2(α)| < ε for all large enough n. Indeed, first∣∣∣∣∣

n+1∑
i=0

ai(en(α))

3i

∣∣∣∣∣ < C,

where C is a positive constant (to see this, use Lemma 4.22). Moreover, the

sequence ({log2(en(α))})n≥1 of functions uniformly converges to log2(α+ 1),

so ∣∣∣∣ 1

3{log2(en(α))} −
1

3log2(α+1)

∣∣∣∣ < ε

2C

for large enough n. Finally, if C ′ = |1/3log2(α+1)|, then∣∣∣∣∣
n+1∑
i=0

ai(en(α))

3i
−

+∞∑
i=0

ai(α)

3i

∣∣∣∣∣ < ε

2C ′

for big enough n. One proceeds similarly with (4.5) for the case where

α < 1/2. This finishes the proof.
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The function Φ2 defined by Proposition 4.20 takes particular values over

rational numbers of the form r/2k with an odd residue r < 2k. This result

is the key to get an exact formula in Theorem 4.6.

Lemma 4.24. Let k ≥ 1 and 0 ≤ r < 2k be integers. We have

A2(2k + r) = 3log2(2k+r) Φ2

( r
2k

)
.

Proof . From Definitions 4.15 and 4.17, for all n ≥ k, we have

wn

( r
2k

)
= rep2(2k + r) 0n−k 1 and en

( r
2k

)
= 2n−k+1(2k + r) + 1

(recall that multiplying by 2 shifts the base-2 expansions to the left). By

Proposition 4.20, we know that

lim
n→+∞

A2(2n−k+1(2k + r) + 1)

3log2(2n−k+1(2k+r)+1)
= lim

n→+∞
φn

( r
2k

)
= Φ2

( r
2k

)
.

Now we claim that

A2(2n−k+1(2k + r) + 1)

A2(2n−k+1(2k + r))

3log2(2n−k+1(2k+r))

3log2(2n−k+1(2k+r)+1)
→ 1

when n tends to infinity. The second factor is easily handled since it tends

to 3log2(1) when n tends to infinity. By definition of the summatory function,

the first factor is equal to

1 +
S2(2n−k+1(2k + r))

A2(2n−k+1(2k + r))
. (4.7)

Since (S2(n))n≥0 is positive, (A2(n))n≥0 is increasing, so from Lemma 4.5,

A2(2n−k+1(2k + r)) ≥ 3n.

By Corollary 3.17, S2(m) ≤ 2m for all positive m. This implies that (4.7)

tends to 1 when n tends to infinity, which in turn proves the intermediate

claim.

In particular, it shows that the sequence(
A2(2n−k+1(2k + r))

3log2(2n−k+1(2k+r))

)
n≥k

(4.8)
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also converges to Φ2(r/2k). Thanks to Corollary 4.9, for all n ≥ k, we have

A2(2n−k+1(2k + r))

3n−k+1
= A2(2k + r).

Thus the sequence (4.8) is constant and equal to

A2(2n−k+1(2k + r))

3n−k+1 3log2(2k+r)
=
A2(2k + r)

3log2(2k+r)
.

Consequently, A2(2k + r)/3log2(2k+r) = Φ2(r/2k), as expected.

We have all the necessary material to prove the main theorems of this

section.

Proof of Theorem 4.6. This proof is divided into four parts: we obtain the

exact formula for the sequence (A2(n))n≥0, the fact that Φ2(0) = 1, the limit

limα→1− Φ2(α) = 1, and the continuity of the function Φ2.

Exact formula. Every integer n ≥ 1 can be uniquely written as n =

2j(2k + r) for j ≥ 0 maximum, k ≥ 0 and r in {0, . . . , 2k − 1}. Thanks to

Corollary 4.9, A2(n) = 3j A2(2k + r). From Lemma 4.24, we get

A2(n) = 3j A2(2k + r) = 3j+log2(2k+r) Φ2

( r
2k

)
= 3log2 n Φ2

( r
2k

)
.

To obtain the relation of the statement, observe that

relpos2(n) =
n− 2j+k

2j+k
=

r

2k
.

Value of Φ2(0). On the one hand, from Lemma 4.24, for any k ≥ 1, we

have

A2(2k) = 3log2(2k)Φ2(0).

On the other hand, A2(2k) = 3k thanks to Lemma 4.5. Hence, Φ2(0) = 1.

Limit for 1−. To show that

lim
α→1−

Φ2(α) = lim
α→1−

lim
n→+∞

φn(α) = 1,

we make use of the uniform convergence in Proposition 4.20, and permute

the two limits

lim
α→1−

Φ2(α) = lim
n→+∞

lim
α→1−

φn(α) = lim
n→+∞

lim
α→1−

1

3{log2(en(α))}

n+1∑
i=0

ai(en(α))

3i
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(for the last equality, recall (4.6)). Observe that if α is close enough to 1,

then the infinite word d2(α) = (di)i≥1, i.e., the 2-expansion of α, has a long

prefix containing only letters 1 (since d2(1) = 1ω by Definition 1.19). By

definition, we get wn(α) = 1n+2 and en(α) = 2n+2 − 1. Iteratively applying

Lemma 4.7 gives

A2(en(α)) = A2(2n+1 + 2n+1 − 1)

= 4 · 3n+1 − 2 · 3n −A2(2n + 1)−A2(1)

= 4 · 3n+1 − 2 · 3n − 2 · 3n−1 −A2(2n−1 + 1)− 2 ·A2(1),

which yields the 3-decomposition of A2(en(α))

(ai(en(α)))0≤i≤n+1 = (4,−2,−2,−2, . . . ,−2, an(en(α)), an+1(en(α))).

Recall that ({log2(en(α))})n≥1 uniformly converges to log2(α+ 1), so

lim
α→1−

Φ2(α) = lim
n→+∞

1

3

(
4− 2

n−1∑
i=1

3−i +
an(en(α))

3n
+
an+1(en(α))

3n+1

)
.

Since, by Lemma 4.22, the last two terms are respectively less than 10 · 2n
and 10 · 2n+1, we find

lim
α→1−

Φ2(α) = lim
n→+∞

1

3
(3 + 31−n) = 1.

Continuity. We finally prove that Φ2 is continuous. Let us take α in

[0, 1), and let d2(α) = (dn)n≥1 denote the 2-expansion of α. To show that Φ2

is continuous at α, we make use of the uniform convergence of the sequence

(φn)n≥0 to Φ2 in Proposition 4.20, and we consider

lim
γ→α
|Φ2(γ)− Φ2(α)| = lim

γ→α
lim

n→+∞
|φn(γ)− φn(α)|

= lim
n→+∞

lim
γ→α
|φn(γ)− φn(α)|.

First, assume that α is not of the form r/2k with k ≥ 1, 0 ≤ r < 2k, and

r odd, i.e., (dn)n≥1 does not belong to {0, 1}∗10ω (note that α = 0 is allowed

in this case since r = 0 is not odd). For any fixed integer n, we can choose γn
close enough to α such that d2(γn) ∈ d1d2 · · · dn{0, 1}ω. Therefore, we have

wn(γn) = wn(α) and en(γn) = en(α), hence we also obtain φn(γn) = φn(α)

by definition. This ends the first case.



4.1. Combining Base 2 and Base 3 193

Now assume that d2(α) = d1d2 · · · dk0ω with dk = 1. For any fixed integer

n > k, we can chose γn close enough to α such that

d2(γn) ∈
{
d1d2 · · · dk0n{0, 1}ω, if γn ≥ α;

d1d2 · · · dk−101n{0, 1}ω, if γn < α.

If γn ≥ α, we get φn(γn) = φn(α) as in the first case, and we end the proof

in a similar way. If γn < α, we get

en(α) = val2(1d1d2 · · · dk0n−k1) = 2n+1 + 2

k∑
i=1

di2
n−i + 1,

en(γn) = val2(1d1d2 · · · dk−101n−k1) = 2n+1 + 2
k−1∑
i=1

di2
n−i + 2

n−k−1∑
j=0

2j + 1,

giving en(α) = en(γn) + 2. Since blog2(en(α))c = blog2(en(γn))c = n+ 1, we

get by definition of φn

|φn(α)− φn(γn)| =
∣∣∣∣A2(en(α))

3log2(en(α))
− A2(en(γn))

3log2(en(γn))

∣∣∣∣
≤
∣∣∣∣A2(en(α))

3n+1

(
1

3{log2(en(α))} −
1

3{log2(en(γn))}

)∣∣∣∣
+

∣∣∣∣ 1

3log2(en(γn))
(A2(en(α)−A2(en(γn)))

∣∣∣∣ .
We now bound each term. For the first term, the factor A2(en(α))/3n+1

converges to the series C · ∑+∞
i=0 (ai(α)/3i) when n tends to infinity (the

reasoning is similar to what was previously done for (4.5) and (4.6) in the

proof of Proposition 4.20, which uses Lemma 4.22; if α < 1/2, then C = 1/3,

else C = 1). The second factor (1/3{log2(en(α))}− 1/3{log2(en(γn))}) tends to 0

when n tends to infinity. Indeed, let us write

1

3{log2(en(α))}−
1

3{log2(en(γn))} =
1

3{log2(en(α))}

(
1− 3{log2(en(α))}−{log2(en(γn))}

)
.

We get the conclusion since the sequence ({log2(en(α))})n≥1 of functions

uniformly converges to log2(α+ 1) and

{log2(en(α))} − {log2(en(γn))} = log2(en(α))− log2(en(γn))

= log2

(
en(γn) + 2

en(γn)

)
≤ log2

(
1 +

1

2n

)
.
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For the second term, Corollary 3.17 gives

A2(en(α))−A2(en(γn)) = A2(en(α))−A2(en(α)− 2)

= S2(en(α)− 1) + S2(en(α)− 2)

≤ 4en(α) ≤ 2n+4,

and we have 3log2(en(γn)) ≥ 3n+1 since en(α), en(γn) ∈ [2n+1 + 1, 2n+2). Now,

for ε > 0, we have just proved that |φn(α)− φn(γn)| < ε if n goes to infinity.

This shows that Φ2 is continuous.

Remark 4.25. As stated in [BR10, Remark 9.2.2], observe that since the

function Φ2 is continuous, then it is completely defined in the interval [0, 1]

by the values taken on the dense set of points of the form r/2k. Having no

error term for these values thanks to Lemma 4.24, there is no error term in

Theorem 4.6.

Since a linear representation of (A2(n))n≥0 can be obtained from a linear

representation of (S2(n))n≥0 (which is done in Remark 4.3), Lemma 4.24

gives a way to quickly compute Φ2 using matrices.

As already observed, Theorem 4.4 follows from Theorem 4.6.

Proof of Theorem 4.4. Let H2 be defined by H2(x) = Φ2(relpos2(2x)) for all

x ∈ R. Then, for all n ≥ 1, we have

H2(log2 n) = Φ2(relpos2(2log2 n)) = Φ2(relpos2(n)).

The desired properties of H2 are derived from those of Φ2 highlighted in

Theorem 4.6. The continuity follows without difficulty. For the periodicity,

we have for all x ∈ R

H2(x+ 1) = Φ2(relpos2(2x+1)) = Φ2(relpos2(2x)) = H2(x)

since, by definition,

relpos2(2x+1) =
2x+1 − 2blog2 2x+1c

2blog2 2x+1c =
2x+1 − 2bx+1c

2bx+1c = relpos2(2x).

Remark 4.26. It is known that the function involved in the result (4.1) is

nowhere differentiable [Del75]. In our context, what can be said about H2

and Φ2?
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A first approach is to consider the results in [Ten97]. However, one

cannot directly apply the latter technique. Indeed, the summatory functions

considered in this paper have a behavior of the form nθF(log n) with θ < 1,

which is not the case here.

