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Abbreviations  52 

AD – Alzheimer’s disease 53 

WWC1 – WW and C2 domain containing 1, aka KIBRA 54 

TLN2 – talin 2 55 

APOE – apolipoprotein E 56 

EADI1 – European Alzheimer Disease Initiative Investigators 57 

GERAD1 – Genetic and Environmental Risk for Alzheimer’s disease consortium  58 

RS – Rotterdam Study  59 

ADGC – Alzheimer’s Disease Genetic Consortium 60 

BOOST – BOolean Operation-based Screening and Testing method 61 

MB-MDR – Model-Based Multifactor Dimensionality Reduction method 62 

MAF – minor allele frequency  63 
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Abstract 64 

Systematic epistasis analyses in multifactorial disorders are an important step to better 65 

characterize complex genetic risk structures. We conducted a hypothesis-free sex-stratified 66 

genome-wide screening for epistasis contributing to Alzheimer’s disease (AD) susceptibility. . 67 

We identified a statistical epistasis signal between the SNPs rs3733980 and rs7175766 that was 68 

associated with Alzheimer’s disease in males (genome-wide significant pBonferroni-corrected=0.0165). 69 

This signal pointed towards the genes WWC1 (WW and C2 domain containing 1, aka KIBRA; 70 

5q34) and TLN2 (talin 2; 15q22.2). Gene-based meta-analysis in three independent consortium 71 

datasets confirmed the identified interaction: the most significant (pmeta-Bonferroni-corrected=9.02*10-3) 72 

was for the SNP-pair rs1477307 and rs4077746. In functional studies, WWC1 and TLN2: co-73 

expressed in the temporal cortex brain tissue of Alzheimer’s disease subjects (β=0.17, 95% CI 74 

0.04 to 0.30, p=0.01); modulated Tau toxicity in Drosophila eye experiments; co-localized in 75 

brain tissue cells, N2a neuroblastoma, and HeLa cell lines; and co-immunoprecipitated both in 76 

brain tissue and HEK293 cells. Our finding points towards new AD-related pathways and 77 

provides clues towards novel medical targets for the cure of AD. 78 

 79 

Keywords 80 

Alzheimer’s disease, epistasis, gene-gene interaction, protein-protein interaction, WWC1, TLN2 81 
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1. Introduction 82 

Alzheimer’s disease (AD) is a progressive, irreversible neurodegenerative disorder characterized by the 83 

development of amyloid plaques and neurofibrillary tangles, the loss of connections between neurons, and 84 

nerve cell death. AD is highly heritable and genetically heterogeneous with 58-79% of risk attributed to 85 

genetic factors (Gatz et al., 2006; Sims and Williams, 2016). Although  genome-wide association studies 86 

(GWAS) have strongly improved our knowledge of AD genetics (Ridge et al., 2013), genetic risk factors 87 

explain no more than 30% of heritability (Cuyvers and Sleegers, 2016). In this contribution we focus on 88 

late-onset AD, the most common form of the disease with onset age >65 years. The most established 89 

genetic factor for AD, apolipoprotein E gene (APOE, 19q13), exhibits allelic heterogeneity - APOE’s ε4 90 

allele is a risk enhancer, while the ε2 allele is protective (Bertram et al., 2007).  91 

AD presents notable sexual dimorphism (Mielke et al., 2014). Records exist of sex differences in brain, 92 

such as in brain anatomy, age-related declines in brain volume and brain glucose metabolism (Carter et al., 93 

2012), and sex hormones influencing AD progression (Musicco, 2009). Risk associated with the APOE-e4 94 

allele is stronger in females than in males, and loss of chromosome Y have been associated with increased 95 