Nevertheless, regarding the differentiability, a direction of investigation

could be to use the relation between the Hölder exponent and the speed of

convergence as explained in [DL92, Rio92]. To compute this Hölder exponent

or at least estimate it, one could probably use the methods in [Dum13, DL92,

Rio92]. Those problems remain open to this day.

4.2 Mashup of Different Integer Bases

In the previous section, the behavior of the 2-regular sequence (A2(n))n≥0,

which exhibits a continuous periodic fluctuation, was obtained from partic-

ular decompositions in base 3. In the present section where b ≥ 2 stands

for a fixed integer, we generalize this approach by showing that the base b is

associated with the base 2b− 1. First, the following extends Definition 4.1.

Definition 4.27. Recall the sequence (Sb(n))n≥0 from Definition 1.47. We

consider the summatory function Ab = (Ab(n))n≥0 of the sequence (Sb(n))n≥0

defined by

Ab(n) =
n−1∑
j=0

Sb(j)

for all n ≥ 0. As before, the quantity Ab(n) is the total number of base-b ex-

pansions occurring as scattered subwords in the base-b expansion of integers

less than n.

Example 4.28. In the view of Example 3.28, the first few terms of (A3(n))n≥0

(A284442 in [Slo]) are

0, 1, 3, 5, 8, 11, 15, 18, 22, 25, 29, 34, 40, 45, 49, 55, . . . .

As for the base-2 case with Proposition 4.2, the b-regularity of (Ab(n))n≥0

follows from the one of (Sb(n))n≥0 stated in Theorem 3.46. For a proof of

Proposition 4.29, adapt the one of Proposition 4.2. Similarly to what was

done for (A2(n))n≥0 in Remark 4.3, note that Remark 3.50 leads to obtain
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a linear representation with square matrices of size 2b for the summatory

function (Ab(n))n≥0.

Proposition 4.29. The sequence (Ab(n))n≥0 is b-regular.

In order to prove the extended version of Theorem 4.4 (that is, The-

orem 4.39), the goal is to decompose (Ab(n))n≥0 into linear combinations

of powers of 2b − 1. We will need two lemmas, namely Lemma 4.30 that

immediately follows and Lemma 4.32.

Lemma 4.30. For all ` ≥ 0 and all x ∈ {1, . . . , b− 1}, we have

Ab(xb
`) = (2x− 1) · (2b− 1)`.

Proof . We proceed by induction on ` ≥ 0. If ` = 0 and x ∈ {1, . . . , b − 1},
then using Table 3.7, we have

Ab(x) = Sb(0) +
x−1∑
j=1

Sb(j) = 1 + 2(x− 1) = 2x− 1.

If ` = 1 and x ∈ {1, . . . , b− 1}, then we have

Ab(xb) = Ab(b) +

x−1∑
y=1

b−1∑
j=0

Sb(yb+ j).

Using Table 3.7, we analogously get Ab(b) = (2b− 1) and thus

Ab(xb) = (2b− 1) +

x−1∑
y=1

(3 + 3 + 4(b− 2)) = (2b− 1) + (x− 1)(4b− 2)

= (2x− 1)(2b− 1).

Now suppose that ` ≥ 1, and assume that the result holds for all `′ ≤ `.

We again proceed by induction on x ∈ {1, . . . , b− 1}. When x = 1, we must

show that Ab(b
`+1) = (2b− 1)`+1. We have

Ab(b
`+1) = Ab(b

`) +
b−1∑
y=1

b`−1∑
j=0

Sb(yb
` + j).
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Observe that yb` + j takes all the values in [b`, b`+1) when y and j vary. By

decomposing the double sum into three parts with respect to the different

cases in Proposition 3.29, we get

Ab(b
`+1) = Ab(b

`) +

b−1∑
y=1

b`−1−1∑
j=0

Sb(yb
` + j)

+

b−1∑
y=1

b`−1−1∑
j=0

Sb(yb
` + yb`−1 + j)

+
b−1∑
y=1

∑
1≤z≤b−1
z 6=y

b`−1−1∑
j=0

Sb(yb
` + zb`−1 + j).

Using Proposition 3.29, Ab(b
`+1) is thus equal to

Ab(b
`)

+

b−1∑
y=1

b`−1−1∑
j=0

(Sb(yb
`−1 + j) + Sb(j)) (4.9)

+

b−1∑
y=1

b`−1−1∑
j=0

(2Sb(yb
`−1 + j)− Sb(j)) (4.10)

+

b−1∑
y=1

∑
1≤z≤b−1
z 6=y

b`−1−1∑
j=0

(Sb(yb
`−1 + j) + 2Sb(zb

`−1 + j)− 2Sb(j)). (4.11)

The definition of the summatory function Ab gives

b`−1−1∑
j=0

Sb(yb
`−1 + j) = Ab((y + 1)b`−1)−Ab(yb`−1), (4.12)

b`−1−1∑
j=0

Sb(j) = Ab(b
`−1) (4.13)

for all y ∈ {1, . . . , b− 1}, and we also have the following telescoping sum

b−1∑
y=1

(
Ab((y + 1)b`−1)−Ab(yb`−1)

)
= Ab(b

`)−Ab(b`−1). (4.14)
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Thus, we obtain

(4.9) = Ab(b
`)−Ab(b`−1) + (b− 1)Ab(b

`−1)

= Ab(b
`) + (b− 2)Ab(b

`−1),

(4.10) = 2(Ab(b
`)−Ab(b`−1))− (b− 1)Ab(b

`−1)

= 2Ab(b
`)− (b+ 1)Ab(b

`−1),

(4.11) = 3(b− 2)(Ab(b
`)−Ab(b`−1))− 2(b− 1)(b− 2)Ab(b

`−1)

= 3(b− 2)Ab(b
`)− (b− 2)(2b+ 1)Ab(b

`−1).

Finally, by summing Ab(b
`) and the terms (4.9), (4.10) and (4.11), we find

Ab(b
`+1) = (3b− 2)Ab(b

`)− (2b2 − 3b+ 1)Ab(b
`−1).

Using the induction hypothesis twice, we obtain

Ab(b
`+1) = (3b− 2)(2b− 1)` − (2b2 − 3b+ 1)(2b− 1)`−1 = (2b− 1)`+1,

which ends the case where x = 1.

Now suppose that x ∈ {2, . . . , b − 1}, and assume that the result holds

for all x′ < x. The proof follows the same lines as in the case x = 1 with the

difference that we decompose the sum into

Ab(xb
`+1) = Ab((x− 1)b`+1) +

b`+1−1∑
j=0

Sb((x− 1)b`+1 + j)

= Ab((x− 1)b`+1)

+

b`−1∑
j=0

Sb((x− 1)b`+1 + j)

+

b`−1∑
j=0

Sb((x− 1)b`+1 + (x− 1)b` + j)

+
∑

1≤y≤b−1
y 6=x−1

b`−1∑
j=0

Sb((x− 1)b`+1 + yb` + j).

We may now apply Proposition 3.29 and use results similar to (4.12), (4.13)

and (4.14) (we only need to increase the value of ` and change y by x − 1
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where needed) to get the equalities

Ab(xb
`+1) = Ab((x− 1)b`+1) + (Ab(xb

`)−Ab((x− 1)b`) +Ab(b
`))

+(2Ab(xb
`)− 2Ab((x− 1)b`)−Ab(b`))

+(b− 2)(Ab(xb
`)−Ab((x− 1)b`))

+2(Ab(b
`+1)−Ab(b`)−Ab(xb`) +Ab((x− 1)b`))

−2(b− 2)Ab(b
`)

= Ab((x− 1)b`+1) + (b− 1)Ab(xb
`)− (b− 1)Ab((x− 1)b`)

+2Ab(b
`+1)− 2(b− 1)Ab(b

`).

By the induction hypotheses, we get

Ab(xb
`+1) = (2x− 3)(2b− 1)`+1 + (b− 1)(2x− 1)(2b− 1)`

−(b− 1)(2x− 3)(2b− 1)` + 2(2b− 1)`+1 − 2(b− 1)(2b− 1)`.

After few computations, we finally have Ab(xb
`+1) = (2x− 1)(2b− 1)`+1, as

expected.

Example 4.31. When b = 2, the previous lemma coincides with Lemma 4.5

since, in this case, the only possible value of x is 1. For b = 3, it states that

A3(3`) = 5` and A3(2 · 3`) = 3 · 5` for all ` ≥ 0.

Lemma 4.32. For all ` ≥ 1 and all x, y ∈ {1, . . . , b− 1}, we have

Ab(xb
` + yb`−1) =

{
(4xb− 2x+ 4y − 2b) · (2b− 1)`−1, if y ≤ x;

(4xb− 2x+ 4y − 2b− 1) · (2b− 1)`−1, if y > x.

Proof . The proof of this lemma is similar to the proof of Lemma 4.30, so

we only prove the formula for Ab(xb
` + xb`−1), the others being similarly

handled. We proceed by induction on ` ≥ 1. If ` = 1, the result follows from

Table 3.7. Indeed, we first have

Ab(xb+ x) = Sb(0) +

b−1∑
j=1

Sb(j) +

x−1∑
y=1

b−1∑
j=0

Sb(yb+ j) +

x−1∑
j=0

Sb(xb+ j).

By Table 3.7, we deduce that

Ab(xb+ x) = 1 + 2(b− 1) + (x− 1)(3 + 3 + 4(b− 2)) + (3 + 4(x− 1))

= 4xb+ 2x− 2b,
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as desired. Assume that ` ≥ 2, and that the formulas hold for all `′ < `. We

have

Ab(xb
` + xb`−1) =Ab(xb

`) +
b`−1−1∑
j=0

Sb(xb
` + j)

+
x−1∑
y=1

b`−1−1∑
j=0

Sb(xb
` + yb`−1 + j).

We may apply Proposition 3.29 and use (4.12), (4.13) and (4.14) in order to

obtain the equality

Ab(xb
` + xb`−1) =Ab(xb

`) + (Ab((x+ 1)b`−1)−Ab(xb`−1) +Ab(b
`−1))

+ (x− 1)(Ab((x+ 1)b`−1)−Ab(xb`−1))

+ 2(Ab(xb
`−1)−Ab(b`−1))− 2(x− 1)Ab(b

`−1),

which is turn yields

Ab(xb
` + xb`−1) = Ab(xb

`) + xAb((x+ 1)b`−1) + (2− x)Ab(xb
`−1)

+ (1− 2x)Ab(b
`−1).

Using Lemma 4.30 completes the computation:

Ab(xb
` + xb`−1) =(2x− 1)(2b− 1)` + x(2x+ 1)(2b− 1)`−1

+ (2− x)(2x− 1)(2b− 1)`−1 + (1− 2x)(2b− 1)`−1

=(4xb+ 2x− 2b)(2b− 1)`−1,

as claimed.

Example 4.33. For b = 2, the only possible case is x = 1 = y, and we have

A2(2` + 2`−1) = 6 · 3`−1 = 2 · 3`,

which corroborates Remark 4.8. When b = 3, Lemma 4.32 shows that for all

` ≥ 1,

A3(3` + 3`−1) = 8 · 5`−1,

A3(3` + 2 · 3`−1) = 11 · 5`−1,

A3(2 · 3` + 3`−1) = 18 · 5`−1,

A3(2 · 3` + 2 · 3`−1) = 22 · 5`−1.



4.2. Mashup of Different Integer Bases 201

Lemmas 4.30 and 4.32 give birth to recurrence relations satisfied by the

summatory function (Ab(n))n≥0 as stated below. In fact, this result is of

the same flavor as Lemma 4.7 in the base-2 case. As for b = 2, this is a key

result that permits us to introduce (2b−1)-decompositions of the summatory

function (Ab(n))n≥0. In that sense, Definition 4.37 below is a generalization

of Definition 4.11. As a consequence, the (2b − 1)-decompositions allow us

to easily deduce the main theorem of this section (see Theorem 4.39).

Proposition 4.34. For all x, y ∈ {1, . . . , b − 1} with x 6= y, all ` ≥ 1 and

all r ∈ {0, . . . , b`−1}, we have the following three equalities

Ab(xb
` + r) = (2b− 2) · (2x− 1) · (2b− 1)`−1

+Ab(xb
`−1 + r) +Ab(r), (4.15)

Ab(xb
` + xb`−1 + r) = (4xb− 2x− 2b+ 2) · (2b− 1)`−1

+2Ab(xb
`−1 + r)−Ab(r), (4.16)

and

Ab(xb
` + yb`−1 + r) =



(4xb− 4x− 2b+ 3) · (2b− 1)`−1

+Ab(xb
`−1 + r)

+2Ab(yb
`−1 + r)

−2Ab(r), if y < x;

(4xb− 4x− 2b+ 2) · (2b− 1)`−1

+Ab(xb
`−1 + r)

+2Ab(yb
`−1 + r)

−2Ab(r), if y > x.

Proof . We start with the proof of the first equality. Let x ∈ {1, . . . , b − 1},
` ≥ 1 and r ∈ {0, . . . , b`−1}. If r = 0, then (4.15) holds using Lemma 4.30.

Now suppose that r ∈ {1, . . . , b`−1}. Applying Proposition 3.29, we have

Ab(xb
` + r) = Ab(xb

`) +
r−1∑
j=0

Sb(xb
` + j)

= Ab(xb
`) +

r−1∑
j=0

(Sb(xb
`−1 + j) + Sb(j))

= Ab(xb
`) + (Ab(xb

`−1 + r)−Ab(xb`−1)) +Ab(r),
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and then Lemma 4.30 gives

Ab(xb
` + r) = (2b− 2)(2x− 1)(2b− 1)`−1 +Ab(xb

`−1 + r) +Ab(r),

which proves (4.15).

The proof of the last two equalities are similar, thus we only prove (4.16).

Let x ∈ {1, . . . , b−1}, ` ≥ 1 and r ∈ {0, . . . , b`−1}. If r = 0, then (4.16) holds

using Lemmas 4.30 and 4.32. Now suppose that r ∈ {1, . . . , b`−1}. Applying

Proposition 3.29, we have

Ab(xb
` + xb`−1 + r) = Ab(xb

` + xb`−1) +
r−1∑
j=0

Sb(xb
` + xb`−1 + j)

= Ab(xb
` + xb`−1) +

r−1∑
j=0

(2Sb(xb
`−1 + j)− Sb(j))

= Ab(xb
` + xb`−1) + 2(Ab(xb

`−1 + r)−Ab(xb`−1))

−Ab(r).

Using Lemmas 4.30 and 4.32, we get

Ab(xb
` + xb`−1 + r) = (4xb+ 2x− 2b)(2b− 1)`−1 − 2(2x− 1)(2b− 1)`−1

+2Ab(xb
`−1 + r)−Ab(r)

= (4xb− 2x− 2b+ 2)(2b− 1)`−1

+2Ab(xb
`−1 + r)−Ab(r),

as expected.

Example 4.35. As already noticed in Example 3.42, the relations obtained

in Proposition 4.34 for b = 2 are slightly different from those of Lemma 4.7.

By Proposition 4.34 for b = 3, the values taken by A3(x3` + y3`−1 + r) are

given in Table 4.8 for 1 ≤ x ≤ 2, 0 ≤ y ≤ 2, ` ≥ 1, and r ∈ {0, . . . , 3`−1}.

The following corollary was conjectured in [LRS17a] and generalizes Corol-

lary 4.9.

Corollary 4.36. For all n ≥ 0, we have Ab(nb) = (2b− 1)Ab(n).

Proof . Let us proceed by induction on n ≥ 0. It is easy to check that the

result holds for n ∈ {0, . . . , b − 1}. If n = 0, then Ab(nb) = 0 = Ab(n). If



4.2. Mashup of Different Integer Bases 203

x y A3(x3` + y3`−1 + r)

1 0 4 · 5`−1 +A3(3`−1 + r) +A3(r)

1 1 6 · 5`−1 + 2A3(3`−1 + r)−A3(r)

1 2 4 · 5`−1 +A3(3`−1 + r) + 2A3(2 · 3`−1 + r)− 2A3(r)

2 0 12 · 5`−1 +A3(2 · 3`−1 + r) +A3(r)

2 1 13 · 5`−1 +A3(2 · 3`−1 + r) + 2A3(3`−1 + r)− 2A3(r)

2 2 16 · 5`−1 + 2A3(2 · 3`−1 + r)−A3(r)

Table 4.8: Values of A3(x3` + y3`−1 + r) for 1 ≤ x ≤ 2, 0 ≤ y ≤ 2, ` ≥ 1,

and r ∈ {0, . . . , 3`−1}.

n ∈ {1, . . . , b− 1}, then Lemma 4.30 tells us that Ab(nb) = (2n− 1)(2b− 1)

and Ab(n) = (2n − 1). Thus consider n ≥ b, and suppose that the result

holds for all n′ < n. The reasoning is divided into three cases according to

the form of the base-b expansion of n. As a first case, we write n = xb` + r

with x ∈ {1, . . . , b − 1}, ` ≥ 1, and 0 ≤ r < b`−1. By Proposition 4.34, we

have

Ab(nb)− (2b− 1)Ab(n) = (2b− 2) · (2x− 1) · (2b− 1)` +Ab(xb
` + br)

+Ab(br)− (2b− 2) · (2x− 1) · (2b− 1)`

−(2b− 1)Ab(xb
`−1 + r)− (2b− 1)Ab(r).

We conclude this case by using the induction hypothesis. The other cases

can be handled using the same technique, so we intentionally skip them.

Using Proposition 4.34, we can define (2b− 1)-decompositions as follows.

Compare with Definition 4.11 for the case b = 2.

Definition 4.37 ((2b− 1)-decomposition). Recall that, by Lemma 4.30, we

have Ab(n) = (2n − 1)(2b − 1)0 for all n ∈ {1, . . . , b − 1}. We say that the

single-letter word

(2b− 1)dec(Ab(n)) = (2n− 1)

is the (2b − 1)-decomposition of Ab(n). Since Ab(0) = 0 · (2b − 1)0, the

(2b− 1)-decomposition of Ab(0) is (2b− 1)dec(Ab(0)) = 0.
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Let n ≥ b. Iteratively applying Proposition 4.34 provides a decomposition

of the form

Ab(n) =

`b(n)∑
i=0

di(n) (2b− 1)`b(n)−i,

where di(n)’s are integers, d0(n) 6= 0, and `b(n) stands for blogb nc − 1. We

say that the word

(2b− 1)dec(Ab(n)) = d0(n) · · · d`b(n)(n)

is the (2b− 1)-decomposition of Ab(n).

When the integer n is clear from the context, we simply write di instead

of di(n). For the sake of clarity, we also write (d0(n), . . . , d`b(n)(n)) when

necessary. Notice that the notion of (2b− 1)-decomposition is only valid for

integers in the sequence (Ab(n))n≥0.

Example 4.38. Let us set b = 3. We already know that the corresponding

base is 2b−1 = 5. The goal of this example is to compute the 5-decomposition

of A3(150) = 1665. We have rep3(150) = 12120 and `3(150) = 3. The third

formula of Proposition 4.34 (or Table 4.8) leads to

A3(150) = A3(34 + 2 · 33 + 15)

= 4 · 53 +A3(33 + 15) + 2A3(2 · 33 + 15)− 2A3(15). (4.17)

Applying Proposition 4.34 on terms of the form A3(m) that have just ap-

peared in the right-hand side of (4.17) (also look at Table 4.8), we get

A3(33 + 15) = A3(33 + 32 + 6)

= 6 · 52 + 2A3(32 + 6)−A3(6),

A3(2 · 33 + 15) = A3(2 · 33 + 32 + 6)

= 13 · 52 +A3(2 · 32 + 6) + 2A3(32 + 6)− 2A3(6),

A3(15) = A3(32 + 2 · 31)

= 4 · 51 +A3(31) + 2A3(2 · 31)− 2A3(0).

Using again Proposition 4.34 on the new terms of the form A3(m) or by
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Table 4.8, we find

A3(32 + 6) = A3(32 + 2 · 31)

= 4 · 51 +A3(31) + 2A3(2 · 31)− 2A3(0),

A3(2 · 32 + 6) = A3(2 · 32 + 2 · 31)

= 16 · 51 + 2A3(2 · 31)−A3(0),

A3(6) = A3(2 · 31)

= 12 · 50 +A3(2 · 30) +A3(0).

From Proposition 4.34 or by Table 4.8, we also have

A3(31) = 4 · 50 +A3(30) +A3(0),

A3(2 · 31) = 12 · 50 +A3(2 · 30) +A3(0).

From Lemma 4.30, A3(30) = 50 and A3(2 · 30) = 3 · 50, and the procedure

halts. Plugging all those values together in (4.17), we finally have

A3(150) = 4 · 53 + 32 · 52 + 48 · 51 + 125 · 50.

The 5-decomposition of A3(150) is thus (4, 32, 48, 125).

We now establish the asymptotic behavior of Ab. The proof of the next

result follows the same lines as the proof of Theorem 4.4. Therefore, we only

sketch it.

Theorem 4.39. There exists a continuous and periodic function Hb of pe-

riod 1 such that, for all large enough n,

Ab(n) = (2b− 1)logb n Hb(logb n).

As an example, when b ∈ {3, 4, 5, 7}, the function Hb is depicted in

Figure 4.9 over one period. Compare them with Figure 4.2.

Sketch of the proof of Theorem 4.39. Let us start by defining the function

Φb. Given any integer n ≥ 1, we let φn denote the function

α ∈ [0, 1) 7→ φn(α) =
Ab(en(α))

(2b− 1)logb(en(α))
,
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Figure 4.9: The function Hb over one period for b ∈ {3, 4, 5, 7}.

where en(α) = bn+1 + bbαbnc + 1 (see Definition 4.17 and the beginning of

Section 4.1.2 for the base-2 case). With a proof analogous to the one of

Proposition 4.20, the sequence (φn)n≥1 of functions uniformly converges to a

function Φb. As in Theorem 4.6, this function is continuous on [0, 1), and such

that Φb(0) = 1 = limα→1− Φb(α). Furthermore, similarly to Lemma 4.24, it

satisfies

Ab(b
k + r) = (2b− 1)logb(b

k+r)Φb

( r
bk

)
(4.18)

for k ≥ 1 and 0 ≤ r < bk. Using Corollary 4.36, for all integer n = bj(bk + r)

with j, k ≥ 0 and r ∈ {0, . . . , bk − 1}, we get

Ab(n) = (2b− 1)jAb(b
k + r) = (2b− 1)logb(n)Φb

( r
bk

)
.

As in the base-2 case, we define the relative position relposb(x) of a positive

real number x inside the interval [bblogb xc, bblogb xc+1) by

relposb(x) =
x− bblogb xc

bblogb xc
= b{logb x} − 1 ∈ [0, 1).

Note that relposb(n) = r/bk. As in the proof of Theorem 4.4 regarding the

base-2 case, the function Hb is defined by Hb(x) = Φb(relposb(b
x)) for all
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x ∈ R. It has the desired properties, and since Hb(logb(n)) = Φb(relposb(n)),

we find

Ab(n) = (2b− 1)logb(n)Hb(logb(n)).

Remark 4.40. Let us insist on the fact that the formula in Theorem 4.39

is exact. Indeed, (4.18) proves that no error term shows up on the dense set

of points of the form r/bk. See also Remark 4.25.

As a final comment in the general integer base case, we leave open the

problem of determining whether the function Hb is differentiable or not, as

in Remark 4.26.