AD risk in males (Dumanski et al., 2016). These data support complex interplay between sex and genetic 96 

background regarding AD predisposition. 97 

Gene regulatory and biochemical networks create dependencies among genes that are realized as gene-98 

gene interactions (epistasis) (Templeton, 2000). Although epistasis has been well studied in model 99 

organisms using biological experiments (Miko, 2008), hypothesis-free discovery of biological epistasis via 100 

statistical methods remains challenging in humans. This is in part due to the conceptual discrepancy 101 

between statistical and biological epistasis (Moore, 2005), the utility of over-simplified population-level 102 

models to capture complex individual phenomena, insufficient power, and the gross multiple testing 103 

burden inherent in genome-wide epistasis screening. Therefore, most evidence for epistasis in AD is 104 

hypothesis-driven, using prior biological or statistical knowledge (Ebbert et al., 2015). The same holds for 105 

sex-specific searches for co-involvement of multiple genetic loci in AD (Medway et al., 2014). 106 
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Gusareva et al. published the first replicable interaction associated with AD using a genome-wide 107 

exhaustive screening approach that combines strengths over different analytic approaches (Gusareva and 108 

Van Steen, 2014), identified a statistical interaction between KHDRBS2 (rs6455128) and CRYL1 109 

(rs7989332), and exhibited downstream functional consequences (Gusareva et al., 2014). Here, we used 110 

the same European Alzheimer Disease Initiative Investigators (EADI1) consortium cohort (Lambert et al., 111 

2009) (2259/6017 AD cases/controls) and an adapted hypothesis-free genome-wide exhaustive epistasis 112 

screening protocol to identify sex-specific interactions with AD. We identified AD-associated male-113 

specific statistical interaction between variants of the genes WWC1 (WW and C2 domain 114 

containing 1 or kidney and brain expressed protein, aka KIBRA; locus 15q22.2) and TLN2 (talin 115 

2, locus 15q22.2). This novel statistical epistasis signal was replicated in two out of three 116 

independent consortium datasets via gene-based replication strategy (Gusareva and Van Steen, 2014). 117 

Extensive biological validation studies (subcellular co-localization and immunoprecipitation analyses, 118 

transcriptome analysis, experiments in model organisms (Drosophila Melanogaster), as well as in silico 119 

protein docking and molecular dynamics assessments) further helped elucidate the epistatic relationship. 120 

 121 

2. Methods 122 

2.1 Study populations 123 

The discovery cohort consisted of a sample of 2259 late-onset AD patients and 6017 controls from 3 cities 124 

in France (Bordeaux, Dijon and Montpellier), as part of EADI1. Follow-up statistical analyses used data 125 

from three AD consortia: 1) the Genetic and Environmental Risk for Alzheimer’s disease consortium 126 

(GERAD1) including cohorts from Germany, UK, and the USA (Harold et al., 2009); 2) the Rotterdam 127 

Study (RS), a prospective cohort study that started in 1990 in Rotterdam (the Netherlands) (Hofman et al., 128 

2013) and 3) the Alzheimer’s Disease Genetic Consortium (ADGC) that collects genetic data from over 129 

30 studies in the US (Naj et al., 2011). Data collection quality control procedures have been described in 130 
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the corresponding references. Only subjects with complete information on sex and age were included in 131 

the analyses. Sex-specific sample size distributions and age characteristics are given in the Table S1.  132 

 133 

2.2 Genotyping 134 

The EADI1 and RS samples were genotyped by Illumina Human 610-Quad BeadChip, (Hofman et al., 135 

2013; Lambert et al., 2009) the GERAD1 samples by Illumina 610-quad chip and by Illumina 136 

HumanHap550 Beadchip(Harold et al., 2009), the ADGC subjects by Illumina or Affymetrix high-density 137 

SNP microarrays (Naj et al., 2011). Applied genotype filtering procedure as described in the Note S2 138 

leaving 312,064 SNPs for epistasis analyses with EADI1. Replication cohorts used only directly 139 

genotyped SNPs. 140 

 141 

2.3 Statistical discovery and replication analysis  142 

Following guidelines in Gusareva et al. (Gusareva and Van Steen, 2014), we tested for all pairwise 143 

statistical interactions between SNPs in association to AD in sex-stratified samples within EADI1. Two 144 

different analytic techniques both parametric (customized version of the BOolean Operation-based 145 

Screening and Testing (BOOST) (Wan et al., 2010) with stringent Bonferroni correction) and non-146 

parametric (Model-Based Multifactor Dimensionality Reduction (MB-MDR) (Cattaert et al., 2011; Van 147 