4.3 Mixing Fibonacci and an Exotic Numeration

System

As already mentioned in the introduction of this chapter, one can obtain

general asymptotic estimates for summatory functions of b-regular sequences

(see, for instance, [AS03a, BR10, Dum13, Dum14]). In this section, we show

how our method can be extended to sequences that do not exhibit a regu-

lar structure in the classical sense, i.e., up to our knowledge, they are not

b-regular for any b ≥ 2. Instead of integer base numeration systems, we use

the Zeckendorf numeration system associated with the golden ratio (see Ex-

amples 1.18 and 1.30). Compared to the sequences (Sb(n))n≥0, the sequence

(Sϕ(n))n≥0 (see Example 1.50) only takes into account words not containing

two consecutive 1’s. A major difference with the integer base case is that

the sequence (Sϕ(n))n≥0 is not known to be b-regular3 for any integer b ≥ 2,

but is F -regular (see Theorem 3.63). Thus, we are no longer in the classical

setting of b-regular sequences, and therefore known results. Nevertheless, it

is striking that we are still able to mimic the same strategy, and obtain an

expression for its summatory function.

Definition 4.41. We let Aϕ = (Aϕ(n))n≥0 denote the summatory function

of the sequence (Sϕ(n))n≥0 defined by

Aϕ(n) =

n∑
j=0

Sϕ(j)

3An interesting direction of investigation is to establish this fact. See the end of Chap-

ter 3.



208 Chapter 4. Asymptotics Through Exotic Numerations

for all n ≥ 0. The first few terms of (Aϕ(n))n≥0 are

1, 3, 6, 10, 14, 19, 25, 31, 37, 45, 54, 62, 70, 77, 87, 99, 111, 123, 133, 145, . . .

(see also A282731 in [Slo]). As before, the quantity Aϕ(n) counts the total

number of F -expansions occurring as scattered subwords in the F -expansion

of integers less than or equal to n.

Remark 4.42. In the integer base case, the corresponding summatory func-

tion is b-regular (see Propositions 4.2 and 4.29). In the present context of

F -regular sequences, it is not clear whether (Aϕ(n))n≥0 is F -regular or not.

It is not clear either if one can adapt [Dum13, Lemma 1] and deduce a linear

representation of (Aϕ(n))n≥0 from a linear representation of (Sϕ(n))n≥0. See

Remark 4.3 for the integer base case.

As in the previous sections with Theorems 4.4, 4.6 and 4.39, the goal is

to provide a formula for the asymptotic behavior of Aϕ. To that aim, we

analogously consider a convenient B-decomposition of Aϕ(n), with n ≥ 0,

based on the terms of a sequence (B(n))n≥0 defined in Section 4.3.1 below.

Using a similar technique, we prove the following result. Already observe

that it contains an error term whereas the formulas are exact for integer

base cases. Also, logF (·) will be defined in due time, on page 220.

Theorem 4.43. Let λ be the dominant root of X3 − 2X2 − X + 1. There

exists a continuous and periodic function G of period 1 such that, for all large

enough n,

Aϕ(n) =

n∑
j=0

Sϕ(j) = c λlogF nG(logF n) + o(λblogF nc).

4.3.1 Introduction to (B(n))n≥0

For integer base numeration systems, we are able to write the values of Ab
at powers of b as multiples of powers of 2b − 1 (see Lemmas 4.5 and 4.30).

We have a similar result in the Fibonacci case using a particular sequence

defined below.

Definition 4.44. Let (B(n))n≥0 be the sequence of integers defined by

B(0) = 1, B(1) = 3, B(2) = 6, and B(n+ 3) = 2B(n+ 2) +B(n+ 1)−B(n)



4.3. Mixing Fibonacci and an Exotic Numeration System 209

for all n ≥ 0 (A006356 in [Slo]). The sequence (B(n))n≥0 begins with

1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, . . . .

The characteristic polynomial PB(X) = X3 − 2X2 − X + 1 of the linear

recurrence of (B(n))n≥0 has three real roots as depicted in Figure 4.10. We

let λ ≈ 2.24698 denote its root of maximal modulus. The other two roots

are λ2 ≈ −0.80194 and λ3 ≈ 0.55496. From the classical theory of linear

recurrences, there exist three constants c ≈ 1.22041, c2 ≈ −0.28011, and

c3 ≈ 0.0597 such that, for all n ∈ N,

B(n) = c λn + c2 λ
n
2 + c3 λ

n
3 . (4.19)

In particular, we have

lim
n→+∞

B(n)

c λn
= 1. (4.20)
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Figure 4.10: The graph of PB(X) = X3 − 2X2 −X + 1.

Proposition 4.45. For all n ≥ 0, we have Aϕ(F (n)− 1) = B(n).

Proof . The equalities B(0) = 1 = Aϕ(F (0)− 1), B(1) = 3 = Aϕ(F (1)− 1),

and B(2) = 6 = Aϕ(F (2)− 1) can be checked by hand. Let us show that

Aϕ(F (n+ 3)− 1) = 2Aϕ(F (n+ 2)− 1) +Aϕ(F (n+ 1)− 1)−Aϕ(F (n)− 1)

holds for all n ≥ 0. Using Definition 4.41, the equality that we want to prove

is equivalent to

F (n+3)−1∑
j=F (n+2)

Sϕ(j) =

F (n)−1∑
j=0

Sϕ(j) + 2

F (n+1)−1∑
j=F (n)

Sϕ(j) +

F (n+2)−1∑
j=F (n+1)

Sϕ(j). (4.21)
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Observe that

{j | F (n+ 2) ≤ j < F (n+ 3)} = {F (n+ 2) + r | 0 ≤ r < F (n+ 1)}.

This gives

F (n+3)−1∑
j=F (n+2)

Sϕ(j) =

F (n+1)−1∑
r=0

Sϕ(F (n+ 2) + r)

=

F (n)−1∑
r=0

Sϕ(F (n+ 2) + r) +

F (n+1)−1∑
r=F (n)

Sϕ(F (n+ 2) + r).

Using Proposition 3.66, we thus find

F (n+3)−1∑
j=F (n+2)

Sϕ(j) =

F (n)−1∑
r=0

(Sϕ(F (n+ 1) + r) + Sϕ(r)) +

F (n+1)−1∑
r=F (n)

2Sϕ(r)

=

F (n)−1∑
r=0

Sϕ(r) + 2

F (n+1)−1∑
r=F (n)

Sϕ(r)

+

F (n)−1∑
r=0

Sϕ(F (n+ 1) + r).

Then the equality (4.21) holds because

{F (n+ 1) + r | 0 ≤ r < F (n)} = {j | F (n+ 1) ≤ j < F (n+ 2)}.

We have just showed that (Aϕ(F (n) − 1))n≥0 satisfies the same recurrence

relation as (B(n))n≥0, so we may conclude the proof by Definition 4.44.

Thanks to Proposition 4.45, we have analogues of Lemma 4.7 and Propo-

sition 4.34. This is the key point to obtain particular B-decompositions.

Lemma 4.46. Let ` ≥ 2. If 0 ≤ r < F (`− 2), then

Aϕ(F (`) + r) = B(`)−B(`− 1) +Aϕ(F (`− 1) + r) +Aϕ(r).

If F (`− 2) ≤ r < F (`− 1), then

Aϕ(F (`) + r) = 2B(`)−B(`− 1)−B(`− 2) + 2Aϕ(r).
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Proof . Assume first that 0 ≤ r < F (`− 2). We have

Aϕ(F (`) + r) =

F (`)+r∑
j=0

Sϕ(j)

=

F (`)−1∑
j=0

Sϕ(j) +

F (`)+r∑
j=F (`)

Sϕ(j)

= Aϕ(F (`)− 1) +
r∑
j=0

Sϕ(F (`) + j).

Applying Proposition 3.66 and Proposition 4.45, we get

Aϕ(F (`) + r) = B(`) +
r∑
j=0

Sϕ(F (`− 1) + j) +
r∑
j=0

Sϕ(j).

Using Proposition 4.45 once more, we obtain

Aϕ(F (`) + r) = B(`) +

F (`−1)+r∑
j=0

Sϕ(j)−
F (`−1)−1∑

j=0

Sϕ(j)

+Aϕ(r)

= B(`) +Aϕ(F (`− 1) + r)−Aϕ(F (`− 1)− 1) +Aϕ(r)

= B(`) +Aϕ(F (`− 1) + r)−B(`− 1) +Aϕ(r).

Let us suppose that F (`− 2) ≤ r < F (`− 1) to prove the second part of

the result. We first have

Aϕ(F (`) + r) =

F (`)+r∑
j=0

Sϕ(j)

=

F (`)+F (`−2)−1∑
j=0

Sϕ(j) +

F (`)+r∑
j=F (`)+F (`−2)

Sϕ(j)

= Aϕ(F (`) + F (`− 2)− 1) +

r∑
j=F (`−2)

Sϕ(F (`) + j).
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According to the second case of Proposition 3.66, we have

Aϕ(F (`) + r) = Aϕ(F (`) + F (`− 2)− 1) + 2
r∑

j=F (`−2)

Sϕ(j)

= Aϕ(F (`) + F (`− 2)− 1)

+2

Aϕ(r)−
F (`−2)−1∑

j=0

Sϕ(j)

 .

We may apply the first part of the result to the term Aϕ(F (`)+F (`−2)−1)

and we find

Aϕ(F (`) + r) = B(`)−B(`− 1) +Aϕ(F (`− 1) + F (`− 2)− 1)

+Aϕ(F (`− 2)− 1) + 2Aϕ(r)− 2Aϕ(F (`− 2)− 1),

and next, with Proposition 4.45, we get

Aϕ(F (`) + r) = B(`)−B(`− 1) +B(`) +B(`− 2) + 2Aϕ(r)− 2B(`− 2)

= 2B(`)−B(`− 1)−B(`− 2) + 2Aϕ(r),

as expected.

4.3.2 Particular B-Decompositions

Similarly to the (2b− 1)-decomposition of the function Ab examined in Sec-

tion 4.1.1 and Section 4.2 for integer bases, we will consider what we call the

B-decomposition of Aϕ. The idea is again to iteratively apply Lemma 4.46

to derive a decomposition of Aϕ as a particular linear combination of terms

of the sequence (B(n))n≥0. Indeed, each application of Lemma 4.46 provides

a “leading” term of the form B(`) or 2B(`), plus terms of smaller indices.

Definition 4.47 (B-decomposition). We have Aϕ(0) = 1 · B(0) (resp.,

Aϕ(1) = 3 · B(0); resp., Aϕ(2) = 6 · B(0)), so we say that the single-letter

word

Bdec(Aϕ(0)) = 1 (resp., Bdec(Aϕ(1)) = 3; resp., Bdec(Aϕ(2)) = 6)

is the B-decomposition of Aϕ(0) (resp., Aϕ(1); resp., Aϕ(2)).
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Let n ≥ 3. Iteratively applying Lemma 4.46 provides a decomposition of

the form

Aϕ(n) =

`F (n)∑
i=0

bi(n)B(`F (n)− i),

where bi(n)’s are integers, b0(n) 6= 0, and `F (n) = | repF (n)| − 1. We say

that the word

Bdec(Aϕ(n)) = b0(n) · · · b`F (n)(n)

is the B-decomposition of Aϕ(n).

When the integer n is clear from the context, we simply write bi instead

of bi(n). To avoid any confusion, we will also write (b0(n), . . . , b`F (n)(n)).

Finally, notice that the notion of B-decomposition is only valid for integers

in the sequence (Aϕ(n))n≥0.

Example 4.48. We have repF (42) = 10010000, so `F (42) = 7. Lemma 4.46

yields

Aϕ(42) = B(7) +B(6)−B(5) + 2B(4)− 3B(1) + 27B(0).