Lishout et al., 2013) that uses permutation-based gammaMAXT algorithm for multiple testing correction 148 

(Lishout et al., 2015)) were adopted in this study with default options (Note S3). Statistical epistasis 149 

signals at the genome-wide significance level of 0.05 were followed up with a logistic regression analyses 150 

adjusting for age at time of subject examination and the first 4 SNP-based principal components (to adjust 151 

for confounding by shared genetic ancestry). Evidence of interaction was based on a likelihood-ratio test 152 

statistic with 4 degrees of freedom to reflect two SNPs with 3 genotypes each (in the absence of missing 153 
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multi-locus genotypes). Main effect single-SNP associations were assessed via Cochrane-Armitage trend 154 

test in SVS Version 7.5 software (Golden Helix, Inc.). 155 

For replication analysis, we selected 68 and 98 SNPs assigned to WWC1 (5q34: 167651670 - 167829334 156 

bp) and TLN2 (15q22.2: 60726802 - 60920733 bp), respectively, according to NCBI B36 genome 157 

assembly (SNP list is provided in Table S2). We did not consider SNPs from any regulatory regions 158 

outside WWC1 and TLN2 genes. Thus, all the SNPs falling into the boundaries of WWC1 and TLN2 genes 159 

and typed in all the study cohorts (discovery EADI1 and the 3 replication cohorts: GERAD1, RS, and 160 

ADGC) were exhaustively tested for two-way intergenic interactive association with AD, in males and 161 

females separately. We used logistic regression adjusted for age and genetic population stratification as 162 

before. The number of independent tests (Nyholt, 2004) was 1564 (of 6664 total). All obtained p-values 163 

(not corrected for multiple testing pnominal) for EADI1, GERAD1, RS, and ADGC were meta-analyzed 164 

using Fisher’s combined p-value (Fisher, 1948) and Stouffer’s Z score (Stouffer et al., 1949) methods, 165 

giving rise to meta-analysis p-values (pmeta). Details on the applied significance criteria are described in 166 

the Note 4. 167 

 168 

2.4 Functional analysis and biological validation  169 

We used transcriptome analysis to assess co-expression of WWC1 and TLN2 in temporal cortex and 170 

cerebellum human brain regions with data from the brain expression GWA study (eGWAS) (Allen et al., 171 

2012; Zou et al., 2012) (Note 5). The laboratory fruit fly Drosophila melanogaster was used to further 172 

explore the role of WWC1 and TLN2 in model organisms (Note S6). In addition, formalin-fixed temporal 173 

cortexes of male AD patients were used to perform brain immunohistochemistry (Note S7). The latter was 174 

performed in 2 independent labs to robustly establish reproducibility. To assess sub-cellular localization of 175 

WWC1 and TLN2, we performed immunofluorescence and confocal microscopy analyses (Note S8). We 176 

also investigated the presence of WWC1 and TLN2 in the same complex via immunoprecipitation 177 
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analysis (Note S9). Molecular mechanisms of interaction between WWC1 and TLN2 were modeled via 178 

protein docking (Note S10) and molecular dynamics in silico experiments (Note S11). 179 

The entire analysis protocol is described in Fig. 1. 180 

 181 

3. Results 182 

3.1 Synergy between variants of WWC1 and TLN2 in association to AD 183 

Both parametric (BOOST) and non-parametric (MB-MDR) analyses highlighted epistasis between the 184 

SNPs rs3733980 and rs7175766 (MAFs=0.365, 0.307 in EADI1, respectively) as genome-wide significant 185 

in males (BOOST: pBonferroni-corrected=0.018, MB-MDR: ppermutation-based=0.005). Case/control distributions 186 

within the 9 multi-locus genotype combinations and MB-MDR “high risk”/“low risk” labelling are in the 187 

Table S3. Only rs3733980 also showed a main effect (pnominal=0.015, trend test), which would not 188 

withstand stringent multiple testing correction. The identified epistasis signal remained statistically 189 

significant in a logistic regression model accounting for age and the first 4 PCs (pBonferroni-corrected=0.0165). 190 

The APOE gene did not confound the identified interaction, since we found no dependence between the 191 

APOE ε4 AD-risk allele and the 9-level categorical SNP pair for these SNPs, ��
�). No female-specific 192 

epistasis was identified (BOOST, MB-MDR p>0.05). 193 

 194 

3.2 Statistical replication of epistasis between WWC1 and TLN2  195 

We considered all pairwise intergenic interactions between the directly-genotyped 68 SNPs of WWC1 and 196 

98 SNPS of TLN2 (Table S2) for follow-up replication analysis in both sexes with the GERAD1, RS and 197 

ADGC datasets. In males, the SNP-pair rs3733980 and rs7175766 was significant in a single study 198 

(EADI1: pBonferroni-corrected=5.29*10-10). Rs7175766 appeared 4 times in the top 10 male-specific meta-199 

analysis results but did not show any marginal association with AD (pnominal=0.546, trend test). Interaction 200 
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between rs1477307 and rs4077746 was found in 3 study populations (EADI1: pnominal=0.040, RS: 201 

pnominal=9.37*10-4 and ADGC: pnominal=5.06*10-5, but not in GERAD1: pnominal=0.544; Fisher's combined 202 

pmeta-Bonferroni-corrected=2.74*10-3 and Stouffer's Z score pmeta-Bonferroni-corrected=9.02*10-3; Table S4). In females, 203 

similar meta-analysis gave no replicable epistasis signals (Table S5). 204 

 205 

3.3 Functional analysis and biological validation  206 

Transcriptome analysis revealed significant positive association between expression levels of WWC1 207 

(probe ID - ILMN_1658619) and TLN2 (probe ID - ILMN_1700042) in temporal cortex brain samples 208 

from autopsied AD subjects (β=0.17, p=0.01) and from combined autopsied AD and non-AD subjects 209 

(β=0.20, p=0.0003). These associations were mostly driven by females (temporal cortex from autopsied 210 

AD females: β=0.28, p=0.005, combined autopsied AD and non-AD females β=0.20, p=0.016) but were 211 

not prominent in males. This association was only marginally significant for autopsied non-AD subjects 212 

(β=0.19, p=0.05). In the cerebellar tissue, no significant associations between expression levels of WWC1 213 

and TLN2 gens were observed (Table S6). 214 

We also tested whether WWC1 and TLN2 could modulate AD physiopathology in human Tau (2N4R)-215 

expressing Drosophila, an in vivo model of AD (review (Gistelinck et al., 2012)). Kibra, ortholog of 216 

WWC1 (Fig. 2A, 2B and 2C), and rhea, ortholog of TLN2 (Fig. 2A, 2D and 2E), were tested as modifiers 217 

of Tau toxicity in Drosophila eye. In Drosophila, kibra belongs to the growth controlling Hippo pathway. 218 

Gain (loss) of kibra results in smaller (bigger) eyes (Baumgartner et al., 2010), which we also observed 219 

(Fig. 2A and B). Expression of human Tau (2N4R) in the eye with the GMR driver resulted in smaller 220 

rough eyes. The eye size was partially restored in kibra2/+ haploinsufficient background, upon RNAi-221 

mediated knockdown of kibra (Fig. 2B and 2C) and in rhea1/+ haploinsufficient background (Fig. 2D and 222 

2E). Coexpression of kibra with Tau resulted in lethality and the only escapers that we obtained had 223 

smaller eyes. For kibra knockdown and kibra overexpression, the effect may be additive as in both 224 
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conditions without Tau expression, fly eyes are respectively bigger and smaller (Fig. 2A and B). For kibra 225 

haploinsufficiencies, only 1 out of 4 independent null mutations restored the eye size precluding us to 226 

firmly conclude that kibra interacts with Tau in Drosophila eye. The result in the rhea1/+ haploinsufficient 227 

background (Fig. 2D and 2E) suggested that rhea interacted functionally with human Tau in Drosophila 228 

eye. 229 

Immunohistochemistry of the brain of a male autopsied AD patient indicated strong expression of WWC1 230 

in the soma of neuronal cells throughout the temporal lobe of the cerebral cortex (Fig. 3). In these neurons, 231 