Indeed, we have

Aϕ(42) = Aϕ(F (7) + 8) = B(7)−B(6) +Aϕ(F (6) + 8) +Aϕ(8),

Aϕ(F (6) + 8) = 2B(6)−B(5)−B(4) + 2Aϕ(8),

Aϕ(8) = Aϕ(F (4)) = B(4)−B(3) +Aϕ(F (3)) +Aϕ(0),

Aϕ(F (3)) = B(3)−B(2) +Aϕ(F (2)) +Aϕ(0),

Aϕ(F (2)) = B(2)−B(1) +Aϕ(F (1)) +Aϕ(0).

To get the desired equality, it suffices to write Aϕ(F (1)) = 6B(0) and

Aϕ(0) = 1B(0). The B-decomposition of Aϕ(42) is (1, 1,−1, 2, 0, 0,−3, 27).

Table 4.11 displays the B-decomposition of Aϕ(0), . . . , Aϕ(20).

Remark 4.49. Suppose that we want to develop Aϕ(n) with the sole use

of Lemma 4.46, i.e., to get the B-decomposition of Aϕ(n). Compared to

Remark 4.12, only two cases may occur.

• If repF (n) = 100u, with u ∈ 0∗LF , then we apply the first part of

Lemma 4.46, and we are left with evaluations of Aϕ at integers whose

F -expansions are shorter and given by 10u and repF (valF (u)).
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• If repF (n) = 101u, with u ∈ {ε}∪0+LF , then we apply the second part

of Lemma 4.46, and we are left with evaluations of Aϕ at an integer

whose F -expansion is shorter and given by 1u.

n b0(n) b1(n) b2(n) b3(n) b4(n) b5(n) Aϕ(n)

0 1 1× 1 = 1

1 3 3× 1 = 3

2 6 6× 1 = 6

3 1 −1 7 1× 6− 1× 3 + 7× 1 = 10

4 2 −1 5 2× 6− 1× 3 + 5× 1 = 14

5 1 0 −1 8 1× 14− 1× 3 + 8× 1 = 19

6 1 1 −1 8
...

7 2 −1 −1 12

8 1 0 0 −1 9

9 1 0 1 −1 11

10 1 1 −1 −1 18

11 2 −1 1 −2 14

12 2 −1 3 −2 10

13 1 0 0 0 −1 10

14 1 0 0 1 −1 14

15 1 0 1 −1 −1 24

16 1 1 −1 2 −3 21

17 1 1 −1 5 −3 15

18 2 −1 1 0 −2 16

19 2 −1 1 2 −2 16

20 2 −1 3 −2 −2 24

Table 4.11: The B-decomposition of (Aϕ(n))0≤n≤20.

As in Lemma 4.13 for 3-decompositions, we can again notice similarities

between certain pairs of B-decompositions and we can compare them.

Lemma 4.50. For all finite words u, v, v′ ∈ {0, 1}∗ such that the words

1uv and 1uv′ both belong to 1{0, 01}∗ and |u| ≥ 2, the B-decompositions of

Aϕ(valF (1uv)) and Aϕ(valF (1uv′)) share the same coefficients b0, . . . , b|u|−2,
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i.e., their first |u| − 1 coefficients are equal.

Proof . The proof is similar to the proof of Lemma 4.13 and follows from

Lemma 4.46.

Example 4.51. Let us consider

repF (163) = 1(000010)1001 = 1uv, and

repF (673) = 1(000010)0010000 = 1uv′

with u = 000010, |u| = 6, v = 1001 and v′ = 0010000. If we compare the

B-decompositions of Aϕ(163) and Aϕ(673) with the help of Table 4.12, they

share the same first five coefficients.

n b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

163 1 0 0 1 −1 9 −5 5 10 −10 80

673 1 0 0 1 −1 4 0 5 −5 15 0 0 −20 180

Table 4.12: The B-decomposition of Aϕ(163) and Aϕ(673).

In the case of the integer base b ≥ 2, the evaluation of Ab at powers of

b is of particular importance. Here, we fully describe the B-decompositions

of Aϕ evaluated at two sequences related to Fibonacci numbers. Recall that

the real number λ is given in Definition 4.44.

Lemma 4.52. The sequence (Bdec(Aϕ(F (n))))n≥0 converges to the infinite

word 10ω, and the sequence (Bdec(Aϕ(F (n)−1)))n≥0 converges to the infinite

word (gn)n≥0 where g0 = 2, g1 = −1, g2 = 3, and gn = 2gn−2 for all n ≥ 3.

In particular, |gn| ≤ 2 · (
√

2)n for all n ≥ 0, and

+∞∑
i=0

gi
λi

= λ.

Proof . Let us prove the first part of the statement. We show that, for all

n ≥ 2, Aϕ(F (n)) = B(n)−B(1) + (n+ 5)B(0), or equivalently

Bdec(Aϕ(F (n))) = (1, 0, · · · , 0︸ ︷︷ ︸
n−2 times

,−1, n+ 5). (4.22)
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We proceed by induction on n ≥ 2. For n ∈ {2, 3}, the B-decompositions of

Aϕ(F (2)) = Aϕ(3) and Aϕ(F (3)) = Aϕ(5) can be found in Table 4.11 and

satisfy (4.22). Thus, consider n ≥ 3, and suppose the result holds for all

m < n+ 1. From Lemma 4.46, we have

Aϕ(F (n+ 1)) = B(n+ 1)−B(n) +Aϕ(F (n)) +Aϕ(0).

Since Aϕ(0) = B(0), the induction hypothesis yields

Aϕ(F (n+ 1)) = B(n+ 1)−B(n) + (B(n)−B(1) + (n+ 5) ·B(0)) +B(0),

which proves (4.22). The convergence of the sequence (Bdec(Aϕ(F (n))))n≥0

of finite words to the infinite word 10ω easily follows (recall Definition 1.11).

Let us prove the second part of the statement. We show that, for all

n ≥ 3,

Bdec(Aϕ(F (n)− 1)) =

{
(g0, g1, . . . , gn−2, x), if n is odd;

(g0, g1, . . . , gn−3, y, z), if n is even;
(4.23)

where x, y, z are integers. We proceed again by induction on n ≥ 3. Ta-

ble 4.11 provides the result for n ∈ {3, 4}: we have to look at the B-

decompositions of Aϕ(F (3)− 1) = Aϕ(4) and Aϕ(F (4)− 1) = Aϕ(7). Thus,

consider n ≥ 4, and suppose the result holds for all m < n+ 1. Suppose first

that n is even. By Lemma 4.46, we have

Aϕ(F (n+ 1)− 1) = Aϕ(F (n) + F (n− 1)− 1)

= 2B(n)−B(n− 1)−B(n− 2) + 2Aϕ(F (n− 1)− 1).

Using the induction hypothesis with

Bdec(Aϕ(F (n− 1)− 1)) = (g0, g1, . . . , gn−3, x)

and with the first value g0 = 2 of (gn)n≥0, we get

Aϕ(F (n+ 1)− 1) =2B(n)−B(n− 1)−B(n− 2) + 4B(n− 2)

+

n−3∑
j=1

2gjB(n− 2− j) + 2xB(0).

By definition of the sequence (gn)n≥0, we have 2gj = gj+2 for all j ≥ 1, so

we finally obtain

Aϕ(F (n+1)−1) = 2B(n)−B(n−1)+3B(n−2)+
n−1∑
j=3

gjB(n− j)+2xB(0),
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which concludes the case where n is even since g0 = 2, g1 = −1 and g2 = 3.

The case where n is odd can be proved using the same argument.

Let us prove the last part of the statement. Using the definition of the

sequence (gn)n≥0, we get

+∞∑
i=1

gi
λi

=
g1

λ
+
g2

λ2
+

+∞∑
i=1

gi+2

λi+2
=
−1

λ
+

3

λ2
+

2

λ2
·

+∞∑
i=1

gi
λi

that is
+∞∑
i=1

gi
λi

=
−λ+ 3

λ2 − 2
.

Hence, since PB(λ) = λ3 − 2λ2 − λ+ 1 = 0, we have

+∞∑
i=0

gi
λi

= g0 +
+∞∑
i=1

gi
λi

= 2 +
3− λ
λ2 − 2

=
2λ2 − λ− 1

λ2 − 2
= λ.

The fact that |gn| ≤ 2 · (
√

2)n follows by a smooth induction and from the

definition of the sequence (gn)n≥0.

4.3.3 Drifter Falling into Infinity

The idea behind the next definitions is that the real number α gives the rel-

ative position of an integer between two consecutive Fibonacci numbers. See

Definitions 4.15 and 4.17 for the base-2 case, and the proof of Theorem 4.39

for the general integer base case. We also define an infinite word b(α) based

on B-decompositions of specific integers, which is the analogue of the infinite

word a(α) given in Definition 4.18.

Definition 4.53. Let α be a real number in [0, 1), and let dϕ(α) denote its

ϕ-expansion as in Definition 1.19. Define the sequence (wn(α))n≥1 of finite

words where wn(α) is the length-n prefix of the infinite word 10dϕ(α). For

each n ≥ 1, let us define the integer

en(α) = valF (wn(α)) ∈ [F (n− 1), F (n)).

Note that, since the ϕ-expansion of α does not contain any factor of the form

11, we have wn(α) = repF (en(α)). Compared to the base-2 case, observe that

en(α) might be an even integer.
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Mimicking Remark 4.16 and thanks to Lemma 4.50, we know that the

sequence (Bdec(Aϕ(en(α))))n≥1 converges to an infinite word as explained

below.

Definition 4.54. For each n ≥ 1, let

Bdec(Aϕ(en(α))) = b0(en(α)) · · · bn−1(en(α))

be the B-decomposition of Aϕ(en(α)) (note that `F (en(α)) = n − 1). We

let b(α) = b0(α) b1(α) · · · denote the infinite sequence of integers that is the

limit of the sequence (Bdec(Aϕ(en(α))))n≥1.

Example 4.55. The ϕ-expansion of α = π − 3 is

dϕ(α) = 00001010100100010101 · · · .

Thus, the first ten finite words of (wn(α))1≥n are

1, 10, 100, 1000, 10000, 100000, 1000001, 10000010, 100000101, 1000001010.

The first ten integers of (en(α))n≥1 are 1, 2, 3, 5, 8, 13, 22, 36, 59, 96 and are

stored in the second column of Table 4.13. In this table, we also compute

the B-decomposition of (Aϕ(en(α)))n≥1 for 1 ≤ n ≤ 10. By examining the

different rows, we conclude that the first terms of the sequence b(α) are

1, 0, 0, 0, 1,−1, 11,−6.

As in the base-2 case with Lemma 4.22, a rough estimate on the coeffi-

cients in B-decompositions is enough to ensure a convergence.

Lemma 4.56. For all n ≥ 3 and all 0 ≤ i ≤ `F (n), we have |bi(n)| ≤ 6 · 2i.
In particular, for all α ∈ [0, 1) and all i ≥ 0, we have |bi(α)| ≤ 6 · 2i.

Proof . The proof follows the same lines as the proof of Lemma 4.22. Let us

take n = F (`) + r with ` ≥ 2 and 0 ≤ r < F (` − 1). Using Definition 4.47,

let us write

Aϕ(n) =
∑̀
j=0

bj(n)B(`− j),
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n en(α) b0 b1 b2 b3 · · ·
1 1 3

2 2 6

3 3 1 −1 7

4 5 1 0 −1 8

5 8 1 0 0 −1 9

6 13 1 0 0 0 −1 10

7 22 1 0 0 0 1 −1 17

8 36 1 0 0 0 1 −1 −1 36

9 59 1 0 0 0 1 −1 11 −6 30

10 96 1 0 0 0 1 −1 11 −6 −6 72

Table 4.13: The B-decomposition of Aϕ(en(α)) for α = π − 3.

where bj(n)’s are integers, b0(n) 6= 0. Observe that `F (n) = ` in this case.