WWC1 presented in the cytoplasm with presumed membrane and/or cytoskeleton associations and strong 232 

neuritic accumulations in some cells. TLN2 also presented in the cytoplasm of neuronal cells, although 233 

immunoreactivity was low. In addition to the weak neuronal signal, a strong TLN2 signal was detected in 234 

the endothelial cells of blood vessels. 235 

We also performed co-immunofluorescent staining analyses of human Braak I and Braak VI brains (Braak 236 

and Braak, 1991) (Fig. 4). After performing quantitative pixel intensity spatial correlation analysis 237 

(extracting Pearson’s, Manders’, and Costes’ parameters (autothreshold and randomization) (Bolte and 238 

Cordelieres, 2006)), we determined that TLN2 (Talin2) and WWC1 (aka KIBRA) co-localized in all 239 

cases. Interestingly, WWC1 staining appeared to be more cellular in Braak I compared to Braak VI tissue, 240 

where the staining appeared stronger and more widely distributed. 241 

In complement, we confirmed co-localization of WWC1 and TLN2 in HeLa cell lines and in mouse N2a 242 

neuroblastoma cells. When overexpressed in HeLa cells, WWC1 displayed diffuse cytoplasm localization 243 

and small perinuclear rings (Fig. 5, Flag-WWC1), and TLN2-GFP displayed cytoplasmic focal adhesion 244 

localization with elongated fibrillar adhesions through the cell body (Fig. 5, TLN2-GFP), consistent with 245 

previous studies (Kremerskothen et al., 2003; Praekelt et al., 2012). Co-expression of both WWC1 and 246 

TLN2 dramatically changed TLN2 localization. In the presence of WWC1, TLN2-GFP appeared 247 

concentrated in cytoplasmic foci (Fig. 5, compare GFP staining for TLN2 and WWC1+TLN2) surrounded 248 

by Flag-WWC1 rings (Fig. 5, WWC1+TLN2-GFP, merge image). In N2a cells, WWC1 and TLN2 were 249 
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found to co-localize in cytoplasm and in filopodia-like protrusions (Fig. S1). However, different co-250 

localization patterns observed in N2a cells may be due to different levels of the proteins expressions. 251 

Furthermore, immunoprecipitation analysis (IP) both in human brain samples and in HEK293 cells 252 

indicated the presence of WWC1 and TLN2 in the same protein complex. The levels of the two proteins 253 

were variable in all conditions and brain regions queried (Braak I and Braak VI brains (Braak and Braak, 254 

1991), Fig. 6A (upper panel)). WWC1 co-immunoprecipitated with the anti-TLN2 antibody (Fig. 6A 255 

(lower panel)); as expected, TLN2 bands were evident in the western blot. Interestingly, when the WWC1 256 

antibody was used, TLN22 bands were absent (Fig. 6A (lower panel). These data suggest that the anti-257 

WWC1 antibody could competitively disrupt the TLN2 and WWC1 interaction. In HEK293 cells, TLN2-258 

GFP specifically co-purified with Flag-WWC1 when both proteins were overexpressed together (Fig. 6B). 259 

To model molecular mechanisms of interaction between WWC1 and TLN2 we performed protein docking 260 

and molecular dynamics (MD) in silico experiments. We determined the top 10 ranked WWC1/TLN2 261 

poses (Fig. S2) via ClusPro 2.0 docking server (Comeau et al., 2004a, b; Kozakov et al., 2006). Poses 2 262 

and 7 showed the most favorable conditions for complex formation as their average MM/PBSA protein-263 

ligand binding free energies (dGbind) were amongst the most negative showing the lowest dispersion over 264 

the course of the 50 ns aqueous simulations. In all 50 ns MD simulations, WWC1 and TLN2 remained 265 

physically associated in a complex throughout the entire course of simulation. The average dGbind 266 

remained negative for all 10 poses (dGbind ranged from -16 to -227 kJ/mol indicating the size of the 267 

binding affinity between the two proteins; Table S7 and Fig. S3). 268 

 269 

4. Discussion 270 

This is the first contribution showing (sex-specific) biological epistasis in AD between genes identified 271 

via exhaustive genomic epistasis analysis: WWC1 (WW and C2 domain containing 1 or kidney and brain 272 

expressed protein, aka KIBRA) and TLN2 (talin 2). WWC1 is expressed in brain regions responsible for 273 
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learning and memory (hippocampus and cortex) and is involved in maintaining of synaptic plasticity 274 