Let us fix i ∈ {0, 1, . . . , `}. By Lemma 4.46, terms of the form

Aϕ(F (`− i) + r1), with 0 ≤ r1 < F (`− i− 1), or

Aϕ(F (`− i+ 1) + r2), with 0 ≤ r2 < F (`− i), or

Aϕ(F (`− i+ 2) + r3), with F (`− i) ≤ r3 < F (`− i+ 1),

are the only ones possibly contributing to bi(n), which is the coefficient of

B(`− i).
Terms of the first form give either B(` − i), or 2B(` − i), depending on

whether 0 ≤ r1 < F (`− i−2), or F (`− i−2) ≤ r1 < F (`− i−1) respectively.

Let us focus on terms of the second form. If F (`− i− 1) ≤ r2 < F (`− i),
they give −B(` − i) with one application of the lemma. Since we also get

Aϕ(r2), there is no other contribution to B(` − i) in further applications of

Lemma 4.46. If F (` − i − 2) ≤ r2 < F (` − i − 1), a first application of the

lemma yields −B(` − i) and the term Aϕ(F (` − i) + r2), which is of the

first form. A second application of the lemma then gives 2B(` − i), and so

the final contribution is B(` − i). Similarly, if 0 ≤ r2 < F (` − i − 2), the

contributions given by two applications of the lemma cancel each other out.

Like for terms of the second form, terms of the third form need two

applications of the lemma because the first application gives −B(`− i) and

the term

2Aϕ(r3) = 2Aϕ(F (`− i) + r′3)
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for some 0 ≤ r′3 < F (`− i− 1). The final contribution is then either B(`− i)
if 0 ≤ r′3 < F (`− i− 2), or 3B(`− i) if F (`− i− 2) ≤ r′3 < F (`− i− 1).

Aping the proof of Lemma 4.22, iterating Lemma 4.46 on Aϕ(F (`) + r)

gives a linear combination of the form

∑̀
j=`−i+1

yjB(j) +

`−i+2∑
j=0

xjAϕ(F (j) + r′j) + z0Aϕ(0),

where
`−i+2∑
j=0

|xj |+ |z0| ≤ 2i.

We conclude by observing that

|bi(n)| ≤ 2|x`−i|+ |x`−i+1|+ 3|x`−i+2| ≤ 6 · 2i.

The particular case follows from the definition of b(α).

As in the integer base case, we introduce the relative position relposF .

Let n be an integer such that repF (n) = 10r1 · · · rk with k ≥ 1 and ri ∈ {0, 1}
for all i. In particular, n belongs to the interval [F (k + 1), F (k + 2)). We

define

relposF (n) =
k∑
i=1

ri
ϕi
∈ [0, 1) and logF (n) = | repF (n)| − 1 + relposF (n).

Observe that blogF nc = | repF (n)| − 1.

By Definition 4.53, repF (en(α)) = wn(α) is the length-n prefix of the in-

finite word 10dϕ(α). If we write dϕ(α) = (di)i≥0, then wn(α) = 10d1 · · · dn−2

for all n ≥ 2, and so

lim
n→+∞

relposF (en(α)) = lim
n→+∞

n−2∑
i=1

di
ϕi

= α. (4.24)

In particular, α gives the relative position of the integer en(α) in the interval

[F (n− 1), F (n)), as claimed at the beginning of this section.

Inspired by the integer base strategy, the technique to prove Theorem 4.43

is to make use of an auxiliary function Ψ(α), for α ∈ [0, 1), defined as the

limit of a converging sequence built on the B-decomposition of Aϕ(en(α)).

For all n ≥ 1, let ψn be the step function defined by

ψn(α) =
Aϕ(en(α))

c λlogF (en(α))
for α ∈ [0, 1),
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where λ and c come from (4.19). We have depicted the first functions

ψ3, . . . , ψ11 in Figure 4.14. Similarly to the base-2 case, the number of steps

in ψn(α) is given by the number of length-n words over {0, 1} starting with

10 and avoiding the factor 11. For instance, ψ3 is a step function built on

two subintervals because repF (e3(α)) = w3(α) can only have two forms: 100

and 101. In general, wn(α) can only have F (n− 2) distinct forms.
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Figure 4.14: Representation of ψ3, . . . , ψ11 in [0, 1].

Here is the analogue of Proposition 4.20.

Proposition 4.57. The sequence (ψn)n≥1 uniformly converges to the func-

tion Ψ defined for α ∈ [0, 1) by

Ψ(α) =
1

λα

+∞∑
i=0

bi(α)

λi
.

Proof . By Definition 4.54, the B-decomposition of Aϕ(en(α)) is equal to

Aϕ(en(α)) =
n−1∑
i=0

bi(en(α))B(n− 1− i).
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We know that logF (en(α)) = n− 1 + relposF (en(α)), so we have

ψn(α) =
Aϕ(en(α))

cλlogF (en(α))
=

1

λrelposF (en(α))

n−1∑
i=0

bi(en(α))
B(n− 1− i)

cλn−1
. (4.25)

Firstly, the sum is converging when n tends to infinity to the convergent

series
+∞∑
i=0

bi(α)

λi
.

Indeed, the sequence (Bdec(Aϕ(en(α))))n≥1 of finite words converges to the

infinite word b(α) thanks to Lemma 4.50 (see also Definition 4.54). Moreover,

due to Lemma 4.56 and the equality (4.19) or (4.20), the sequence of partial

sums uniformly converges to the series.

Secondly, the sequence (relposF (en(α)))n≥1 of functions is uniformly con-

vergent. Indeed, if dϕ(α) = d1d2d3 · · · is the ϕ-expansion of α, then we

particularly know that, for all j ≥ 1,∑
i≥j

diϕ
−i < ϕ−j+1

from Definition 1.19. The definition of the relative position gives

|relposF (en(α))− α| =
∣∣∣∣∣
n−2∑
i=1

di
ϕi
−

+∞∑
i=1

di
ϕi

∣∣∣∣∣ < 1

ϕn−2
(4.26)

for all α ∈ [0, 1).

To conclude the proof, we use the same reasoning as in the proof of

Proposition 4.20. Using (4.25), we have

|ψn(α)−Ψ(α)| ≤
∣∣∣∣ 1

λrelposF (en(α))

∣∣∣∣ ·
∣∣∣∣∣
n−1∑
i=0

bi(en(α))
B(n− 1− i)

cλn−1
−

+∞∑
i=0

bi(α)

λi

∣∣∣∣∣
+

∣∣∣∣∣
+∞∑
i=0

bi(α)

λi

∣∣∣∣∣ ·
∣∣∣∣ 1

λrelposF (en(α))
− 1

λα

∣∣∣∣ .
Now let ε > 0. Then |ψn(α)−Ψ(α)| < ε holds for all α ∈ [0, 1) and n large

enough.

Instead of considering rational numbers of the form r/bk as in the integer

base case, we use the set

D =

{
k∑
i=1

ri
ϕi
| k ≥ 1, r1 · · · rk ∈ {1, ε}{0, 01}∗, ri ∈ {0, 1}

}
,
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which is dense in [0, 1]. As an example, in Figure 4.15, we have only consid-

ered the suitable words r1 · · · rk of length 8. The next result makes explicit

the values taken by Ψ on the set D (see Lemma 4.24 and the equality (4.18)

for counterparts in integer bases).

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.15: An estimation of the set D for length-8 words.

Lemma 4.58. Let r1 · · · rk ∈ {1, ε}{0, 01}∗ with k ≥ 1, ri ∈ {0, 1} for all

1 ≤ i ≤ k, and let α =
∑k

i=1 ri/ϕ
i. We have

Ψ (α) =

k−1∑
i=0

bi(m)

λi+α
+
bk(α)

λk+α
+
bk+1(α)

λk+1+α
,

where m = valF (10r1 · · · rk) and b0(m) · · · bk+1(m) is the B-decomposition of

Aϕ(m).

Proof . By hypothesis, repF (m) = 10r1 · · · rk and 10dϕ(α) = 10r1 · · · rk0ω.

By Definition 4.53, wn(α) is the length-n prefix of the latter infinite word.

For large enough n, repF (m) and wn(α) have a common prefix of length k+2,

namely 10r1 · · · rk. Due to Lemma 4.50, Bdec(Aϕ(en(α))) has thus a prefix

equal to b0(m) · · · bk−1(m). More precisely, in the view of Definition 4.54, it

is of the form

b0(m) · · · bk−1(m) bk(en(α)) bk+1(en(α)) 0n−k−4 bn−2(en(α)) bn−1(en(α)).

This is again a consequence of Lemma 4.46. Applying recursively this lemma

to Aϕ(en(α)), we will be left with the evaluation of Aϕ(F (n−k−2)). Indeed,

thanks to Remark 4.49, one has to progressively delete letters in the word

wn(α) = 10r1 · · · rk0n−k−2 to finally reach 10n−k−2. Now, as in the proof of
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Lemma 4.52 with (4.22), we have

Aϕ(F (n− k − 2)) = B(n− k − 2)−B(1) + (n− k + 3)B(0),

which explains the block of zeroes. Also observe that bn−2(en(α)) (resp.,

bn−1(en(α))) might be different from −1 (resp., n − k + 3) because other

contributions to B(1) (resp., B(0)) might come into play.

Due to Proposition 4.57, we know that

Ψ(α) = lim
n→+∞

ψn(α) = lim
n→+∞

Aϕ(en(α))

c λlogF (en(α))
,

so splitting the B-decomposition of Aϕ(en(α)) yields

Ψ(α) = lim
n→+∞

1

c λlogF (en(α))

(
k−1∑
i=0

bi(m)B(n− 1− i)
)

+ lim
n→+∞

1

c λlogF (en(α))
bk(en(α))B(n− 1− k)

+ lim
n→+∞

1

c λlogF (en(α))
bk+1(en(α))B(n− 2− k)

+ lim
n→+∞

1

c λlogF (en(α))
bn−2(en(α))B(1)

+ lim
n→+∞

1

c λlogF (en(α))
bn−1(en(α))B(0).

Now we analyze each term of the right-hand side of the previous equality.

Recall that logF (en(α)) = n − 1 + relposF (en(α)). Using (4.19) or (4.20),

and (4.24), we get

lim
n→+∞

B(n− 1− i)
c λlogF (en(α))

= lim
n→+∞

B(n− 1− i)
c λn−1

1

λrelposF (en(α))
=

1

λi+α
,

in turn giving

lim
n→+∞

1

c λlogF (en(α))

(
k−1∑
i=0

bi(m)B(n− 1− i)
)

=

k−1∑
i=0

bi(m)

λi+α
.

Similarly, for j ∈ {1, 2}, we find

lim
n→+∞

bk+j−1(en(α))B(n− j − k)

c λlogF (en(α))
= lim

n→+∞

B(n− j − k)

c λn−1

bk+j−1(en(α))

λrelposF (en(α))

=
bk+j−1(α)

λk+j−1+α
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with the additional help of Definition 4.54. Now, it remains to show that

lim
n→+∞

bn−2(en(α))B(1)

c λlogF (en(α))
= 0 and lim

n→+∞

bn−1(en(α))B(0)

c λlogF (en(α))
= 0,

which both hold since |bn−2(en(α))| ≤ 6 · 2n−2 and |bn−1(en(α))| ≤ 6 · 2n−1

by Lemma 4.56.

In the remaining of the section, we prove the following result, which is

an equivalent version of Theorem 4.43.

Theorem 4.59. The function Ψ defined in Proposition 4.57 is continuous on

[0, 1) such that Ψ(0) = 1 and limα→1− Ψ(α) = 1. The sequence (Aϕ(n))n≥0

satisfies, for n ≥ 3,

Aϕ(n) = c λlogF nΨ(relposF (n)) + o(λblogF nc),

where λ is the dominant root of PB(X) = X3 − 2X2 −X + 1.

A representation of Ψ is given in Figure 4.16. It has been obtained by

estimating Aϕ(n)/(c λlogF n) for F (16) = 2584 ≤ n ≤ 4180 = F (17).
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1.00
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1.06

Figure 4.16: The graph of Ψ.