(Vogt-Eisele et al., 2014). TLN2 expression is restricted to heart, skeletal muscle and brain (synapses and 275 

focal adhesions) (Di Paolo et al., 2002). It plays an important role in the assembly of actin filaments 276 

(particularly affecting actin dynamics and clathrin-mediated endocytosis at neuronal synapses (Morgan et 277 

al., 2004)) and in spreading and migration of various cell types. WWC1 has already been associated with 278 

memory-related disorders including AD (Burgess et al., 2011; Corneveaux et al., 2010; Papassotiropoulos 279 

et al., 2006; Rodriguez-Rodriguez et al., 2009), while TLN2 has not. However, in our study rhea (ortholog 280 

of TLN2 in Drosophila) modulated Tau toxicity in Drosophila and thus may be involved in AD pathology. 281 

Interestingly, recent studies identified several other components of the cell adhesion pathway as modifiers 282 

of Tau toxicity in Drosophila (Dourlen et al., 2016; Shulman et al., 2014). Studying the mechanisms of 283 

the identified epistatic interaction, we performed comprehensive functional biological experiments. 284 

WWC1 and TLN2 were co-expressed in the temporal cortex brain tissue (responsible for learning and 285 

memory) of AD subjects, co-localized in both brain tissue cells, in neuroblastoma N2a and HeLa cell 286 

lines, and co-immunoprecipitated both in brain tissue and HEK293 cells. The physical interaction between 287 

WWC1 and TLN2 was also supported by in silico experiments where the binding affinity between the two 288 

proteins was pretty strong with favorable conditions for forming a stable protein complex.  289 

We may speculate on the involvement of WWC1 and TLN2 in common signaling pathways connected to 290 

signal transduction via synapses that are impaired when dementia symptoms and AD progress. Since 291 

overexpression of WWC1 was previously associated with AD (Burgess et al., 2011), we speculate that 292 

impairment expression of WWC1 and/or TLN2 proteins may destabilize actin filaments. Additional work 293 

is required to further describe a functional interplay between WWC1 and TLN2 and to explain why we 294 

observed the interaction at an individual level for both sexes, whereas we could detect association with 295 

AD only in males at a population level (despite of the theoretical power loss for epistasis detection in a 296 

sample stratum of males). A few explanations are possible and should be investigated in detail: the 297 

influence of sex hormones on the epistasis manifestation, the involvement of a third interacting component 298 
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(i.e., an interacting gene) linked to the sex chromosomes, other types of sex-specific variant(s) in WWC1 299 

and TLN2, among others. Regardless, our findings provide impetus for an in-depth search of AD-related 300 

mutation(s) in WWC1 and TLN2 genes to better explore and grasp biological mechanisms underlying the 301 

identified sex-specific epistasis signals. Targeted next-generation sequencing of the interacting genes may 302 

facilitate the identification of new functional mutations (either common or rare) that play a role in protein 303 

structure, stability, solubility, folding, and affinity of interaction with ligand(s), to name a few. 304 

There  is  still a  big  divide  between  statistical  epistasis  and  biological  epistasis.  The  ambition  in  305 

detecting  statistical  epistasis  is  to  close  this  gap  by  improved  analysis  protocols  and  to  formulate  306 

guidelines  towards  the  interpretation  of  statistical  findings  in  the  context  of  epistasis.  The  field  307 

has  evolved  a  lot  over  the  last  decade,  in  this  sense.  This  does  not  change  the  fact  that  indeed,  308 

the  power  of  a  genome-wide  epistasis  screening  (GWAI  analysis)  using  a  single  study  is  much  309 

smaller  than  the  power  of  a  corresponding  main  effects  GWA  analysis  using  the  same  data 310 

(Gauderman, 2002).  Our  experience  with  large-scale  epistasis  studies  is  consistent  with  this,  311 

usually  only  giving  rise  to  1  or  2  reliable  statistical  findings  (that  is,  findings  for  which  we  can  312 

rule  out  numerical  instability  issues  or  strong  main  effects  overtaking  the  joint  effects  of  the  loci  313 

involved).  Regardless,  results  dating  back  from  already  suggested  that  biological  inference  from  314 

statistical  models  is  not  an  utopia  (Moore, 2005).  315 

5. Conclusion 316 

In this research we aimed to identify novel gene/protein targets to pave the way towards novel 317 

biochemical pathways related to AD via SNP panels as a starting point. By following a rigorous analytic 318 

genome-wide epistasis detection protocol (Gusareva and Van Steen, 2014), which minimizes false 319 

positive findings and enhances functional relevance, the statistically replicable epistasis was identified. A 320 

series of biological experiments indicated novel protein-protein interaction between WWC1 and TLN2 321 

that can potentially be a medical target for the cure of AD. To our knowledge, this is the first report in AD 322 
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where a hypothesis-free screening led to evidence for replicable statistical interaction and where 323 

functional studies were performed beyond the transcriptome.  324 
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Figure legends 515 

Fig. 1. Analysis protocol including genome-wide association interaction (analytical block) and 516 

biological validation of epistasis (experimental block). 517 

Fig. 2. Genetic interaction between kibra, rhea and human Tau in the eye of Drosophila. A. Table 518 

presenting the homology of WWC1 and TLN2 with their Drosophila orthologs. B. and C. Image and size 519 

quantification of fly eyes expressing the 2N4R Tau isoform (GMR>Tau) in loss-of-function (in blue) and 520 

gain-of-function (GOF, in green) kibra conditions (scale bar 0.1 mm). The GMR> images correspond to 521 

the same kibra conditions without Tau expression. Numbers above the x axis in the graphs indicate the 522 

number of eyes that were quantified. Knockdown (overexpression) of kibra rescued partially  (enhanced) 523 

Tau toxicity in the eye (C. right graph). This was likely an additive effect of the modulation of kibra with 524 

Tau as knockdown (overexpression) of kibra alone increased (decreased) the size of the eyes (C. left 525 

graph). However one haploinsufficient condition, kibra2/+, partially rescued Tau toxicity (C. right graph) 526 

without affecting the eye on its own (C. left graph). D. and E. Image and size quantification of fly eyes 527 

expressing the 2N4R Tau isoform (GMR>Tau) in loss-of-function (in blue) rhea conditions (scale bar 0.1 528 

mm). Expression of Tau in the haploinsufficient rhea1/+ background resulted in bigger eyes (E. right 529 

graph) whereas haploinsufficient rhea1/+ flies have similar eye size than control (E. left graph), suggesting 530 

a genetic interaction between Tau and rhea. 531 

Fig. 3. Presence and localization of WWC1 and TLN2 in the temporal cortex of an AD patient. A. 532 

Single immunostainings with chromogenic detection reveals in neuronal cytoplasm a moderate to strong 533 

WWC1 staining and low TLN2 expression. B. Fluorescence double immunostaining confirms the 534 

presence of WWC1 and TLN2 in neuronal cells. Strong neuritic WWC1 accumulations are highlighted 535 

with arrows, blood vessel endothelial cells with high TLN2 signal are marked with arrowheads. Scale bar 536 

= 50µm. 537 
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Fig. 4. TLN2 and WWC1 (aka KIBRA) co-localize in AD and control brains.  Representative images 538 

of healthy (Braak I, A-C) and late stage AD (Braak VI, D-F) brains that were immunofluorescently 539 

labeled with anti-Talin2 (green) and anti-KIBRA (red) antibodies. Co-localization analysis was performed 540 

on positive immunofluorescent signals from multi-z-stack confocal microscopy images. Braak I (A-C) and 541 

VI (D-F) brains showed positive co-localization between both signals (C and F). DAPI (blue) was used to 542 

reveal cell nuclei. G-I) Representative images of brain sections incubated with only secondary, but not 543 

primary, antibodies to reveal non-specific staining. Three Braak I and three Braak VI brains were imaged. 544 