Proof of Theorem 4.59. This proof is divided into four parts: the error term

for the sequence (Aϕ(n))n≥0, the fact that Ψ(0) = 1, the computation of the

limit limα→1− Ψ(α) = 1, and the continuity of the function Ψ.
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Error term. We first focus on the error term. Let repF (n) = 10r1 · · · rk
with k ≥ 1 and r1 · · · rk ∈ {1, ε}{0, 01}∗. In this case, observe that k depends

on n since k + 2 = | repF (n)| = blogF nc + 1. By definition of the relative

position, we have

relposF (n) =
k∑
i=1

ri
ϕi
.

On the one hand, Lemma 4.58 (with α = relposF (n) and m = n) gives

c λlogF nΨ(relposF (n)) =c λ(k+2)−1+relposF (n)Ψ(relposF (n))

=c
k−1∑
i=0

bi(n)λk+1−i + c λ bk(relposF (n))

+ c bk+1(relposF (n)).

On the other hand, since `F (n) = k + 1, we know from Definition 4.47 that

Aϕ(n) =

k+1∑
i=0

bi(n)B(k + 1− i).

Thus, the error term R(n) = Aϕ(n)− c λlogF nΨ(relposF (n)) is equal to

R(n) =
k−1∑
i=0

bi(n)
(
B(k + 1− i)− c λk+1−i

)
+ (bk(n)B(1)− c λ bk(relposF (n)))

+ (bk+1(n)B(0)− c bk+1(relposF (n))) .

Using (4.19), B(k + 1− i)− c λk+1−i = c2λ
k+1−i
2 + c3λ

k+1−i
3 . Dividing R(n)

by λblogF nc = λk+1 and recalling that B(0) = 1, we get

R(n)

λk+1
=

k−1∑
i=0

bi(n)

λi
c2λ

k+1−i
2 + c3λ

k+1−i
3

λk+1−i

+
bk(n)B(1)− c λ bk(relposF (n))

λk+1

+
bk+1(n)− c bk+1(relposF (n))

λk+1
.

Firstly, by Definition 4.44, we have

|c2λ
k+1−i
2 + c3λ

k+1−i
3 |

λk+1−i ≤ 2|c2|
( |λ2|

λ

)k+1−i
,
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and from Lemma 4.56,

|bi(n)|
λi

≤ 6

(
2

λ

)i
.

Secondly, since B(1) = 3 and by Lemma 4.56, we also have

|bk(n)B(1)− c λ bk(relposF (n))|
λk+1

≤ 9 · 2k+1 + c λ 3 · 2k+1

λk+1

≤ 3 (3 + cλ)

(
2

λ

)k+1

,

and

|bk+1(n)− c bk+1(relposF (n))|
λk+1

≤ 3 · 2k+2 + c 3 · 2k+2

λk+1

≤ 3 (1 + c)λ

(
2

λ

)k+2

.

Hence, we obtain

|R(n)|
λk+1

≤ 12|c2| |λ2|2
λ2

k−1∑
i=0

(
2

λ

)i ( |λ2|
λ

)k−1−i
+ 3 (3 + cλ)

(
2

λ

)k+1

+ 3 (1 + c)λ

(
2

λ

)k+2

.

Since the Cauchy product
∑k−1

i=0 a
ibk−1−i is equal to (ak − bk)/(a − b), we

deduce that

|R(n)|
λk+1

≤ 12|c2| |λ2|2
λ(2− |λ2|)

((
2

λ

)k
−
( |λ2|

λ

)k)
+ 3 (3 + cλ)

(
2

λ

)k+1

+ 3 (1 + c)λ

(
2

λ

)k+2

.

Consequently, |R(n)|/λk+1 tends to zero when k goes to infinity since we

know that λ > 2 > |λ2|. This implies that R(n) = o(λk+1).

Value of Ψ(0). We show that Ψ(0) = 1. By definition, wn(0) is the

length-n prefix of the infinite word 10dϕ(0) = 10ω, and en(0) is thus equal

to F (n − 1). In this case, the relative position relposF (en(0)) is 0. By

Proposition 4.57 that defines Ψ and using (4.22) and (4.20), we have

Ψ(0) = lim
n→+∞

ψn(0) = lim
n→+∞

Aϕ(F (n− 1))

c λn−1

= lim
n→+∞

B(n− 1)−B(1) + (n+ 4)B(0)

c λn−1
= 1.
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Limit for 1−. To show that limα→1− Ψ(α) = 1, we make use of the uni-

form convergence in Proposition 4.57. By definition, recall that logF (en(α))

is equal to n − 1 + relposF (en(α)) and relposF (en(α)) → α with n → +∞
(see (4.24)), so we have

lim
α→1−

Ψ(α) = lim
α→1−

lim
n→+∞

ψn(α)

= lim
α→1−

lim
n→+∞

1

λrelposF (en(α))

Aϕ(en(α))

c λn−1

= lim
α→1−

1

λα
lim

n→+∞

Aϕ(en(α))

c λn−1

=
1

λ
lim
α→1−

lim
n→+∞

Aϕ(en(α))

c λn−1

=
1

λ
lim

n→+∞
lim
α→1−

Aϕ(en(α))

c λn−1
.

Recall that dϕ(1) = 110ω. For any fixed integer n ≥ 3, we can chose α ∈ [0, 1)

close enough to 1 such that

dϕ(α) ∈ (10)n{0, 1}ω.

Since wn(α) is the length-n prefix of 10dϕ(α), which is also the length-n prefix

of d∗ϕ(1) = (10)ω (see Example 1.21), we find en(α) = F (n)−1. Using (4.23),

we have

Aϕ(en(α)) = Aϕ(F (n)− 1)

=
n−3∑
i=0

giB(n− 1− i) + bn−2(en(α))B(1) + bn−1(en(α))B(0).

Due to Lemma 4.56, both bn−1(en(α)) and bn−2(en(α)) are smaller than 3·2n,

which yields

lim
n→+∞

bn−2(en(α))B(1) + bn−1(en(α))B(0)

cλn−1
= 0.

To complete the proof, our aim is thus to show that

lim
n→+∞

1

c λn−1

n−3∑
i=0

giB(n− 1− i) = lim
n→+∞

n−3∑
i=0

gi
λi

B(n− 1− i)
cλn−1−i = λ.

By Lemma 4.52, we have∣∣∣∣∣
n−3∑
i=0

gi
λi

B(n− 1− i)
cλn−1−i − λ

∣∣∣∣∣ ≤
∣∣∣∣∣
n−3∑
i=0

gi
λi

(
B(n− 1− i)
cλn−1−i − 1

)∣∣∣∣∣+

∣∣∣∣∣
+∞∑
i=n−2

gi
λi

∣∣∣∣∣ .
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By Lemma 4.52 again, we know that |gk| ≤ 2(
√

2)k for all k ≥ 0, which

shows that the second term of the right-hand side of the previous inequality

goes to 0 as n goes to infinity. Using (4.19), we have∣∣∣∣B(n− 1− i)
cλn−1−i − 1

∣∣∣∣ ≤ 2|c2||λ2|n−1−i

cλn−1−i ,

and thus∣∣∣∣∣
n−3∑
i=0

gi
λi

(
B(n− 1− i)
cλn−1−i − 1

)∣∣∣∣∣ ≤ 4|c2||λ2|n−1

cλn−1

n−3∑
i=0

(√
2

|λ2|

)i

≤ 4|c2||λ2|2
c(
√

2− |λ2|)
(
√

2)n−2 − |λ2|n−2

λn−1
,

which also tends to 0 as n tends to infinity. All in all, we have just shown

that limα→1− Ψ(α) = 1, as expected.

Continuity. To finish the proof, let us show that Ψ is continuous. Let

α ∈ [0, 1), and let us consider its ϕ-expansion dϕ(α) = (di)i≥1. We make use

of the uniform convergence of the sequence (ψn)n≥0 in Proposition 4.57, and

we write

lim
γ→α
|Ψ(γ)−Ψ(α)| = lim

γ→α
lim

n→+∞
|ψn(γ)− ψn(α)|

= lim
n→+∞

lim
γ→α
|ψn(γ)− ψn(α)|.

First, assume that α is not of the form
∑k

i=1 ri/ϕ
i where the letters ri

are not all 0, i.e., (di)i≥1 does not belong to {0, 1}∗10ω (note that this case

includes α = 0). For any fixed integer n, we can chose γn close enough to α

such that dϕ(γn) ∈ d1d2 · · · dn{0, 1}ω. Therefore, we have wn(γn) = wn(α),

hence en(γn) = en(α). Thus, ψn(γn) = ψn(α), and limγ→α |Ψ(γ)−Ψ(α)| = 0.

Now suppose that dϕ(α) = d1d2 · · · dk0ω with dk = 1. For any fixed

integer n > k + 1, we can take γn close enough to α such that

dϕ(γn) ∈
{
d1d2 · · · dk0n{0, 1}ω, if γn ≥ α;

d1d2 · · · dk−1(01)n{0, 1}ω, if γn < α.

If γn ≥ α, we get ψn(γn) = ψn(α) as in the first case, and the conclusion is

similar. If γn < α, we get

en(α) = valF (10d1d2 · · · dk0n−k−2),

en(γn) = valF (10d1d2 · · · dk−1(01)
n−k−1

2 )
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(recall that fractional powers of words are defined in Definition 1.3 in Chap-

ter 1). In this case, we get en(α) = en(γn) + 1, and

|ψn(α)− ψn(γn)| =

∣∣∣∣ Aϕ(en(α))

c λlogF (en(α))
− Aϕ(en(γn))

c λlogF (en(γn))

∣∣∣∣
≤

∣∣∣∣Aϕ(en(α))

cλn−1

∣∣∣∣ ∣∣∣∣ 1

λrelposF (en(α))
− 1

λrelposF (en(γn))

∣∣∣∣
+

∣∣∣∣ 1

cλlogF (en(γn))

∣∣∣∣ |Aϕ(en(α))−Aϕ(en(γn))| .

Let us now bound each term. For the first term, the special form of γn leads

to |α− γn| < 1/ϕn−2. Using (4.26), we find

| relposF (en(α))− relposF (en(γn))| < 3/ϕn−2.

By continuity,

lim
n→+∞

∣∣∣∣ 1

λrelposF (en(α))
− 1

λrelposF (en(γn))

∣∣∣∣ = 0.

We claim that Aϕ(en(α))/(cλn−1) converges to some real number when n

goes to infinity. In fact, it follows from Proposition 4.57 and equality (4.24)

because

lim
n→+∞

Aϕ(en(α))

cλn−1
= lim

n→+∞
λrelposF (en(α)) Aϕ(en(α))

cλn−1+relposF (en(α))
= λαΨ(α).

Consequently, the first term tends to zero when n increases. The second

term also tends to zero as, by Corollary 3.67,

Aϕ(en(α))−Aϕ(en(γn)) = Aϕ(en(α))−Aϕ(en(α)− 1)

= Sϕ(en(α)) ≤ 2n,

and cλlogF (en(γn)) ≥ cλn−1. This shows that Ψ is continuous.

Remark 4.60. Similarly to the open questions left in Remarks 4.26 and 4.40,

are G and Ψ nowhere differentiable?

4.4 Perspectives

The reader can wonder whether the method presented in this chapter can be

applied to classical digital sequences. Consider the example of the sum-of-

digits function s2 for base-2 expansions of integers mentioned in the intro-

duction. Its summatory function (A(n))n≥0 (see A000788 in [Slo]) defined,
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for all n ≥ 0, by

A(n) =
n−1∑
j=0

s2(j)

verifies for all ` ≥ 0 and for all 0 ≤ r < 2`,

A(2` + r) = U(`) +A(r) + r · U(1), (4.27)

where U(0) = 0, U(1) = 1, and the sequence U = (U(n))n≥0 satisfies the

linear recurrence relation

U(n+ 2) = 4U(n+ 1)− 4U(n) for all n ≥ 0.