A total of 9 sets of confocal z-stacked images were obtained for each condition (Braak I and VI). 545 

Fig. 5. WWC1 (aka KIBRA) and TLN2 co-localize in HeLa cells. HeLa cells were transfected with 546 

expressing vectors for TLN2-GFP and/or Flag-WWC1. Cells on glass coverslips were fixed, 547 

permeabilized and labeled with an anti-Flag M2 antibody followed by Alexa633-conjugated secondary 548 

antibody and Dapi nuclear staining. Images were analyzed using a confocal microscope.  549 

Fig. 6.  WWC1 and TLN2 present in the same protein complex. A (upper panel). Representative 550 

western blot showing varying levels of TLN2 and WWC1 in superior medial temporal gyrus (SMTG) and 551 

hippocampal (HC) homogenates from Braak I and VI brains. A (lower panel). Representative western 552 

blots of co-IP showing that WWC1 associates with TLN2. TLN2, however, did not co-immunoprecipitate 553 

when anti-WWC1 antibodies were used. Ø represents brain homogenates that were not incubated with 554 

primary antibodies (only secondary). Ages and sex of each sample is shown. B. HEK293 cells were 555 

transfected with expressing vectors for TLN2-GFP and/or Flag-WWC1 as indicated. Cell lysates were 556 

immunoprecipitated using anti-Flag M2 antibody followed by SDS-PAGE and western blot using an anti-557 

GFP antibody. Five percent of the amount of each lysate was used as positive control for protein 558 

expression. 559 
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1. Samples and markers quality control: HWE test in controls (P > 1*10-4),  

    call rate > 98%, marker allele frequency (MAF >  0.05) 

4. “Gene-based” replication analysis and meta-analysis 

2. LD pruning: Window size 50 bp, window increment 1 bp, LD r2 threshold 0.75 

3. Exhaustive genome-wide screening for pair-wise SNP interactions in    

    males and females: BOOST, MB-MDR and regression modeling in R 

Discovery cohort EADI1: 3150 males (788 cases), 5110 females (1455 cases) 

582,982 SNPs 

474,020 SNPs 

312,064 SNPs 

Replication cohorts: GERAD1 3929 males (988 cases), RS 2376 males (264 

cases), 

ADGC 6149 males (2584 cases) 

68 SNPs - WWC1, 98 SNPs - TLN2 
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 5. Biological validation of statistical epistasis (series of functional analyses): 

Transcriptome analysis to assess co-expression of WWC1 and TLN2 in brain 

tissues of AD and non-AD subjects 

Experiments in model organisms (i.e., Tau toxicity in the Drosophila eye) to test 

whether WWC1 and TLN2 can modulate AD physiopathology 

Immunofluorescence and confocal microscopy to confirm presence of WWC1 

and TLN2 in human brain cells and to assess their co-localization in common 

cellular compartments 

Immunoprecipitation analysis to confirm physical interaction between WWC1 

and TLN2 in a real biological system  

Protein docking and molecular dynamics analysis to get more inside into 

mechanisms of the physical interaction between WWC1 and TLN2 
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Highlights  1 

1. Exhaustive hypothesis-free genome-wide screening for epistasis was conducted. 2 

2. Replicable statistical interaction between WWC1 and TLN2 genes was identified. 3 

3. A series of biological experiments verified novel protein-protein interaction between WWC1 and 4 

TLN2. 5 
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Data statement 

Genome-wide genotype data of the EADI1 consortium are available 

at https://www.cng.fr/alzheimer/ and https://beaune.cng.fr/alz_results/. Data collections of the ADGC 

are deposited in NIAGADS and can be assessed at https://www.niagads.org/resources/related-

projects/alzheimers-disease-genetics-consortium-adgc-collection. Genotype data of the GERAD1 and 

RS were provided upon request according to consortium regulations. Because of restrictions based on 

privacy regulations and informed consent of the participants, data cannot be made freely available in a 

public repository. The transcriptome data are available 

at http://dx.doi.org/10.7303/syn3157225 and http://dx.doi.org/10.7303/syn3157249. 

 