Indeed, let us show that (4.27) holds. First, it is not difficult to show that

U(n) = 2n−1n

for all n ≥ 0. The characteristic polynomial of the recurrence relation satis-

fied by (U(n))n≥0 has 2 as double root. Thus, there exist constants c1, c2 ∈ C
such that U(n) = (c1n+ c2) 2n for all n ≥ 0. The values of c1 and c2 can be

determined by solving the system of equations{
U(0) = (c10 + c2) 20

U(1) = (c11 + c2) 21,

which leads to the expected result. Then a result of [AS03a, Section 3.2]

states that

A(2n) =
2− 1

2
2nn = U(n)

for all n ≥ 0. Now, let ` ≥ 0 and 0 ≤ r < 2`. If r = 0, the desired result

(4.27) holds. Otherwise, we find

A(2` + r) =

2`−1∑
j=0

s2(j) +

r−1∑
j=0

s2(2` + j)

= A(2`) +
r−1∑
j=0

s2(2` + j)

= U(`) +

r−1∑
j=0

(s2(j) + 1)

= U(`) +A(r) + r · U(1)
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since U(1) = 1. The next step of our method is to use (4.27) in order to

obtain U -decompositions of the sequence (A(n))n≥0. For instance, we obtain

A(7) = A(22 + 3) = U(2) +A(3) + 3U(1)

= U(2) +A(21 + 1) + 3U(1) = U(2) + (U(1) +A(1) + 1 · U(1)) + 3U(1)

= U(2) +A(20 + 0) + 5U(1) = U(2) + (U(0) +A(0) + 0 · U(1)) + 5U(1)

= U(2) + 5U(1) + U(0),

so the U -decomposition of A(7) would be (1, 5, 1) (also notice that we have

A(7) = 9 = 1 · 4 + 5 · 1 + 1 · 0). Roughly, our method implies that there exists

a continuous and periodic function F of period 1 such that A(n) behaves like

1

2
n log2 n F(log2 n).

One has to view the dominant component (x2x)/2 of the second base U as

a function of x, and evaluate it at log2(n), which is the logarithm in the

first base 2. To draw a parallel with the Fibonacci case, x 7→ c λx would be

the dominant component function for the sequence B (acting as the second

base), which is evaluated at logF (n) (where F is the first base). The function

F is depicted in Figure 4.17. Numerical experiments then suggest that our

method gives a result similar to (4.1).
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Figure 4.17: The graph of F over one period.

Other examples can be considered with sequences defined analogously to

(Sb(n))n≥0 and (Sϕ(n))n≥0, i.e., sequences associated with binomial coeffi-

cients of representations of integers in some numeration system. The main

problem is that we do not have a statement similar to Propositions 3.15, 3.29

and 3.66. If we leave the b-regular setting and try to replace the Fibonacci

sequence with another linear recurrent sequence, the situation seems to be
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more intricate. For the Tribonacci numeration system (see Remark 3.57), we

conjecture that a result similar to Theorem 4.43 should hold for the corre-

sponding summatory function AβT . Computing the first values of AβT (T (n)),

the sequence (B(n))n≥0 should be replaced by the sequence (V (n))n≥0 sat-

isfying, for all n ≥ 0,

V (n+ 5) = 3V (n+ 4)− V (n+ 3) + V (n+ 2)− 2V (n+ 1) + 2V (n),

with initial conditions 1, 3, 9, 23, 63 (see A282732 in [Slo]). The dominant

root λT of the characteristic polynomial of the recurrence is close to 2.703.

There should exist a continuous and periodic function GT of period 1 whose
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(a) Tribonacci case.
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(b) Quadribonacci case.

Figure 4.18: The conjectured functions GT and GQ over one period.

graph is depicted in Figure 4.18a such that the corresponding summatory

function has a main term in cT λ
logT (n)
T GT (logT (n)), where the definition of

logT is straightforward. We are also able to handle the same computations

with the Quadribonacci numeration system where the factor 14 is avoided.

In that case, the analogue of the sequence (B(n))n≥0 should be a linear

recurrent sequence of order 6 whose characteristic polynomial is

X7 − 4X6 + 4X5 − 2X4 −X3 + 3X2 − 6X + 2.

Again, we conjecture a similar behavior involving a function GQ depicted in

Figure 4.18b. This reasoning leads to the following open question.

Question 1. Let us consider the following framework: for a Parry number

β > 1, consider the Parry–Bertrand numeration system Uβ associated with

β from Definition 1.29, and let us also take the sequence (Sβ(n))n≥0 from

Definition 1.47 and its summatory function (Aβ(n))n≥0. Is the asymptotic
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behavior of (Aβ(n))n≥0 similar to the ones of (Ab(n))n≥0 with b ≥ 2 and

(Aϕ(n))n≥0? Also, prove or disprove that the sequence (Aβ(n))n≥0 is Uβ-

regular as it was the case for β ∈ N>1.

Let us have a closer look at Figures 4.2 and 4.9. It seems that when

the base b increases, the function Hb tends to a limit function. Similarly,

Figures 4.16 and 4.18 also appear to be related. This gives the following

question.

Question 2. Does the sequence (Hb)b≥2 of functions converge to a limit

function? What about the sequence of functions obtained in the m-bonacci

case if they are well defined? More generally, would it be possible to classify

the functions we get?

As a final point, let us exit the scope of our generalized Pascal triangles,

and recall the non-exhaustive list of other extensions of the Pascal triangle

in Section 1.5.

Question 3. Would it be possible to apply our method to such existing

extensions? Could we handle the case of other sequences, not especially

related to the context of Pascal triangles?
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automates. Bull. Belg. Math. Soc. Simon Stevin, 4:1–23, 1997.

[AB11] B. Adamczewski and J. Bell. An analogue of Cobham’s theorem

for fractals. Trans. Amer. Math. Soc., 363:4421–4442, 2011.

[ABRS05] P. A. Abdulla, N. Bertrand, A. Rabinovich, and P. Schnoebelen.

Verification of probabilistic systems with faulty communication.

Inform. and Comput., 202:141–165, 2005.

[Aiy17] D. Aiylam. A generalized Stern-Brocot tree. Integers, 17:Paper

No. A19, 16 pages, 2017.

[AS92] J.-P. Allouche and J. Shallit. The ring of k-regular sequences.

Theoret. Comput. Sci., 98:163–197, 1992.

[AS99] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-

Morse sequence. In Sequences and their applications (Singapore,

1998), Springer Ser. Discrete Math. Theor. Comput. Sci., pages

1–16. Springer, London, 1999.

[AS03a] J.-P. Allouche and J. Shallit. Automatic sequences. Theory, ap-

plications, generalizations. Cambridge University Press, Cam-

bridge, 2003.

[AS03b] J.-P. Allouche and J. Shallit. The ring of k-regular sequences. II.

Theoret. Comput. Sci., 307:3–29, 2003.

[AS08] T. Amdeberhan and R. P. Stanley. Polynomial coefficient enu-

meration. 2008. arXiv:0811.3652.

235



236 Bibliography

[AST00] J.-P. Allouche, K. Scheicher, and R. F. Tichy. Regular maps in

generalized number systems. Math. Slovaca, 50:41–58, 2000.

[Bar93] M. F. Barnsley. Fractals everywhere. Academic Press Profes-

sional, Boston, MA, second edition, 1993.

[Bat14] B. Bates. The Stern-Brocot continued fraction. Integers, 14:Pa-

per No. A39, 23 pages, 2014.

[BBT10] B. Bates, M. Bunder, and K. Tognetti. Locating terms in the

Stern-Brocot tree. European J. Combin., 31:1020–1033, 2010.

[BC18] M. Baake and M. Coons. A natural probability measure derived

from Stern’s diatomic sequence. Acta Arith., 183:87–99, 2018.

[BCP89] J. Berstel, M. Crochemore, and J.-É. Pin. Thue-Morse sequence
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[CLR15] É. Charlier, J. Leroy, and M. Rigo. An analogue of Cobham’s the-

orem for graph directed iterated function systems. Adv. Math.,

280:86–120, 2015.

[CM01] A. Carpi and C. Maggi. On synchronized sequences and their

separators. Theor. Inform. Appl., 35:513–524, 2001.

[Cob69] A. Cobham. On the base-dependence of sets of numbers recog-

nizable by finite automata. Math. Systems Theory, 3:186–192,

1969.

[Coo49] J. L. Coolidge. The story of the binomial theorem. Amer. Math.

Monthly, 56:147–157, 1949.



238 Bibliography
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Sierpiński gasket. 2018. arXiv:1812.00585.

[KNS16] P. Karandikar, M. Niewerth, and P. Schnoebelen. On the state

complexity of closures and interiors of regular languages with

subwords and superwords. Theoret. Comput. Sci., 610:91–107,

2016.

[Lot97] M. Lothaire. Combinatorics on Words. Cambridge Mathematical

Library. Cambridge University Press, Cambridge, 1997.

[Lot02] M. Lothaire. Algebraic Combinatorics on Words, volume 90 of

Encyclopedia of Mathematics and its Applications. Cambridge

University Press, Cambridge, 2002.

[LR01] P. B. A. Lecomte and M. Rigo. Numeration systems on a regular

language. Theory Comput. Syst., 34:27–44, 2001.

[LRS16] J. Leroy, M. Rigo, and M. Stipulanti. Generalized Pascal triangle

for binomial coefficients of words. Adv. in Appl. Math., 80:24–47,

2016.



242 Bibliography

[LRS17a] J. Leroy, M. Rigo, and M. Stipulanti. Behavior of digital se-

quences through exotic numeration systems. Electron. J. Com-

bin., 24:Paper No. 1.44, 36 pages, 2017.

[LRS17b] J. Leroy, M. Rigo, and M. Stipulanti. Counting the number

of non-zero coefficients in rows of generalized Pascal triangles.

Discrete Math., 340:862–881, 2017.

[LRS18] J. Leroy, M. Rigo, and M. Stipulanti. Counting subword occur-

rences in base-b expansions. Integers, 18A:Paper No. A13, 32

pages, 2018.
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Fibonacci, 8

Lucas, 16

numerators of the Farey tree frac-

tions, 109
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regular, 27, 153

Stern–Brocot, 28

synchronized, 30

Thue–Morse, 6, 26

Tribonacci, 152

with least significant digits, 153

sequence with least significant digits,

153

set of finite words, 2

set of infinite words, 2

Simon’s congruence, 23

simple Parry number, 10

snake graph, 113

state, 10

Stern–Brocot sequence, 28

Stern–Brocot tree, 28, 107

subword, 4

suffix, 4

sum-of-digits, 28, 169

summatory function, 169, 171, 195,

207, 231, 233

T 2
n , 36

T 2
n,p,r, 61

Thue–Morse sequence, 6, 26

Thue–Morse word, 6, 26

transition function, 10

tree

T`, 99, 120, 154

Farey, 107

number of nodes, 102

of scattered subwords, 97

prefix, 97

radix, 97

Stern–Brocot, 28, 107

Tribonacci numeration system, 152

Tribonacci sequence, 152

Tribonacci-automaticity, 153

trie of scattered subwords, 97

Uβn , 65

U2
n, 43

U2
n,p,r, 61

U -expansion, 7

U -numerical value, 7, 36

U -representation, 7

ultimately periodic, 3

ultrametric distance, 6

wn(α), 182, 217

word, 2

wn(α), 182, 217

accepted, 10

convergence, 6

fractional power, 3

longest common prefix, 5

mirror, 2

power, 3

reversal, 2

Thue–Morse, 6, 26

binomial coefficient, 16

Christoffel, 113

concatenation, 3

empty, 2

factor, 4

length, 2

prefix, 4

scattered subword, 4

subword, 4

suffix, 4

ultimately periodic, 3

Z, 2

Z0, 2

Zeckendorf numeration system, 8
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